JP2008083777A - Method and device for guiding unmanned carrier - Google Patents

Method and device for guiding unmanned carrier Download PDF

Info

Publication number
JP2008083777A
JP2008083777A JP2006260269A JP2006260269A JP2008083777A JP 2008083777 A JP2008083777 A JP 2008083777A JP 2006260269 A JP2006260269 A JP 2006260269A JP 2006260269 A JP2006260269 A JP 2006260269A JP 2008083777 A JP2008083777 A JP 2008083777A
Authority
JP
Japan
Prior art keywords
signal
calculation unit
kalman filter
laser radar
guided vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006260269A
Other languages
Japanese (ja)
Inventor
Tatsuo Shiozawa
龍雄 塩沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamagawa Seiki Co Ltd
Original Assignee
Tamagawa Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamagawa Seiki Co Ltd filed Critical Tamagawa Seiki Co Ltd
Priority to JP2006260269A priority Critical patent/JP2008083777A/en
Publication of JP2008083777A publication Critical patent/JP2008083777A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Platform Screen Doors And Railroad Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable an unmanned carrier to independently travel not by using a sign or the like but by using a GPS receiver and a laser radar to switch it indoors and outdoors. <P>SOLUTION: The method and device for guiding an unmanned carrier is configured to selectively input a first error estimation value (13a) to be acquired from a GPS receiver (11) and a first Kalman filter (13), and a second error estimation value (25a) to be acquired by a laser radar (21), a background map information (22), a position calculation part (23), and a second Kalman filter (25), to an inertial navigation arithmetic part (16) to acquire a current location/azimuth signal (17). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、無人搬送車の誘導方法及び装置に関し、特に、無人搬送車の慣性航法演算部にGPS受信装置のGPS信号とレーザレーダ装置の位置信号を選択的に入力し、屋外ではGPS信号を用い、屋内では位置信号を用いることにより、屋内外を問わず、誘導標識体等を用いることなく高精度で無人搬送車の現在位置・方位信号を得て無人走行するための新規な改良に関する。   The present invention relates to a guide method and apparatus for an automatic guided vehicle, and in particular, selectively inputs a GPS signal of a GPS receiver and a position signal of a laser radar device to an inertial navigation calculation unit of the automatic guided vehicle, and outputs the GPS signal outdoors. The present invention relates to a novel improvement for performing unmanned traveling by obtaining a current position / orientation signal of an automatic guided vehicle with high accuracy without using a guide sign body or the like by using a position signal indoors or outside.

従来、用いられていたこの種の無人搬送車の誘導方法及び装置としては、例えば、特許文献1及び2に開示された構成を挙げることができる。
すなわち、特許文献1における誘導装置では、図2に示すように、磁気センサ1と車速センサ2とジャイロ3を搭載して移動距離と進行方位を算出しながら指令された走行経路を走行する無人搬送車の誘導装置において、車輪径を計測する車輪径センサ4を無人搬送車に設け、該車速センサ2の計測信号から演算される移動距離を車輪径センサ4の計測信号を得て補正するようにしている。
Conventionally, as this type of automatic guided vehicle guiding method and apparatus, for example, configurations disclosed in Patent Documents 1 and 2 can be given.
That is, in the guidance device in Patent Document 1, as shown in FIG. 2, the unmanned conveyance that travels on the commanded travel route with the magnetic sensor 1, the vehicle speed sensor 2, and the gyro 3 mounted and calculating the travel distance and the traveling direction is performed. In the vehicle guidance device, a wheel diameter sensor 4 for measuring the wheel diameter is provided in the automatic guided vehicle, and the movement distance calculated from the measurement signal of the vehicle speed sensor 2 is obtained by correcting the measurement signal of the wheel diameter sensor 4. ing.

また、特許文献2における誘導装置では、走行距離検知器とジャイロ3を搭載して自らの位置と進行方位を算出しながら走行する無人搬送車において、無人搬送車の前部と後部の走行中心線上に車体幅方向の位置のズレ量を検知する方位検知器を設けると共に、無人搬送車の中央部に絶対位置情報を検知するIDタグ検知器を設け、走行経路中の所定位置に、前記方位検知器とIDタグ検知器に対向させて方位標識と絶対位置情報を記憶したIDタグ5を設け、該両方位検知器の検知情報から無人搬送車の方位のズレ角と絶対位置とのズレ量を演算して現在位置と方位を補正するようにしている。   In addition, in the guidance device in Patent Document 2, in an automatic guided vehicle that travels while calculating its own position and traveling direction by mounting a travel distance detector and a gyro 3, on the traveling center lines of the front and rear portions of the automatic guided vehicle. In addition to providing an orientation detector that detects the amount of displacement in the width direction of the vehicle body, an ID tag detector that detects absolute position information is provided in the center of the automated guided vehicle, and the orientation detection is performed at a predetermined position in the travel route. The ID tag 5 storing the azimuth sign and the absolute position information is provided opposite the detector and the ID tag detector, and the amount of deviation between the azimuth angle of the automatic guided vehicle and the absolute position is determined from the detection information of the both position detector. The current position and direction are corrected by calculation.

特開2002−23847号公報JP 2002-23847 A 特開2001−209429号公報JP 2001-209429 A

従来の無人搬送車の誘導方法及び装置は、以上のように構成されていたため、次のような課題が存在していた。
すなわち、前述の特許文献1の構成においては、磁気センサ及び車輪径センサ等の多くのセンサを無人搬送車に搭載しなければならず、多くのセンサを用いるために搬送路上に複数の標識を必要とし、無人搬送車と搬送路の両方の構成が複雑化していた。
また、前述の特許文献2の構成においては、無人搬送車の前部と後部に車体幅方向の位置のズレ量を検知する方位検知器を設けると共に、中央部には絶対位置情報を検知するためのIDタグ検知器を設け、搬送路上に方向標識と絶対位置情報を記憶したIDタグを設ける他に、多くの標識を設ける必要があり、無人搬送車及び搬送路共、構成が複雑となっていた。
Since the conventional automatic guided vehicle guiding method and apparatus are configured as described above, the following problems exist.
That is, in the configuration of the above-described Patent Document 1, many sensors such as a magnetic sensor and a wheel diameter sensor must be mounted on the automatic guided vehicle, and a plurality of signs are necessary on the conveyance path in order to use many sensors. In addition, the configuration of both the automatic guided vehicle and the transport path is complicated.
Moreover, in the structure of the above-mentioned patent document 2, while providing the azimuth | direction detector which detects the deviation | shift amount of the position of a vehicle body width direction in the front part and rear part of an automatic guided vehicle, in order to detect absolute position information in a center part. In addition to providing ID tag detectors and providing ID tags storing direction signs and absolute position information on the conveyance path, it is necessary to provide many signs, and the configuration of both the automatic guided vehicle and the conveyance path is complicated. It was.

本発明による無人搬送車の誘導方法は、GPS受信器と第1カルマンフィルタにより得られる第1誤差推定値と、レーザレーダと背景マップ情報と位置演算部及び第2カルマンフィルタにより得られる第2誤差推定値とを、ジャイロ信号と車速パルスとステアリング角度が入力される慣性航法演算部に対して選択的に入力し、前記GPS受信器及びレーザレーダを搭載した無人搬送車の現在位置・方位信号を得る方法であり、また、前記GPS受信器からのGPS信号と前記現在位置・方位信号を第1比較器で比較して得た衛星観測値を前記第1カルマンフィルタで処理して前記第1誤差推定値を得ると共に、前記位置演算部からの位置信号と前記現在位置・方位信号を第2比較器で比較して得たレーザレーダ観測値を前記第2カルマンフィルタで処理して前記第2誤差推定値を得る方法であり、また、前記慣性航法演算部と前記各カルマンフィルタとの間には第1スイッチが設けられ、前記慣性航法演算部と前記各比較器との間には第2スイッチが設けられている方法であり、また、本発明による無人搬送車の誘導装置は、GPS受信器と第1カルマンフィルタにより得られる第1誤差推定値と、レーザレーダと背景マップ情報と位置演算部及び第2カルマンフィルタにより得られる第2誤差推定値とを、ジャイロ信号と車速パルスとステアリング角度が入力される慣性航法演算部に対して選択的に入力し、前記GPS受信器及びレーザレーダを搭載した無人搬送車の現在位置・方位信号を得る構成であり、また、前記GPS受信器からのGPS信号と前記現在位置・方位信号を第1比較器で比較して得た衛星観測値を前記第1カルマンフィルタで処理して前記第1誤差推定値を得ると共に、前記位置演算部からの位置信号と前記現在位置・方位信号を第2比較器で比較して得たレーザレーダ観測値を前記第2カルマンフィルタで処理して前記第2誤差推定値を得る構成であり、また、前記慣性航法演算部と前記各カルマンフィルタとの間には第1スイッチが設けられ、前記慣性航法演算部と前記各比較器との間には第2スイッチが設けられている構成である。   The guided vehicle guided method according to the present invention includes a first error estimated value obtained by a GPS receiver and a first Kalman filter, a second error estimated value obtained by a laser radar, background map information, a position calculation unit, and a second Kalman filter. Is selectively input to an inertial navigation calculation unit to which a gyro signal, a vehicle speed pulse, and a steering angle are input, and a current position / orientation signal of an automatic guided vehicle equipped with the GPS receiver and the laser radar is obtained. The satellite observation value obtained by comparing the GPS signal from the GPS receiver with the current position / orientation signal by the first comparator is processed by the first Kalman filter to obtain the first error estimated value. And obtaining a laser radar observation value obtained by comparing the position signal from the position calculation unit and the current position / orientation signal with a second comparator. To obtain the second error estimated value, and a first switch is provided between the inertial navigation calculation unit and each Kalman filter, and the inertial navigation calculation unit and each comparator A second switch is provided between the first and second automatic switches, and the guidance device for the automatic guided vehicle according to the present invention includes a first error estimated value obtained by the GPS receiver and the first Kalman filter, a laser radar, The background map information and the second error estimated value obtained by the position calculation unit and the second Kalman filter are selectively input to an inertial navigation calculation unit to which a gyro signal, a vehicle speed pulse, and a steering angle are input, and the GPS reception is performed. A current position / orientation signal of an automated guided vehicle equipped with a detector and a laser radar, and the GPS signal from the GPS receiver and the current position / orientation signal A satellite observation value obtained by comparison with one comparator is processed by the first Kalman filter to obtain the first error estimated value, and a second comparison is made between the position signal from the position calculation unit and the current position / orientation signal. A laser radar observation value obtained by comparison with a detector is processed by the second Kalman filter to obtain the second error estimated value, and between the inertial navigation calculation unit and each Kalman filter, the first error estimation value is obtained. A switch is provided, and a second switch is provided between the inertial navigation calculation unit and each comparator.

本発明による無人搬送車の誘導方法及び装置は、以上のように構成されているため、次のような効果を得ることができる。
すなわち、GPS受信装置及びレーザレーダ装置を用いて慣性航法演算を行い、屋外と屋内で切換えて自立誘導しているため、従来のように、搬送路の誘導標識等を全く必要とせず、信頼性の高い無人搬送車をミニマムコストで実現できる。
また、車体側及び搬送路における製作コストを従来よりも大幅に低下させることができる。
Since the guided method and apparatus for an automated guided vehicle according to the present invention are configured as described above, the following effects can be obtained.
In other words, inertial navigation calculation is performed using a GPS receiver and a laser radar device, and switching between the outdoors and indoors is conducted independently, so that there is no need for any guidance signs on the conveyance path as in the past, and reliability Highly automated guided vehicles can be realized at a minimum cost.
In addition, the manufacturing cost on the vehicle body side and the conveyance path can be significantly reduced as compared with the conventional case.

本発明は、無人搬送車の慣性航法演算部にGPS受信装置のGPS信号とレーザレーダ装置の位置信号を選択的に入力し、屋外ではGPS信号を用い、屋内では位置信号を用いることにより、屋内外を問わず、誘導標識体等を用いることなく高精度で無人搬送車の現在位置・方位信号を得て無人走行するようにした無人搬送車の誘導方法及び装置を提供することを目的とする。   The present invention selectively inputs the GPS signal of the GPS receiver and the position signal of the laser radar device to the inertial navigation calculation unit of the automatic guided vehicle, uses the GPS signal outdoors, and uses the position signal indoors. It is an object of the present invention to provide an automatic guided vehicle guiding method and apparatus capable of obtaining unmanned traveling by obtaining a current position / orientation signal of the automatic guided vehicle with high accuracy without using a guide sign etc. .

以下、図面と共に本発明による無人搬送車の誘導方法及び装置の好適な実施の形態について説明する。
尚、従来例と同一又は同等部分には同一符号を用いて説明する。
図1において符号10で示されるものは無人搬送車50に搭載した周知のGPS受信装置であり、このGPS受信装置10のGPS受信器11からのGPS信号11aが第1比較器12に入力され、この第1比較器12からの衛星観測値12aが第1カルマンフィルタ13に入力されている。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of a guided method and apparatus for an automated guided vehicle according to the present invention will be described with reference to the drawings.
The same reference numerals are used for the same or equivalent parts as in the conventional example.
1 is a known GPS receiver mounted on the automated guided vehicle 50, and a GPS signal 11a from the GPS receiver 11 of the GPS receiver 10 is input to the first comparator 12, The satellite observation value 12 a from the first comparator 12 is input to the first Kalman filter 13.

前記第1カルマンフィルタ13からの第1誤差推定値13aは、第1スイッチ14を介して、ジャイロ3のジャイロ信号3aと車速パルス2とステアリング角度15が入力された周知の慣性航法演算部16に入力されるように構成され、この慣性航法演算部16からは現在位置・方位信号17が出力され、この慣性航法演算部16は位置・方位演算装置18を構成している。   The first estimated error value 13a from the first Kalman filter 13 is input via a first switch 14 to a known inertial navigation calculation unit 16 to which the gyro signal 3a of the gyro 3, the vehicle speed pulse 2, and the steering angle 15 are input. The inertial navigation calculation unit 16 outputs a current position / orientation signal 17, and the inertial navigation calculation unit 16 constitutes a position / orientation calculation device 18.

前記GPS受信装置10とは別に、レーザレーダ装置20が設けられ、このレーザレーダ装置20のレーザレーダ21からのレーダ信号21aは、背景マップ情報22を用い、これとの比較によって位置を演算する位置演算部23に入力されている。   A laser radar device 20 is provided separately from the GPS receiver 10, and a radar signal 21a from the laser radar 21 of this laser radar device 20 uses background map information 22 and calculates a position by comparison with this. This is input to the calculation unit 23.

前記位置演算部23からの位置信号23aは第2比較器24に入力さ、この第2比較器24からのレーザレーダ観測値24aは第2カルマンフィルタ25に入力されている。
前記第2カルマンフィルタ25からの第2誤差推定値25aは、前記第1スイッチ14を介して前記慣性航法演算部16に入力されるように構成されている。
The position signal 23 a from the position calculation unit 23 is input to the second comparator 24, and the laser radar observation value 24 a from the second comparator 24 is input to the second Kalman filter 25.
The second error estimated value 25 a from the second Kalman filter 25 is configured to be input to the inertial navigation calculation unit 16 via the first switch 14.

前記慣性航法演算部16からの現在位置・方位信号17は、第2スイッチ26を介して前記各比較器12,24に入力されて、前記GPS信号11a及び位置信号23aと比較して前記各観測値12a,24aを出力することができるように構成されている。   The current position / orientation signal 17 from the inertial navigation calculation unit 16 is input to the comparators 12 and 24 via the second switch 26, and is compared with the GPS signal 11a and the position signal 23a. The values 12a and 24a can be output.

次に、動作について述べる。図1において第1、第2スイッチ14,26(各スイッチは機械的スイッチでも可能であるが、通常、CPUに組込まれたソフトにより実行される)が実線の切換状態においてはGPS受信装置10が選択され、ジャイロ3、車速パルス2及びステアリング角度15により慣性航法演算が行なわれ、現在位置・方位信号17が第1比較器12に入力される。   Next, the operation will be described. In FIG. 1, the first and second switches 14 and 26 (each switch can be a mechanical switch, but are usually executed by software incorporated in the CPU) are switched in a solid line. The inertial navigation calculation is performed by the gyro 3, the vehicle speed pulse 2, and the steering angle 15, and the current position / orientation signal 17 is input to the first comparator 12.

この現在位置・方位信号17には、累積誤差が含まれるため、GPS信号11aから得られる現在位置情報と比較し、第1カルマンフィルタ13を用いて誤差を推定し、第1誤差推定値13aが慣性航法演算部16にフィードバックされ、現在位置・方位信号17の修正が行われる。   Since the current position / orientation signal 17 includes a cumulative error, it is compared with the current position information obtained from the GPS signal 11a, the error is estimated using the first Kalman filter 13, and the first error estimated value 13a is inertial. It is fed back to the navigation calculation unit 16 to correct the current position / orientation signal 17.

また、前記各スイッチ14,26が点線で示される位置に切換えられると、GPS受信装置10からレーザレーダ装置20へ切換えが行なわれ、レーザレーダ21で計測された周辺物体の情報のレーダ信号21aと予め持っている周辺の背景マップ情報22とを比較して得た位置信号23aは、現在位置・方位信号17と比較されてレーザレーダ観測値24aが第2カルマンフィルタ25に入力される。   When the switches 14 and 26 are switched to the positions indicated by the dotted lines, the GPS receiver 10 is switched to the laser radar device 20, and the radar signal 21a of the information on the peripheral object measured by the laser radar 21 is obtained. The position signal 23 a obtained by comparing with the surrounding background map information 22 previously held is compared with the current position / orientation signal 17, and the laser radar observation value 24 a is input to the second Kalman filter 25.

前記第2カルマンフィルタ25からの第2誤差推定値25aは、第1スイッチ14を経て慣性航法演算部16へ入力され、フィードバック演算されて現在位置・方位信号17の精度が向上できる。   The second estimated error value 25a from the second Kalman filter 25 is input to the inertial navigation calculation unit 16 via the first switch 14 and is feedback-calculated to improve the accuracy of the current position / orientation signal 17.

従って、屋外の見晴らしの良い搬送路では前記GPS受信装置10を用いた無人搬送を行い、無人搬送車50が屋内あるいは遮蔽物等によりGPS信号11aが途切れた場合、前記各スイッチ14,26が自動的に切換わり、レーザレーダ21のスキャンにて得られる周辺物体(建物、電柱、木等)の情報と、予め内蔵されているレーザレーダ用障害物地図(背景マップと呼ぶ)と比較することにより、前述のようにレーザレーダ装置20によって現在位置・方位信号17が得られる。   Therefore, when the unmanned transport using the GPS receiver 10 is performed on a transport route with a good view of the outdoors, and the GPS signal 11a is interrupted by the unmanned transport vehicle 50 indoors or due to a shield or the like, the switches 14 and 26 are automatically operated. By comparing the information of the surrounding objects (buildings, utility poles, trees, etc.) obtained by scanning with the laser radar 21 with the built-in laser radar obstacle map (referred to as the background map). As described above, the current position / orientation signal 17 is obtained by the laser radar device 20.

すなわち、GPS信号11aが途絶えた場合のレーダ信号21aによる慣性航法演算部16の現在位置・方位信号17と位置信号23aの位置を比較し、その結果をレーザレーダ観測値24aとして第2カルマンフィルタ25に入力して処理し、第2誤差推定値25aを用いて位置・方位の誤差推定を行う。
前記第2誤差推定値25aから慣性航法演算部16にてジャイロ3、車速パルス2、ステアリング角度15のスケールファクタを修正し、現在位置・方位信号17の修正を行うことができる。
That is, the position of the position signal 23a is compared with the current position / azimuth signal 17 of the inertial navigation calculation unit 16 based on the radar signal 21a when the GPS signal 11a is interrupted, and the result is sent to the second Kalman filter 25 as the laser radar observation value 24a. Input and process, and position / orientation error estimation is performed using the second error estimated value 25a.
The scale factor of the gyro 3, the vehicle speed pulse 2, and the steering angle 15 can be corrected by the inertial navigation calculation unit 16 from the second error estimated value 25a, and the current position / orientation signal 17 can be corrected.

本発明による無人搬送車の誘導方法及び装置を示すブロック図である。It is a block diagram which shows the guidance method and apparatus of the automatic guided vehicle by this invention. 従来構成を示すブロック図である。It is a block diagram which shows a conventional structure.

符号の説明Explanation of symbols

2 車速パルス
3 ジャイロ
10 GPS受信装置
11 GPS受信器
11a GPS信号
12 第1比較器
12a 衛星観測値
13 第1カルマンフィルタ
13a 第1誤差推定値
14 第1スイッチ
15 ステアリング角度
16 慣性航法演算部
17 現在位置・方位信号
18 位置・方位演算装置
20 レーザレーダ装置
21 レーザレーダ
21a レーダ信号
22 背景マップ情報
23 位置演算部
23a 位置信号
24 第2比較器
24a レーザレーダ観測値
25 第2カルマンフィルタ
25a 第2誤差推定値
26 第2スイッチ
2 Vehicle speed pulse 3 Gyro 10 GPS receiver 11 GPS receiver 11a GPS signal 12 First comparator 12a Satellite observation value 13 First Kalman filter 13a First error estimated value 14 First switch 15 Steering angle 16 Inertial navigation calculation unit 17 Current position Azimuth signal 18 position / azimuth calculation device 20 laser radar device 21 laser radar 21a radar signal 22 background map information 23 position calculation unit 23a position signal 24 second comparator 24a laser radar observation value 25 second Kalman filter 25a second error estimation value 26 Second switch

Claims (6)

GPS受信器(11)と第1カルマンフィルタ(13)により得られる第1誤差推定値(13a)と、レーザレーダ(21)と背景マップ情報(22)と位置演算部(23)及び第2カルマンフィルタ(25)により得られる第2誤差推定値(25a)とを、ジャイロ信号(3a)と車速パルス(2)とステアリング角度(15)が入力される慣性航法演算部(16)に対して選択的に入力し、前記GPS受信器(11)及びレーザレーダ(21)を搭載した無人搬送車(50)の現在位置・方位信号(17)を得ることを特徴とする無人搬送車の誘導方法。   The first error estimated value (13a) obtained by the GPS receiver (11) and the first Kalman filter (13), the laser radar (21), the background map information (22), the position calculation unit (23), and the second Kalman filter ( The second error estimation value (25a) obtained by 25) is selectively applied to the inertial navigation calculation unit (16) to which the gyro signal (3a), the vehicle speed pulse (2), and the steering angle (15) are input. An automated guided vehicle guidance method, comprising: inputting and obtaining a current position / direction signal (17) of the automated guided vehicle (50) equipped with the GPS receiver (11) and the laser radar (21). 前記GPS受信器(11)からのGPS信号(11a)と前記現在位置・方位信号(17)を第1比較器(12)で比較して得た衛星観測値(12a)を前記第1カルマンフィルタ(13)で処理して前記第1誤差推定値(13a)を得ると共に、前記位置演算部(23)からの位置信号(23a)と前記現在位置・方位信号(17)を第2比較器(24)で比較して得たレーザレーダ観測値(24a)を前記第2カルマンフィルタ(25)で処理して前記第2誤差推定値(25a)を得ることを特徴とする請求項1記載の無人搬送車の誘導方法。   A satellite observation value (12a) obtained by comparing the GPS signal (11a) from the GPS receiver (11) and the current position / azimuth signal (17) by the first comparator (12) is used as the first Kalman filter ( 13) to obtain the first error estimated value (13a), and the position signal (23a) from the position calculation unit (23) and the current position / orientation signal (17) to the second comparator (24 2. The automatic guided vehicle according to claim 1, wherein the laser radar observation value (24a) obtained by comparison in (1) is processed by the second Kalman filter (25) to obtain the second error estimated value (25a). Guidance method. 前記慣性航法演算部(16)と前記各カルマンフィルタ(13,25)との間には第1スイッチ(14)が設けられ、前記慣性航法演算部(16)と前記各比較器(12,24)との間には第2スイッチ(26)が設けられていることを特徴とする請求項2記載の無人搬送車の誘導方法。   A first switch (14) is provided between the inertial navigation calculation unit (16) and the Kalman filters (13, 25), and the inertial navigation calculation unit (16) and the comparators (12, 24). A method for guiding a guided guided vehicle according to claim 2, wherein a second switch (26) is provided between the first and second switches. GPS受信器(11)と第1カルマンフィルタ(13)により得られる第1誤差推定値(13a)と、レーザレーダ(21)と背景マップ情報(22)と位置演算部(23)及び第2カルマンフィルタ(25)により得られる第2誤差推定値(25a)とを、ジャイロ信号(3a)と車速パルス(2)とステアリング角度(15)が入力される慣性航法演算部(16)に対して選択的に入力し、前記GPS受信器(11)及びレーザレーダ(21)を搭載した無人搬送車(50)の現在位置・方位信号(17)を得ることを特徴とする無人搬送車の誘導装置。   The first error estimated value (13a) obtained by the GPS receiver (11) and the first Kalman filter (13), the laser radar (21), the background map information (22), the position calculation unit (23), and the second Kalman filter ( The second error estimation value (25a) obtained by 25) is selectively applied to the inertial navigation calculation unit (16) to which the gyro signal (3a), the vehicle speed pulse (2), and the steering angle (15) are input. An automatic guided vehicle guidance device, which receives the current position / direction signal (17) of the automated guided vehicle (50) equipped with the GPS receiver (11) and the laser radar (21). 前記GPS受信器(11)からのGPS信号(11a)と前記現在位置・方位信号(17)を第1比較器(12)で比較して得た衛星観測値(12a)を前記第1カルマンフィルタ(13)で処理して前記第1誤差推定値(13a)を得ると共に、前記位置演算部(23)からの位置信号(23a)と前記現在位置・方位信号(17)を第2比較器(24)で比較して得たレーザレーダ観測値(24a)を前記第2カルマンフィルタ(25)で処理して前記第2誤差推定値(25a)を得ることを特徴とする請求項4記載の無人搬送車の誘導装置。   A satellite observation value (12a) obtained by comparing the GPS signal (11a) from the GPS receiver (11) and the current position / azimuth signal (17) by the first comparator (12) is used as the first Kalman filter ( 13) to obtain the first error estimated value (13a), and the position signal (23a) from the position calculation unit (23) and the current position / orientation signal (17) to the second comparator (24 5. The automatic guided vehicle according to claim 4, wherein the laser radar observation value (24a) obtained by comparison in (1) is processed by the second Kalman filter (25) to obtain the second error estimated value (25a). Guidance device. 前記慣性航法演算部(16)と前記各カルマンフィルタ(13,25)との間には第1スイッチ(14)が設けられ、前記慣性航法演算部(16)と前記各比較器(12,24)との間には第2スイッチ(26)が設けられていることを特徴とする請求項5記載の無人搬送車の誘導装置。   A first switch (14) is provided between the inertial navigation calculation unit (16) and the Kalman filters (13, 25), and the inertial navigation calculation unit (16) and the comparators (12, 24). A guided device for an automatic guided vehicle according to claim 5, wherein a second switch (26) is provided between the first and second switches.
JP2006260269A 2006-09-26 2006-09-26 Method and device for guiding unmanned carrier Pending JP2008083777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006260269A JP2008083777A (en) 2006-09-26 2006-09-26 Method and device for guiding unmanned carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006260269A JP2008083777A (en) 2006-09-26 2006-09-26 Method and device for guiding unmanned carrier

Publications (1)

Publication Number Publication Date
JP2008083777A true JP2008083777A (en) 2008-04-10

Family

ID=39354638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006260269A Pending JP2008083777A (en) 2006-09-26 2006-09-26 Method and device for guiding unmanned carrier

Country Status (1)

Country Link
JP (1) JP2008083777A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011198173A (en) * 2010-03-23 2011-10-06 Hitachi Industrial Equipment Systems Co Ltd Robot system
JP2014174070A (en) * 2013-03-12 2014-09-22 Mitsubishi Electric Corp Guide
JP2017049694A (en) * 2015-08-31 2017-03-09 シャープ株式会社 Autonomous travel apparatus
JP2020042366A (en) * 2018-09-06 2020-03-19 Tis株式会社 Autonomous mobile device, server device, program, and information processing method
DE102019203202A1 (en) * 2019-03-08 2020-09-10 Zf Friedrichshafen Ag Localization system for a driverless vehicle
JP2021084746A (en) * 2019-11-27 2021-06-03 戸田建設株式会社 Automatic operation control system of tower crane
CN112947481A (en) * 2021-03-24 2021-06-11 南京理工大学泰州科技学院 Autonomous positioning control method for home service robot
CN113534227A (en) * 2021-07-26 2021-10-22 中国电子科技集团公司第五十四研究所 Multi-sensor fusion absolute positioning method suitable for complex non-cooperative scene
CN114046792A (en) * 2022-01-07 2022-02-15 陕西欧卡电子智能科技有限公司 Unmanned ship water surface positioning and mapping method, device and related components
US11853079B2 (en) 2020-11-05 2023-12-26 Panasonic Holdings Corporation Self-position estimation apparatus and mobile object
JP7484658B2 (en) 2020-10-23 2024-05-16 トヨタ自動車株式会社 Location System

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006209567A (en) * 2005-01-31 2006-08-10 Nippon Sharyo Seizo Kaisha Ltd Guidance device for automated guided vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006209567A (en) * 2005-01-31 2006-08-10 Nippon Sharyo Seizo Kaisha Ltd Guidance device for automated guided vehicle

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011198173A (en) * 2010-03-23 2011-10-06 Hitachi Industrial Equipment Systems Co Ltd Robot system
JP2014174070A (en) * 2013-03-12 2014-09-22 Mitsubishi Electric Corp Guide
JP2017049694A (en) * 2015-08-31 2017-03-09 シャープ株式会社 Autonomous travel apparatus
JP6998281B2 (en) 2018-09-06 2022-01-18 Tis株式会社 Autonomous mobile devices, server devices, programs, and information processing methods
JP2020042366A (en) * 2018-09-06 2020-03-19 Tis株式会社 Autonomous mobile device, server device, program, and information processing method
DE102019203202A1 (en) * 2019-03-08 2020-09-10 Zf Friedrichshafen Ag Localization system for a driverless vehicle
JP2021084746A (en) * 2019-11-27 2021-06-03 戸田建設株式会社 Automatic operation control system of tower crane
JP7343369B2 (en) 2019-11-27 2023-09-12 戸田建設株式会社 Tower crane automatic operation control system
JP7484658B2 (en) 2020-10-23 2024-05-16 トヨタ自動車株式会社 Location System
US11853079B2 (en) 2020-11-05 2023-12-26 Panasonic Holdings Corporation Self-position estimation apparatus and mobile object
CN112947481A (en) * 2021-03-24 2021-06-11 南京理工大学泰州科技学院 Autonomous positioning control method for home service robot
CN112947481B (en) * 2021-03-24 2022-11-15 南京理工大学泰州科技学院 Autonomous positioning control method for home service robot
CN113534227A (en) * 2021-07-26 2021-10-22 中国电子科技集团公司第五十四研究所 Multi-sensor fusion absolute positioning method suitable for complex non-cooperative scene
CN113534227B (en) * 2021-07-26 2022-07-01 中国电子科技集团公司第五十四研究所 Multi-sensor fusion absolute positioning method suitable for complex non-cooperative scene
CN114046792A (en) * 2022-01-07 2022-02-15 陕西欧卡电子智能科技有限公司 Unmanned ship water surface positioning and mapping method, device and related components
CN114046792B (en) * 2022-01-07 2022-04-26 陕西欧卡电子智能科技有限公司 Unmanned ship water surface positioning and mapping method, device and related components

Similar Documents

Publication Publication Date Title
JP2008083777A (en) Method and device for guiding unmanned carrier
CN111066071B (en) Position error correction method and position error correction device for driving assistance vehicle
JP5852920B2 (en) Navigation device
US9405016B2 (en) System and method for complex navigation using dead reckoning and GPS
US7337062B2 (en) Walker navigation device and program
US7400969B2 (en) Navigation system
US11808575B2 (en) Vehicle traveling control method and vehicle control system
JP2007206010A (en) Method for determining travel angle of position calculator
JP6806891B2 (en) Information processing equipment, control methods, programs and storage media
JP2022188203A (en) Measurement precision calculation device, self-position estimation device, control method, program and storage medium
JP5732377B2 (en) Navigation device
JP2007218848A (en) Positional information acquisition system for mobile body
TW202229818A (en) Lane mapping and localization using periodically-updated anchor frames
US9534898B2 (en) Method and apparatus for determining direction of the beginning of vehicle movement
JP4848931B2 (en) Signal correction device for angular velocity sensor
JP2012137361A (en) Locus information correcting device, method and program
JP3505494B2 (en) Moving body direction estimation device and position estimation device
JP2018091714A (en) Vehicle position measurement system
KR20200119092A (en) Vehicle and localization method thereof
JP4376738B2 (en) Apparatus and method for detecting zero point error of angular velocity sensor
KR20180137904A (en) Apparatus for correcting vehicle driving information and method thereof
JP2005030775A (en) Navigation system for vehicle
KR101964059B1 (en) System for locating vehicle based on wheel speed sensor for guide system in indoor parking lot
CN108779986B (en) Traveling direction estimating device
KR100341801B1 (en) Urban vehicle navigation system using multiple antennas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110405