JP2008085058A - Additive for cmp abrasive, cmp abrasive, and substrate polishing method, and electronic component - Google Patents

Additive for cmp abrasive, cmp abrasive, and substrate polishing method, and electronic component Download PDF

Info

Publication number
JP2008085058A
JP2008085058A JP2006262956A JP2006262956A JP2008085058A JP 2008085058 A JP2008085058 A JP 2008085058A JP 2006262956 A JP2006262956 A JP 2006262956A JP 2006262956 A JP2006262956 A JP 2006262956A JP 2008085058 A JP2008085058 A JP 2008085058A
Authority
JP
Japan
Prior art keywords
additive
polishing
cmp
cmp abrasive
cerium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006262956A
Other languages
Japanese (ja)
Inventor
Kazuhiro Enomoto
和宏 榎本
Koji Haga
浩二 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2006262956A priority Critical patent/JP2008085058A/en
Publication of JP2008085058A publication Critical patent/JP2008085058A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an additive for CMP abrasive for polishing the whole surface of a substrate flatly and evenly in a CMP technology for flattening a stepped substrate to be polished such as an interlayer insulation film and an insulation film for shallow trench isolation, and to provide a CMP abrasive which is a combination of the additive and a cerium oxide slurry, a polishing method, and an electronic device formed by polishing. <P>SOLUTION: The additive for CMP abrasive is an aqueous solution having a pH of 4-9 and contains an organic compound having an acetylenic linkage (carbon-carbon triple linkage), a water-soluble vinyl polymer, and water. The additive for CMP abrasive and the cerium oxide slurry for semiconductors are combined to form the CMP abrasive. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体素子等の電子部品の製造工程のうち、層間絶縁膜の平坦化工程またはシャロー・トレンチ分離の形成工程等において使用されるCMP(Chemical Mechanical Polishing)研磨剤用添加剤、CMP研磨剤、基板の研磨方法および電子部品に関する。   The present invention relates to an additive for CMP (Chemical Mechanical Polishing) abrasive used in a planarization process of an interlayer insulating film or a shallow trench isolation formation process in a manufacturing process of an electronic component such as a semiconductor element, and CMP polishing. The present invention relates to an agent, a substrate polishing method, and an electronic component.

超大規模集積回路の分野において実装密度を高めるために種々の微細加工技術が研究、開発されており、既に、デザインルールは、サブハーフミクロンのオーダーになっている。このような厳しい微細化要求を満足するための技術の一つにCMP研磨技術がある。この技術は、半導体装置の製造工程において、露光を施す層を完全に平坦化することによって微細化を可能とし、歩留まりを向上させることができるため、例えば、層間絶縁膜の平坦化やシャロー・トレンチ分離等を行う際に必要となる技術である。   Various microfabrication techniques have been researched and developed to increase the packaging density in the field of ultra-large scale integrated circuits, and the design rules are already in the order of sub-half microns. One of the techniques for satisfying such strict miniaturization requirements is a CMP polishing technique. Since this technique enables miniaturization by completely planarizing the layer to be exposed in the manufacturing process of a semiconductor device and improves the yield, for example, planarization of an interlayer insulating film or shallow trench This is a technique required when performing separation or the like.

従来、集積回路内の素子分離にはLOCOS(シリコン局所酸化)法が用いられてきたが、素子分離幅をより狭くするため、近年ではシャロー・トレンチ分離法が用いられている。シャロー・トレンチ分離法では、ウエハ基板上に成膜した余分の酸化珪素膜を除くためにCMPが必須であり、研磨を停止させるために、酸化珪素膜の下に窒化珪素膜がストッパとして形成されるのが一般的である。   Conventionally, a LOCOS (silicon local oxidation) method has been used for element isolation in an integrated circuit, but in recent years, a shallow trench isolation method has been used to narrow the element isolation width. In the shallow trench isolation method, CMP is indispensable to remove the excess silicon oxide film formed on the wafer substrate, and a silicon nitride film is formed as a stopper under the silicon oxide film to stop polishing. It is common.

半導体装置の製造工程において、プラズマ−CVD(Chemical Vapor Deposition、化学的蒸着法)、低圧−CVD等の方法で形成される酸化珪素絶縁膜等を平坦化するためのCMP研磨剤としては、従来、フュームドシリカを研磨粒子とするpH9を超えるアルカリ性の研磨剤が多用されてきた。しかしながら、酸化珪素膜の研磨速度を高くするためにアルカリ性に保持されたシリカ研磨剤では、ストッパである窒化珪素膜の研磨速度も高く、ウエハ全面が均一に削れない(すなわち高平坦化できない)、あるいは電気特性に悪影響を与える研磨傷が多い等の問題があった。   As a CMP polishing agent for planarizing a silicon oxide insulating film or the like formed by a method such as plasma-CVD (Chemical Vapor Deposition) or low-pressure CVD in a semiconductor device manufacturing process, Alkaline abrasives having a pH of more than 9 using fumed silica as abrasive particles have been frequently used. However, in the silica polishing agent kept alkaline to increase the polishing rate of the silicon oxide film, the polishing rate of the silicon nitride film as a stopper is also high, and the entire surface of the wafer cannot be shaved uniformly (that is, high planarization cannot be performed). Alternatively, there are problems such as many polishing scratches that adversely affect electrical characteristics.

一方、フォトマスクやレンズ等のガラス表面研磨剤としては、酸化セリウムを用いた研磨剤が近年多用されている。この技術は、例えば特許文献1に開示されている。酸化セリウム研磨剤はシリカ研磨剤と比べて酸化珪素膜の研磨速度が早く、研磨傷も比較的少ないという特長を有するため、酸化セリウム研磨剤を半導体用研磨剤として適用する検討が近年行われており、その一部は半導体用研磨剤として実用化されるようになっている。この技術は、例えば特許文献2に開示されているが、各種デバイスが形成された半導体ウエハの全面を、電気特性不良に至る研磨傷をほとんど発生させずに、平坦化できるような酸化セリウム研磨剤はまだ得られていなかった。   On the other hand, abrasives using cerium oxide have been frequently used as glass surface abrasives for photomasks and lenses in recent years. This technique is disclosed in Patent Document 1, for example. Since cerium oxide abrasive has the features that the polishing rate of silicon oxide film is faster than silica abrasive and there are relatively few polishing flaws, studies have been made in recent years to apply cerium oxide abrasive as a semiconductor abrasive. Some of them are put to practical use as semiconductor abrasives. This technique is disclosed in, for example, Patent Document 2, but a cerium oxide abrasive that can planarize the entire surface of a semiconductor wafer on which various devices are formed, with almost no polishing scratches leading to poor electrical characteristics. Was not yet obtained.

酸化セリウム研磨剤を用いて平坦化を向上させるために、酸化セリウムスラリーと、ポリアクリル酸アンモニウム塩又はポリアクリル酸アミン塩の水溶液を分散剤として含む添加液とからなるCMP研磨剤を用いて研磨すると平坦性特性が向上することが特許文献3に提案されているが、添加液にポリアクリル酸アンモニウム塩又はポリアクリル酸アミン塩のみを用いる場合、被研磨面全体への拡散に問題があり、半導体ウエハ研磨面内全体への吸着性に対してムラが発生してしまい、ウエハ面内の研磨速度の均一性が悪くなり、ウエハ面内における平坦性にバラつきを及ぼすことがわかった。
特開平5−326469号公報 特開平9−270402号公報 再表00/39843公報
In order to improve planarization using a cerium oxide abrasive, polishing is performed using a CMP abrasive comprising a cerium oxide slurry and an additive solution containing an aqueous solution of ammonium polyacrylate or amine polyacrylate as a dispersant. Then, it is proposed in Patent Document 3 that the flatness characteristics are improved, but when only the polyacrylic acid ammonium salt or the polyacrylic acid amine salt is used as the additive liquid, there is a problem in diffusion to the entire surface to be polished, It was found that unevenness occurred in the adsorptivity to the entire semiconductor wafer polishing surface, the uniformity of the polishing rate in the wafer surface was deteriorated, and the flatness in the wafer surface was varied.
JP-A-5-326469 JP-A-9-270402 No. 00/39843

本発明は、ウエハ面内全面の研磨均一性を向上させ、ウエハ面内全面の平坦化特性を向上させることを課題とし、鋭意検討の結果、ポリビニル重合体、特にポリアクリル酸アンモニウム塩又はポリアクリル酸アミン塩の被研磨面への吸着性を助けるため、吸着助剤としてアセチレン結合(炭素−炭素間の三重結合)を有する有機化合物の炭素−炭素間三重結合部分を被研磨膜全面に吸着させることにより、特に半導体ウエハ面内全体を均一に研磨することが可能なCMP研磨剤用添加剤と、それを用いたCMP研磨剤及び研磨方法を提供することが可能となった。   An object of the present invention is to improve the polishing uniformity over the entire surface of the wafer and to improve the planarization characteristics of the entire surface of the wafer. In order to help adsorb acid amine salt to the surface to be polished, the carbon-carbon triple bond portion of an organic compound having an acetylene bond (carbon-carbon triple bond) as an adsorbent is adsorbed on the entire surface of the film to be polished. This makes it possible to provide an additive for a CMP abrasive that can uniformly polish the entire surface of a semiconductor wafer, and a CMP abrasive and a polishing method using the same.

本発明は、下記(1)〜(21)の発明に関する。   The present invention relates to the following inventions (1) to (21).

(1)アセチレン結合を有する有機化合物、水溶性のビニル重合体及び水を含み、pHが4〜9である水溶液であり、半導体用酸化セリウムスラリーと組み合わせることにより半導体用無機絶縁膜を研磨することが可能であるCMP研磨剤用添加剤。   (1) Polishing an inorganic insulating film for a semiconductor by combining an organic compound having an acetylene bond, a water-soluble vinyl polymer, and water and having a pH of 4 to 9 and combining with a cerium oxide slurry for a semiconductor. An additive for CMP abrasives that is possible.

(2)アセチレン結合を有する有機化合物が一般式(I)

Figure 2008085058
(2) The organic compound having an acetylene bond is represented by the general formula (I)
Figure 2008085058

(一般式(I)中、Rは水素原子または炭素数が1〜5の置換もしくは無置換アルキル基を表し、Rは炭素数が4〜10の置換または無置換アルキル基を表す。)で示される前記(1)記載のCMP研磨剤用添加剤。 (In general formula (I), R 1 represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, and R 2 represents a substituted or unsubstituted alkyl group having 4 to 10 carbon atoms.) The additive for CMP abrasive | polishing agent of the said (1) description shown by these.

(3)アセチレン結合を有する有機化合物が一般式(II)

Figure 2008085058
(3) The organic compound having an acetylene bond is represented by the general formula (II)
Figure 2008085058

(一般式(II)中、R〜Rはそれぞれ独立に水素原子または炭素数が1〜5の置換もしくは無置換アルキル基を表し、R、Rはそれぞれ独立に炭素数が1〜5の置換または無置換アルキレン基を表し、m、nはそれぞれ独立に0または正数を表す。)である前記(1)記載のCMP研磨剤用添加剤。 (In General Formula (II), R 3 to R 6 each independently represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, and R 7 and R 8 each independently represents 1 to 1 carbon atoms. 5 represents a substituted or unsubstituted alkylene group, and m and n each independently represents 0 or a positive number.) The additive for CMP abrasive according to (1) above.

(4)表面張力が20〜60dyn/cmである前記(1)〜(3)のいずれか記載のCMP研磨剤用添加剤。   (4) The additive for CMP abrasive according to any one of (1) to (3), wherein the surface tension is 20 to 60 dyn / cm.

(5)ビニル重合体がポリアクリル酸、ポリアクリル酸アンモニウム塩、ポリアクリル酸アミン塩、ポリ酢酸ビニル、ポリビニルイミダゾール、ポリビニルピロリドンから選ばれる1種類以上の高分子重合体である前記(1)〜(4)のいずれか記載のCMP研磨剤用添加剤。   (5) The above (1) to (1), wherein the vinyl polymer is at least one polymer selected from polyacrylic acid, ammonium polyacrylate, amine polyacrylate, polyvinyl acetate, polyvinyl imidazole, and polyvinyl pyrrolidone. The additive for CMP abrasives according to any one of (4).

(6)ビニル重合体の重量平均分子量が100〜200,000(ポリエチレンオキシド分子量換算)である前記(1)〜(5)のいずれか記載のCMP研磨剤用添加剤。   (6) The additive for CMP abrasives according to any one of (1) to (5) above, wherein the vinyl polymer has a weight average molecular weight of 100 to 200,000 (in terms of polyethylene oxide molecular weight).

(7)ビニル重合体がポリアクリル酸アンモニウム塩又はポリアクリル酸アミン塩である前記(1)〜(6)のいずれか記載のCMP研磨剤用添加剤。   (7) The additive for CMP abrasives according to any one of (1) to (6), wherein the vinyl polymer is a polyacrylic acid ammonium salt or a polyacrylic acid amine salt.

(8)ポリアクリル酸アンモニウム塩又はアミン塩が、重量平均分子量が1,000〜5,000のポリアクリル酸アンモニウム塩またはアミン塩と、5,000〜20,000のポリアクリル酸アンモニウム塩又はアミン塩との二種類のポリアクリル酸アンモニウム塩又はアミン塩から構成される前記(7)記載のCMP研磨剤用添加剤。   (8) The polyacrylic acid ammonium salt or amine salt is a polyacrylic acid ammonium salt or amine salt having a weight average molecular weight of 1,000 to 5,000, and a 5,000 to 20,000 polyacrylic acid ammonium salt or amine. The additive for CMP abrasives according to the above (7), which is composed of two kinds of ammonium polyacrylates or amine salts with a salt.

(9)アセチレン結合を有する有機化合物の分子量が100〜20,000である前記(1)〜(8)のいずれか記載のCMP研磨剤用添加剤。   (9) The additive for CMP abrasive according to any one of (1) to (8), wherein the organic compound having an acetylene bond has a molecular weight of 100 to 20,000.

(10)アセチレン結合を有する有機化合物を添加剤中に0.05〜5.0質量%含有する前記(1)〜(9)のいずれか記載のCMP研磨剤用添加剤。   (10) The additive for CMP abrasive according to any one of (1) to (9) above, wherein the additive contains an organic compound having an acetylene bond in an amount of 0.05 to 5.0% by mass.

(11)ビニル重合体を添加剤中に0.05〜3.0質量%含有する前記(1)〜(10)のいずれか記載のCMP研磨剤用添加剤。   (11) The additive for CMP abrasives according to any one of (1) to (10), wherein the additive contains a vinyl polymer in an amount of 0.05 to 3.0% by mass.

(12)無機陰イオンSO4 2-、NO3 -、Cl-及びPO4 3-のうち1種類以上を含有し、かつそれらの合計の濃度が1ppm〜1,000ppmである前記(1)〜(11)のいずれか記載のCMP研磨剤用添加剤。 (12) The inorganic anions SO 4 2− , NO 3 , Cl and PO 4 3− , which contain one or more kinds, and the total concentration thereof is 1 ppm to 1,000 ppm. The additive for CMP abrasives according to any one of (11).

(13)Na+、K+、Fe3+、Cu2+の含有量がいずれも1ppm以下である前記(1)〜(12)のいずれか記載のCMP研磨剤用添加剤。 (13) The additive for CMP abrasive according to any one of (1) to (12), wherein the contents of Na + , K + , Fe 3+ and Cu 2+ are all 1 ppm or less.

(14)被研磨膜を形成した基板を研磨定盤の研磨布に押し当て加圧し、CMP研磨剤を被研磨膜と研磨布との間に供給しながら、基板と研磨布とを相対的に動かして被研磨膜を研磨する基板の研磨方法であって、CMP研磨剤は、少なくとも前記(1)〜(13)のいずれか記載のCMP研磨剤用添加剤と、酸化セリウムスラリーとを含む基板の研磨方法。   (14) The substrate on which the film to be polished is formed is pressed against the polishing cloth of the polishing surface plate and pressed, and the substrate and the polishing cloth are relatively moved while supplying the CMP abrasive between the film to be polished and the polishing cloth. A method for polishing a substrate that moves and polishes a film to be polished, wherein the CMP abrasive comprises at least the additive for CMP abrasive according to any one of (1) to (13) and a cerium oxide slurry. Polishing method.

(15)CMP研磨剤の酸化セリウム粒子の平均粒径が0.1〜1.0μmとなるように添加剤を酸化セリウムスラリーと混合する前記(14)記載の基板の研磨方法。   (15) The method for polishing a substrate according to (14), wherein the additive is mixed with the cerium oxide slurry so that the average particle diameter of the cerium oxide particles of the CMP abrasive is 0.1 to 1.0 μm.

(16)別個に調製したCMP研磨剤用添加剤と酸化セリウムスラリーとを研磨直前に混合してCMP研磨剤を調製する工程を含む前記(14)または(15)記載の基板の研磨方法。   (16) The method for polishing a substrate according to (14) or (15), comprising a step of preparing a CMP abrasive by mixing separately prepared additive for CMP abrasive and cerium oxide slurry immediately before polishing.

(17)CMP研磨剤が、予めCMP研磨剤用添加剤と酸化セリウムスラリーとを含んで混合した混合液である前記(14)または(15)記載の基板の研磨方法。   (17) The method for polishing a substrate according to (14) or (15), wherein the CMP abrasive is a mixed liquid in which the additive for CMP abrasive and cerium oxide slurry are mixed in advance.

(18)前記(1)〜(13)のいずれか記載のCMP研磨剤用添加剤と酸化セリウムスラリーとを含むCMP研磨剤。   (18) A CMP abrasive comprising the CMP abrasive additive according to any one of (1) to (13) and a cerium oxide slurry.

(19)酸化セリウム粒子の濃度が0.1〜10質量%である前記(18)記載のCMP研磨剤。   (19) The CMP abrasive | polishing agent as described in said (18) whose density | concentration of a cerium oxide particle is 0.1-10 mass%.

(20)酸化セリウム粒子のうち99%体積成分の酸化セリウム粒子の粒径が0.3μm〜5.0μmの範囲に含まれる前記(18)または(19)記載のCMP研磨剤。   (20) The CMP polishing slurry according to the above (18) or (19), wherein the 99% volume component cerium oxide particles among the cerium oxide particles have a particle size in the range of 0.3 μm to 5.0 μm.

(21)前記(14)〜(17)のいずれか一項記載の方法で基板を研磨する工程、または前記(18)〜(20)のいずれか記載のCMP研磨剤を使用して基板を研磨する工程を含んで製造された電子部品。   (21) The step of polishing the substrate by the method according to any one of (14) to (17), or polishing the substrate using the CMP abrasive according to any one of (18) to (20) An electronic component manufactured including the process of

本発明のCMP研磨剤用添加剤を用いたCMP研磨剤及び研磨方法によれば、高平坦化、ウエハ面内の高均一化が可能であり、半導体素子製造工程、特にシャロー・トレンチ分離に好適である。また、酸化珪素絶縁膜等の基板の被研磨面を傷なく、高速に研磨することができる。   According to the CMP polishing agent and polishing method using the additive for CMP polishing agent of the present invention, high planarization and high uniformity in the wafer surface are possible, and it is suitable for semiconductor element manufacturing processes, particularly for shallow trench isolation. It is. Further, the polished surface of the substrate such as a silicon oxide insulating film can be polished at high speed without being damaged.

本発明において、CMP研磨剤用添加剤は、アセチレン結合(炭素−炭素間の三重結合)を有する有機化合物、水溶性のビニル重合体及び水を含み、pHが4〜9となる水溶液であり、酸化セリウムスラリーと組み合わせることにより、半導体用酸化膜等の無機絶縁膜をCMP研磨剤として研磨することが可能となる。   In the present invention, the additive for CMP abrasive is an aqueous solution containing an organic compound having an acetylene bond (carbon-carbon triple bond), a water-soluble vinyl polymer, and water, and having a pH of 4 to 9. By combining with a cerium oxide slurry, it becomes possible to polish an inorganic insulating film such as a semiconductor oxide film as a CMP abrasive.

添加剤のpHは4〜9であることが必要で、好ましくは5〜8の範囲であり、さらに好ましくは5〜7の範囲である。pHが低すぎると研磨速度の急激的な低下を引き起こす場合が多く好ましくない。また、pHが高すぎると添加剤の効果が少なく、平坦化機能の効果が低下するため好ましくない。pHは、アンモニア、テトラメチルアンモニウムヒドロキシド(TMAH)等のアルカリ成分や酸によって調整可能である。   The pH of the additive needs to be 4 to 9, preferably 5 to 8, more preferably 5 to 7. An excessively low pH is not preferable because it often causes a sharp decrease in the polishing rate. Further, if the pH is too high, the effect of the additive is small, and the effect of the flattening function is lowered, which is not preferable. The pH can be adjusted by alkali components such as ammonia and tetramethylammonium hydroxide (TMAH) and acids.

アセチレン結合を有する有機化合物としては、炭素−炭素間の三重結合を含むものであれば特に制限はないが、具体的には、一般式(I)

Figure 2008085058
The organic compound having an acetylene bond is not particularly limited as long as it contains a carbon-carbon triple bond. Specifically, the organic compound has the general formula (I)
Figure 2008085058

(一般式(I)中、Rは水素原子または炭素数が1〜5の置換もしくは無置換アルキル基を表し、Rは炭素数が4〜10の置換または無置換アルキル基を表す。)で示される化合物、一般式(II)

Figure 2008085058
(In general formula (I), R 1 represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, and R 2 represents a substituted or unsubstituted alkyl group having 4 to 10 carbon atoms.) A compound of formula (II)
Figure 2008085058

(一般式(II)中、R〜Rはそれぞれ独立に水素原子または炭素数が1〜5の置換もしくは無置換アルキル基を表し、R、Rはそれぞれ独立に炭素数が1〜5の置換または無置換アルキレン基を表し、m、nはそれぞれ独立に0または正数を表す。)で示される化合物が挙げられる。なお、一般式(II)中、m、nは一般に平均値で示される。これらの化合物の中では、1−デシン、5−デシン、2,4,7,9−テトラメチル−5−デシン−4,7−ジオール、2,4,7,9−テトラメチル−5−デシン−4,7−ジオールエトキシレートがより好ましい。これらは単独で又は2種類以上を組み合わせて用いられる。 (In General Formula (II), R 3 to R 6 each independently represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, and R 7 and R 8 each independently represents 1 to 1 carbon atoms. 5 represents a substituted or unsubstituted alkylene group, and m and n each independently represents 0 or a positive number. In general formula (II), m and n are generally represented by average values. Among these compounds, 1-decyne, 5-decyne, 2,4,7,9-tetramethyl-5-decyne-4,7-diol, 2,4,7,9-tetramethyl-5-decyne More preferred is -4,7-diol ethoxylate. These may be used alone or in combination of two or more.

本発明において、CMP研磨剤用添加剤の表面張力は20〜60dyn/cmであることが好ましい。。より好ましくは20〜50dyn/cmであり、さらに好ましくは20〜40dyn/cmである。表面張力が大きすぎると被研磨面に対する濡れ性が悪くなり、被研磨面全体にCMP研磨剤用添加剤が行き渡らない可能性がある。   In the present invention, the surface tension of the additive for CMP abrasive is preferably 20 to 60 dyn / cm. . More preferably, it is 20-50 dyn / cm, More preferably, it is 20-40 dyn / cm. If the surface tension is too large, the wettability with respect to the surface to be polished is deteriorated, and there is a possibility that the additive for CMP abrasive does not spread over the entire surface to be polished.

本発明において、水溶性のビニル重合体は、ポリアクリル酸、ポリアクリル酸アンモニウム塩、ポリアクリル酸アミン塩、ポリ酢酸ビニル、ポリビニルイミダゾール、ポリビニルピロリドンから選ばれる高分子重合体であることが好ましい。他に、ポリアクリル酸テトラメチルアンモニウム塩、ポリメタクリル酸等の誘導体が挙げられる。これらは単独で又は2種類以上を組み合わせて用いられる。また、2種以上の単量体から得られる共重合体であってもよい。   In the present invention, the water-soluble vinyl polymer is preferably a high molecular polymer selected from polyacrylic acid, polyacrylic acid ammonium salt, polyacrylic acid amine salt, polyvinyl acetate, polyvinylimidazole, and polyvinylpyrrolidone. In addition, polyacrylic acid tetramethylammonium salt, polymethacrylic acid derivatives and the like can be mentioned. These may be used alone or in combination of two or more. Moreover, the copolymer obtained from 2 or more types of monomers may be sufficient.

また、ビニル重合体の重量平均分子量は100〜200,000であるのが好ましい。より好ましくは1,000〜20,000であり、さらに好ましくは1,000〜10,000である。特に好ましくは1,000〜5,000である。なお重量分子量とは、ポリエチレングリコールスタンダードを基準とした、イオン水を溶流液としたGPC(ゲルパーミネーションクロマトグラフィー)で測定を行った値である。 Moreover, it is preferable that the weight average molecular weights of a vinyl polymer are 100-200,000. More preferably, it is 1,000-20,000, More preferably, it is 1,000-10,000. Particularly preferred is 1,000 to 5,000. The weight molecular weight is a value measured by GPC (gel permeation chromatography) based on polyethylene glycol standard and using ionic water as a solution.

また、前述したビニル重合体の中では、ポリアクリル酸アンモニウム塩又はポリアクリル酸アミン塩であることがより好ましい。 Moreover, in the vinyl polymer mentioned above, it is more preferable that they are polyacrylic acid ammonium salt or polyacrylic acid amine salt.

特に、本発明においてポリアクリル酸アンモニウム塩又はアミン塩は、重量平均分子量が二種類の成分からなるポリアクリル酸アンモニウム塩又はアミン塩が混合されたものであることが好ましい。具体的には100〜5,000のポリアクリル酸アンモニウム塩又はアミン塩(A)と5,000〜200,000のポリアクリル酸アンモニウム塩又はアミン塩(B)の二種類から構成されることが好ましい。前記AとBとの構成比率は、Aの構成重量比率(A/(A+B))が10〜99%の範囲であることが好ましく、より好ましくは20〜80%であり、さらに好ましくは30〜70%の範囲である。2種類の成分比を最適化することで吸着量のコントロールをすることができる。100〜5,000のAの成分が多すぎると、吸着するポリアクリル酸アンモニウム塩又はアミン塩の吸着した時の厚さが薄すぎることが起こり、吸着の効果が小さくなってしまう場合がある。また5,000〜20,000のB成分が多すぎると、吸着した時の厚さは十分であるが、吸着面にムラが発生してしまい、平坦性特性のバラつきが発生する原因である。   In particular, in the present invention, the polyacrylic acid ammonium salt or amine salt is preferably a mixture of a polyacrylic acid ammonium salt or amine salt composed of two types of components having a weight average molecular weight. Specifically, it is composed of two kinds of 100-5,000 polyacrylate ammonium salt or amine salt (A) and 5,000-200,000 polyacrylate ammonium salt or amine salt (B). preferable. The constituent ratio of A and B is preferably such that the constituent weight ratio of A (A / (A + B)) is in the range of 10 to 99%, more preferably 20 to 80%, and still more preferably. It is in the range of 30 to 70%. The amount of adsorption can be controlled by optimizing the ratio of the two components. If the A component of 100 to 5,000 is too much, the adsorbing polyacrylic acid ammonium salt or amine salt may be too thin, and the adsorption effect may be reduced. On the other hand, if the B component of 5,000 to 20,000 is too large, the thickness when adsorbed is sufficient, but unevenness occurs on the adsorption surface, which causes variations in flatness characteristics.

本発明において、吸着助剤として用いるアセチレン結合を有する有機化合物の分子量は100〜2,000であるのが好ましい。より好ましくは100〜1,200であり、さらに好ましくは400〜1,000である。分子量が大きすぎると吸着助剤としての分子数が少なくなり、ウエハ面内の均一性を保たれなくなる場合があり、分子量が小さすぎると吸着助剤性能が十分に発揮されなくなる場合がある。   In the present invention, the molecular weight of the organic compound having an acetylene bond used as an adsorption aid is preferably 100 to 2,000. More preferably, it is 100-1,200, More preferably, it is 400-1,000. If the molecular weight is too large, the number of molecules as the adsorption aid may be reduced, and uniformity in the wafer surface may not be maintained. If the molecular weight is too small, the adsorption aid performance may not be sufficiently exhibited.

本発明において、吸着助剤として用いるアセチレン結合を有する有機化合物は添加剤中に0.05〜5.0質量%含有されることが好ましい。より好ましくは、0.1〜2.0質量%であり、さらに好ましくは、0.3〜1.0質量%である。含有量が多すぎると粘度の上昇を引き起こしたり、研磨粒子の凝集を引き起こしたり、研磨特性に影響を及ぼす傾向がある。また、含有量が少なすぎると吸着助剤としての効果が小さくなる傾向がある。   In the present invention, the organic compound having an acetylene bond used as an adsorption aid is preferably contained in the additive in an amount of 0.05 to 5.0% by mass. More preferably, it is 0.1-2.0 mass%, More preferably, it is 0.3-1.0 mass%. If the content is too large, the viscosity tends to increase, the agglomeration of abrasive particles tends to occur, and the polishing characteristics tend to be affected. Moreover, when there is too little content, there exists a tendency for the effect as an adsorption aid to become small.

本発明において、ビニル重合体が添加剤中に0.05〜3.0質量%含有することが好ましい。より好ましくは、0.1質量%〜2.0質量%であり、さらに好ましくは0.3質量%〜1.5質量%である。含有量が多すぎると粘度の上昇を引き起こしたり、研磨粒子の凝集を引き起こしたり、研磨特性に影響を及ぼす場合がある。また、含有量が少なすぎると著しく平坦性特性を失う結果につながる場合がある。   In this invention, it is preferable that a vinyl polymer contains 0.05-3.0 mass% in an additive. More preferably, it is 0.1 mass%-2.0 mass%, More preferably, it is 0.3 mass%-1.5 mass%. If the content is too large, viscosity may increase, abrasive particles may aggregate, and polishing characteristics may be affected. Moreover, when there is too little content, it may lead to the result of losing a flat characteristic remarkably.

本発明の添加剤には、上述した材料の他に、pH調整剤や、水以外の溶媒や、染料、顔料等の着色剤などを、添加剤の作用効果を損なわない範囲で含有しても良い。   In addition to the materials described above, the additive of the present invention may contain a pH adjuster, a solvent other than water, a colorant such as a dye or a pigment, and the like within a range that does not impair the effects of the additive. good.

本発明において添加剤中にはSO4 2-、NO3 -、Cl-、PO4 3-の無機陰イオンのうち1種類以上含有し、かつそれらの合計の濃度が1質量ppm〜1000質量ppmであることが好ましい。より好ましくは合計濃度が1質量ppm〜500質量ppmであり、さらに好ましくは10質量ppm〜300質量ppmである。含有量が多すぎると酸化セリウム粒子の凝集を引き起こす傾向がある。また、含有量が少なすぎるとビニル重合体の吸着特性に影響を及ぼし、平坦性特性を失う結果につながる傾向がある。 In the present invention, the additive contains one or more kinds of inorganic anions of SO 4 2− , NO 3 , Cl , and PO 4 3− , and the total concentration thereof is 1 mass ppm to 1000 mass ppm. It is preferable that More preferably, the total concentration is 1 mass ppm to 500 mass ppm, and further preferably 10 mass ppm to 300 mass ppm. When the content is too large, the cerium oxide particles tend to aggregate. Moreover, when there is too little content, it will tend to influence the adsorption | suction characteristic of a vinyl polymer, and will lead to the result of losing flatness characteristic.

本発明において添加剤中に含有する金属陽イオンNa+、K+、Fe3+、Cu2+の含有量がいずれも1ppm以下であることが好ましい。上記に示した金属陽イオンは、半導体基板の研磨の際に直接接触することにより、半導体基板に付着し、付着した後洗浄で除去する以前に基板内部へ潜り込む性質を有しており、基板内部へ潜り込むことにより電気特性の劣化を誘発するため、1ppm以下であることが好ましい。 In the present invention, it is preferable that the contents of metal cations Na + , K + , Fe 3+ and Cu 2+ contained in the additive are all 1 ppm or less. The metal cations shown above adhere to the semiconductor substrate by direct contact during polishing of the semiconductor substrate, and have the property of sinking into the substrate before being removed by cleaning after adhering. It is preferably 1 ppm or less because it induces deterioration of electrical characteristics by sinking into the surface.

本発明の研磨剤用添加液は、酸化セリウムスラリーと組み合わせることにより、CMP研磨剤として半導体用無機絶縁膜を研磨することが可能である。すなわち本発明のCMP研磨剤は、上記CMP研磨剤用添加剤と酸化セリウムスラリーとを含むものであり、CMP研磨剤用添加剤と酸化セリウムスラリーとを混合してなるのが好ましい。   The additive liquid for abrasives of the present invention can polish an inorganic insulating film for semiconductors as a CMP abrasive by combining with a cerium oxide slurry. That is, the CMP abrasive | polishing agent of this invention contains the said additive for CMP abrasive | polishing agents, and a cerium oxide slurry, It is preferable to mix the additive for CMP abrasive | polishing agents, and a cerium oxide slurry.

また、本発明の研磨方法は、被研磨膜を形成した基板を研磨定盤の研磨布に押し当て加圧し、酸化セリウムスラリーと本発明の添加剤との2成分を少なくとも含むCMP研磨剤を被研磨膜と研磨布との間に供給しながら、基板と研磨布とを相対的に動かして被研磨膜を研磨することを特徴とする。   In addition, the polishing method of the present invention is a method in which a substrate on which a film to be polished is formed is pressed against a polishing cloth on a polishing platen and pressed to apply a CMP abrasive containing at least two components of a cerium oxide slurry and the additive of the present invention. While being supplied between the polishing film and the polishing cloth, the film to be polished is polished by relatively moving the substrate and the polishing cloth.

研磨剤用添加液と酸化セリウムスラリーとの混合方法は、直前混合法と事前混合法とに大別される。直前混合法では、研磨剤用添加液と、酸化セリウムスラリーとを別々に調製し、研磨の際に研磨直前で混合して所定の研磨液供給個所にCMP研磨液として供給することができる。所定の研磨液供給個所とは、例えば研磨装置内の研磨布の上である。ここで、研磨直前で混合する方法として、例えば、添加液を酸化セリウムスラリーと別々の配管で送液し、これらの配管を供給配管出口の直前で合流させる方法が挙げられる。または、各配管を合流させる代わりに、研磨剤用添加液と酸化セリウムスラリーとを同時に滴下して研磨布の上で混合する方法が挙げられる。これら研磨剤用添加液と酸化セリウムスラリーとの配合を任意に変えられることにより平坦化特性と研磨速度の調整が可能となる。このように直前混合法で混合する際に、必要に応じて脱イオン水を混合して、研磨特性を調整することもできる。   The mixing method of the additive liquid for abrasive and the cerium oxide slurry is roughly classified into a previous mixing method and a premixing method. In the immediately preceding mixing method, the additive liquid for abrasive and the cerium oxide slurry can be prepared separately, mixed immediately before polishing at the time of polishing, and supplied to a predetermined polishing liquid supply location as a CMP polishing liquid. The predetermined polishing liquid supply location is, for example, on the polishing cloth in the polishing apparatus. Here, as a method of mixing immediately before polishing, for example, a method in which the additive liquid is fed through a separate pipe from the cerium oxide slurry, and these pipes are merged just before the outlet of the supply pipe is mentioned. Alternatively, instead of merging the pipes, there is a method in which the additive liquid for abrasive and the cerium oxide slurry are simultaneously dropped and mixed on the polishing cloth. By arbitrarily changing the composition of the additive solution for abrasive and the cerium oxide slurry, it is possible to adjust the planarization characteristics and the polishing rate. Thus, when mixing by the immediately preceding mixing method, deionized water can be mixed as necessary to adjust the polishing characteristics.

また、事前混合法では、別個に調製した酸化セリウムスラリーと添加剤及び必要に応じて脱イオン水を、あらかじめ所定の配合比で混合した混合液の状態で保管し、これを使用することにより、1つの配管で混合液を供給することができる。   Further, in the premixing method, separately prepared cerium oxide slurry and additive and, if necessary, deionized water are stored in the state of a mixed solution previously mixed at a predetermined blending ratio, and by using this, The mixed liquid can be supplied by one pipe.

添加剤と混合される酸化セリウムスラリーは、酸化セリウム粒子及び水からなるのが好ましく、さらに分散剤を含むのがより好ましい。分散剤として、例えば、ポリアクリル酸アンモニウム、アクリル酸アミドとアクリル酸アンモニウムとの共重合体等が挙げられる。   The cerium oxide slurry mixed with the additive is preferably composed of cerium oxide particles and water, and more preferably contains a dispersant. Examples of the dispersant include ammonium polyacrylate, a copolymer of acrylic amide and ammonium acrylate, and the like.

酸化セリウムスラリーと添加剤とを混合すると、酸化セリウム粒子同士の凝集が時間経過と共に進行する場合がある。本発明において、CMP研磨剤の酸化セリウム粒子の平均粒径が0.1〜1.0μmとなるように添加剤を酸化セリウムスラリーと混合することが好ましい。より好ましくは、平均粒径が0.1〜0.5μmであり、さらに好ましくは0.1〜0.3μmになることが好ましい。酸化セリウム粒子の平均粒径が大きくなりすぎるCMP研磨剤であると、酸化セリウムの凝集粒子による研磨傷発生を引き起こす場合がある。   When the cerium oxide slurry and the additive are mixed, aggregation of the cerium oxide particles may proceed with time. In the present invention, the additive is preferably mixed with the cerium oxide slurry so that the average particle diameter of the cerium oxide particles of the CMP abrasive is 0.1 to 1.0 μm. More preferably, the average particle size is 0.1 to 0.5 μm, and further preferably 0.1 to 0.3 μm. If the CMP abrasive has an excessively large average particle diameter of cerium oxide particles, it may cause polishing flaws due to the aggregated particles of cerium oxide.

酸化セリウムの平均粒径が1.0μmを超えるような凝集粒子を発生させないために、酸化セリウムスラリーと本発明における添加剤と必要に応じて脱イオン水とを研磨直前で混合して、研磨する直前混合法を用いても問題ない。また、平均粒径が1.0μmを超えるようなことが無ければ、酸化セリウムスラリーと添加剤と必要に応じて脱イオン水とを事前に予め混合しておいて、研磨の際に混合液として供給する方式である事前混合法を用いても問題ない。   In order not to generate agglomerated particles having an average particle diameter of cerium oxide exceeding 1.0 μm, the cerium oxide slurry, the additive in the present invention, and if necessary, deionized water are mixed immediately before polishing and polished. There is no problem even if the last mixing method is used. If the average particle size does not exceed 1.0 μm, the cerium oxide slurry, the additive, and deionized water as necessary are mixed in advance and used as a mixed solution during polishing. There is no problem even if the premixing method, which is a supply method, is used.

また、CMP研磨剤用添加剤と酸化セリウムスラリーとを含むCMP研磨剤は、酸化セリウム粒子の濃度が0.1〜10質量%となるように、酸化セリウムスラリーと添加剤の配合比率を適宜調整することが好ましい。より好ましくは、前記濃度は0.1〜5.0質量%であり、更に好ましくは0.2〜1.5質量%となるように調整する。酸化セリウム粒子の濃度が低すぎると研磨速度を十分に得られない傾向がある。また、酸化セリウム粒子の濃度が高すぎると十分な研磨速度は得られるものの平坦性の悪化を引き起こす傾向がある。   Moreover, the CMP abrasive | polishing agent containing the additive for CMP abrasive | polishing agents, and a cerium oxide slurry adjusts the mixing ratio of a cerium oxide slurry and an additive suitably so that the density | concentration of a cerium oxide particle may be 0.1-10 mass%. It is preferable to do. More preferably, the said density | concentration is 0.1-5.0 mass%, More preferably, it adjusts so that it may be 0.2-1.5 mass%. If the concentration of the cerium oxide particles is too low, the polishing rate tends not to be sufficiently obtained. On the other hand, if the concentration of the cerium oxide particles is too high, a sufficient polishing rate can be obtained, but the flatness tends to deteriorate.

また、CMP研磨剤は、酸化セリウム粒子のうち99%体積成分の酸化セリウム粒子の粒径が0.3μm〜5.0μmの範囲に入ることが好ましい。より好ましくは、0.4〜2.0μmであり、さらに好ましくは0.4〜1.0μmである。99%体積成分とは、一般的にはD99と称されるものであり、具体的には小さい粒子から累積で粒子を取り出し、全粒子に対して99%体積成分に達した時の一番大きな粒子の粒径を示す。   Moreover, it is preferable that the CMP abrasive | polishing agent enters into the range whose particle diameter of the 99% volume component cerium oxide particle is 0.3 micrometer-5.0 micrometers among cerium oxide particles. More preferably, it is 0.4-2.0 micrometers, More preferably, it is 0.4-1.0 micrometers. The 99% volume component is generally referred to as D99. Specifically, when 99% volume component reaches the 99% volume component with respect to all particles by accumulating particles from small particles, it is the largest. The particle size of the particles is shown.

上記に示す平均粒径の測定、及びD99の測定には、レーザー散乱式の粒子径測定装置で測定された値を用いる。例えば、株式会社堀場製作所製の測定装置型番LA-920で測定された値でD50またはD99の粒径として得られた値を採用できる。   For the measurement of the average particle diameter and the measurement of D99 shown above, values measured by a laser scattering type particle diameter measuring apparatus are used. For example, a value obtained as a particle size of D50 or D99 with a value measured by a measuring apparatus model number LA-920 manufactured by Horiba, Ltd. can be adopted.

本発明の研磨方法における基板として、半導体素子製造に係る基板、例えば回路素子と配線パターンが形成された段階の半導体基板、回路素子が形成された段階の半導体基板等の半導体基板上に無機絶縁膜が形成された基板が挙げられる。そして、被研磨膜は、前記無機絶縁膜、例えば酸化珪素膜層あるいは窒化珪素膜層及び酸化珪素膜層等が挙げられる。このような半導体基板上に形成された酸化珪素膜層あるいは窒化珪素膜層を上記添加剤と酸化セリウムスラリーを含むCMP研磨剤で研磨することによって、酸化珪素膜層表面の凹凸を解消し、半導体基板全面にわたって平滑な面とすることができる。   As a substrate in the polishing method of the present invention, an inorganic insulating film on a semiconductor substrate such as a substrate related to semiconductor element manufacture, for example, a semiconductor substrate at a stage where a circuit element and a wiring pattern are formed, a semiconductor substrate at a stage where a circuit element is formed, etc. A substrate on which is formed. Examples of the film to be polished include the inorganic insulating films such as a silicon oxide film layer, a silicon nitride film layer, and a silicon oxide film layer. By polishing the silicon oxide film layer or silicon nitride film layer formed on such a semiconductor substrate with a CMP abrasive containing the above-mentioned additive and cerium oxide slurry, unevenness on the surface of the silicon oxide film layer is eliminated, and the semiconductor A smooth surface can be formed over the entire surface of the substrate.

また、シャロー・トレンチ分離にも使用できる。シャロー・トレンチ分離に使用するためには、酸化珪素膜研磨速度と窒化珪素膜研磨速度の比、酸化珪素膜研磨速度/窒化珪素膜研磨速度が10以上であることが好ましい。この比が10未満では、酸化珪素膜研磨速度と窒化珪素膜研磨速度の差が小さく、シャロー・トレンチ分離をする際、所定の位置で研磨を停止しにくくなるためである。この比が10以上の場合は窒化珪素膜の研磨速度がさらに小さくなって研磨の停止が容易になり、シャロー・トレンチ分離により好適である。また、シャロー・トレンチ分離に使用するためには、研磨時に傷の発生が少ないことが好ましい。   It can also be used for shallow trench isolation. In order to use for shallow trench isolation, the ratio of the silicon oxide film polishing rate to the silicon nitride film polishing rate, and the silicon oxide film polishing rate / silicon nitride film polishing rate is preferably 10 or more. When this ratio is less than 10, the difference between the silicon oxide film polishing rate and the silicon nitride film polishing rate is small, and it becomes difficult to stop polishing at a predetermined position when performing shallow trench isolation. When this ratio is 10 or more, the polishing rate of the silicon nitride film is further reduced and the polishing can be easily stopped, which is preferable for shallow trench isolation. Further, for use in shallow trench isolation, it is preferable that scratches are less likely to occur during polishing.

以下、無機絶縁膜が形成された半導体基板の場合を例に挙げて研磨方法を説明する。   Hereinafter, the polishing method will be described by taking as an example the case of a semiconductor substrate on which an inorganic insulating film is formed.

本発明の研磨方法において、研磨する装置としては、半導体基板等の被研磨膜を有する基板を保持するホルダーと、研磨布(パッド)を貼り付け可能で、回転数が変更可能なモータ等を取り付けてある研磨定盤とを有する一般的な研磨装置が使用できる。例えば、荏原製作所株式会社製研磨装置:型番EPO-111が使用できる。研磨布としては、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂などが使用でき、特に制限がない。また、研磨布にはCMP研磨剤がたまるような溝加工を施すことが好ましい。研磨条件に制限はないが、定盤の回転速度は半導体基板が飛び出さないように200rpm以下の低回転が好ましく、半導体基板にかける圧力(加工荷重)は研磨後に傷が発生しないように100kPa以下が好ましい。研磨している間、研磨布にはCMP研磨剤をポンプ等で連続的に供給する。この供給量に制限はないが、研磨布の表面が常にCMP研磨剤で覆われていることが好ましい。   In the polishing method of the present invention, as a polishing apparatus, a holder for holding a substrate having a film to be polished such as a semiconductor substrate, a motor capable of attaching a polishing cloth (pad), and capable of changing the number of rotations is attached. A general polishing apparatus having a predetermined polishing surface plate can be used. For example, Ebara Manufacturing Co., Ltd. polisher: Model number EPO-111 can be used. As an abrasive cloth, a general nonwoven fabric, a polyurethane foam, a porous fluororesin, etc. can be used, and there is no restriction | limiting in particular. Further, it is preferable that the polishing cloth is grooved so that the CMP abrasive is accumulated. The polishing conditions are not limited, but the rotation speed of the surface plate is preferably low rotation of 200 rpm or less so that the semiconductor substrate does not jump out, and the pressure (working load) applied to the semiconductor substrate is 100 kPa or less so as not to cause scratches after polishing. Is preferred. During polishing, a CMP abrasive is continuously supplied to the polishing cloth with a pump or the like. The supply amount is not limited, but it is preferable that the surface of the polishing pad is always covered with a CMP abrasive.

研磨終了後の半導体基板は、流水中で良く洗浄後、スピンドライヤ等を用いて半導体基板上に付着した水滴を払い落として乾燥させることが好ましい。このように被研磨膜である無機絶縁膜を上記研磨剤で研磨することによって、表面の凹凸を解消し、半導体基板全面にわたって平滑な面が得られる。このようにして平坦化されたシャロー・トレンチを形成したあと、酸化珪素絶縁膜層の上に、アルミニウム配線を形成し、その配線間及び配線上に再度上記方法により酸化珪素絶縁膜を形成後、上記CMP研磨剤を用いて同様に研磨して平滑な面とする。この工程を所定数繰り返すことにより、所望の層数を有する半導体基板を製造することができる。   The semiconductor substrate after completion of polishing is preferably washed in running water and then dried by removing water droplets adhering to the semiconductor substrate using a spin dryer or the like. By polishing the inorganic insulating film, which is the film to be polished, with the above-described polishing agent in this way, surface irregularities can be eliminated and a smooth surface can be obtained over the entire surface of the semiconductor substrate. After forming the planarized shallow trench in this way, an aluminum wiring is formed on the silicon oxide insulating film layer, and after forming the silicon oxide insulating film again between the wirings and on the wiring by the above method, Polishing is similarly performed using the CMP abrasive to obtain a smooth surface. By repeating this step a predetermined number of times, a semiconductor substrate having a desired number of layers can be manufactured.

凹凸が存在する被研磨膜(酸化珪素膜)のグローバル平坦化を達成するには、凸部が選択的に研磨されることが必要である。本発明の水溶性高分子を含有する研磨剤を用いると、酸化セリウム粒子または被研磨膜の表面に保護膜を形成する。すなわち、実効研磨荷重の小さい凹部の被研磨膜は保護されるが、実効研磨荷重の大きい凸部被研磨膜は水溶性高分子による保護膜が排除されることで選択的に研磨され、パターン依存性の少ないグローバル平坦化が達成可能である。   In order to achieve global planarization of a film to be polished (silicon oxide film) having unevenness, it is necessary to selectively polish the protrusions. When the abrasive containing the water-soluble polymer of the present invention is used, a protective film is formed on the surface of the cerium oxide particles or the film to be polished. That is, the film to be polished in the concave portion having a small effective polishing load is protected, but the film to be polished in the convex portion having a large effective polishing load is selectively polished by eliminating the protective film made of the water-soluble polymer, and depends on the pattern. Less global flattening can be achieved.

また、シャロー・トレンチ構造の作製方法については、図1に図示されている方法が一般的である。図1に沿って作製方法の一例を説明する。すなわち、(1)表面に酸化珪素膜1aを有するシリコン基板1上に窒化珪素膜2を成膜し、その上にレジスト膜3を塗布し、感光・現像の工程を行って形成するシャロー・トレンチ構造になるようにパターンニングを行う、(2)パターンニングでレジスト膜3を除去した部分のみ、ドライエッチ工程により窒化珪素2からシリコン基板1の順でドライエッチング除去し、シリコン基板1に溝を掘り込む。溝を掘り込んだ後、残存しているレジスト膜3をアッシングで除去し、異物が残存しないように基板を洗浄する、(3)溝が完全に埋め込まれるだけの過剰膜厚で段差基板上に酸化珪素膜4を成膜し、(4)本発明のCMP研磨剤用添加剤と酸化セリウムスラリーとを組み合わせた研磨剤でCMP研磨を行うものである。   As a method for manufacturing the shallow trench structure, the method illustrated in FIG. 1 is common. An example of a manufacturing method will be described with reference to FIG. That is, (1) a shallow trench formed by forming a silicon nitride film 2 on a silicon substrate 1 having a silicon oxide film 1a on the surface, applying a resist film 3 thereon, and performing a photo-sensitive and developing process. Patterning is performed so as to form a structure. (2) Only a portion where the resist film 3 is removed by patterning is dry-etched and removed in the order of silicon nitride 2 to silicon substrate 1 by a dry etching process, and a groove is formed in the silicon substrate 1. Dig in. After the trench is dug, the remaining resist film 3 is removed by ashing, and the substrate is washed so that no foreign matter remains. (3) On the stepped substrate with an excessive film thickness sufficient to completely fill the trench. A silicon oxide film 4 is formed, and (4) CMP polishing is performed with an abrasive in which the additive for CMP abrasive according to the present invention and a cerium oxide slurry are combined.

本発明のCMP研磨剤用添加剤および研磨方法が適用される無機絶縁膜の作製方法として、低圧CVD法、プラズマCVD法等が挙げられる。   Examples of a method for manufacturing an inorganic insulating film to which the additive for CMP abrasive and the polishing method of the present invention are applied include a low-pressure CVD method and a plasma CVD method.

例えば、低圧CVD法による酸化珪素膜形成は、Si源としてモノシラン:SiH4、酸素源として酸素:O2を用いる。このSiH4−O2系酸化反応を400℃以下の低温で行わせることにより得られる。場合によっては、CVD後1000℃またはそれ以下の温度で熱処理される。高温リフローによる表面平坦化を図るためにリン:Pをドープするときには、SiH4−O2−PH3系反応ガスを用いることが好ましい。 For example, the silicon oxide film formation by the low pressure CVD method uses monosilane: SiH 4 as the Si source and oxygen: O 2 as the oxygen source. It can be obtained by performing this SiH 4 —O 2 oxidation reaction at a low temperature of 400 ° C. or lower. In some cases, heat treatment is performed at a temperature of 1000 ° C. or lower after CVD. When doping phosphorus: P in order to achieve surface flattening by high-temperature reflow, it is preferable to use a SiH 4 —O 2 —PH 3 reaction gas.

プラズマCVD法は、通常の熱平衡下では高温を必要とする化学反応が低温でできる利点を有する。プラズマ発生法には、容量結合型と誘導結合型の2つが挙げられる。反応ガスとしては、Si源としてSiH4、酸素源としてNOを用いたSiH4−NO系ガスとテトラエトキシシラン(TEOS)をSi源に用いたTEOS−O2系ガス(TEOS−プラズマCVD法)が挙げられる。基板温度は250℃〜400℃、反応圧力は67〜400Paの範囲が好ましい。このように、本発明の酸化珪素膜にはリン、ホウ素等の元素がドープされていても良い。同様に、低圧CVD法による窒化珪素膜形成は、Si源としてジクロルシラン:SiH2Cl2、窒素源としてアンモニア:NH3を用いる。このSiH2Cl2−NH3系酸化反応を900℃の高温で行わせることにより得られる。 The plasma CVD method has an advantage that a chemical reaction requiring a high temperature can be performed at a low temperature under normal thermal equilibrium. There are two plasma generation methods, capacitive coupling type and inductive coupling type. As a reactive gas, SiH 4 -N 2 O gas using SiH 4 as Si source and N 2 O as oxygen source and TEOS-O 2 gas (TEOS-) using tetraethoxysilane (TEOS) as Si source. Plasma CVD method). The substrate temperature is preferably 250 to 400 ° C., and the reaction pressure is preferably 67 to 400 Pa. Thus, the silicon oxide film of the present invention may be doped with elements such as phosphorus and boron. Similarly, in forming the silicon nitride film by the low pressure CVD method, dichlorosilane: SiH 2 Cl 2 is used as the Si source, and ammonia: NH 3 is used as the nitrogen source. The SiH 2 Cl 2 —NH 3 oxidation reaction is performed at a high temperature of 900 ° C.

プラズマCVD法は、反応ガスとしては、Si源としてSiH4、窒素源としてNH3を用いたSiH4−NH3系ガスが挙げられる。基板温度は300℃〜400℃が好ましい。 In the plasma CVD method, examples of the reactive gas include SiH 4 —NH 3 -based gas using SiH 4 as the Si source and NH 3 as the nitrogen source. The substrate temperature is preferably 300 ° C to 400 ° C.

本発明においてCMP研磨後の平坦性特性とは、100μm/100μmのライン(窒化珪素部分)アンドスペース(溝部分の酸化珪素部分)で構成されたパターンの研磨後の凸部と凹部の段差高さで示すことができる。本発明において、研磨後の上記パターンを9点評価して算出する値とする。段差は小さい方が平坦性は優れることを意味しており、一般的には段差が0Åより大きく500Å以下であることが好ましい。段差が大きすぎると平坦性悪化により、積層構造を多層化した場合にレジストに段差を生じてしまい、焦点ずれを起こすために好ましく平坦性を要求される。   In the present invention, the flatness characteristic after CMP polishing is the step height between the convex and concave portions after polishing of a pattern composed of 100 μm / 100 μm line (silicon nitride portion) and space (silicon oxide portion of the groove portion). Can be shown. In the present invention, the above-mentioned pattern after polishing is set to a value calculated by evaluating nine points. The smaller the step, the better the flatness. In general, the step is preferably larger than 0 mm and not more than 500 mm. If the level difference is too large, the flatness deteriorates, and when the multilayer structure is multi-layered, a level difference is generated in the resist, and flatness is preferably required to cause defocusing.

本発明において、CMP研磨後の均一性特性とは、研磨後のウエハ面内に多数存在するラインアンドスペースパターンのそれぞれ窒化珪素膜、酸化珪素膜の膜厚バラつきで示すことができる。本発明において、研磨後の上記パターンを面内X軸方向に9点評価して算出する値とする。ウエハ面内での膜厚バラつきが窒化珪素膜の場合、1Å〜100Å、酸化珪素膜の場合は、1Å〜400Åが好ましい。いずれの膜厚バラつきについても大きすぎるとウエハ面内に多数存在するデバイスの性能にバラつきを及ぼす。   In the present invention, the uniformity characteristics after CMP polishing can be represented by variations in the thicknesses of the silicon nitride film and the silicon oxide film, respectively, in a number of line and space patterns existing in the polished wafer surface. In the present invention, the above-mentioned pattern after polishing is a value calculated by evaluating nine points in the in-plane X-axis direction. When the film thickness variation in the wafer surface is a silicon nitride film, it is preferably 1 mm to 100 mm, and when it is a silicon oxide film, it is preferably 1 mm to 400 mm. If any film thickness variation is too large, the performance of a large number of devices existing on the wafer surface varies.

本発明のCMP研磨剤用添加剤と酸化セリウムスラリーとを組み合わせることにより構成されるCMP研磨剤を用いて研磨できる無機絶縁膜とは、半導体基板に形成された酸化珪素膜に限らず、所定の配線を有する配線板に形成された酸化珪素膜、ガラス、窒化珪素等の無機絶縁膜、ポリシリコン、Al、Cu、Ti、TiN、W、Ta、TaN等を主として含有する膜、フォトマスク・レンズ・プリズム等の光学ガラス、ITO等の無機導電膜、ガラス及び結晶質材料で構成される光集積回路・光スイッチング素子・光導波路、光ファイバーの端面、シンチレータ等の光学用単結晶、固体レーザー単結晶、青色レーザーLED用サファイヤ基板、SiC、GaP、GaAs等の半導体単結晶、磁気ディスク用ガラス基板、磁気ヘッド等が挙げられる。 The inorganic insulating film that can be polished using the CMP polishing slurry constituted by combining the CMP polishing slurry additive of the present invention and the cerium oxide slurry is not limited to the silicon oxide film formed on the semiconductor substrate, Silicon oxide film formed on a wiring board having wiring, inorganic insulating film such as glass, silicon nitride, film mainly containing polysilicon, Al, Cu, Ti, TiN, W, Ta, TaN, etc., photomask lens・ Optical integrated circuits composed of optical glass such as prisms, inorganic conductive films such as ITO, glass and crystalline materials ・ Optical switching elements / optical waveguides, optical fiber end faces, optical single crystals such as scintillators, solid state laser single crystals Sapphire substrate for blue laser LED, semiconductor single crystal such as SiC, GaP, GaAs, glass substrate for magnetic disk, magnetic head, etc. It is done.

本発明はまた、上記本発明の研磨方法で基板を研磨する工程、または本発明のCMP研磨剤用添加剤と酸化セリウムスラリーとを含んで構成されるCMP研磨剤を使用して基板を研磨する工程を含んで製造された電子部品に関する。このような電子部品としては、具体的にはダイオード、トランジスタ、化合物半導体、サーミスタ、バリスタ、サイリスタ等の個別半導体、DRAM(ダイナミック・ランダム・アクセス・メモリー)、SRAM(スタティック・ランダム・アクセス・メモリー)、EPROM(イレイザブル・プログラマブル・リード・オンリー・メモリー)、マスクROM(マスク・リード・オンリー・メモリー)、EEPROM(エレクトリカル・イレイザブル・プログラマブル・リード・オンリー・メモリー)、フラッシュメモリー等の記憶素子、マイクロプロセッサー、DSP、ASIC等の理論回路素子、MMIC(モノリシック・マイクロウェーブ集積回路)に代表される化合物半導体等の集積回路素子、混成集積回路(ハイブリッドIC)、発光ダイオード、電荷結合素子等の光電変換素子などが挙げられる。   The present invention also polishes a substrate using the above-described polishing method of the present invention, or a CMP abrasive comprising the CMP abrasive additive of the present invention and a cerium oxide slurry. The present invention relates to an electronic component manufactured including a process. Specific examples of such electronic components include individual semiconductors such as diodes, transistors, compound semiconductors, thermistors, varistors, thyristors, DRAMs (Dynamic Random Access Memory), SRAMs (Static Random Access Memory). Memory devices such as EPROM (Erasable Programmable Read Only Memory), Mask ROM (Mask Read Only Memory), EEPROM (Electrically Eraseable Programmable Read Only Memory), Flash Memory, Microprocessor , DSP, ASIC and other theoretical circuit elements, MMIC (monolithic microwave integrated circuit) and other compound semiconductor integrated circuit elements, hybrid integrated circuits (hybrid IC), Photodiodes, and the like photoelectric conversion element such as a charge coupled device.

以下、実施例により本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

(CMP研磨剤用添加剤の作製)
実施例1
表1に示すように、2,4,7,9−テトラメチル−5−デシン−4,7−ジオールエトキシレート(Aldrich試薬、m+n=3.5)を10.00g、重量平均分子量が3,500のポリアクリル酸アンモニウム塩水溶液(中和度20%、40%水溶液)10.80g、重量平均分子量が12,000のポリアクリル酸アンモニウム塩水溶液(中和度90%、40%水溶液:pH=6.1)を15.0gと水964.3gを混合し、アンモニアでpH=6.0に調整してCMP研磨剤用添加剤を得た。
(Preparation of additives for CMP abrasives)
Example 1
As shown in Table 1, 10.00 g of 2,4,7,9-tetramethyl-5-decyne-4,7-diol ethoxylate (Aldrich reagent, m + n = 3.5) and a weight average molecular weight of 3, 500 ammonium polyacrylate aqueous solution (neutralization degree 20%, 40% aqueous solution) 10.80 g, polyacrylate ammonium salt aqueous solution having a weight average molecular weight of 12,000 (neutralization degree 90%, 40% aqueous solution: pH = 6.1) was mixed with 15.0 g of water and 964.3 g of water, and adjusted to pH = 6.0 with ammonia to obtain an additive for CMP abrasives.

実施例2〜実施例9
表1に示す配合に従った以外は実施例1と同様にしてCMP研磨剤用添加剤を作製した。
Example 2 to Example 9
A CMP abrasive additive was prepared in the same manner as in Example 1 except that the formulation shown in Table 1 was followed.

実施例1〜9で調製した添加剤についてpH、無機陰イオン含有量、表面張力をそれぞれ測定した。測定結果を表1に併記する。   About the additive prepared in Examples 1-9, pH, inorganic anion content, and surface tension were measured, respectively. The measurement results are also shown in Table 1.

(絶縁膜層及びシャロー・トレンチ分離層の研磨)
実施例1〜9で調製した添加剤を用いて以下の条件で絶縁膜層及びシャロー・トレンチ分離層を研磨し、研磨結果を測定した。表2に各結果を示す。
(Polishing of insulating film layer and shallow trench isolation layer)
The insulating film layer and the shallow trench isolation layer were polished under the following conditions using the additives prepared in Examples 1 to 9, and the polishing results were measured. Table 2 shows the results.

浅素子分離(STI)絶縁膜CMP評価用試験ウエハとして、以下のウエハを使用した。   The following wafers were used as test wafers for shallow element isolation (STI) insulating film CMP evaluation.

(1)パターンの形成されていないブランケットウエハとして、
(1-a):Si基板上にPE-TEOS酸化珪素膜が膜厚1000nm成膜されたウエハ(φ200mm)と、
(1-b):Si基板上に窒化珪素膜が膜厚200nm成膜されたウエハ(φ200mm)を使用した。
(1) As a blanket wafer with no pattern formed,
(1-a): a wafer (φ200 mm) in which a PE-TEOS silicon oxide film having a thickness of 1000 nm is formed on a Si substrate;
(1-b): A wafer (φ200 mm) in which a silicon nitride film was formed to a thickness of 200 nm on a Si substrate was used.

(2)STIの模擬パターンが形成されたパターンウエハとしては、International SEMATECH製864ウエハ(φ200mm)であって、図2に記載される構造のものを用いた。すなわち、シリコン基板1上に窒化珪素膜2を膜厚150nmで成膜した後、ドライエッチ法で素子分離部分の窒化珪素膜2をエッチングし、さらに露出したシリコン基板1を350nmドライエッチングして素子分離構造を形成し、さらに酸化珪素膜4の絶縁膜を、HDP(High Density Plasma)法により膜厚が600nmになるように成膜されたウエハを使用した。   (2) As the pattern wafer on which the STI simulation pattern was formed, an international SEMATECH 864 wafer (φ200 mm) having a structure shown in FIG. 2 was used. That is, after forming a silicon nitride film 2 with a film thickness of 150 nm on the silicon substrate 1, the silicon nitride film 2 in the element isolation portion is etched by dry etching, and the exposed silicon substrate 1 is dry-etched with 350 nm to form an element. A wafer in which an isolation structure was formed and an insulating film of the silicon oxide film 4 was formed to a thickness of 600 nm by HDP (High Density Plasma) method was used.

研磨装置(Applied Materials社製商品名 Mirra)の、保持する基板取り付け用の吸着パッドを貼り付けたホルダーに上記試験ウエハをセットし、一方、φ480mmの研磨定盤にロデール社製多孔質ウレタン樹脂製の研磨パッド型番IC−1000(K溝)を貼り付けた。該パッド上に絶縁膜面を下にして前記ホルダーを載せ、さらに加工荷重としてメンブレン、リテーナリング、インナチューブ圧力をそれぞれ3.3psi、4.4psi、3.3psi(23.1kPa、30.8kPa、23.1kPa)に設定した。   The test wafer is set in a holder attached with a suction pad for attaching a substrate to be held in a polishing apparatus (product name: Mirara, manufactured by Applied Materials), while a porous urethane resin manufactured by Rodale is mounted on a φ480 mm polishing platen. A polishing pad model number IC-1000 (K groove) was attached. The holder is placed on the pad with the insulating film face down, and the membrane, retainer ring, and inner tube pressure are 3.3 psi, 4.4 psi, 3.3 psi (23.1 kPa, 30.8 kPa, 23.1 kPa).

定盤上に上記実施例1〜9で調製した各CMP研磨剤用添加剤を90mL/分の速度で、平均粒径が0.12μmの酸化セリウムを1wt%分散させた酸化セリウムスラリーを120ml/分の速度で、同時に滴下しながら、定盤とウエハとをそれぞれ回転数93/min)、87minで作動させてSTI絶縁膜CMP評価用試験ウエハを研磨した。ブランケットウエハ(1-a)、(1-b)の研磨時間は60secで行い、パターンウエハ(2)の研磨時間は、100%(4×4mm凸部)パターン部でほぼ窒化珪素膜が露出するまでの時間とし、研磨定盤トルク電流値をモニタすることで、研磨の終点検出を行った。   A cerium oxide slurry in which 1 wt% of cerium oxide having an average particle size of 0.12 μm was dispersed at a rate of 90 mL / min with each of the additives for CMP abrasives prepared in Examples 1 to 9 on a surface plate was 120 ml / min. The test plate for STI insulating film CMP evaluation was polished by operating the surface plate and the wafer at a rotational speed of 93 / min for 87 minutes while dropping simultaneously at a speed of minutes. The polishing time for blanket wafers (1-a) and (1-b) is 60 seconds, and the polishing time for pattern wafer (2) is 100% (4 × 4 mm convex portion). The silicon nitride film is almost exposed at the pattern portion. The end point of polishing was detected by monitoring the polishing platen torque current value.

STIの模擬的なパターンの中から、凸部である窒化珪素でマスクされたActive部が幅100μmと凹部である溝が形成されたTrench部が幅100μmの間隔で交互に並んだラインアンドスペースパターン群(4×4mmのエリア)の中心部分を評価した。均一性評価には上記に示した凸部100μm幅/凹部100μm幅で形成されるラインアンドスペースのパターンを被研磨面内X軸方向に9点評価した。この9点のラインアンドスペースパターンのうちActive部パターン凸部の窒化珪素膜上に酸化珪素残膜が10nm以上ある場合には随時追加研磨を行なった。   A line-and-space pattern in which the active part masked with silicon nitride, which is a convex part, and the Trench part, in which grooves that are concave parts are formed, are alternately arranged at intervals of 100 μm from the STI simulated pattern The central part of the group (4 × 4 mm area) was evaluated. For the uniformity evaluation, nine line-and-space patterns formed with the convex portion 100 μm width / recess portion 100 μm width shown above were evaluated in the in-plane X-axis direction. Of these nine line-and-space patterns, when the remaining silicon oxide film is 10 nm or more on the silicon nitride film of the active pattern protrusion, additional polishing was performed as needed.

研磨後のウエハを純水で良く洗浄後、乾燥した。その後、光干渉式膜厚装置(大日本スクリーン製造社製商品名、RE−3000)を用いて、凹部の絶縁膜の残膜厚、凸部の絶縁膜の残膜厚、あるいは窒化珪素膜の残膜厚を測定した。さらに日本ビーコ社製段差計Dektak 型番V200−Siを用いて、研磨後の凸部と凹部の残段差を9点で測定した。表2に得られた各測定結果を示す。

Figure 2008085058
Figure 2008085058
The polished wafer was thoroughly washed with pure water and then dried. Thereafter, by using an optical interference film thickness device (trade name, RE-3000, manufactured by Dainippon Screen Mfg. Co., Ltd.), the remaining film thickness of the recessed insulating film, the remaining film thickness of the protruding insulating film, or the silicon nitride film The remaining film thickness was measured. Furthermore, the remaining level difference of the convex part after a grinding | polishing and a recessed part was measured at 9 points | pieces using the step meter Dektak model number V200-Si by Nippon Beiko. Table 2 shows the measurement results obtained.
Figure 2008085058
Figure 2008085058

比較例1
表3の比較例1記載のように、ポリビニルピロリドン粉末 1.5gを純水 998.5gに混合し、アンモニアでpH=8.0に調整してCMP研磨剤用添加剤を作製した。
Comparative Example 1
As described in Comparative Example 1 in Table 3, 1.5 g of polyvinylpyrrolidone powder was mixed with 998.5 g of pure water, and adjusted to pH = 8.0 with ammonia to prepare an additive for CMP abrasives.

比較例2〜比較例4
表3に示す配合に従った以外は比較例1と同様にしてCMP研磨剤用添加剤を製造した。
Comparative Example 2 to Comparative Example 4
A CMP abrasive additive was produced in the same manner as in Comparative Example 1 except that the formulation shown in Table 3 was followed.

これら添加剤についてpH、無機陰イオン含有量、表面張力をそれぞれ測定した。結果を表3に併記する。   About these additives, pH, inorganic anion content, and surface tension were measured, respectively. The results are also shown in Table 3.

(絶縁膜層及びシャロー・トレンチ分離層の研磨)
これら添加剤を用いた以外は実施例と同様にして絶縁膜層及びシャロー・トレンチ分離層を研磨し、研磨結果を測定した。表4に各測定結果を示す。

Figure 2008085058
Figure 2008085058
(Polishing of insulating film layer and shallow trench isolation layer)
The insulating film layer and the shallow trench isolation layer were polished in the same manner as in Example except that these additives were used, and the polishing results were measured. Table 4 shows the measurement results.
Figure 2008085058
Figure 2008085058

表2、4に示すように、研磨を実施したところ、実施例1〜実施例9において9点の評価結果では段差平均値は300Å以下でかつ最大値は450Å以下の値を示した。また、凸部の窒化珪素膜の膜厚バラつきは、いずれの実施例でも80Å以下の値を示し、かつSiNの研磨量は10Å以上90Å以内の範囲に入っており、オートストップ性が良好であることが示された。また、凹部の酸化珪素膜の膜厚バラつきは、いずれの実施例でも350Å以下の値を示し、酸化珪素膜、窒化珪素膜共にウエハ面内での均一性は良好であった。このようにいずれの実施例でも良好な平坦性、均一性を示した。   As shown in Tables 2 and 4, when polishing was performed, in Example 1 to Example 9, the evaluation result of 9 points showed a step average value of 300 mm or less and a maximum value of 450 mm or less. Moreover, the film thickness variation of the silicon nitride film on the convex portion shows a value of 80 mm or less in any of the examples, and the polishing amount of SiN is in the range of 10 mm or more and 90 mm or less, and the autostop property is good. It has been shown. Further, the variation in the thickness of the silicon oxide film in the recesses showed a value of 350 mm or less in any of the examples, and both the silicon oxide film and the silicon nitride film had good uniformity within the wafer surface. Thus, in any of the examples, good flatness and uniformity were exhibited.

一方、比較例1の場合、良好な平坦性を示すものの窒化珪素膜の膜厚バラつきが125Åと大きな値を示し、均一性に問題があった。比較例2の場合、酸化珪素膜の膜厚バラつきが520Åと酸化膜の均一性が目標未達であった。比較例3の場合、膜厚バラつきには問題ないものの段差平均値が550Åと平坦性が目標未達であった。比較例4の場合、酸化珪素膜、窒化珪素膜共に膜厚バラつきが大きく、それぞれ120Å、550Åと均一性が目標未達であった。   On the other hand, in the case of Comparative Example 1, although the film showed good flatness, the film thickness variation of the silicon nitride film was as large as 125 mm, and there was a problem in uniformity. In the case of the comparative example 2, the variation in the thickness of the silicon oxide film was 520 mm, and the uniformity of the oxide film was not achieved. In the case of Comparative Example 3, although there was no problem with the film thickness variation, the average value of the step was 550 mm, and the flatness was not achieved. In Comparative Example 4, the silicon oxide film and the silicon nitride film had large film thickness variations, and the uniformity of 120 mm and 550 mm respectively did not reach the target.

シャロー・トレンチ構造の作製方法の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the manufacturing method of a shallow trench structure. 本発明の実施例で使用したパターンウエハの断面模式図である。It is a cross-sectional schematic diagram of the pattern wafer used in the Example of this invention.

符号の説明Explanation of symbols

1 シリコン基板
1a 酸化珪素膜
2 窒化珪素膜
3 レジスト膜
4 酸化珪素膜
DESCRIPTION OF SYMBOLS 1 Silicon substrate 1a Silicon oxide film 2 Silicon nitride film 3 Resist film 4 Silicon oxide film

Claims (21)

アセチレン結合を有する有機化合物、水溶性のビニル重合体及び水を含み、pHが4〜9である水溶液であり、半導体用酸化セリウムスラリーと組み合わせることにより半導体用無機絶縁膜を研磨することが可能であるCMP研磨剤用添加剤。   It is an aqueous solution containing an organic compound having an acetylene bond, a water-soluble vinyl polymer and water and having a pH of 4 to 9, and it is possible to polish an inorganic insulating film for semiconductors by combining with a cerium oxide slurry for semiconductors. An additive for a CMP abrasive. アセチレン結合を有する有機化合物が一般式(I)
Figure 2008085058
(一般式(I)中、Rは水素原子または炭素数が1〜5の置換もしくは無置換アルキル基を表し、Rは炭素数が4〜10の置換または無置換アルキル基を表す。)で示される請求項1記載のCMP研磨剤用添加剤。
Organic compounds having an acetylene bond are represented by the general formula (I)
Figure 2008085058
(In general formula (I), R 1 represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, and R 2 represents a substituted or unsubstituted alkyl group having 4 to 10 carbon atoms.) The additive for CMP abrasives of Claim 1 shown by these.
アセチレン結合を有する有機化合物が一般式(II)
Figure 2008085058
(一般式(II)中、R〜Rはそれぞれ独立に水素原子または炭素数が1〜5の置換もしくは無置換アルキル基を表し、R、Rはそれぞれ独立に炭素数が1〜5の置換または無置換アルキレン基を表し、m、nはそれぞれ独立に0または正数を表す。)である請求項1記載のCMP研磨剤用添加剤。
The organic compound having an acetylene bond is represented by the general formula (II)
Figure 2008085058
(In General Formula (II), R 3 to R 6 each independently represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, and R 7 and R 8 each independently represents 1 to 1 carbon atoms. 5. A CMP abrasive additive according to claim 1, wherein 5 represents a substituted or unsubstituted alkylene group, and m and n each independently represents 0 or a positive number.
表面張力が20〜60dyn/cmである請求項1〜3のいずれか記載のCMP研磨剤用添加剤。   The additive for CMP abrasives according to any one of claims 1 to 3, wherein the surface tension is 20 to 60 dyn / cm. ビニル重合体がポリアクリル酸、ポリアクリル酸アンモニウム塩、ポリアクリル酸アミン塩、ポリ酢酸ビニル、ポリビニルイミダゾール、ポリビニルピロリドンから選ばれる1種類以上の高分子重合体である請求項1〜4のいずれか記載のCMP研磨剤用添加剤。   The vinyl polymer is at least one polymer selected from polyacrylic acid, polyacrylic acid ammonium salt, polyacrylic acid amine salt, polyvinyl acetate, polyvinylimidazole, and polyvinylpyrrolidone. The additive for CMP abrasives as described. ビニル重合体の重量平均分子量が100〜200,000(ポリエチレンオキシド分子量換算)である請求項1〜5のいずれか記載のCMP研磨剤用添加剤。   The additive for CMP abrasives according to any one of claims 1 to 5, wherein the vinyl polymer has a weight average molecular weight of 100 to 200,000 (in terms of polyethylene oxide molecular weight). ビニル重合体がポリアクリル酸アンモニウム塩又はポリアクリル酸アミン塩である請求項1〜6のいずれか記載のCMP研磨剤用添加剤。   The additive for CMP abrasives according to any one of claims 1 to 6, wherein the vinyl polymer is a polyacrylic acid ammonium salt or a polyacrylic acid amine salt. ポリアクリル酸アンモニウム塩又はアミン塩が、重量平均分子量が1,000〜5,000のポリアクリル酸アンモニウム塩またはアミン塩と、5,000〜20,000のポリアクリル酸アンモニウム塩又はアミン塩との二種類のポリアクリル酸アンモニウム塩又はアミン塩から構成される請求項7記載のCMP研磨剤用添加剤。   A polyacrylic acid ammonium salt or amine salt is a polyacrylic acid ammonium salt or amine salt having a weight average molecular weight of 1,000 to 5,000 and a polyacrylic acid ammonium salt or amine salt having a weight average molecular weight of 5,000 to 20,000. The additive for CMP abrasives according to claim 7, comprising two kinds of ammonium polyacrylates or amine salts. アセチレン結合を有する有機化合物の分子量が100〜20,000である請求項1〜8のいずれか記載のCMP研磨剤用添加剤。   The additive for CMP abrasives according to any one of claims 1 to 8, wherein the organic compound having an acetylene bond has a molecular weight of 100 to 20,000. アセチレン結合を有する有機化合物を添加剤中に0.05〜5.0質量%含有する請求項1〜9のいずれか記載のCMP研磨剤用添加剤。   The additive for CMP abrasives according to any one of claims 1 to 9, wherein the additive contains 0.05 to 5.0% by mass of an organic compound having an acetylene bond. ビニル重合体を添加剤中に0.05〜3.0質量%含有する請求項1〜10のいずれか記載のCMP研磨剤用添加剤。   The additive for CMP abrasives according to any one of claims 1 to 10, wherein the additive contains 0.05 to 3.0% by mass of a vinyl polymer. 無機陰イオンSO4 2-、NO3 -、Cl-及びPO4 3-のうち1種類以上を含有し、かつそれらの合計の濃度が1質量ppm〜1000質量ppmである請求項1〜11のいずれか記載のCMP研磨剤用添加剤。 The inorganic anions SO 4 2− , NO 3 , Cl and PO 4 3− contain one or more kinds, and the total concentration thereof is 1 mass ppm to 1000 mass ppm. Any one additive for CMP abrasive | polishing agent. 陽イオンNa+、K+、Fe3+、Cu2+の含有量がいずれも1ppm以下である請求項1〜12のいずれか記載のCMP研磨剤用添加剤。 The additive for CMP abrasives according to any one of claims 1 to 12, wherein the contents of cations Na + , K + , Fe 3+ and Cu 2+ are all 1 ppm or less. 被研磨膜を形成した基板を研磨定盤の研磨布に押し当て加圧し、CMP研磨剤を被研磨膜と研磨布との間に供給しながら、基板と研磨布とを相対的に動かして被研磨膜を研磨する基板の研磨方法であって、CMP研磨剤は、少なくとも請求項1〜13のいずれか記載のCMP研磨剤用添加剤と、酸化セリウムスラリーとを含む基板の研磨方法。   The substrate on which the film to be polished is formed is pressed against the polishing cloth of the polishing platen and pressed, and the substrate and the polishing cloth are moved relative to each other while the CMP abrasive is supplied between the film to be polished and the polishing cloth. A method for polishing a substrate for polishing a polishing film, wherein the CMP abrasive comprises at least an additive for CMP abrasive according to any one of claims 1 to 13 and a cerium oxide slurry. CMP研磨剤の酸化セリウム粒子の平均粒径が0.1〜1.0μmとなるように添加剤を酸化セリウムスラリーと混合する請求項14記載の基板の研磨方法。   The method for polishing a substrate according to claim 14, wherein the additive is mixed with the cerium oxide slurry so that the average particle diameter of the cerium oxide particles of the CMP abrasive is 0.1 to 1.0 µm. 別個に調製したCMP研磨剤用添加剤と酸化セリウムスラリーとを研磨直前に混合してCMP研磨剤を調製する工程を含む請求項14または15記載の基板の研磨方法。   16. The method for polishing a substrate according to claim 14 or 15, further comprising a step of preparing a CMP abrasive by mixing a separately prepared additive for CMP abrasive and a cerium oxide slurry immediately before polishing. CMP研磨剤が、予めCMP研磨剤用添加剤と酸化セリウムスラリーとを含んで混合した混合液である請求項14または15記載の基板の研磨方法。   The method for polishing a substrate according to claim 14 or 15, wherein the CMP abrasive is a mixed liquid in which a CMP abrasive additive and a cerium oxide slurry are mixed in advance. 請求項1〜13のいずれか記載のCMP研磨剤用添加剤と酸化セリウムスラリーとを含むCMP研磨剤。   A CMP abrasive comprising the additive for CMP abrasive according to claim 1 and a cerium oxide slurry. 酸化セリウム粒子の濃度が0.1〜10質量%である請求項18記載のCMP研磨剤。   The CMP abrasive | polishing agent of Claim 18 whose density | concentration of a cerium oxide particle is 0.1-10 mass%. 酸化セリウム粒子のうち99%体積成分の酸化セリウム粒子の粒径が0.3μm〜5.0μmの範囲に含まれる請求項18または19記載のCMP研磨剤。   The CMP abrasive | polishing agent of Claim 18 or 19 in which the particle size of the 99% volume component cerium oxide particle is contained in the range of 0.3 micrometer-5.0 micrometers among cerium oxide particles. 請求項14〜17のいずれか一項記載の方法で基板を研磨する工程、または請求項18〜20のいずれか記載のCMP研磨剤を使用して基板を研磨する工程を含んで製造された電子部品。   An electron produced by polishing a substrate by the method according to any one of claims 14 to 17, or polishing the substrate by using the CMP abrasive according to any one of claims 18 to 20. parts.
JP2006262956A 2006-09-27 2006-09-27 Additive for cmp abrasive, cmp abrasive, and substrate polishing method, and electronic component Pending JP2008085058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006262956A JP2008085058A (en) 2006-09-27 2006-09-27 Additive for cmp abrasive, cmp abrasive, and substrate polishing method, and electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006262956A JP2008085058A (en) 2006-09-27 2006-09-27 Additive for cmp abrasive, cmp abrasive, and substrate polishing method, and electronic component

Publications (1)

Publication Number Publication Date
JP2008085058A true JP2008085058A (en) 2008-04-10

Family

ID=39355602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006262956A Pending JP2008085058A (en) 2006-09-27 2006-09-27 Additive for cmp abrasive, cmp abrasive, and substrate polishing method, and electronic component

Country Status (1)

Country Link
JP (1) JP2008085058A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143579A1 (en) * 2009-06-09 2010-12-16 日立化成工業株式会社 Abrasive slurry, abrasive set, and method for grinding substrate
WO2011058816A1 (en) 2009-11-12 2011-05-19 日立化成工業株式会社 Chemical-mechanical polishing liquid, and semiconductor substrate manufacturing method and polishing method using said polishing liquid
JP2011171446A (en) * 2010-02-17 2011-09-01 Hitachi Chem Co Ltd Polishing liquid for cmp and polishing method using the same
KR20210036804A (en) 2019-09-26 2021-04-05 가부시키가이샤 후지미인코퍼레이티드 Polishing composition and polishing method
US11492512B2 (en) 2019-09-26 2022-11-08 Fujimi Incorporated Polishing composition and polishing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143579A1 (en) * 2009-06-09 2010-12-16 日立化成工業株式会社 Abrasive slurry, abrasive set, and method for grinding substrate
JP5418590B2 (en) * 2009-06-09 2014-02-19 日立化成株式会社 Abrasive, abrasive set and substrate polishing method
WO2011058816A1 (en) 2009-11-12 2011-05-19 日立化成工業株式会社 Chemical-mechanical polishing liquid, and semiconductor substrate manufacturing method and polishing method using said polishing liquid
JP5516594B2 (en) * 2009-11-12 2014-06-11 日立化成株式会社 CMP polishing liquid, and polishing method and semiconductor substrate manufacturing method using the same
JP2011171446A (en) * 2010-02-17 2011-09-01 Hitachi Chem Co Ltd Polishing liquid for cmp and polishing method using the same
KR20210036804A (en) 2019-09-26 2021-04-05 가부시키가이샤 후지미인코퍼레이티드 Polishing composition and polishing method
US11492512B2 (en) 2019-09-26 2022-11-08 Fujimi Incorporated Polishing composition and polishing method

Similar Documents

Publication Publication Date Title
JP4952745B2 (en) CMP abrasive and substrate polishing method
JP5761234B2 (en) Polishing liquid for CMP and polishing method using the same
KR101277029B1 (en) Cmp polishing liquid, method for polishing substrate, and electronic component
US7459398B2 (en) Slurry for CMP, polishing method and method of manufacturing semiconductor device
JP5157908B2 (en) Polishing agent for semiconductor integrated circuit device, polishing method, and method for manufacturing semiconductor integrated circuit device
WO2011081109A1 (en) Polishing liquid for cmp and polishing method using the same
JP6252587B2 (en) Polishing liquid and polishing method for CMP
US8075800B2 (en) Polishing slurry and polishing method
EP2131389A1 (en) Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method for semiconductor device
KR20170032335A (en) Cmp polishing liquid, and polishing method
JP2006278522A (en) Polishing agent for semiconductor integrated circuit device, polishing method, and method for manufacturing same
JP6298588B2 (en) Cleaning liquid and substrate polishing method
JP2008085058A (en) Additive for cmp abrasive, cmp abrasive, and substrate polishing method, and electronic component
WO2010025623A1 (en) A chemical-mechanical polishing liquid
KR102110613B1 (en) Polishing slurry addotive composition and slurry composition including the polishing slurry addotive composition
US20150159048A1 (en) Polishing composition and polishing method
JP2009266882A (en) Abrasive powder, polishing method of base using same, and manufacturing method of electronic component
JPWO2008117593A1 (en) Chemical mechanical polishing aqueous dispersion and semiconductor device chemical mechanical polishing method
JP6638660B2 (en) Cleaning solution
JP4878728B2 (en) CMP abrasive and substrate polishing method
JP6627283B2 (en) Polishing liquid and polishing method
JP2007073596A (en) Polishing agent and manufacturing method thereof, polishing method and manufacturing method of semiconductor integrated circuit device
JP2004134751A (en) Abrasive and polishing method for substrate
JP2007311473A (en) Abrasive for semiconductor insulating film and substrate polishing method
JP2004006965A (en) Method of polishing substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090831

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20110113