JP2008082688A - Heat storing and radiating device and heat supply system - Google Patents

Heat storing and radiating device and heat supply system Download PDF

Info

Publication number
JP2008082688A
JP2008082688A JP2006285154A JP2006285154A JP2008082688A JP 2008082688 A JP2008082688 A JP 2008082688A JP 2006285154 A JP2006285154 A JP 2006285154A JP 2006285154 A JP2006285154 A JP 2006285154A JP 2008082688 A JP2008082688 A JP 2008082688A
Authority
JP
Japan
Prior art keywords
heat
water
heat storage
temperature
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006285154A
Other languages
Japanese (ja)
Other versions
JP4889438B2 (en
Inventor
Yoshinori Hisakado
喜徳 久角
Yoshimichi Kiuchi
義通 木内
Akishi Kegasa
明志 毛笠
Hideki Yamaguchi
秀樹 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2006285154A priority Critical patent/JP4889438B2/en
Publication of JP2008082688A publication Critical patent/JP2008082688A/en
Application granted granted Critical
Publication of JP4889438B2 publication Critical patent/JP4889438B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat storing and radiating device and a heat supply system capable of leveling heat utilization in a plurality of heat consumers and reducing equipment cost by circulating heat source water of high temperature to the plurality of heat consumers, and effectively utilizing the heat of the heat source water. <P>SOLUTION: The heat storing and radiating device comprises a heat storage tank 40; a heat-storing heat exchanger 70 exchanging heat between the heat source water HW and heat storage water SW; heat-radiating heat exchangers 75, 87 radiating the heat storage water SW; a heat storage water circulating means X circulating the heat storage water SW taken out of the tank 40, sequentially to the heat exchangers 70, 75 and then returning the heat storage water SW to the tank 40; a heat source water circulating means Y circulating the heat source water HW taken out of a circulating line 2, to the heat exchanger 70 and then returning the heat source water HW to the circulating line 2; and a control means 80 capable of carrying out heat storing operation of operating the means X, Y to heat the heat storage water SW in the heat exchanger 70, and heat radiating operation of radiating the heat of the heat storage water SW in the heat exchangers 75, 87. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、熱源装置で加熱された熱源水を循環させる熱源水循環ラインから取り込んだ熱源水の熱を蓄熱して利用する蓄放熱装置、及び、複数の熱需要家に対して、熱源装置で加熱された熱源水を循環させる熱源水循環ラインを備えると共に、
前記複数の熱需要家の夫々に対して、熱源装置で加熱された熱源水を循環させる熱源水循環ラインから取り込んだ熱源水の熱を蓄熱して利用する蓄放熱装置を備えた熱供給システムに関する。
The present invention relates to a heat storage / radiation device that stores and uses heat from heat source water taken from a heat source water circulation line that circulates heat source water heated by the heat source device, and heats a plurality of heat consumers with the heat source device. A heat source water circulation line that circulates the generated heat source water,
The present invention relates to a heat supply system including a heat storage and heat dissipation device that stores and uses heat of heat source water taken from a heat source water circulation line that circulates heat source water heated by a heat source device for each of the plurality of heat consumers.

この種の熱供給システムは、例えば、熱需要家である各家庭の夫々において給湯を行うにあたり、所定の地域内にある複数の家庭に対して、その地域を対象とする共通のコジェネレーション設備を利用し、トータルのエネルギー効率が高い状態で熱を供給することができるシステムを確立しようとするものである。   In this type of heat supply system, for example, when supplying hot water to each household that is a heat consumer, a common cogeneration facility for the area is provided to a plurality of households in a predetermined area. It is intended to establish a system that can be used to supply heat with a high total energy efficiency.

上記目的から、この種の熱供給システムにあっては、共通施設側で比較的高温とされた熱源水(温水温度50〜90℃)が循環する熱源水循環ラインを備えると共に、各家庭に引き込まれている上水といった前記熱源水より低温の給水を各家庭に供給する給水ラインが利用又は備えられる。この給水ラインを介して供給される給水としては、例えば前記共通のコジェネレーション設備から廃棄される排ガスが有する排熱により予熱された予熱水も利用可能とされる。この種の給水の温度は、ほぼ5〜25℃程度となる。   For this purpose, this type of heat supply system is provided with a heat source water circulation line through which heat source water (hot water temperature 50 to 90 ° C.) that is relatively hot on the common facility circulates, and is drawn into each household. A water supply line for supplying each household with water having a temperature lower than that of the heat source water, such as clean water, is used or provided. As water supplied through this water supply line, for example, preheated water preheated by exhaust heat of exhaust gas discarded from the common cogeneration facility can be used. The temperature of this type of water supply is about 5 to 25 ° C.

さて、この種の熱供給システムとして、「地域社会へのエネルギー供給システム及び方法」として提案するものが知られている(例えば、特許文献1を参照。)。
このシステムの概略構成を示すのが、当該特許文献1の図5に示される「隣組みコジェネレーション」と呼ぶシステムである。このシステムでは、燃料電池(SOFC)或いはマイクロガスタービン(MGT)がコジェネレーション設備であり、この設備から高温水(90℃)が払い出されると共に、50℃の温水として設備に戻ることが示されている。即ち、熱源水循環ラインが地域内にある40戸の家庭を対象として設けられている。
As this kind of heat supply system, what is proposed as “a system and method for supplying energy to a local community” is known (see, for example, Patent Document 1).
A schematic configuration of this system is a system called “neighboring cogeneration” shown in FIG. In this system, a fuel cell (SOFC) or a micro gas turbine (MGT) is a cogeneration facility, and high temperature water (90 ° C) is discharged from the facility and returned to the facility as hot water of 50 ° C. Yes. That is, the heat source water circulation line is provided for 40 households in the area.

一方、各家庭内に備えられる蓄放熱装置の構成を示したのが、当該特許文献1の図6である。この蓄放熱装置では、相変化蓄熱材を充填した蓄熱タンク内に高温水循環供給ライン(本願にいう熱源水循環ライン)から熱源水の一部を通流させて、その熱源水の熱を相変化蓄熱材に蓄熱し、更に、蓄熱タンク内に給水を通流させて、その相変化蓄熱材の放熱により当該給水を加熱し、加熱した給水を給湯用に利用するように構成されている。   On the other hand, FIG. 6 of Patent Document 1 shows the configuration of the heat storage and heat dissipation device provided in each home. In this heat storage and heat dissipation device, a part of heat source water is passed from a high temperature water circulation supply line (the heat source water circulation line referred to in the present application) into a heat storage tank filled with a phase change heat storage material, and the heat of the heat source water is phase change heat storage. The heat is stored in the material, and further, the feed water is passed through the heat storage tank, the water supply is heated by heat radiation of the phase change heat storage material, and the heated water supply is used for hot water supply.

特開2003-28449号公報JP 2003-28449 A

上記特許文献1に記載の熱供給システムでは、蓄熱タンク内において相変化蓄熱材からの放熱により給湯用の給水を加熱するように構成されているので、相変化蓄熱材が充分に蓄熱していない状態では、給水を充分に加熱することができない場合がある。   In the heat supply system described in Patent Document 1, since the water supply for hot water supply is heated by heat radiation from the phase change heat storage material in the heat storage tank, the phase change heat storage material does not sufficiently store heat. In some situations, the water supply may not be heated sufficiently.

また、上記蓄熱タンク内の相変化蓄熱材は、熱需要に関係なく熱源水の熱を相変化に伴う潜熱を利用して積極的に蓄熱するので、熱源水循環ラインの上流側付近に位置する蓄熱タンクにおいて、熱源水の熱が過剰に蓄熱されることで、下流側付近に位置する熱需要家の蓄熱タンクにおいて、熱源水の温度が相変化蓄熱材の相変化温度よりも低くなりやすく、充分な蓄熱を行うことができないというように、複数の熱需要家における熱利用の不均衡が発生する場合がある。   In addition, the phase change heat storage material in the heat storage tank actively stores the heat of the heat source water using the latent heat accompanying the phase change regardless of the heat demand, so the heat storage located near the upstream side of the heat source water circulation line In the tank, heat of the heat source water is stored excessively, so in the heat storage tank of the heat consumer located near the downstream side, the temperature of the heat source water tends to be lower than the phase change temperature of the phase change heat storage material, which is sufficient There is a case where an imbalance of heat utilization occurs among a plurality of heat consumers, such as inability to perform proper heat storage.

また、相変化蓄熱材を充填してなる蓄熱タンクを利用することは、当該蓄熱タンクの構造が複雑になる上に、当該相変化蓄熱材が高価であることから、高コスト化の原因となる。   In addition, using a heat storage tank filled with a phase change heat storage material complicates the structure of the heat storage tank and causes the cost to increase because the phase change heat storage material is expensive. .

本発明は、上記の課題に鑑みてなされたものであり、その目的は、複数の熱需要家に対して高温の熱源水を循環させ、その熱源水が保有する熱を有効に利用でき、当該複数の熱需要家における熱利用を平準化でき、設備コストを低くすることができる蓄放熱装置及び熱供給システムを提供する点にある。   The present invention has been made in view of the above-mentioned problems, and its purpose is to circulate high-temperature heat source water for a plurality of heat consumers, and effectively use the heat held by the heat source water. It is in the point which provides the thermal storage and heat dissipation apparatus and heat supply system which can equalize the heat use in a some heat consumer, and can make equipment cost low.

上記目的を達成するための本発明に係る蓄放熱装置は、熱源装置で加熱された熱源水を循環させる熱源水循環ラインから取り込んだ熱源水の熱を蓄熱して利用する蓄放熱装置であって、その第1特徴構成は、蓄熱水を貯留する蓄熱タンクと、
前記熱源水と前記蓄熱水との間で熱交換を行う蓄熱用熱交換器と、
前記蓄熱水を放熱させる放熱用熱交換器と、
前記蓄熱タンクから取り出した蓄熱水を前記蓄熱用熱交換器と前記放熱用熱交換器とに順に通流させた後に同蓄熱タンクに戻す状態で前記蓄熱水を循環可能な蓄熱水循環手段と、
前記熱源水循環ラインから取り出した熱源水を、前記蓄熱用熱交換器に通流させた後に同熱源水循環ラインに戻す状態で前記熱源水を循環可能な熱源水循環手段と、
少なくとも前記蓄熱水循環手段及び前記熱源水循環手段を作動させて、前記蓄熱用熱交換器において前記熱源水との熱交換により前記蓄熱タンクとの間で循環する蓄熱水を加熱する蓄熱運転、及び、前記放熱用熱交換器において前記蓄熱水を放熱させる放熱運転を実行可能な制御手段とを備えた点にある。
In order to achieve the above object, a heat storage and heat dissipation device according to the present invention is a heat storage and heat dissipation device that stores and uses the heat of heat source water taken from a heat source water circulation line that circulates heat source water heated by the heat source device, The first characteristic configuration is a heat storage tank for storing heat storage water,
A heat storage heat exchanger that exchanges heat between the heat source water and the heat storage water;
A heat-dissipating heat exchanger that dissipates the heat storage water; and
Thermal storage water circulation means capable of circulating the thermal storage water in a state where the thermal storage water taken out from the thermal storage tank is sequentially returned to the thermal storage tank after passing through the thermal storage heat exchanger and the heat radiation heat exchanger in order.
Heat source water circulation means capable of circulating the heat source water in a state where the heat source water taken out from the heat source water circulation line is passed through the heat storage heat exchanger and then returned to the heat source water circulation line;
At least the heat storage water circulation means and the heat source water circulation means, and heat storage operation for heating the heat storage water circulating between the heat storage tank by heat exchange with the heat source water in the heat storage heat exchanger, and The heat dissipating heat exchanger includes a control means capable of performing a heat dissipating operation for dissipating the heat storage water.

上記第1特徴構成によれば、上記制御手段により放熱運転を実行する際に、上記蓄熱水循環手段により蓄熱タンクから取り出される蓄熱水の温度が高い場合には、その高温の蓄熱水を放熱用熱交換器に通流させることができる。一方、上記制御手段により放熱運転を実行する際に、上記蓄熱水循環手段により蓄熱タンクから取り出される蓄熱水の温度が低い場合でも、その低温の蓄熱水を蓄熱用熱交換器に通流させて高温の熱源水との熱交換により加熱した後に、その加熱された高温の蓄熱水を放熱用熱交換器に通流させることができる。よって、上記制御手段により放熱運転を行うことで、放熱用熱交換器において、熱源水や蓄熱水が保有する熱を有効に利用することができる。   According to the first characteristic configuration described above, when the temperature of the heat storage water taken out from the heat storage tank by the heat storage water circulation means is high when performing the heat radiation operation by the control means, the high-temperature heat storage water is used as heat for heat dissipation. It can be passed through the exchanger. On the other hand, when performing the heat radiation operation by the control means, even if the temperature of the heat storage water taken out from the heat storage tank by the heat storage water circulation means is low, the low-temperature heat storage water is passed through the heat storage heat exchanger to increase the temperature. After heating by heat exchange with the heat source water, the heated high-temperature heat storage water can be passed through the heat radiating heat exchanger. Therefore, by performing the heat radiation operation by the control means, in the heat exchanger for heat radiation, the heat held in the heat source water and the heat storage water can be used effectively.

また、上記制御手段により蓄熱運転を実行する際に、上記放熱運転が実行されていない場合は、蓄熱用熱交換器で高温の熱源水との熱交換により加熱された蓄熱水が蓄熱タンクに戻されて、蓄熱タンクへの蓄熱が良好に行われることになる。一方、上記制御手段により蓄熱運転を実行する際に、上記放熱運転が行われている間は、蓄熱用熱交換器で高温の熱源水との熱交換により加熱された蓄熱水が、放熱用熱交換器で冷却された後に、蓄熱タンクに戻されることになって、蓄熱タンクへの過剰な蓄熱が抑制されることになり、結果、熱源水循環ラインの下流側付近に位置する熱需要家に対しても比較的高温の熱源水が循環されることになる。
また、このような蓄熱タンクとしては、安価な水などの蓄熱水を利用し、当該蓄熱水を貯留するだけの簡単な構成のものを利用することができるので、設備コストを低く抑えることができる。
Further, when the heat storage operation is executed by the control means, if the heat dissipation operation is not executed, the heat storage water heated by heat exchange with the high-temperature heat source water is returned to the heat storage tank in the heat storage heat exchanger. Thus, heat storage in the heat storage tank is performed well. On the other hand, when the heat storage operation is performed by the control means, while the heat dissipation operation is being performed, the heat storage water heated by heat exchange with the high-temperature heat source water in the heat storage heat exchanger is the heat for heat dissipation. After being cooled by the exchanger, it will be returned to the heat storage tank, and excessive heat storage to the heat storage tank will be suppressed. As a result, for heat consumers located near the downstream side of the heat source water circulation line However, relatively hot heat source water is circulated.
In addition, as such a heat storage tank, it is possible to use heat storage water such as inexpensive water and to use a simple configuration that only stores the heat storage water, so that the equipment cost can be kept low. .

以上のように、本発明により、複数の熱需要家に対して熱源水を循環させ、その熱源水が保有する熱を有効に利用でき、当該複数の熱需要家における熱利用を平準化でき、設備コストを低くすることができる蓄放熱装置及び熱供給システムを実現することができる。   As described above, according to the present invention, the heat source water is circulated for a plurality of heat consumers, the heat possessed by the heat source water can be effectively used, and the heat use in the plurality of heat consumers can be leveled. It is possible to realize a heat storage / dissipation device and a heat supply system that can reduce equipment costs.

本発明に係る蓄放熱装置の第2特徴構成は、上記第1特徴構成に加えて、前記放熱用熱交換器として、給水ラインから給湯用の給水が通流する給湯用熱交換器を備え、
前記制御手段が、前記放熱運転として、前記給湯用熱交換器において前記蓄熱水との熱交換により前記給水を加熱した給湯水を給湯部に供給する給湯運転を実行可能に構成されている点にある。
The second characteristic configuration of the heat storage and dissipation device according to the present invention includes, in addition to the first characteristic configuration described above, a hot water supply heat exchanger through which hot water supply water flows from a water supply line as the heat dissipation heat exchanger,
The control means is configured such that, as the heat dissipation operation, a hot water supply operation in which hot water that has heated the water supply by heat exchange with the heat storage water in the hot water supply heat exchanger is supplied to a hot water supply unit. is there.

上記第2特徴構成によれば、上記制御手段により、上述したような放熱運転としての上記給湯運転を実行することで、上述したような放熱用熱交換器としての給湯用熱交換器には、蓄熱タンクから取り出される蓄熱水の温度に拘わらず、高温の蓄熱水が通流されることになる。よって、給湯用熱交換器において給湯部へ供給される給湯水を、熱源水や蓄熱水が保有する熱を有効利用して加熱することができる。   According to the second feature configuration, by performing the hot water supply operation as the heat dissipation operation as described above by the control means, the hot water supply heat exchanger as the heat dissipation heat exchanger as described above includes Regardless of the temperature of the heat storage water taken out from the heat storage tank, the high-temperature heat storage water is passed. Therefore, the hot water supplied to the hot water supply unit in the hot water heat exchanger can be heated by effectively using the heat held by the heat source water and the heat storage water.

本発明に係る蓄放熱装置の第3特徴構成は、上記第2特徴構成に加えて、前記蓄熱水循環手段が、前記蓄熱タンクの上部から取り出した蓄熱水を前記蓄熱用熱交換器と前記給湯用熱交換器とに順に通流させた後に同蓄熱タンクの下部に戻す高温蓄熱水循環状態で前記蓄熱水を循環可能に構成され、
前記制御手段が、前記給湯運転時において、前記蓄熱水循環手段を前記高温蓄熱水循環状態で作動させると共に、前記給湯用熱交換器で加熱された給水の温度を目標給湯温度に調整するように前記蓄熱水の循環流量を制御するように構成されている点にある。
In addition to the second feature configuration, the third feature configuration of the heat storage and heat dissipation device according to the present invention is that the heat storage water circulating means extracts the heat storage water taken out from the upper portion of the heat storage tank for the heat storage heat exchanger and the hot water supply. The heat storage water is configured to be circulated in a high-temperature heat storage water circulation state that is returned to the lower portion of the heat storage tank after passing through the heat exchanger in order,
In the hot water supply operation, the control means operates the heat storage water circulation means in the high temperature heat storage water circulation state, and adjusts the temperature of the hot water heated by the hot water heat exchanger to the target hot water supply temperature. It is in the point comprised so that the circulation flow rate of water may be controlled.

上記第3特徴構成によれば、上記制御手段により給湯運転を実行する際に、上記高温蓄熱水循環状態とされた蓄熱水循環手段により、蓄熱タンクの上部から取り出した蓄熱水を、蓄熱用熱交換器に続いて、給湯用熱交換器に通流させて放熱して冷却された後に、蓄熱タンクの下部に戻すことができる。よって、蓄熱タンクにおいては、上部側に高温の蓄熱水を滞留させ下部側に低温の蓄熱水を滞留させる状態の温度成層が維持されることになる。
更に、上記制御手段により給湯運転を実行する際に、給湯用熱交換器で加熱された給水の温度が所望の目標給湯温度になるように蓄熱水の循環流量を制御するので、給湯用熱交換器において給水を目標給湯温度に加熱するための放熱量を確保しながら、給湯用熱交換器から流出して蓄熱タンクに戻る蓄熱水の温度を極力低くすることができるので、蓄熱タンクに蓄熱された熱を一層有効利用しながら、蓄熱タンクの温度成層を良好なものに維持できる。
According to the third characteristic configuration, when the hot water supply operation is performed by the control means, the heat storage water taken out from the upper part of the heat storage tank by the heat storage water circulation means in the high temperature heat storage water circulation state is used as a heat storage heat exchanger. Subsequently, after passing through a hot water supply heat exchanger to dissipate heat and cool, it can be returned to the lower part of the heat storage tank. Therefore, in the heat storage tank, the temperature stratification in a state in which the high-temperature heat storage water is retained on the upper side and the low-temperature heat storage water is retained on the lower side is maintained.
Further, when the hot water supply operation is performed by the control means, the circulation flow rate of the heat storage water is controlled so that the temperature of the hot water heated by the hot water heat exchanger becomes a desired target hot water temperature. The temperature of the heat storage water that flows out of the hot water supply heat exchanger and returns to the heat storage tank can be lowered as much as possible while securing the amount of heat radiation for heating the water supply to the target hot water supply temperature in the heater. The thermal stratification of the heat storage tank can be maintained at a good level while making more effective use of the heat.

本発明に係る蓄放熱装置の第4特徴構成は、上記第2乃至上記第3特徴構成に加えて、前記熱源水循環手段における前記蓄熱用熱交換器の下流側から取り出した熱源水を前記給湯部に供給可能な熱源水供給手段を備えた点にある。   According to a fourth characteristic configuration of the heat storage and heat dissipation device according to the present invention, in addition to the second to third characteristic configurations, the hot water supply unit extracts heat source water extracted from the downstream side of the heat storage heat exchanger in the heat source water circulation unit. It is in the point provided with the heat source water supply means which can be supplied to.

上記第4特徴構成によれば、上記制御手段による給湯運転時において、給湯用熱交換器で加熱された給水の温度が、所望の目標給湯温度に達していない場合でも、上記熱源水供給手段により、比較的高温の熱源水を給湯部に供給することができる。   According to the fourth characteristic configuration, even when the temperature of the hot water supplied by the hot water heat exchanger does not reach a desired target hot water temperature during the hot water supply operation by the control means, the heat source water supply means. A relatively high temperature heat source water can be supplied to the hot water supply section.

本発明に係る蓄放熱装置の第5特徴構成は、上記第4特徴構成に加えて、 前記熱源水供給手段が、前記給湯水に対して前記熱源水を混合可能、且つ、前記給湯水における当該熱源水の混合割合を調整可能に構成され、
前記制御手段が、前記給湯運転時において、前記熱源水供給手段により前記混合割合を制御して、前記給湯部へ供給される給湯水の温度を目標給湯温度に調整するように構成されている点にある。
In addition to the fourth characteristic configuration, the fifth characteristic configuration of the heat storage and dissipation device according to the present invention is such that the heat source water supply means can mix the heat source water with the hot water, and the hot water supply The mixing ratio of heat source water is adjustable,
The control means is configured to adjust the temperature of hot water supplied to the hot water supply unit to a target hot water temperature by controlling the mixing ratio by the heat source water supply means during the hot water supply operation. It is in.

上記第5特徴構成によれば、上記制御手段による給湯運転時において、給湯用熱交換器で加熱された給水の温度が、所望の目標給湯温度に達していない場合でも、上記熱源水供給手段により当該給水に比較的高温の熱源水を混合して昇温させ、給湯水として給湯部に供給することができる。更に、その混合割合を調整することで、給湯部へ供給される給湯水の温度を目標給湯温度に調整することができる。   According to the fifth characteristic configuration, even when the temperature of the hot water heated by the hot water heat exchanger does not reach a desired target hot water temperature during the hot water supply operation by the control means, the heat source water supply means. A relatively high temperature heat source water can be mixed with the water supply to raise the temperature, and the hot water can be supplied to the hot water supply section. Furthermore, the temperature of the hot water supplied to the hot water supply unit can be adjusted to the target hot water temperature by adjusting the mixing ratio.

本発明に係る蓄放熱装置の第6特徴構成は、上記第4又は5特徴構成に加えて、前記放熱用熱交換器として、前記蓄熱水循環手段における前記給湯用熱交換器の下流側に、浴槽との間で循環する浴槽水が通流する追焚き用熱交換器を備え、
前記制御手段が、前記放熱運転として、前記給湯運転と共に、前記追焚き用熱交換器において前記蓄熱水との熱交換により前記浴槽との間で循環する浴槽水を加熱する追焚き運転を実行可能に構成されており、且つ、前記給湯運転と前記追焚き運転との同時実行時において、前記蓄熱タンクから取り出された蓄熱水の温度が設定温度以下である場合に、前記給湯用熱交換器への給水の供給を停止して、前記熱源水供給手段により前記熱源水を前記給湯部に供給するように構成されている点にある。
In addition to the fourth or fifth characteristic configuration described above, the sixth characteristic configuration of the heat storage and heat dissipation device according to the present invention is a bathtub located on the downstream side of the hot water supply heat exchanger in the heat storage water circulating means as the heat dissipation heat exchanger. With a reheating heat exchanger through which the bathtub water circulating between
The control means can execute, as the heat dissipation operation, a reheating operation that heats the bath water circulated between the bath and the heat storage water in the reheating heat exchanger by heat exchange with the heat storage water. And when the temperature of the heat storage water taken out from the heat storage tank is equal to or lower than a preset temperature during the simultaneous execution of the hot water supply operation and the reheating operation, to the hot water supply heat exchanger The supply of water is stopped, and the heat source water supply means supplies the heat source water to the hot water supply unit.

上記第6特徴構成によれば、上記制御手段により、上述したような放熱運転としての上記追焚き運転を実行することで、上述したような放熱用熱交換器としての追焚き用熱交換器には、蓄熱タンクから取り出される蓄熱水の温度に拘わらず、高温の蓄熱水が通流されることになる。よって、追焚き用熱交換器において浴槽との間で循環する浴槽水を、熱源水や蓄熱水が保有する熱を有効利用して加熱することができる。
更に、上記制御手段により、給湯運転と追焚き運転との同時実行時において、前記蓄熱タンクから取り出された蓄熱水の温度が設定温度以下である場合でも、上記給湯用熱交換器への給水の供給を停止することで、その低温の蓄熱水を、蓄熱用熱交換器に通流させて高温の熱源水との熱交換により加熱した後に、給湯用熱交換器ではあまり放熱させずに、高温のまま追焚き用熱交換器に通流させることができ、追焚き用熱熱交換器において蓄熱水が保有する熱を有効に利用することができる。
更に、上記制御手段により、給湯運転と追焚き運転との同時実行時において、前記蓄熱タンクから取り出された蓄熱水の温度が設定温度以下である場合に、上記のように給湯用熱交換器への給水の供給を停止しても、蓄熱用熱交換器で温度低下した熱源水の全てを給湯水として給湯部に供給して給湯を継続することができる。更に、蓄熱用熱交換器で温度低下した比較的低温の熱源水が熱源水循環ラインに戻されることを防止でき、結果、熱源水循環ラインの下流側付近に位置する熱需要家に対して低温の熱源水が循環されてしまうことを防止することができる。
According to the sixth characteristic configuration, the control means performs the reheating operation as the heat dissipation operation as described above, thereby providing a reheating heat exchanger as the heat dissipation heat exchanger as described above. Regardless of the temperature of the heat storage water taken out from the heat storage tank, high-temperature heat storage water is passed. Therefore, in the heat exchanger for reheating, the bathtub water that circulates between the bathtub and the heat source water or the heat storage water can be effectively utilized and heated.
Furthermore, even when the temperature of the heat storage water taken out from the heat storage tank is equal to or lower than a set temperature during the simultaneous execution of the hot water supply operation and the reheating operation by the control means, the water supply to the hot water supply heat exchanger is performed. By stopping the supply, the low-temperature heat storage water is passed through the heat storage heat exchanger and heated by heat exchange with the high-temperature heat source water. The heat can be passed through the heat exchanger for reheating as it is, and the heat stored in the heat storage water can be effectively used in the heat heat exchanger for reheating.
Further, when the temperature of the heat storage water taken out from the heat storage tank is equal to or lower than the set temperature during the simultaneous execution of the hot water supply operation and the follow-up operation by the control means, as described above, to the hot water supply heat exchanger. Even if the supply of this water supply is stopped, all the heat source water whose temperature has been reduced by the heat storage heat exchanger can be supplied to the hot water supply section as hot water supply to continue the hot water supply. Furthermore, it is possible to prevent the relatively low-temperature heat source water whose temperature has been lowered by the heat storage heat exchanger from being returned to the heat source water circulation line, and as a result, to a heat consumer located near the downstream side of the heat source water circulation line. It is possible to prevent water from being circulated.

本発明に係る蓄放熱装置の第7特徴構成は、上記第1乃至上記第6の何れかの特徴構成に加えて、前記制御手段が、前記熱源水の温度及び前記蓄熱水の温度及び時刻の夫々に基づいて、前記蓄熱運転の実行タイミングを制御するように構成されている点にある。   According to a seventh characteristic configuration of the heat storage and heat dissipation apparatus according to the present invention, in addition to any one of the first to sixth characteristic configurations, the control means includes the temperature of the heat source water, the temperature of the heat storage water, and the time. It is in the point comprised so that the execution timing of the said thermal storage operation may be controlled based on each.

上記第7特徴構成によれば、上記制御手段により、熱源水及び蓄熱水の夫々の温度が、蓄熱用熱交換器において熱源水から受熱し得る温度であるか否か、更には、時刻が、複数の熱需要家における総熱需要が比較的少なく蓄熱タンクへの蓄熱を行うのに適切な時刻内であるか否かを判定した上で、当該適切なタイミングに、上記蓄熱運転を実行して蓄熱タンクへの蓄熱を自動的に行うことができる。   According to the seventh characteristic configuration, whether or not each temperature of the heat source water and the heat storage water is a temperature that can be received from the heat source water in the heat storage heat exchanger by the control unit, and further, the time is After determining whether the total heat demand in a plurality of heat consumers is relatively small and within the appropriate time for storing heat in the heat storage tank, the heat storage operation is executed at the appropriate timing. It is possible to automatically store heat in the heat storage tank.

本発明に係る蓄放熱装置の第8特徴構成は、上記第1乃至上記第7の何れかの特徴構成に加えて、前記蓄熱水循環手段が、前記蓄熱タンクの上部から取り出した蓄熱水を前記蓄熱用熱交換器と前記放熱用熱交換器とに順に通流させた後に同蓄熱タンクの下部に戻す高温蓄熱水循環状態と、前記蓄熱タンクの下部から取り出した蓄熱水を前記蓄熱用熱交換器に通流させた後に同蓄熱タンクの上部に戻す低温蓄熱水循環状態との間で、前記蓄熱水の循環状態を切り替え可能に構成され、
前記制御手段が、前記蓄熱運転時には前記蓄熱水循環手段を前記低温蓄熱水循環状態で作動させ、前記放熱運転時には前記蓄熱水循環手段を前記高温蓄熱水循環状態で作動させるように構成されている点にある。
According to an eighth characteristic configuration of the heat storage and heat dissipation device according to the present invention, in addition to any one of the first to seventh characteristic configurations, the heat storage water circulating means extracts the heat storage water extracted from the upper part of the heat storage tank. A high-temperature heat storage water circulating state that is passed through the heat exchanger and the heat-dissipation heat exchanger in order and then returned to the lower part of the heat storage tank, and the heat storage water taken out from the lower part of the heat storage tank to the heat storage heat exchanger The circulation state of the heat storage water is configured to be switchable between a low temperature heat storage water circulation state that is returned to the upper part of the heat storage tank after being passed through,
The control means is configured to operate the heat storage water circulation means in the low-temperature heat storage water circulation state during the heat storage operation, and to operate the heat storage water circulation means in the high-temperature heat storage water circulation state during the heat dissipation operation.

上記第8特徴構成によれば、蓄熱タンクにおいて上部側に高温の蓄熱水を滞留させ下部側に低温の蓄熱水を滞留させる状態の温度成層型に構成し、その温度成層を良好に維持することができる。
即ち、上記制御手段により蓄熱運転を実行する際には、上記低温蓄熱水循環状態とされた蓄熱水循環手段により、蓄熱タンクの下部から取り出した低温の蓄熱水を、蓄熱用熱交換器に通流させて高温の熱源水との熱交換により高温に加熱した後に、放熱用熱交換器に通流させることなく蓄熱タンクの上部に戻すことができるので、蓄熱タンクの温度成層を良好に維持することができる。
また、上記制御手段により放熱運転を実行する際には、上記高温蓄熱水循環状態とされた蓄熱水循環手段により、蓄熱タンクの上部から取り出した蓄熱水を、蓄熱用熱交換器に続いて、放熱用熱交換器に通流させて放熱して冷却された後に、蓄熱タンクの下部に戻すことができるので、蓄熱タンクにおける温度成層が良好に維持されることになる。
According to the eighth feature configuration, in the heat storage tank, a high-temperature heat storage water is retained on the upper side and a low-temperature heat storage water is retained on the lower side, and the temperature stratification is favorably maintained. Can do.
That is, when the heat storage operation is executed by the control means, the low-temperature heat storage water circulating means in the low-temperature heat storage water circulation state causes the low-temperature heat storage water taken out from the lower part of the heat storage tank to flow to the heat storage heat exchanger. After heating to high temperature by heat exchange with high temperature heat source water, it can be returned to the upper part of the heat storage tank without passing it through the heat dissipation heat exchanger, so that the temperature stratification of the heat storage tank can be maintained well it can.
Further, when performing the heat radiation operation by the control means, the heat storage water taken out from the upper part of the heat storage tank is transferred to the heat storage heat exchanger by the heat storage water circulation means in the high temperature heat storage water circulation state. Since it is possible to return to the lower part of the heat storage tank after flowing through the heat exchanger and dissipating heat and cooling, the temperature stratification in the heat storage tank is maintained well.

本発明に係る蓄放熱装置の第9特徴構成は、上記第1乃至上記第8の何れかの特徴構成に加えて、前記放熱用熱交換器として、浴槽との間で循環する浴槽水が通流する追焚き用熱交換器を備え、
前記制御手段が、前記放熱運転として、前記追焚き用熱交換器において前記蓄熱水との熱交換により前記浴槽との間で循環する浴槽水を加熱する追焚き運転を実行可能に構成されている点にある。
The ninth characteristic configuration of the heat storage and heat dissipation apparatus according to the present invention is that, in addition to any one of the first to eighth characteristic configurations, the tub water circulating between the bathtub and the heat radiating heat exchanger is passed. Equipped with a heat exchanger
The said control means is comprised so that execution of the reheating operation which heats the bath water circulated between the said bathtubs by the heat exchange with the said thermal storage water in the said reheating heat exchanger as the said heat radiation operation is possible. In the point.

上記第9特徴構成によれば、上記制御手段により、上述したような放熱運転としての上記追焚き運転を実行することで、上述したような放熱用熱交換器としての追焚き用熱交換器には、蓄熱タンクから取り出される蓄熱水の温度に拘わらず、高温の蓄熱水が通流されることになる。よって、追焚き用熱交換器において浴槽との間で循環する浴槽水を、熱源水や蓄熱水が保有する熱を有効利用して加熱することができる。   According to the ninth characteristic configuration, by performing the reheating operation as the heat dissipation operation as described above by the control means, the reheating heat exchanger as the heat dissipation heat exchanger as described above is obtained. Regardless of the temperature of the heat storage water taken out from the heat storage tank, high-temperature heat storage water is passed. Therefore, in the heat exchanger for reheating, the bathtub water that circulates between the bathtub and the heat source water or the heat storage water can be effectively utilized and heated.

本発明に係る蓄放熱装置の第10特徴構成は、上記第1乃至上記第9の何れかの特徴構成に加えて、前記放熱用熱交換器として、室内空気が通流する暖房用放熱器を備え、
前記制御手段が、前記放熱運転として、前記暖房用放熱器において前記蓄熱水との熱交換により前記室内空気を加熱する暖房運転を実行可能に構成されている点にある。
A tenth characteristic configuration of the heat storage and heat dissipation apparatus according to the present invention includes, in addition to any one of the first to ninth characteristic configurations, a heating radiator through which room air flows as the heat dissipation heat exchanger. Prepared,
The control means is configured such that, as the heat radiation operation, a heating operation in which the room air is heated by heat exchange with the heat storage water in the heating radiator can be executed.

上記第10特徴構成によれば、上記制御手段により、上述したような放熱運転としての上記暖房運転を実行することで、上述したような放熱用熱交換器としての暖房用放熱器には、蓄熱タンクから取り出される蓄熱水の温度に拘わらず、高温の蓄熱水が通流されることになる。よって、暖房用放熱器において室内空気を熱源水や蓄熱水が保有する熱を有効利用して加熱することができる。   According to the tenth feature configuration, the control means performs the heating operation as the heat dissipation operation as described above, so that the heating radiator as the heat dissipation heat exchanger as described above has no heat storage. Regardless of the temperature of the heat storage water taken out from the tank, high-temperature heat storage water will flow through. Therefore, in the radiator for heating, the indoor air can be heated by effectively using the heat held by the heat source water or the heat storage water.

本発明に係る蓄放熱装置の第11特徴構成は、上記第10特徴構成に加えて、前記蓄熱水循環手段が、前記蓄熱タンクを通過させない蓄熱タンクバイパス状態で前記蓄熱水の少なくとも一部を循環可能に構成され、
前記制御手段が、前記暖房運転時において、前記暖房用放熱器に供給される蓄熱水の温度を目標暖房水温度に調整するように、前記蓄熱タンクバイパス状態での前記蓄熱タンクを通過させない前記蓄熱水の流量を制御する点にある。
The eleventh characteristic configuration of the heat storage and radiating device according to the present invention is such that, in addition to the tenth characteristic configuration, the thermal storage water circulation means can circulate at least a part of the thermal storage water in a thermal storage tank bypass state in which the thermal storage tank is not passed. Composed of
In the heating operation, the control means does not pass the heat storage tank in the heat storage tank bypass state so as to adjust the temperature of the heat storage water supplied to the heating radiator to a target heating water temperature. The point is to control the water flow rate.

上記第11特徴構成によれば、上記制御手段により、上述したような暖房運転を実行する際に、暖房用放熱器で放熱しても未だ温暖な蓄熱水の少なくとも一部を、上記蓄熱タンクバイパス状態とされた上記蓄熱水循環手段により蓄熱タンクに戻すことなく蓄熱用熱交換器に通流させて高温に加熱した後に、暖房用放熱器に再度通流させることができるので、その暖房用放熱器から戻る蓄熱水の熱を有効に利用することができ、更に、蓄熱タンクからの蓄熱水の流出を抑制して、蓄熱タンクに蓄熱された熱の浪費を防止できる。更に、その暖房運転時において、上記蓄熱用熱交換器から暖房用放熱器に供給される蓄熱水の温度を目標暖房水温度に調整するように、上記蓄熱タンクバイパス状態での前記蓄熱タンクを通過させない前記蓄熱水の流量を制御すれば、上記蓄熱用熱交換器から暖房用放熱器に供給される蓄熱水の温度を適切に目標暖房水温度に維持することができる。   According to the eleventh characteristic configuration, when the heating operation as described above is performed by the control means, at least a part of the warm stored water that is still radiated by the radiator for heating is used as the heat storage tank bypass. The heat storage water circulation means can be passed through the heat storage heat exchanger without being returned to the heat storage tank and heated to a high temperature without being returned to the heat storage tank. The heat stored in the heat storage tank can be effectively used, and the outflow of the heat storage water from the heat storage tank can be suppressed to prevent waste of heat stored in the heat storage tank. Further, during the heating operation, the heat storage tank is passed through the heat storage tank in the bypass state so as to adjust the temperature of the heat storage water supplied from the heat storage heat exchanger to the heat radiator for heating to the target heating water temperature. If the flow rate of the heat storage water not to be controlled is controlled, the temperature of the heat storage water supplied from the heat storage heat exchanger to the heating radiator can be appropriately maintained at the target heating water temperature.

本発明に係る蓄放熱装置の第12特徴構成は、上記第1乃至上記第11の何れかの特徴構成に加えて、前記放熱用熱交換器の複数が、前記蓄熱水循環手段において互いに並列に設けられている点にある。   According to a twelfth feature of the heat storage and heat dissipation apparatus according to the present invention, in addition to any one of the first to eleventh features, a plurality of the heat dissipation heat exchangers are provided in parallel with each other in the heat storage water circulation means. It is in the point.

上記第12特徴構成によれば、複数の放熱用熱交換器を設置する場合には、その放熱用熱交換器の複数を、蓄熱水循環手段により蓄熱水が循環される流路において、互いに並列に設けることができる。例えば、放熱用熱交換器として、給湯用熱交換器や追焚き用熱交換器とは別に、暖房用放熱器を各室に設置する場合でも、暖房用放熱器を給湯用熱交換器等に対して並列に設けて、高温の蓄熱水を、夫々の放熱用熱交換器に分配して通流させることができる。   According to the twelfth feature, when a plurality of heat dissipation heat exchangers are installed, a plurality of the heat dissipation heat exchangers are arranged in parallel with each other in the flow path in which the heat storage water is circulated by the heat storage water circulation means. Can be provided. For example, as a heat exchanger for heat dissipation, in addition to a heat exchanger for hot water supply and a heat exchanger for reheating, even when a heat radiator for heating is installed in each room, the heat radiator for heating is used as a heat exchanger for hot water supply, etc. On the other hand, it can be provided in parallel, and high-temperature heat storage water can be distributed and passed to each heat dissipation heat exchanger.

本発明に係る蓄放熱装置の第13特徴構成は、上記第1乃至上記第12の何れかの特徴構成に加えて、前記蓄熱水循環手段が、前記蓄熱タンクを通過させない蓄熱タンクバイパス状態で前記蓄熱水を循環可能に構成され、
前記制御手段が、前記放熱運転時において、前記蓄熱タンクの上部から取り出された蓄熱水の温度が設定温度以下である場合に、前記蓄熱水循環手段を前記蓄熱タンクバイパス状態とするように構成されている点にある。
A thirteenth characteristic configuration of the heat storage and heat dissipation apparatus according to the present invention is the heat storage tank bypass state in which the heat storage water circulation means does not pass the heat storage tank in addition to any one of the first to twelfth characteristic configurations. It is configured to circulate water,
The control means is configured to place the heat storage water circulation means in the heat storage tank bypass state when the temperature of the heat storage water taken out from the upper part of the heat storage tank is equal to or lower than a set temperature during the heat radiation operation. There is in point.

上記第13特徴構成によれば、上記制御手段により、暖房運転などの放熱運転を実行する際に、蓄熱タンクの上部の蓄熱水の温度が設定温度以下となる場合には、放熱用熱交換器で放熱しても未だ温暖な蓄熱水の少なくとも一部を、上記蓄熱タンクバイパス状態とされた上記蓄熱水循環手段により、蓄熱タンクに戻すことなく、蓄熱用熱交換器に通流させることができる。よって、蓄熱用熱交換器において蓄熱水をできるだけ高温に加熱した後に、放熱用熱交換器に通流させることができる。   According to the thirteenth characteristic configuration, when the temperature of the heat storage water in the upper part of the heat storage tank is equal to or lower than the set temperature when the control means performs the heat radiation operation such as the heating operation, the heat exchanger for heat radiation The heat storage water circulating means that is in the heat storage tank bypass state can pass at least a part of the heat storage water that is still warm even if heat is radiated to the heat storage heat exchanger without returning to the heat storage tank. Therefore, after heat storage water is heated as high as possible in the heat storage heat exchanger, it can be passed through the heat dissipation heat exchanger.

本発明に係る蓄放熱装置の第14特徴構成は、上記第1乃至上記第13の何れかの特徴構成に加えて、前記蓄熱タンクが、大気開放型のタンクであり、
前記蓄熱タンク内の前記蓄熱水の水位を一定に維持する水位維持手段を備えた点にある。
In addition to any one of the first to thirteenth feature configurations, the fourteenth feature configuration of the heat storage and heat dissipation device according to the present invention is an open-air tank.
It is the point provided with the water level maintenance means which maintains the water level of the said thermal storage water in the said thermal storage tank constant.

上記第14特徴構成によれば、蓄熱タンクとして、合成樹脂の一体成形品等の一層簡単な構成の大気開放型のタンクを利用することができる。更に、水位維持手段により、蓄熱タンク内の蓄熱水の水位が一定に維持されるので、蓄熱水循環手段により、蓄熱タンクの上部に貯留されている蓄熱水を適切且つ良好に取り出して循環させることができる。   According to the fourteenth characteristic configuration, an open-air tank having a simpler configuration such as an integrally molded product of synthetic resin can be used as the heat storage tank. Further, since the water level of the heat storage water in the heat storage tank is kept constant by the water level maintenance means, the heat storage water stored in the upper part of the heat storage tank can be taken out appropriately and well and circulated by the heat storage water circulation means. it can.

本発明に係る蓄放熱装置の第15特徴構成は、上記第1乃至上記第14の何れかの特徴構成に加えて、前記制御手段が、前記蓄熱用熱交換器での前記熱源水の放熱量に基づいて前記蓄熱水循環手段による前記蓄熱水の循環流量を制御するように構成されている点にある。   According to a fifteenth characteristic configuration of the heat storage and heat dissipation apparatus according to the present invention, in addition to any one of the first to fourteenth characteristic configurations, the control means may dissipate the heat source water in the heat storage heat exchanger. The heat storage water circulation means controls the circulation flow rate of the heat storage water based on the above.

上記第15特徴構成によれば、上記制御手段により、蓄熱用熱交換器での前記熱源水の放熱量が許容範囲内となるように、蓄熱水の循環流量を制限するよう制御することができ、熱源水循環ラインの下流側における熱源水の過度な温度低下を抑制することができる。   According to the fifteenth characteristic configuration, the control means can control to limit the circulation flow rate of the heat storage water so that the heat radiation amount of the heat source water in the heat storage heat exchanger is within an allowable range. And the excessive temperature fall of the heat source water in the downstream of a heat source water circulation line can be suppressed.

また、上記目的を達成するための本発明に係る熱供給システムは、複数の熱需要家に対して、熱源装置で加熱された熱源水を循環させる熱源水循環ラインを備えると共に、
前記複数の熱需要家の夫々に対して、熱源装置で加熱された熱源水を循環させる熱源水循環ラインから取り込んだ熱源水の熱を蓄熱して利用する蓄放熱装置を備えた熱供給システムであって、その特徴構成は、前記蓄放熱装置が、本発明に係る蓄放熱装置として構成されている点にある。
In addition, the heat supply system according to the present invention for achieving the above object includes a heat source water circulation line for circulating the heat source water heated by the heat source device for a plurality of heat consumers,
A heat supply system including a heat storage and heat dissipation device that stores and uses heat of heat source water taken from a heat source water circulation line that circulates heat source water heated by a heat source device for each of the plurality of heat consumers. The characteristic configuration is that the heat storage and heat dissipation device is configured as the heat storage and heat dissipation device according to the present invention.

即ち、上記熱供給システムの特徴構成によれば、上述した本発明に係る蓄放熱装置の夫々の特徴構成による同様の作用効果を発揮して、複数の熱需要家に対して高温の熱源水を循環させ、その熱源水が保有する熱を有効に利用でき、当該複数の熱需要家における熱利用を平準化でき、設備コストを低くすることができる熱供給システムを実現することができる。
また、かかる熱供給システムでは、複数の熱需要家の夫々において上記計測した夫々の放熱量を用い、例えばその放熱量に単価をかける形態で、複数の熱需要家の夫々に対して課金すべき熱利用料金を算出することもできる。
That is, according to the characteristic configuration of the above heat supply system, the same effect by each characteristic configuration of the above-described heat storage / dissipation device according to the present invention is exhibited, and high temperature heat source water is supplied to a plurality of heat consumers. It is possible to realize a heat supply system that can circulate and effectively use the heat held by the heat source water, level the heat use in the plurality of heat consumers, and reduce the equipment cost.
Further, in such a heat supply system, each of a plurality of heat consumers should be charged using, for example, a unit price for the amount of heat released, using each of the measured heat dissipation amounts in each of the plurality of heat consumers. A heat usage fee can also be calculated.

本発明の実施の形態として、複数の住居1(熱需要家の一例)の夫々に対して蓄放熱装置10を備えた熱供給システムについて、図面に基づいて説明する。
図1に示す熱供給システムは、集合住宅5にある複数の各住居1に夫々に対して熱を供給するシステムとして構成されている。
即ち、熱供給システムは、ガスエンジン発電機や燃料電池等の電力EPと共に熱を発生する熱電併給装置6(熱源装置の一例)と、その熱電併給装置6が発生した熱により80℃程度と高温に加熱された熱源水HWを各住居1に渡って循環させる熱源水循環ライン2と、その熱源水HWより低温の給水LWを供給する給水ライン3とを備える。
更に、複数の住居1の夫々の共有部1bに、熱源水循環ライン2から取り込んだ熱源水HWの熱を蓄熱して、例えば給水ライン3から取り込んだ給水LW等の加熱用に利用する蓄放熱装置10が分散設置されている。即ち、その各住居1の蓄放熱装置10において、熱源水循環ライン2を循環する熱源水HWの熱が一次蓄熱され、各住居1の居住部1aにおいて、蓄放熱装置10に蓄熱された熱が、給湯用、更には、暖房用、風呂追焚き用として利用されるように構成されている。
As embodiment of this invention, the heat supply system provided with the thermal storage / dissipation apparatus 10 with respect to each of the some residence 1 (an example of a heat consumer) is demonstrated based on drawing.
The heat supply system shown in FIG. 1 is configured as a system that supplies heat to each of a plurality of residences 1 in the apartment house 5.
That is, the heat supply system includes a combined heat and power supply device 6 (an example of a heat source device) that generates heat together with power EP such as a gas engine generator and a fuel cell, and a high temperature of about 80 ° C. due to the heat generated by the combined heat and power supply device 6. A heat source water circulation line 2 that circulates the heat source water HW heated to the residence 1 and a water supply line 3 that supplies water LW having a temperature lower than that of the heat source water HW.
Further, the heat storage / heat dissipation device that stores heat of the heat source water HW taken from the heat source water circulation line 2 in each shared portion 1b of the plurality of residences 1 and is used for heating the water supply LW taken from the water supply line 3, for example. 10 are distributed. That is, in the heat storage and heat dissipation device 10 of each residence 1, the heat of the heat source water HW circulating through the heat source water circulation line 2 is primarily stored, and the heat stored in the heat storage and heat dissipation device 10 in the living part 1a of each residence 1 is It is configured to be used for hot water supply, and further for heating and bathing.

更に、この熱供給システムには、上記熱電併給装置6の未利用排ガスEGの熱を回収して各住居1に供給される給水LWを予熱する予熱装置7が設けられており、よって、この予熱装置7により18℃程度に予熱された給水LWが、適宜貯槽タンク(図示せず)に一次貯留された後に、給水ライン3を通じて各住居1側に供給されることになる。
尚、上記熱電併給装置6や予熱装置7において、熱源水HWや給水LWを加熱するための熱源装置の構成としては、例えばエンジン排熱を利用した熱源装置やヒートポンプシステム等の公知の構成が採用されている。
Furthermore, this heat supply system is provided with a preheating device 7 that recovers the heat of the unused exhaust gas EG of the cogeneration device 6 and preheats the feed water LW supplied to each residence 1. The water supply LW preheated to about 18 ° C. by the apparatus 7 is appropriately stored in a storage tank (not shown), and then supplied to each residence 1 through the water supply line 3.
Note that, in the combined heat and power supply device 6 and the preheating device 7, as a configuration of the heat source device for heating the heat source water HW and the feed water LW, for example, a known configuration such as a heat source device using engine exhaust heat or a heat pump system is adopted. Has been.

上記熱供給システムの熱源水循環ライン2は、シングルループ配管(単管配管)であり、熱電併給装置6側から各住居1側に温水を供給するための往配管と各住居1側から熱電併給装置6側に温水が戻るための復配管とを個別に設ける複管配管を用いた場合と比較して、半分の配管で済むためコストメリットがある。しかしながら、この熱源水循環ライン2では、熱源水HWの保有熱が、熱需要がある住居1毎に上流側から順次抜き出されていく形態となるので、下流側の住居1にいくに従って温度が低下してしまい、各住居1における熱利用の不均衡が発生し易くなる。   The heat source water circulation line 2 of the heat supply system is a single loop pipe (single pipe pipe), a forward pipe for supplying hot water from the cogeneration device 6 side to each residence 1 side, and a cogeneration device from each residence 1 side. Compared to the case of using a double pipe that separately provides a return pipe for returning hot water to the 6 side, there is a cost merit because half the pipe is sufficient. However, in this heat source water circulation line 2, since the heat retained in the heat source water HW is sequentially extracted from the upstream side for each residence 1 with heat demand, the temperature decreases as going to the downstream residence 1. Therefore, an imbalance of heat utilization in each residence 1 is likely to occur.

そこで、各住居1側に分散設置された蓄放熱装置10は、熱源水HWを循環させ、熱源水HWの温度変動が生じやすい状態でも、その熱源水HWが保有する熱を各住居1において有効に利用して給湯等を行い、各住居1における熱利用を平準化でき、更には、設備コストを低くすることができるように構成されており、以下に、その蓄放熱装置10の実施の形態として、第1実施形態及び第2実施形態について、説明する。   Therefore, the heat storage / dissipation device 10 distributed on each residence 1 side circulates the heat source water HW, and the heat held by the heat source water HW is effective in each residence 1 even when the temperature of the heat source water HW is likely to fluctuate. It is configured so that the hot water can be used for heating, the heat use in each residence 1 can be leveled, and the equipment cost can be reduced, and the embodiment of the heat storage and dissipation device 10 will be described below. As follows, the first embodiment and the second embodiment will be described.

〔第1実施形態〕
以下、第1実施形態の蓄放熱装置100について、図2に基づいて説明する。
図2に示す蓄放熱装置100は、蓄熱水SWを貯留する蓄熱タンク40と、熱源水HWと蓄熱水SWとの間で熱交換を行う蓄熱用熱交換器70とを備えると共に、蓄熱水SWを放熱させる放熱用熱交換器として、後述する給水LWや浴槽水BWと蓄熱水SWとの間で熱交換を行う給湯追焚き用熱交換器75、及び、後述する室内空気RAと蓄熱水SWとの間で熱交換を行う暖房用放熱器87を備える。
更に、蓄放熱装置100は、詳細については後述するが、上記蓄熱水SWを循環可能な蓄熱水循環手段Xと、上記熱源水HWを循環可能な熱源水循環手段Yと、これら蓄熱水循環手段X及び熱源水循環手段Y等の作動を制御して、蓄熱運転や、放熱運転としての給湯運転、追焚き運転、及び、暖房運転を夫々実行可能な制御装置80(制御手段の一例)を備える。
[First Embodiment]
Hereinafter, the heat storage and heat dissipation device 100 of the first embodiment will be described with reference to FIG.
2 includes a heat storage tank 40 that stores heat storage water SW, and a heat storage heat exchanger 70 that performs heat exchange between the heat source water HW and the heat storage water SW, and the heat storage water SW. As a heat-dissipating heat exchanger that dissipates heat, a hot-water supply heat exchanger 75 that exchanges heat between a water supply LW or bathtub water BW, which will be described later, and the heat storage water SW, and an indoor air RA and a heat storage water SW, which will be described later. And a heating radiator 87 for exchanging heat with each other.
Furthermore, although the heat storage and heat dissipation device 100 will be described in detail later, the heat storage water circulation means X capable of circulating the heat storage water SW, the heat source water circulation means Y capable of circulating the heat source water HW, the heat storage water circulation means X and the heat source A control device 80 (an example of a control unit) is provided that controls the operation of the water circulation means Y and the like, and can execute a heat storage operation, a hot water supply operation as a heat radiation operation, a reheating operation, and a heating operation.

上記蓄熱タンク40は、矩形断面、具体的には長方形断面を有する合成樹脂の成形体からなり、上端部が大気に開放された大気開放型のタンクである。そして、その内部には、水道水からなる蓄熱水SWが所定の水位まで貯留されている。
また、蓄熱タンク40内の蓄熱水SWの水位を一定に維持する水位維持手段Fとして、蓄熱タンク40の水位を検出する水位センサ44と、後述する給水配管3に接続された給水路16と蓄熱タンク40の上端部とを接続する補充路45と、その補充路45に配置された開閉操作弁46と、蓄熱タンク40内の目標水位範囲の上限水位を超えた蓄熱水SWをオーバーフローさせるオーバーフロー路49とが設けられている。
即ち、水位維持手段Fは、蓄熱タンク40内の水位が目標水位範囲を下回った場合には、制御装置80が水位センサ44の検出結果に基づいて開閉操作弁46を開状態とすることで、補充路46を通じて蓄熱タンク40に給水LWが補充され、逆に、蓄熱タンク40内の水位が目標水位範囲を上回った場合には、蓄熱タンク40内の蓄熱水がオーバーフロー路49を通じて排出されることで、蓄熱タンク40内の水位を目標水位範囲内に維持するように構成されている。
更に、蓄熱タンク40内には、複数の温度センサ41,42,43が上部側から下部側に渡って配置されており、例えば、これらの温度センサ41,42,43により、蓄熱タンク40の上部側、中部側、下部側の蓄熱水SWの温度を各別に検出可能となっている。
The heat storage tank 40 is formed of a synthetic resin molded body having a rectangular cross section, specifically, a rectangular cross section, and is an open air tank whose upper end is open to the atmosphere. And the thermal storage water SW which consists of tap water is stored in the inside to the predetermined | prescribed water level.
Further, as a water level maintaining means F for maintaining the water level of the heat storage water SW in the heat storage tank 40 constant, a water level sensor 44 for detecting the water level of the heat storage tank 40, a water supply path 16 connected to the water supply pipe 3 to be described later, and the heat storage. A replenishment path 45 that connects the upper end of the tank 40, an open / close operation valve 46 disposed in the replenishment path 45, and an overflow path that overflows the heat storage water SW that exceeds the upper limit water level of the target water level range in the heat storage tank 40. 49 is provided.
That is, when the water level in the heat storage tank 40 falls below the target water level range, the water level maintaining means F causes the control device 80 to open the open / close operation valve 46 based on the detection result of the water level sensor 44. Supply water LW is replenished to the heat storage tank 40 through the replenishment path 46, and conversely, when the water level in the heat storage tank 40 exceeds the target water level range, the heat storage water in the heat storage tank 40 is discharged through the overflow path 49. Thus, the water level in the heat storage tank 40 is maintained within the target water level range.
Further, a plurality of temperature sensors 41, 42, 43 are arranged in the heat storage tank 40 from the upper side to the lower side. For example, the temperature sensors 41, 42, 43 allow the upper part of the heat storage tank 40. The temperature of the heat storage water SW on the side, middle side, and lower side can be detected separately.

上記蓄熱用熱交換器70は、後述する熱源水循環手段Yにより循環される熱源水HWと後述する蓄熱水循環手段Xにより循環される蓄熱水SWとが、互いに対向して通流し、当該熱源水HWと当該蓄熱水SWとの間で熱交換を行うように構成されており、例えば、かかる熱交換器70としては公知の2流体用の熱交換器を利用することができる。   In the heat storage heat exchanger 70, the heat source water HW circulated by the heat source water circulation means Y described later and the heat storage water SW circulated by the heat storage water circulation means X described later flow opposite to each other, and the heat source water HW And the heat storage water SW are configured to perform heat exchange. For example, as the heat exchanger 70, a known heat exchanger for two fluids can be used.

上記給湯追焚き用熱交換器75は、後述する蓄熱水循環手段Xにより循環される蓄熱水SWが通流すると共に、その蓄熱水SWに対向して、給水路16を通じて給湯部85へ供給される給湯用の給水LWや、浴槽水循環路65を通じて浴槽86との間で循環される浴槽水BWが通流し、当該給水LWと当該蓄熱水SWとの間で熱交換を行うと共に、当該浴槽水BWと当該蓄熱水SWとの間で熱交換を行うように構成されており、例えば、かかる熱交換器75としては公知の3流体用の熱交換器を利用することができる。
尚、かかる給湯追焚き用熱交換器75は、給水LWと当該蓄熱水SWとの間で熱交換を行うための給湯用熱交換器と、浴槽水BWと当該蓄熱水SWとの間で熱交換を行うための追焚き用熱交換器との別の熱交換器で構成しても構わない。
In the hot water supply reheating heat exchanger 75, the heat storage water SW circulated by the heat storage water circulation means X, which will be described later, flows and is supplied to the hot water supply section 85 through the water supply passage 16 so as to face the heat storage water SW. Water supply LW for hot water supply and bathtub water BW circulated between the bathtub 86 through the bathtub water circulation path 65 flow and exchange heat between the water supply LW and the heat storage water SW, and the bathtub water BW. And the heat storage water SW are configured to perform heat exchange. For example, as the heat exchanger 75, a known heat exchanger for three fluids can be used.
The hot water supply reheating heat exchanger 75 heats between the hot water heat exchanger for exchanging heat between the water supply LW and the heat storage water SW, and between the bathtub water BW and the heat storage water SW. You may comprise with another heat exchanger with the heating heat exchanger for replacement | exchange.

また、上記給水路16は、給水ライン3の給水取り込み部16iから給湯追焚き用熱交換器75を通過した後に給湯部85に接続される流路として構成されている。
即ち、給水路16に設けられた開閉操作弁18が開状態となって給湯部85への給水LWの供給が開始されると、給水ライン3の給水取り込み部16iから取り込んだ給水LWが、給湯追焚き用熱交換器75に通流した後に、給湯水Wとして給湯部85に供給されることになる。
尚、上記給湯部85は、単純に給湯水Wを吐出する給湯栓とすることができるが、後述する浴槽水循環路65を通じて浴槽87に給湯水Wを供給する風呂弁としても構わない。
The water supply path 16 is configured as a flow path connected to the hot water supply section 85 after passing through the hot water supply reheating heat exchanger 75 from the water supply intake section 16 i of the water supply line 3.
That is, when the opening / closing operation valve 18 provided in the water supply passage 16 is opened and the supply of the water supply LW to the hot water supply section 85 is started, the water supply LW taken in from the water supply intake section 16i of the water supply line 3 After flowing through the reheating heat exchanger 75, the hot water is supplied to the hot water supply unit 85 as hot water W.
The hot water supply section 85 can be a hot water tap that simply discharges the hot water W, but may be a bath valve that supplies the hot water W to the bathtub 87 through the bathtub water circulation path 65 described later.

更に、その詳細については後述するが、その給水路16の給湯追焚き用熱交換器75の下流側には、上流側から順に、給湯追焚き用熱交換器75から流出した給水LWの温度を検出可能な温度センサ32、給水LWの流量を調整可能な流量調整弁31、詳細については後述する混合部30、当該給湯水Wの温度を給湯温度として検出可能な温度センサ33、及び、給湯部85への給湯水Wの供給を利用者の操作により断続可能な開閉操作弁18とが、順に配置されている。   Further, the details thereof will be described later. On the downstream side of the hot water supply heat exchanger 75 in the water supply path 16, the temperature of the feed water LW that has flowed out of the hot water supply heat exchanger 75 in order from the upstream side. A temperature sensor 32 that can be detected, a flow rate adjustment valve 31 that can adjust the flow rate of the feed water LW, a mixing unit 30 that will be described in detail later, a temperature sensor 33 that can detect the temperature of the hot water W as the hot water temperature, and a hot water supply unit An opening / closing operation valve 18 capable of intermittently supplying the hot water W to the water 85 by a user's operation is sequentially arranged.

一方、上記浴槽水循環路65は、浴槽86から給湯追焚き用熱交換器75を通過した後に再度浴槽86に接続される流路として構成されており、更に、この浴槽水循環路65の給湯追焚き用熱交換器75の上流側には、給湯追焚き用熱交換器75側に向けて浴槽水BWを送出可能な浴槽水循環ポンプ66が設けられている。
即ち、制御装置80により浴槽水循環ポンプ66が作動されることで、浴槽水循環路65において、浴槽86から取り出した浴槽水BWが、給湯追焚き用熱交換器75に通流した後に、同浴槽86に戻す状態で、浴槽水BWが循環することになる。
また、詳細については後述するが、この浴槽水循環路65には、浴槽水BWの温度を検出可能な温度センサ67が配置されている。
On the other hand, the bathtub water circulation path 65 is configured as a flow path that is connected again to the bathtub 86 after passing through the hot water supply heat exchanger 75 from the bathtub 86. On the upstream side of the heat exchanger 75 for hot water, a bathtub water circulation pump 66 capable of sending the bathtub water BW toward the hot water supply heat exchanger 75 is provided.
That is, when the bathtub water circulation pump 66 is operated by the control device 80, the bathtub water BW taken out from the bathtub 86 in the bathtub water circulation path 65 flows into the hot water supply heat exchanger 75, and then the bathtub 86. The bathtub water BW circulates in the state returned to.
Moreover, although mentioned later for details, the temperature sensor 67 which can detect the temperature of the bathtub water BW is arrange | positioned in this bathtub water circulation path 65. FIG.

上記暖房用放熱器87は、室内空気RAに後述する蓄熱水循環手段Xにより循環される蓄熱水SWが保有する熱を放熱する形態で、室内空気RAと蓄熱水SWとの熱交換を行うように構成されており、浴室暖房乾燥機や温水床暖房機などの公知の暖房機器として構成されている。   The heating radiator 87 radiates the heat held by the heat storage water SW circulated by the heat storage water circulation means X, which will be described later, to the room air RA, and performs heat exchange between the room air RA and the heat storage water SW. It is comprised, and it is comprised as well-known heating apparatuses, such as a bathroom heating dryer and a warm water floor heater.

上記蓄熱水循環手段Xは、蓄熱タンク40の上部47から蓄熱用熱交換器70と給湯追焚き用熱交換器75若しくは暖房用放熱器87とを順に通過した後に蓄熱タンク40の下部48に接続される蓄熱水循環路50と、当該蓄熱水循環路50の上部47側と蓄熱用熱交換器70との間に設置され上部47側から下部48側に向けて蓄熱水SWを送出可能な蓄熱水循環ポンプ51とで構成されている。
即ち、蓄熱水循環手段Xは、制御装置80により蓄熱水循環ポンプ51が作動されることで、蓄熱水循環路50において、蓄熱タンク40の上部47から取り出した蓄熱水SWを、蓄熱用熱交換器70と給湯追焚き用熱交換器75若しくは暖房用放熱器87とに順に通流させた後に同蓄熱タンク40の下部48に戻す高温蓄熱水循環状態で蓄熱水SWを循環させるように構成されている。
また、詳細については後述するが、この蓄熱水循環路50における蓄熱用熱交換器70の上流側には、蓄熱タンク40から取り出した蓄熱水SWの温度を取り出し蓄熱水温度として検出する温度センサ57が配置されており、更に、蓄熱水循環路50における給湯追焚き用熱交換器75の下流側には、蓄熱タンク40に戻される蓄熱水SWの温度を戻り蓄熱水温度として検出する温度センサ58が設けられている。
The heat storage water circulation means X is connected to the lower part 48 of the heat storage tank 40 after passing through the heat storage heat exchanger 70 and the hot water supply heat exchanger 75 or the heating radiator 87 in order from the upper part 47 of the heat storage tank 40. The heat storage water circulation path 51, and the heat storage water circulation pump 51 installed between the upper 47 side of the heat storage water circulation path 50 and the heat storage heat exchanger 70 and capable of sending the heat storage water SW from the upper 47 side toward the lower 48 side. It consists of and.
That is, in the heat storage water circulation means X, the heat storage water circulation pump 51 is operated by the control device 80, whereby the heat storage water SW taken out from the upper portion 47 of the heat storage tank 40 in the heat storage water circulation path 50 is replaced with the heat storage heat exchanger 70. The heat storage water SW is circulated in a high-temperature heat storage water circulation state that is passed through the hot water supply reheating heat exchanger 75 or the heating radiator 87 in order and then returned to the lower portion 48 of the heat storage tank 40.
Moreover, although mentioned later for details, the temperature sensor 57 which takes out the temperature of the thermal storage water SW taken out from the thermal storage tank 40 and detects it as thermal storage water temperature in the upstream of the thermal storage heat exchanger 70 in this thermal storage water circulation path 50. Furthermore, a temperature sensor 58 is provided on the downstream side of the hot water reheating heat exchanger 75 in the heat storage water circulation path 50 to detect the temperature of the heat storage water SW returned to the heat storage tank 40 as a return heat storage water temperature. It has been.

上記熱源水循環手段Yは、熱源水循環ライン2の熱源水取り込み部13iから蓄熱用熱交換器70を通過した後に同ライン2の熱源水取り込み部13iよりも下流側の熱源水戻り部13oに接続される熱源水循環路13と、熱源水循環ライン2における熱源水取り込み部13iと熱源水戻り部13oとの間に設置され当該熱源水HWの流量を調整可能な流量調整弁11とで構成されている。
即ち、熱源水循環手段Yは、制御装置80により流量調整弁11の開度が絞られることで、熱源水循環ライン2を循環する熱源水HWの少なくとも一部を、熱源水取り込み部13iを通じて熱源水循環路13に取り込み、熱源水循環路13において、熱源水取り込み部13iから取り込んだ熱源温水HWを、蓄熱用熱交換器70に通流させた後に、熱源水戻り部13oを通じて熱源水循環ライン2に戻す形態で、熱源水HWを循環させるように構成されている。
更に、熱源水循環路13には、熱源水HWの流量を検出する流量センサ12が設けられており、制御装置80により、上記流量センサ12の検出結果に基づいて流量調整弁11の開度が制御され、熱源水循環路13を循環する熱源水HWの流量が、例えば8〜13L/min程度の略一定の流量に維持されている。
また、詳細については後述するが、この熱源水循環路13における熱源水取り込み部13i側には、熱源水取り込み部13iから取り込んだ熱源水HWの温度を取り込み熱源水温度として検出可能な温度センサ14が配置されており、更に、この熱源水循環路13における熱源水戻り部13o側には、熱源水戻り部13oから戻される熱源水HWの温度を戻り熱源水温度として検出可能な温度センサ15が設けられている。
The heat source water circulation means Y is connected to the heat source water return portion 13o downstream from the heat source water intake portion 13i of the line 2 after passing through the heat storage heat exchanger 70 from the heat source water intake portion 13i of the heat source water circulation line 2. The heat source water circulation path 13 and the flow rate adjustment valve 11 installed between the heat source water intake part 13i and the heat source water return part 13o in the heat source water circulation line 2 and capable of adjusting the flow rate of the heat source water HW.
That is, the heat source water circulation means Y is configured to reduce at least a part of the heat source water HW circulating through the heat source water circulation line 2 through the heat source water intake part 13i by reducing the opening of the flow rate adjustment valve 11 by the control device 80. In the heat source water circulation path 13, the heat source hot water HW taken from the heat source water intake section 13 i is passed through the heat storage heat exchanger 70 and then returned to the heat source water circulation line 2 through the heat source water return section 13 o. The heat source water HW is circulated.
Further, the heat source water circulation path 13 is provided with a flow rate sensor 12 for detecting the flow rate of the heat source water HW, and the control device 80 controls the opening degree of the flow rate adjustment valve 11 based on the detection result of the flow rate sensor 12. The flow rate of the heat source water HW circulating through the heat source water circulation path 13 is maintained at a substantially constant flow rate of, for example, about 8 to 13 L / min.
Although details will be described later, a temperature sensor 14 capable of detecting the temperature of the heat source water HW taken in from the heat source water take-in portion 13i as the heat source water temperature is provided on the heat source water take-up portion 13i side in the heat source water circulation path 13. Furthermore, a temperature sensor 15 capable of detecting the temperature of the heat source water HW returned from the heat source water return portion 13o as the return heat source water temperature is provided on the heat source water return path 13o side in the heat source water circulation path 13. ing.

更に、給湯追焚き用熱交換器75から給湯部85へ供給される給湯水Wに対して、熱源水循環路13における蓄熱用熱交換器70の下流側から取り出した熱源水HWを混合可能、且つ、当該給湯水Wにおける熱源水HWの混合割合を調整可能な熱源水供給手段Zが設けられている。
即ち、熱源水供給手段Zは、熱源水循環路13における蓄熱用熱交換器70の下流側と給水路16に設けられた混合部30とを接続する熱源水供給路34と、給水路16を通じて混合部30に供給される給水LWの流量を調整可能な流量調整弁31と、熱源水供給路34を通じて混合部30に供給される熱源水HWの流量を調整可能な流量調整弁35とで構成されている。そして、熱源水供給手段Zにより、混合部30において、給水路16を通じて混合部30に供給される給水LWに対して、熱源水供給路34を通じて熱源水HWを混合して昇温させ、その昇温した給水LWが給湯水Wとして給湯部85に供給される。更に、制御装置80により流量調整弁31、35の夫々の開度が調整されることで、給湯水Wにおける熱源水HWの混合割合が調整可能となり、その混合割合が調整されることで、給湯水Wの温度が、給水路16を通じて混合部30に供給される給水LWよりも高温側で調整可能となる。
尚、上記熱源水供給手段Zは、給水LWが停止された状態において、熱源水供給路34を通じて混合部30に供給された熱源水HWを、給湯水Wの全部として給湯部85に供給することもできる。
Furthermore, heat source water HW taken out from the downstream side of the heat storage heat exchanger 70 in the heat source water circulation path 13 can be mixed with the hot water W supplied from the hot water supply heat exchanger 75 to the hot water supply section 85, and The heat source water supply means Z that can adjust the mixing ratio of the heat source water HW in the hot water W is provided.
That is, the heat source water supply means Z is mixed through the water supply path 16 and the heat source water supply path 34 that connects the downstream side of the heat storage heat exchanger 70 in the heat source water circulation path 13 and the mixing section 30 provided in the water supply path 16. The flow rate adjustment valve 31 can adjust the flow rate of the feed water LW supplied to the unit 30, and the flow rate adjustment valve 35 can adjust the flow rate of the heat source water HW supplied to the mixing unit 30 through the heat source water supply path 34. ing. Then, the heat source water supply means Z mixes the heat source water HW through the heat source water supply path 34 and raises the temperature of the water LW supplied to the mixing section 30 through the water supply path 16 in the mixing section 30. Warm water supply LW is supplied to hot water supply section 85 as hot water supply water W. Furthermore, by adjusting the opening degree of each of the flow rate adjusting valves 31 and 35 by the control device 80, the mixing ratio of the heat source water HW in the hot water supply water W can be adjusted, and by adjusting the mixing ratio, the hot water supply The temperature of the water W can be adjusted on the higher temperature side than the water supply LW supplied to the mixing unit 30 through the water supply path 16.
The heat source water supply means Z supplies the heat source water HW supplied to the mixing section 30 through the heat source water supply path 34 to the hot water supply section 85 as the entire hot water supply water W in a state where the water supply LW is stopped. You can also.

更に、この熱源水供給手段Zは、給湯追焚き用熱交換器75から給湯部85へ供給される給湯水Wに対して、給水路16の給湯追焚き用熱交換器75の上流側から取り出した比較的低温の給水LWを混合可能、且つ、当該給湯水Wにおける給水LWの混合割合を調整可能に構成されている。
即ち、熱源水供給手段Zは、給水路16における給湯追焚き用熱交換器75の上流側と混合部30とを接続する給水供給路37と、給水供給路37を通じて混合部30に供給される給水LWの流量を調整可能な流量調整弁38とを有する。そして、熱源水供給手段Zにより、混合部30において、給水路16を通じて混合部30に供給される給水LWに対して、給水供給路37を通じて低温の給水LWを混合して冷却させ、その冷却した給水LWが給湯水Wとして給湯部85に供給される。更に、制御装置80により流量調整弁31、38の夫々の開度が調整されることで、給湯水Wにおける給水LWの混合割合が調整可能となり、その混合割合が調整されることで、給湯水Wの温度が、給水路16を通じて混合部30に供給される給水LWよりも高温側で調整可能となる。
Further, the heat source water supply means Z takes out the hot water W supplied from the hot water supply heat exchanger 75 to the hot water supply section 85 from the upstream side of the hot water supply heat exchanger 75 in the water supply path 16. In addition, the relatively low temperature feed water LW can be mixed, and the mixing ratio of the feed water LW in the hot water W can be adjusted.
In other words, the heat source water supply means Z is supplied to the mixing unit 30 through the water supply supply channel 37 that connects the upstream side of the hot water supply heat exchanger 75 in the water supply channel 16 and the mixing unit 30, and the water supply supply channel 37. And a flow rate adjustment valve 38 capable of adjusting the flow rate of the feed water LW. Then, the heat source water supply means Z mixes and cools the low-temperature feed water LW through the feed water supply path 37 in the mixing section 30 with the feed water LW supplied to the mixing section 30 through the feed water path 16 and cools it. Water supply LW is supplied to hot water supply unit 85 as hot water supply water W. Furthermore, the opening degree of each of the flow rate adjusting valves 31 and 38 is adjusted by the control device 80, so that the mixing ratio of the feed water LW in the hot water supply water W can be adjusted, and the mixing ratio is adjusted so that the hot water supply water is adjusted. The temperature of W can be adjusted on the higher temperature side than the water supply LW supplied to the mixing unit 30 through the water supply path 16.

更に、放熱用熱交換器である上記給湯追焚き用熱交換器70と上記暖房用放熱器87とは、互いに並列に設けられている。
即ち、蓄熱水循環路50の蓄熱用熱交換器70と蓄熱タンク40の下部との間において、互いに並列接続された給湯追焚き用熱交換器75を通過する給湯追焚き用循環路60と、暖房用放熱器87を通過する暖房用循環路61とが、互いに並列に接続されている。よって、上記蓄熱用熱交換器70を流出した蓄熱水SWを、給湯追焚き用循環路60と暖房用循環路61との夫々に通流させて、蓄熱タンク40の下部48側に供給されることになる。
Further, the hot water supply heat exchanger 70 and the heating radiator 87, which are heat dissipation heat exchangers, are provided in parallel to each other.
That is, between the heat storage heat exchanger 70 of the heat storage water circuit 50 and the lower part of the heat storage tank 40, the hot water supply circuit 60 that passes through the hot water supply heat exchanger 75 connected in parallel with each other, and heating The heating circulation path 61 passing through the heat radiator 87 is connected in parallel to each other. Therefore, the heat storage water SW that has flowed out of the heat storage heat exchanger 70 is supplied to the lower 48 side of the heat storage tank 40 through the hot water supply circulation path 60 and the heating circulation path 61. It will be.

更に、給湯追焚き用循環路60には、蓄熱水SWの流量を調整可能な流量調整弁52が設けられており、一方、暖房用循環路61には、蓄熱水SWの流量を調整可能な流量調整弁62が設けられている。
そして、制御装置80により上記流量調整弁52,62の開度を制御することで、蓄熱水循環路50において、給湯追焚き用循環路60に通流する蓄熱水SWの流量と、暖房用循環路61に通流する蓄熱水SWの流量とを各別に調整することができる。
Furthermore, the hot water supply recirculation circuit 60 is provided with a flow rate adjusting valve 52 capable of adjusting the flow rate of the heat storage water SW, while the heating circuit 61 can adjust the flow rate of the heat storage water SW. A flow rate adjustment valve 62 is provided.
And by controlling the opening degree of the flow rate adjusting valves 52, 62 by the control device 80, the flow rate of the heat storage water SW flowing through the hot water supply circulation circuit 60 in the heat storage water circuit 50, and the heating circuit The flow rate of the heat storage water SW flowing to 61 can be adjusted separately.

蓄熱水循環路50における上部47側と同循環路50における下部48側とを接続するバイパス路54が設けられており、そのバイパス路54には、流量制御弁55及び開閉操作弁56が設けられている。
そして、蓄熱水循環手段Xは、制御装置80により開閉操作弁56が閉状態とされることで、暖房用循環路61からバイパス路54に流入した蓄熱水SWを、蓄熱タンク40の下部48に戻すことなく、バイパス路54の上部側から蓄熱水循環路50の上部側に流入させる状態で、蓄熱タンク40を通過させない蓄熱タンクバイパス状態で、蓄熱水SWを循環可能に構成されている。
A bypass passage 54 is provided to connect the upper portion 47 side of the heat storage water circulation passage 50 and the lower portion 48 side of the circulation passage 50, and the bypass passage 54 is provided with a flow control valve 55 and an opening / closing operation valve 56. Yes.
And the thermal storage water circulation means X returns the thermal storage water SW which flowed into the bypass path 54 from the heating circulation path 61 to the lower part 48 of the thermal storage tank 40 by the opening / closing operation valve 56 being closed by the control device 80. The heat storage water SW can be circulated in a state where the heat storage tank 40 is not allowed to pass through in a state where the heat storage tank 40 is allowed to pass through while being allowed to flow from the upper side of the bypass path 54 to the upper side of the heat storage water circulation path 50.

更に、上記蓄熱水循環手段Xは、上述した高温蓄熱水循環状態とは逆に、蓄熱タンク40の下部48から取り出した蓄熱水SWを蓄熱用熱交換器70に通流させた後に同蓄熱タンク40の上部47に戻す低温蓄熱水循環状態で、蓄熱水SWを循環可能に構成されており、これら高温蓄熱水循環状態と低温蓄熱水循環状態との間で、蓄熱水SWの循環状態を切り替え可能に構成されている。
即ち、蓄熱水循環路50の蓄熱タンクの上部47側には蓄熱水SWの流通を断続可能な開閉操作弁78が設けられており、更に、蓄熱用熱交換器70の下流側と蓄熱タンク40の上部47とを接続する蓄熱水戻り路76と、その蓄熱水戻り路78における蓄熱水SWの流通を断続可能な開閉操作弁77とが設けられている。
そして、制御装置80により、上記開閉操作弁78が開状態とされ上記開閉操作弁77が閉状態とされた状態で、蓄熱水循環ポンプ51が作動されると、上述したように、蓄熱タンク40の上部47から取り出された比較的高温の蓄熱水SWが、蓄熱水循環路50において蓄熱用熱交換器70と給湯追焚き用熱交換器75若しくは暖房用放熱器87とを順に通流した後に同蓄熱タンク40の下部48に戻される所謂高温蓄熱水循環状態で、蓄熱水SWが循環することになる。
一方、制御装置80により、上記高温蓄熱水循環状態とは逆に開閉操作弁78が閉状態とされ上記開閉操作弁77が開状態とされ、更には、開閉操作弁56及び流量制御弁55が開状態とされ流量調整弁52が閉状態とされた状態で、蓄熱水循環ポンプ51が作動されると、蓄熱タンク40の下部48から取り出された比較的低温の蓄熱水SWが、バイパス路54を通じて蓄熱水循環ポンプ51側に吸引され、更に、その蓄熱水循環ポンプ50により送出された蓄熱水SWが、蓄熱水循環路50における蓄熱用熱交換器70に通流した後に、蓄熱水戻り路76を通じて蓄熱タンク40の上部47に戻される所謂低温蓄熱水循環状態で、蓄熱水SWが循環することになる。
Further, contrary to the high-temperature heat storage water circulation state described above, the heat storage water circulation means X allows the heat storage water SW taken out from the lower part 48 of the heat storage tank 40 to flow through the heat storage heat exchanger 70 and then passes through the heat storage tank 40. The heat storage water SW can be circulated in the low-temperature heat storage water circulation state returned to the upper portion 47, and the circulation state of the heat storage water SW can be switched between the high-temperature heat storage water circulation state and the low-temperature heat storage water circulation state. Yes.
That is, an opening / closing operation valve 78 capable of intermittently circulating the heat storage water SW is provided on the heat storage water circulation path 50 on the upper portion 47 side of the heat storage tank, and further, on the downstream side of the heat storage heat exchanger 70 and the heat storage tank 40. A heat storage water return path 76 connecting the upper portion 47 and an opening / closing operation valve 77 capable of intermittently circulating the heat storage water SW in the heat storage water return path 78 are provided.
When the heat storage water circulation pump 51 is operated by the control device 80 with the opening / closing operation valve 78 in the open state and the opening / closing operation valve 77 in the closed state, as described above, The relatively high temperature heat storage water SW taken out from the upper portion 47 passes through the heat storage water exchanger 70 and the hot water supply heat exchanger 75 or the heating radiator 87 in this order in the heat storage water circulation path 50, and then the same heat storage. In the so-called high-temperature heat storage water circulating state returned to the lower part 48 of the tank 40, the heat storage water SW is circulated.
On the other hand, the controller 80 closes the open / close operation valve 78 and opens the open / close operation valve 77, and opens the open / close operation valve 56 and the flow control valve 55. When the heat storage water circulation pump 51 is operated in the state where the flow rate adjustment valve 52 is closed, the relatively low temperature heat storage water SW taken out from the lower portion 48 of the heat storage tank 40 is stored through the bypass 54. After the heat storage water SW sucked into the water circulation pump 51 side and sent out by the heat storage water circulation pump 50 flows into the heat storage heat exchanger 70 in the heat storage water circulation path 50, the heat storage tank 40 is passed through the heat storage water return path 76. The heat storage water SW is circulated in a so-called low-temperature heat storage water circulation state that is returned to the upper portion 47.

次に、第1実施形態の蓄放熱装置100において、制御装置80により実行される蓄熱運転や、放熱運転としての給湯運転、追焚き運転、及び、暖房運転の詳細について、説明する。   Next, in the heat storage and heat dissipation device 100 of the first embodiment, the details of the heat storage operation executed by the control device 80, the hot water supply operation as the heat dissipation operation, the chasing operation, and the heating operation will be described.

〔蓄熱運転〕
制御装置80は、少なくとも上記蓄熱水循環手段X及び上記熱源水循環手段Yを作動させて、蓄熱用熱交換器70において、熱源水循環路13を循環する熱源水HWとの熱交換により、蓄熱タンク40との間で蓄熱水循環路50を循環する蓄熱水SWを加熱する蓄熱運転を実行可能に構成されている。
[Heat storage operation]
The control device 80 operates at least the heat storage water circulation means X and the heat source water circulation means Y, and performs heat exchange with the heat source water HW circulating in the heat source water circulation path 13 in the heat storage heat exchanger 70, The heat storage operation for heating the heat storage water SW circulating through the heat storage water circulation path 50 is configured to be executable.

即ち、制御装置80は、温度センサ41により検出される蓄熱タンク40の上部の蓄熱水SWの温度が、温度センサ14により検出される熱源水循環ライン2から取り込んだ熱源水HWの温度に対して、比較的低温である場合に、蓄熱水循環手段Xを作動させて蓄熱水SWを循環させ、更に、熱源水循環手段Yを作動させて熱源水循環路13に熱源水HWを循環させる形態で、上記蓄熱運転を実行する。
すると、蓄熱用熱交換器70では、蓄熱タンク40から取り出した比較的低温の蓄熱水SWと、熱源水循環ライン2から取り込んだ比較的高温の熱源水HWとの間で、熱交換が行われることになり、蓄熱用熱交換器70の下流側には、熱源水HWとの熱交換により加熱された比較的高温の蓄熱水SWが通流することになる。
そして、その高温の蓄熱水SWを蓄熱タンク40に戻す形態で、熱源水HWが保有する熱を蓄熱タンク40に蓄熱することができる。
That is, the control device 80 determines that the temperature of the heat storage water SW in the upper part of the heat storage tank 40 detected by the temperature sensor 41 is equal to the temperature of the heat source water HW taken from the heat source water circulation line 2 detected by the temperature sensor 14. When the temperature is relatively low, the heat storage water circulating means X is operated to circulate the heat storage water SW, and the heat source water circulation means Y is operated to circulate the heat source water HW in the heat source water circulation path 13 in the above heat storage operation. Execute.
Then, in the heat storage heat exchanger 70, heat exchange is performed between the relatively low temperature heat storage water SW taken out from the heat storage tank 40 and the relatively high temperature heat source water HW taken in from the heat source water circulation line 2. Thus, the relatively high-temperature heat storage water SW heated by heat exchange with the heat source water HW flows through the downstream side of the heat storage heat exchanger 70.
The heat stored in the heat source water HW can be stored in the heat storage tank 40 in a form in which the high-temperature heat storage water SW is returned to the heat storage tank 40.

更に、この蓄熱運転では、上記蓄熱水循環手段Xを上述した高温蓄熱水循環状態若しくは低温蓄熱水循環状態の何れの状態で蓄熱水SWを循環させるように作動させても構わないが、好適には、低温蓄熱水循環状態で蓄熱水SWを循環させることで、蓄熱タンク40を上部側に高温の蓄熱水SWを滞留させ下部側に低温の蓄熱水SWを滞留させる状態の温度成層型に構成して、その温度成層を良好に維持することができる。
即ち、制御装置80は、蓄熱運転を実行する際に、蓄熱水循環手段Xを低温蓄熱水循環状態として、蓄熱タンク40の下部48から取り出した低温の蓄熱水SWを、蓄熱用熱交換器70に通流させて高温の熱源水HWとの熱交換により高温に加熱した後に、給湯追焚き用熱交換器75や暖房用放熱器87に通流させることなく蓄熱タンク40の上部47に戻し、蓄熱タンク40の温度成層を良好に維持する。
Further, in this heat storage operation, the heat storage water circulation means X may be operated so as to circulate the heat storage water SW in either the above-described high-temperature heat storage water circulation state or low-temperature heat storage water circulation state. By circulating the heat storage water SW in the heat storage water circulation state, the heat storage tank 40 is configured in a temperature stratification type in which the high temperature heat storage water SW is retained on the upper side and the low temperature heat storage water SW is retained on the lower side. Temperature stratification can be maintained well.
That is, when executing the heat storage operation, the control device 80 sets the heat storage water circulation means X to the low-temperature heat storage water circulation state, and passes the low-temperature heat storage water SW taken out from the lower portion 48 of the heat storage tank 40 to the heat storage heat exchanger 70. After being heated and heated to a high temperature by heat exchange with the high-temperature heat source water HW, the heat storage tank 40 is returned to the upper portion 47 of the heat storage tank 40 without passing through the hot water reheating heat exchanger 75 or the heating radiator 87. Maintain a good temperature stratification of 40.

制御装置80は、熱源水HWの温度及び蓄熱水SWの温度及び時刻の夫々に基づいて、上記蓄熱運転の実行タイミングを制御するように構成されている。
即ち、制御装置80は、温度センサ14で検出された取り込み熱源水温度が65℃等の設定値以上と比較的高温であり、且つ、温度センサ41,42,43で検出された蓄熱タンク40の蓄熱水SWの温度が50℃等の設定値以下と比較的低温であり、且つ、各住居1における熱需要が比較的大きい19:00〜22:00の時間帯以外の時刻である場合に、上記蓄熱運転を自動的に実行するように構成されている。
The control device 80 is configured to control the execution timing of the heat storage operation based on the temperature of the heat source water HW and the temperature and time of the heat storage water SW.
That is, the control device 80 has a relatively high temperature of the intake heat source water temperature detected by the temperature sensor 14 such as 65 ° C. or higher, and the heat storage tank 40 detected by the temperature sensors 41, 42, 43. When the temperature of the heat storage water SW is relatively low, such as 50 ° C. or less, and the heat demand in each residence 1 is relatively large, it is a time other than the 19: 00-22: 00 time zone. The heat storage operation is automatically executed.

更に、制御装置80は、上記蓄熱運転を実行することで、温度センサ57で検出される取り出し蓄熱水温度が65℃等の設定値以上と比較的高温となり、且つ、その取り出し蓄熱水温度に対して温度センサ58で検出される戻り蓄熱水温度の温度差が0.5℃等の設定値以下となった場合には、上記蓄熱運転を終了するように構成されている。   Furthermore, the control device 80 performs the above heat storage operation so that the temperature of the extracted heat storage water detected by the temperature sensor 57 is relatively high, such as 65 ° C. or higher, and the temperature of the extracted heat storage water is When the temperature difference of the return heat storage water temperature detected by the temperature sensor 58 becomes equal to or less than a set value such as 0.5 ° C., the heat storage operation is terminated.

〔給湯運転〕
制御装置80は、放熱運転として、少なくとも上記蓄熱水循環手段X及び上記熱源水循環手段Yを作動させて、放熱用熱交換器としての給湯追焚き用熱交換器75において蓄熱水SWとの熱交換により給水LWを加熱する給湯運転を実行可能に構成されている。
[Hot water operation]
The controller 80 operates at least the heat storage water circulation means X and the heat source water circulation means Y as a heat radiation operation, and performs heat exchange with the heat storage water SW in the hot water supply heat exchanger 75 as a heat radiation heat exchanger. A hot water supply operation for heating the water supply LW is configured to be executable.

即ち、制御装置80は、給水路16に設けられた開閉操作弁18が開状態となって給湯部85への給水LWの供給が開始されると、蓄熱水循環手段Xを上述した高温蓄熱水循環状態で作動させて蓄熱循環路50に蓄熱タンク40の上部47から取り出した蓄熱水SWを循環させ、更に、熱源水循環手段Yを作動させて熱源水循環路13に熱源水HWを循環させる形態で、上記給湯運転を実行する。
すると、上記蓄熱タンク40から取り出された蓄熱水SWの温度に拘わらず、上述した蓄熱運転と同様に、蓄熱用熱交換器70において蓄熱水SWと熱源水HWとの間で熱交換が行われることで、蓄熱水循環路50における蓄熱用熱交換器70の下流側には、熱源水HWと略同等の比較的高温の蓄熱水SWが通流することになる。
よって、給湯追焚き用熱交換器75では、その高温の蓄熱水SWと、給水路16に通流する給水LWとの間で、熱交換が行われることになり、給水路16における給湯用追焚き用熱交換器75の下流側には、蓄熱水SWとの熱交換により加熱された比較的高温のLWが通流し、その給水LWが給湯水Wとして給湯部85に供給されることになる。
That is, when the opening / closing operation valve 18 provided in the water supply passage 16 is opened and the supply of the water supply LW to the hot water supply unit 85 is started, the control device 80 sets the heat storage water circulation means X to the high-temperature heat storage water circulation state described above. The heat storage water SW taken out from the upper part 47 of the heat storage tank 40 is circulated in the heat storage circulation path 50, and the heat source water circulation means Y is operated to circulate the heat source water HW in the heat source water circulation path 13 in the above manner. Perform hot water operation.
Then, regardless of the temperature of the heat storage water SW taken out from the heat storage tank 40, heat exchange is performed between the heat storage water SW and the heat source water HW in the heat storage heat exchanger 70, as in the heat storage operation described above. Thus, a relatively high-temperature heat storage water SW substantially equal to the heat source water HW flows through the heat storage water circulation path 50 downstream of the heat storage heat exchanger 70.
Therefore, in the hot water supply reheating heat exchanger 75, heat exchange is performed between the high-temperature heat storage water SW and the water supply LW flowing through the water supply path 16. A relatively high-temperature LW heated by heat exchange with the heat storage water SW flows downstream of the soaking heat exchanger 75, and the supplied water LW is supplied to the hot water supply unit 85 as the hot water W. .

更に、制御装置80は、上記給湯運転時において、熱源水供給手段Zにより上記給湯水Wに対する熱源水HW又は給水LWの混合割合を制御して、温度センサ33で検出される給湯部85へ供給される給湯水Wの温度を、目標給湯温度に調整するように構成されている。   Further, the control device 80 controls the mixing ratio of the heat source water HW or the water LW to the hot water W by the heat source water supply means Z during the hot water supply operation, and supplies it to the hot water supply section 85 detected by the temperature sensor 33. It is comprised so that the temperature of the hot-water supply water W to be adjusted may be adjusted to target hot-water supply temperature.

即ち、制御装置80は、温度センサ32で検出される給水LWの温度が上記目標給湯温度よりも低い場合には、上記熱源水供給手段Zにより、混合部30において給湯水Wに対して高温の熱源水HWを混合して昇温させ、更に、温度センサ33で検出される給湯温度が目標給湯温度になるように、流量調整弁31、35の夫々の開度調整により給湯水Wにおける熱源水HWの混合割合を調整するように構成されている。
更に、制御装置80は、温度センサ32で検出される給水LWの温度が上記目標給湯温度よりも高い場合には、上記熱源水供給手段Zにより、混合部30において給湯水Wに対して低温の給水LWを混合して冷却させ、更に、温度センサ33で検出される給湯温度が目標給湯温度になるように、流量調整弁31、38の夫々の開度調整により給湯水Wにおける給水LWの混合割合を調整するように構成されている。
That is, when the temperature of the feed water LW detected by the temperature sensor 32 is lower than the target hot water supply temperature, the control device 80 causes the heat source water supply means Z to increase the temperature of the hot water W in the mixing unit 30. Heat source water HW is mixed and heated, and the heat source water in the hot water W is adjusted by adjusting the opening of the flow rate adjusting valves 31 and 35 so that the hot water temperature detected by the temperature sensor 33 becomes the target hot water temperature. The mixing ratio of HW is adjusted.
Furthermore, when the temperature of the feed water LW detected by the temperature sensor 32 is higher than the target hot water supply temperature, the control device 80 causes the heat source water supply means Z to lower the temperature of the hot water W in the mixing unit 30. Mixing of the feed water LW in the hot water W by adjusting the opening of the flow rate adjusting valves 31 and 38 so that the hot water temperature detected by the temperature sensor 33 becomes the target hot water temperature. Configured to adjust the proportions.

〔追焚き運転〕
制御装置80は、放熱運転として、少なくとも上記蓄熱水循環手段X及び上記熱源水循環手段Yを作動させて、放熱用熱交換器としての給湯追焚き用熱交換器75において蓄熱水SWとの熱交換により浴槽水BWを加熱する追焚き運転を実行可能に構成されている。
[Remembrance driving]
The controller 80 operates at least the heat storage water circulation means X and the heat source water circulation means Y as a heat radiation operation, and performs heat exchange with the heat storage water SW in the hot water supply heat exchanger 75 as a heat radiation heat exchanger. The reheating operation for heating the bathtub water BW is configured to be executable.

即ち、制御装置80は、リモコン等の操作により追焚き運転開始指令が入力されると、蓄熱水循環手段Xを上述した高温蓄熱水循環状態で作動させて蓄熱循環路50に蓄熱タンク40の上部47から取り出した蓄熱水SWを循環させ、熱源水循環手段Yを作動させて熱源水循環路13に熱源水HWを循環させ、更に、浴槽水循環ポンプ66を作動させて浴槽水循環路65に浴槽85に貯留されている浴槽水BWを循環させる形態で、上記追焚き運転を実行する。
すると、上述した給湯運転と同様に、蓄熱水循環路50における蓄熱用熱交換器70の下流側には、熱源水HWと略同等の比較的高温の蓄熱水SWが通流することになる。
よって、給湯追焚き用熱交換器75では、浴槽85との間で浴槽水循環路65を循環する浴槽水BWが、その高温の蓄熱水SWとの熱交換により加熱されることになる。
更に、制御装置80は、温度センサ67で検出される浴槽水BWの温度が予め設定された目標追焚き温度に達したときに、上記追焚き運転を終了するように構成されている。
That is, when a follow-up operation start command is input by an operation of a remote controller or the like, the control device 80 operates the heat storage water circulation means X in the above-described high-temperature heat storage water circulation state to enter the heat storage circulation path 50 from the upper portion 47 of the heat storage tank 40. The extracted heat storage water SW is circulated, the heat source water circulation means Y is operated, the heat source water HW is circulated in the heat source water circulation path 13, and the bathtub water circulation pump 66 is operated to be stored in the bathtub water circulation path 65 in the bathtub 85. The chasing operation is executed in a form in which the bathtub water BW is circulated.
Then, as in the hot water supply operation described above, the relatively high-temperature heat storage water SW substantially equal to the heat source water HW flows through the heat storage water circulation path 50 downstream of the heat storage heat exchanger 70.
Therefore, in the hot water supply reheating heat exchanger 75, the bathtub water BW that circulates between the bathtub 85 and the bathtub water circulation path 65 is heated by heat exchange with the high-temperature heat storage water SW.
Further, the control device 80 is configured to end the chasing operation when the temperature of the bath water BW detected by the temperature sensor 67 reaches a preset chasing temperature.

〔暖房運転〕
制御装置80は、放熱運転として、少なくとも上記蓄熱水循環手段X及び上記熱源水循環手段Yを作動させて、放熱用熱交換器としての暖房用放熱器87において蓄熱水SWとの熱交換により室内空気RAを加熱する暖房運転を実行可能に構成されている。
[Heating operation]
The control device 80 operates at least the heat storage water circulation means X and the heat source water circulation means Y as the heat radiation operation, and heats the room air RA by heat exchange with the heat storage water SW in the heat radiator 87 as a heat radiation heat exchanger. It is comprised so that execution of the heating operation which heats is possible.

即ち、制御装置80は、リモコン等の操作により暖房運転開始指令が入力されると、蓄熱水循環手段Xを上述した高温蓄熱水循環状態で作動させて蓄熱循環路50に蓄熱タンク40の上部47から取り出した蓄熱水SWを循環させ、熱源水循環手段Yを作動させて熱源水循環路13に熱源水HWを循環させ、更に、流量調整弁52の開度を縮小して給湯追焚き用循環路60に通流する蓄熱水SWの流量を低下させながら流量調整弁62の開度を拡大して暖房用循環路61に蓄熱水SWを通流させる形態で、上記暖房運転を実行する。
すると、上述した給湯運転や追焚き運転と同様に、蓄熱水循環路50における蓄熱用熱交換器70の下流側には、熱源水HWと略同等の比較的高温の蓄熱水SWが通流することになり、その蓄熱水SWの少なくとも一部が、暖房用循環路61を通じて暖房用放熱器87を通過することになる。
よって、暖房用放熱器87では、その蓄熱水SWが保有する熱が室内空気RAに放熱されて、室内の暖房が行われる。
That is, when a heating operation start command is input by an operation of a remote controller or the like, the control device 80 operates the heat storage water circulation means X in the above-described high-temperature heat storage water circulation state and takes it out from the upper portion 47 of the heat storage tank 40 to the heat storage circulation path 50. The heat storage water SW is circulated, the heat source water circulation means Y is operated, the heat source water HW is circulated through the heat source water circulation path 13, and the opening of the flow rate adjustment valve 52 is reduced to pass through the hot water supply circulation path 60. The heating operation is performed in such a manner that the opening degree of the flow rate adjustment valve 62 is increased while the flow rate of the stored heat storage water SW is decreased and the stored heat water SW is caused to flow through the heating circulation path 61.
Then, similarly to the hot water supply operation and the reheating operation described above, a relatively high temperature heat storage water SW substantially equal to the heat source water HW flows to the downstream side of the heat storage heat exchanger 70 in the heat storage water circulation path 50. Thus, at least a part of the heat storage water SW passes through the heating radiator 87 through the heating circulation path 61.
Therefore, in the heat radiator 87 for heating, the heat stored in the heat storage water SW is radiated to the indoor air RA, and the room is heated.

更に、制御装置80は、暖房運転時において、温度センサ57で検出される取り出し蓄熱水温度が設定温度よりも低くなった場合に、蓄熱水循環手段Xを蓄熱タンクバイパス状態とする、即ち、開閉操作弁56を閉状態として、暖房用循環路61からバイパス路54に流入した蓄熱水SWを、蓄熱タンク40の下部48に戻すことなく、バイパス路54の上部側から蓄熱水循環路50の上部側に流入させるように構成されている。よって、暖房用放熱器87から流出した温暖な蓄熱水SWは、蓄熱タンク40に戻ることなく、蓄熱用熱交換器70に通流されてできるだけ高温に加熱された後に、暖房用放熱器87に通流されることになる。   Further, the control device 80 sets the heat storage water circulation means X to the heat storage tank bypass state when the temperature of the extracted heat storage water detected by the temperature sensor 57 becomes lower than the set temperature during the heating operation. With the valve 56 closed, the heat storage water SW that has flowed from the heating circulation path 61 into the bypass path 54 is returned from the upper side of the bypass path 54 to the upper side of the heat storage water circulation path 50 without returning to the lower portion 48 of the heat storage tank 40. It is comprised so that it may flow in. Therefore, the warm heat storage water SW that has flowed out of the heat radiator 87 is not returned to the heat storage tank 40, but is passed through the heat storage heat exchanger 70 and heated to as high a temperature as possible. It will be circulated.

更に、制御装置80は、温度センサ14で検出された取り込み熱源水温度と温度センサ15で検出された戻り熱源水温度との温度差に、流量センサ12で検出された熱源水HWの流量をかけることで、蓄熱用熱交換器70での熱源水HWの放熱量を計測するように構成されており、更に、その計測した放熱量に基づいて蓄熱水循環手段Xによる蓄熱水SWの循環流量を制御するように構成されている。
即ち、制御装置80は、上記放熱量を予め設定された許容範囲内として、熱源水循環ライン2の下流側に流出する熱源水HWの過度な温度低下を抑制するために、蓄熱水循環ポンプ51の出力調整や流量調整弁52の開度調整により、上記蓄熱水SWの循環流量を制御して、蓄熱用熱交換器70における熱源水HWの放熱量を制限している。
更に、この集合住宅5に設置されたシステム(図示せず)では、複数の住居1の夫々において上記計測した夫々の住居1における放熱量を用いて、その放熱量に熱電併給装置6の運転コストを基に決定された単価をかける形態で、複数の住居1の夫々に対して課金すべき熱利用料金を算出している。
Further, the control device 80 multiplies the flow rate of the heat source water HW detected by the flow rate sensor 12 to the temperature difference between the intake heat source water temperature detected by the temperature sensor 14 and the return heat source water temperature detected by the temperature sensor 15. Thus, the heat radiation amount of the heat source water HW in the heat storage heat exchanger 70 is measured, and further, the circulation flow rate of the heat storage water SW by the heat storage water circulation means X is controlled based on the measured heat radiation amount. Is configured to do.
That is, the control device 80 sets the heat radiation amount within a preset allowable range, and suppresses an excessive temperature drop of the heat source water HW flowing out downstream of the heat source water circulation line 2, so that the output of the heat storage water circulation pump 51 is output. The circulation flow rate of the heat storage water SW is controlled by the adjustment and the opening degree adjustment of the flow rate adjustment valve 52 to limit the heat radiation amount of the heat source water HW in the heat storage heat exchanger 70.
Furthermore, in the system (not shown) installed in this apartment house 5, the operating cost of the combined heat and power supply device 6 is used for the amount of heat released by using the amount of heat released in each house 1 measured in each of the plurality of houses 1. The heat usage fee to be charged for each of the plurality of residences 1 is calculated in the form of applying the unit price determined based on the above.

また、蓄熱水循環手段X及び熱源水循環手段Yの作動時において、熱源水循環ライン2の熱源水取り込み部13iから熱源水循環路13に取り込んだ熱源水HWが、蓄熱タンク40の上部47から蓄熱水循環路50に取り出された蓄熱水SWよりも低温である場合には、熱用熱交換器70において熱源水HWが蓄熱水SWとの熱交換により加熱され、その加熱された熱源水HWが、熱源水戻り部13oから熱源水循環ライン2に戻されることになる。よって、例えば、熱源水循環ライン2を循環する熱源水HWの温度が低下した場合でも、ある住居1において蓄熱タンク1に貯留されている高温の蓄熱水SWが保有する熱を、その熱源水HWを加熱するのに利用して、熱源水循環ライン2において当該住居1よりも下流側に位置する住居1に融通することができる。   Further, when the heat storage water circulation means X and the heat source water circulation means Y are in operation, the heat source water HW taken into the heat source water circulation path 13 from the heat source water intake section 13 i of the heat source water circulation line 2 is transferred from the upper portion 47 of the heat storage tank 40 to the heat storage water circulation path 50. When the temperature is lower than the heat storage water SW taken out, the heat source water HW is heated by heat exchange with the heat storage water SW in the heat heat exchanger 70, and the heated heat source water HW is returned to the heat source water. It returns to the heat source water circulation line 2 from the part 13o. Therefore, for example, even when the temperature of the heat source water HW circulating through the heat source water circulation line 2 is lowered, the heat held by the high-temperature heat storage water SW stored in the heat storage tank 1 in a certain residence 1 is converted to the heat source water HW. It can utilize for heating and can be accommodated in the residence 1 located in the heat source water circulation line 2 downstream from the residence 1.

また、上記熱源水循環ライン2の熱源水取り込み部13iと熱源水戻り部13oとを接続する熱源水バイパス路5が設けられており、例えば保守時において、熱源水取り込み部13iに通じる手動開閉弁7を閉状態とすると共に、当該熱源水バイパス路5に設けられた手動開閉弁6を開状態とすることで、熱源水HWを住居1内に循環させることなく、熱源水バイパス路5に流通させることができる。尚、上記手動開閉弁7は通常時は開状態、上記手動開閉弁6は通常時は閉状態とされている。   Further, a heat source water bypass passage 5 for connecting the heat source water intake part 13i and the heat source water return part 13o of the heat source water circulation line 2 is provided. For example, during maintenance, a manual on-off valve 7 leading to the heat source water intake part 13i is provided. Is closed, and the manual on-off valve 6 provided in the heat source water bypass passage 5 is opened, so that the heat source water HW is circulated through the heat source water bypass passage 5 without being circulated in the residence 1. be able to. The manual open / close valve 7 is normally open, and the manual open / close valve 6 is normally closed.

〔第2実施形態〕
以下、第2実施形態の蓄放熱装置200について、図3に基づいて説明する。尚、上記第1実施形態(図2)と同様の構成については、図面においては同じ符号を付すと共に、説明を割愛する。
図3に示す蓄放熱装置200は、蓄熱水SWを放熱させる放熱用熱交換器として、上述した第1実施形態(図2参照)における給湯追焚き用熱交換器75の代わりに、給水LWと蓄熱水SWとの間で熱交換を行う給湯用熱交換器75A、及び、浴槽水BWと蓄熱水SWとの間で熱交換を行う追焚き用熱交換器75Bを、同じく放熱用熱交換器である暖房用放熱器87に対して並列に備える。
[Second Embodiment]
Hereinafter, the heat storage and heat dissipation device 200 of the second embodiment will be described with reference to FIG. In addition, about the structure similar to the said 1st Embodiment (FIG. 2), while attaching | subjecting the same code | symbol in drawing, description is omitted.
A heat storage and heat dissipation device 200 shown in FIG. 3 is a heat dissipation heat exchanger that dissipates the heat storage water SW, instead of the hot water supply heat exchanger 75 in the first embodiment (see FIG. 2) described above, A heat exchanger 75A for hot water supply for exchanging heat with the heat storage water SW and a heat exchanger 75B for reheating for exchanging heat between the bath water BW and the heat storage water SW are also used as heat dissipation heat exchangers. It is provided in parallel with the heat radiator 87 for heating.

上記給湯用熱交換器75Aは、蓄熱水循環手段Xにより循環される蓄熱水SWが通流すると共に、その蓄熱水SWに対向して、給水路16を通じて給湯部85へ供給される給湯用の給水LWが通流し、当該給水LWと当該蓄熱水SWとの間で熱交換を行うように構成されている。
また、上記給水路16は、給水ライン3の給水取り込み部16iから給湯用熱交換器75Aを通過した後に給湯部85に接続される流路として構成されている。
即ち、給湯部85への給水LWの供給が開始されると、給水ライン3の給水取り込み部16iから取り込んだ給水LWが、給湯用熱交換器75Aに通流した後に、給湯水Wとして給湯部85に供給されることになる。
更に、給湯部85には手動で開閉される給湯栓が設けられていることから、その給水路16の給湯用熱交換器75Aの下流側においては、上述した第1実施例(図2参照)と比較して、給湯部87への給湯水Wの供給を断続可能な開閉操作弁18が省略されている。
In the hot water supply heat exchanger 75A, the stored hot water SW circulated by the stored heat water circulating means X flows, and the hot water supply water supplied to the hot water supply section 85 through the water supply passage 16 is opposed to the stored hot water SW. The LW flows and is configured to exchange heat between the water supply LW and the heat storage water SW.
The water supply path 16 is configured as a flow path connected to the hot water supply section 85 after passing through the hot water supply heat exchanger 75A from the water supply intake section 16i of the water supply line 3.
That is, when the supply of the water supply LW to the hot water supply section 85 is started, the water supply LW taken in from the water supply intake section 16i of the water supply line 3 flows into the hot water supply heat exchanger 75A and then supplied as the hot water supply water W. 85 will be supplied.
Furthermore, since the hot water supply section 85 is provided with a hot water tap that is manually opened and closed, the first embodiment described above (see FIG. 2) is provided downstream of the hot water supply heat exchanger 75A in the water supply path 16. Compared with, the opening / closing operation valve 18 capable of intermittently supplying hot water W to the hot water supply section 87 is omitted.

上記追焚き用熱交換器75Bは、蓄熱水循環路50における給湯用熱交換器75Aの下流側に設けられて、蓄熱水循環手段Xにより循環される蓄熱水SWが通流すると共に、その蓄熱水SWに対向して、浴槽水循環路65を通じて浴槽86との間で循環される浴槽水BWが通流し、当該浴槽水BWと当該蓄熱水SWとの間で熱交換を行うように構成されている。
また、上記浴槽水循環路65は、浴槽86から追焚き用熱交換器75Bを通過した後に再度浴槽86に接続される流路として構成されている。
即ち、制御装置80により浴槽水循環ポンプ66が作動されることで、浴槽水循環路65において、浴槽86から取り出した浴槽水BWが、追焚き用熱交換器75Bに通流した後に、同浴槽86に戻す状態で、浴槽水BWが循環することになる。
The reheating heat exchanger 75B is provided on the downstream side of the hot water supply heat exchanger 75A in the regenerator water circulation path 50, and the regenerator water SW circulated by the regenerator water circulation means X flows therethrough. The bathtub water BW circulated between the bathtub 86 and the bathtub 86 through the bathtub water circulation path 65 flows therethrough, and heat exchange is performed between the bathtub water BW and the heat storage water SW.
The bathtub water circulation path 65 is configured as a flow path that is connected to the bathtub 86 again after passing through the heat exchanger 75B for chasing from the bathtub 86.
That is, when the bathtub water circulation pump 66 is operated by the control device 80, the bathtub water BW taken out from the bathtub 86 in the bathtub water circulation path 65 flows into the reheating heat exchanger 75 </ b> B and then flows into the bathtub 86. In the returned state, the bathtub water BW is circulated.

更に、暖房用循環路61には、暖房用放熱器87に供給される蓄熱水の温度を暖房水温度として検出可能な温度センサ83が配置されている。   Furthermore, a temperature sensor 83 capable of detecting the temperature of the heat storage water supplied to the heating radiator 87 as the heating water temperature is disposed in the heating circulation path 61.

また、上記蓄熱水循環手段Xは、上述した第1実施形態における低温蓄熱水循環状態で蓄熱水SWを循環させることはなく、常に、高温蓄熱水循環状態、即ち、蓄熱水循環路50において、蓄熱タンク40の上部47から取り出した蓄熱水SWを、蓄熱用熱交換器70と、給湯用熱交換器75A及び追焚き用熱交換器75B若しくは暖房用放熱器87とに順に通流させた後に同蓄熱タンク40の下部48に戻す形態で蓄熱水SWを循環させるように構成されている。よって、上述した第1実施例(図2参照)と比較して、上記低温蓄熱水循環状態のための蓄熱水戻り路76及び開閉操作弁77が省略されている。   Further, the regenerator water circulation means X does not circulate the regenerator water SW in the low-temperature regenerator water circulation state in the first embodiment described above, and always in the high-temperature regenerator water circulation state, that is, in the regenerator water circulation path 50, The heat storage water SW taken out from the upper portion 47 is sequentially passed through the heat storage heat exchanger 70, the hot water supply heat exchanger 75A and the reheating heat exchanger 75B or the heating radiator 87, and then the same heat storage tank 40. It is comprised so that the thermal storage water SW may be circulated in the form returned to the lower part 48 of this. Therefore, compared with the first embodiment described above (see FIG. 2), the heat storage water return path 76 and the open / close operation valve 77 for the low-temperature heat storage water circulation state are omitted.

以上のような第2実施形態の蓄放熱装置200では、上述した第1実施形態と比較して、蓄熱運転、給湯運転、給湯・追焚き同時運転、暖房運転において特徴を有しており、その詳細について、以下に説明する。   In the heat storage and heat dissipation device 200 of the second embodiment as described above, compared to the first embodiment described above, the heat storage operation, the hot water supply operation, the hot water supply / reheating simultaneous operation, and the heating operation have features. Details will be described below.

〔蓄熱運転〕
制御装置80は、温度センサ41により検出される蓄熱タンク40の上部の蓄熱水SWの温度が、温度センサ14により検出される熱源水循環ライン2から取り込んだ熱源水HWの温度に対して、比較的低温である場合に、蓄熱水循環手段Xを上述した高温蓄熱水循環状態で作動させて蓄熱水循環路50に蓄熱水SWを循環させ、更に、熱源水循環手段Yを作動させて熱源水循環路13に熱源水HWを循環させる形態で、上記蓄熱運転を実行する。
すると、蓄熱用熱交換器70では、蓄熱タンク40の上部47から取り出した蓄熱水SWと、熱源水循環ライン2から取り込んだ比較的高温の熱源水HWとの間で、熱交換が行われることになり、蓄熱用熱交換器70の下流側には、熱源水HWとの熱交換により加熱された比較的高温の蓄熱水SWが通流することになる。
そして、その高温の蓄熱水SWを蓄熱タンク40の下部48に戻す形態で、熱源水HWが保有する熱を蓄熱タンク40に蓄熱することができる。
更に、制御装置80は、上記蓄熱運転を実行することで、温度センサ57で検出される取り出し蓄熱水温度、若しくは、温度センサ41,42,43で検出された蓄熱タンク40の蓄熱水SWの温度が、所望の設定値以上と比較的高温となった場合等に、上記蓄熱運転を終了する。
[Heat storage operation]
The controller 80 is configured such that the temperature of the heat storage water SW in the upper part of the heat storage tank 40 detected by the temperature sensor 41 is relatively higher than the temperature of the heat source water HW taken from the heat source water circulation line 2 detected by the temperature sensor 14. When the temperature is low, the heat storage water circulation means X is operated in the above-described high-temperature heat storage water circulation state to circulate the heat storage water SW in the heat storage water circulation path 50, and further, the heat source water circulation means Y is operated to heat the heat source water circulation path 13 to the heat source water. The heat storage operation is performed in a form in which the HW is circulated.
Then, in the heat storage heat exchanger 70, heat exchange is performed between the heat storage water SW taken out from the upper portion 47 of the heat storage tank 40 and the relatively high-temperature heat source water HW taken in from the heat source water circulation line 2. Thus, the relatively high-temperature heat storage water SW heated by heat exchange with the heat source water HW flows through the downstream side of the heat storage heat exchanger 70.
The heat stored in the heat source water HW can be stored in the heat storage tank 40 in a form in which the high-temperature heat storage water SW is returned to the lower portion 48 of the heat storage tank 40.
Furthermore, the control device 80 performs the above heat storage operation, whereby the temperature of the extracted heat storage water detected by the temperature sensor 57 or the temperature of the heat storage water SW of the heat storage tank 40 detected by the temperature sensors 41, 42, 43 is detected. However, the heat storage operation is terminated when the temperature becomes relatively high, such as a desired set value or more.

〔給湯運転〕
制御装置80は、給湯運転時において、蓄熱水循環手段Xを高温蓄熱水循環状態で作動させると共に、給湯用熱交換器75Aで加熱された給水LWの温度を目標給湯温度に調整するように蓄熱水SWの循環流量を制御するように構成されている。
即ち、制御装置80は、放熱運転としての給湯運転を実行する際に、温度センサ32で検出される給湯用熱交換器75Aで加熱された給水LWの温度を監視する。更に、その給水LWの温度が目標給湯温度よりも高い場合には蓄熱水SWの循環流量を減少させ、逆に、その給水LWの温度が目標給湯温度よりも低い場合には蓄熱水SWの循環流量を増加させる形態で、蓄熱水循環ポンプ51の出力調整や流量調整弁52の開度調整により、蓄熱水SWの循環流量を制御する。
すると、給湯用熱交換器75Aにおいて給水LWを目標給湯温度に加熱するための放熱量が確保されながら、給湯用熱交換器75Aから流出して蓄熱タンク40の下部48に戻る蓄熱水SWの温度が極力低くなるので、蓄熱タンク40に蓄熱された熱が一層有効利用されながら、蓄熱タンク40の温度成層が良好なものに維持されることになる。
[Hot water operation]
The control device 80 operates the heat storage water circulation means X in the hot water storage water circulation state during the hot water supply operation, and stores the heat storage water SW so as to adjust the temperature of the water supply LW heated by the hot water supply heat exchanger 75A to the target hot water supply temperature. It is comprised so that the circulation flow rate of may be controlled.
That is, the control device 80 monitors the temperature of the feed water LW heated by the hot water supply heat exchanger 75A detected by the temperature sensor 32 when executing the hot water supply operation as the heat radiation operation. Further, when the temperature of the feed water LW is higher than the target hot water supply temperature, the circulation flow rate of the heat storage water SW is decreased. Conversely, when the temperature of the feed water LW is lower than the target hot water supply temperature, the circulation of the heat storage water SW is performed. In a form in which the flow rate is increased, the circulation flow rate of the heat storage water SW is controlled by adjusting the output of the heat storage water circulation pump 51 and adjusting the opening of the flow rate adjustment valve 52.
Then, the temperature of the heat storage water SW that flows out of the hot water supply heat exchanger 75A and returns to the lower portion 48 of the heat storage tank 40 while securing a heat radiation amount for heating the supply water LW to the target hot water supply temperature in the hot water supply heat exchanger 75A. Therefore, the thermal stratification of the heat storage tank 40 is maintained at a good level while the heat stored in the heat storage tank 40 is more effectively used.

〔給湯・追焚き同時運転〕
制御装置80は、給湯運転と追焚き運転との同時実行時において、蓄熱タンク40から取り出された蓄熱水SWの温度が設定温度以下である場合には、給湯用熱交換器75Aへの給水LWの供給を停止して、熱源水供給手段Zにより熱源水HWを給湯部85に供給するように構成されている。
即ち、制御装置80は、放熱運転としての給湯運転と追焚き運転とを同時に実行する際に、温度センサ57で検出される蓄熱タンク40から取り出された蓄熱水SWの温度を監視する。そして、その蓄熱水SWの温度が40℃等の設定温度以下である場合には、流量調整弁31を全閉状態として給湯用熱交換器75Aへの給水LWの供給を停止して、熱源水供給手段Zにより熱源水循環路13における蓄熱用熱交換器70の下流側から取り出した熱源水HWを給湯部85に供給する。
すると、上記蓄熱タンク40から取り出された低温の蓄熱水SWは、蓄熱用熱交換器70に通流させて高温の熱源水HWとの熱交換により加熱された後に、給湯用熱交換器75Aに放熱することなく通過して、その高温のまま追焚き用熱交換器75Bに通流することになり、追焚き用熱熱交換器75Bにおいて蓄熱水SWが保有する熱が浴槽水BWの加熱用に有効に利用される。
更に、蓄熱用熱交換器70で温度低下した熱源水HWの全てが、給湯水Wとして混合部30を介して給湯部85に供給されるので、給湯部85における給湯が継続される。また、蓄熱用熱交換器70で温度低下した比較的低温の熱源水HWは、熱源水循環ライン2に戻されることなく上記給湯部85で消費されるので、結果、熱源水循環ライン2の下流側付近に位置する住居1に対して低温の熱源水HWが循環されてしまうことが防止され、各住居1における熱利用が平準化される。
[Simultaneous hot water supply and chasing]
When the temperature of the heat storage water SW taken out from the heat storage tank 40 is equal to or lower than the set temperature during the simultaneous execution of the hot water supply operation and the reheating operation, the control device 80 supplies the water LW to the hot water supply heat exchanger 75A. The heat source water HW is supplied to the hot water supply unit 85 by the heat source water supply means Z.
That is, the control device 80 monitors the temperature of the heat storage water SW extracted from the heat storage tank 40 detected by the temperature sensor 57 when simultaneously performing the hot water supply operation and the reheating operation as the heat radiation operation. When the temperature of the heat storage water SW is lower than the set temperature such as 40 ° C., the flow rate adjustment valve 31 is fully closed to stop the supply of the feed water LW to the hot water supply heat exchanger 75A, and the heat source water The heat source water HW taken out from the downstream side of the heat storage heat exchanger 70 in the heat source water circulation path 13 by the supply means Z is supplied to the hot water supply section 85.
Then, the low-temperature heat storage water SW taken out from the heat storage tank 40 is passed through the heat storage heat exchanger 70 and heated by heat exchange with the high-temperature heat source water HW, and then supplied to the hot water supply heat exchanger 75A. The heat passes through the heat exchanger 75B for reheating without passing through the heat, and the heat stored in the heat storage water SW in the heat exchanger 75B for reheating is used for heating the bath water BW. It is used effectively.
Furthermore, since all of the heat source water HW whose temperature has decreased in the heat storage heat exchanger 70 is supplied as hot water supply W to the hot water supply unit 85 via the mixing unit 30, hot water supply in the hot water supply unit 85 is continued. Further, the relatively low-temperature heat source water HW whose temperature has been reduced by the heat storage heat exchanger 70 is consumed by the hot water supply unit 85 without being returned to the heat source water circulation line 2, and as a result, near the downstream side of the heat source water circulation line 2. It is prevented that the low-temperature heat source water HW is circulated with respect to the dwelling 1 located in the house 1, and the heat use in each dwelling 1 is leveled.

制御装置80は、給湯運転と追焚き運転との同時実行時において、蓄熱タンク40から取り出された蓄熱水SWの温度が設定温度よりも高い場合には、給湯用熱交換器75Aへの給水LWの供給を停止することなく、給湯用熱交換器75Aにおいて蓄熱水SWとの熱交換により給湯部85に給湯水Wとして供給される給水LWを加熱すると共に、追焚き用熱交換器75Bにおいて蓄熱水SWとの熱交換により浴槽水BWを加熱する構成されている。   When the temperature of the heat storage water SW taken out from the heat storage tank 40 is higher than the set temperature during the simultaneous execution of the hot water supply operation and the reheating operation, the controller 80 supplies the water LW to the hot water supply heat exchanger 75A. The hot water supply LW supplied as hot water W to the hot water supply unit 85 is heated by heat exchange with the heat storage water SW in the hot water supply heat exchanger 75A without stopping the supply of water, and the heat storage heat exchanger 75B stores heat. The bath water BW is heated by heat exchange with the water SW.

〔暖房運転〕
制御装置80は、暖房運転時において、暖房用放熱器87に供給される蓄熱水SWの温度を目標暖房水温度に調整するように、蓄熱タンクバイパス状態での蓄熱タンク40を通過させない蓄熱水SWの流量、即ちバイパス路54での蓄熱水SWの流量(以下、「バイパス流量」とよぶ。)を制御するように構成されている。
即ち、制御装置80は、放熱運転としての暖房運転を実行する際に、蓄熱水循環手段Xを蓄熱タンクバイパス状態とすると共に、温度センサ83で検出される暖房用放熱器87に供給される蓄熱水SWの温度を監視する。そして、その蓄熱水SWの温度が目標暖房水温度よりも高い場合にはバイパス流量を減少させ、逆に、その蓄熱水SWの温度が目標暖房水温度よりも低い場合にはバイパス流量を増加させる形態で、バイパス路54に設けられた流量調整弁55の開度調整により、蓄熱タンク40の下部48に戻ることなくバイパス路54を通じて蓄熱水循環路50の上部側に流入する蓄熱水SWの流量を上記バイパス流量として制御する。
すると、その暖房運転時において、暖房用放熱器87から戻る未だ温暖な蓄熱水の少なくとも一部が、蓄熱タンクバイパス状態とされた蓄熱水循環手段Xにより蓄熱タンク40に戻ることなく蓄熱用熱交換器70に通流し高温に加熱された後に、暖房用放熱器87に再度通流するので、その暖房用放熱器87から戻る蓄熱水SWの熱が有効利用され、更に、蓄熱タンク40からの蓄熱水SWの流出が抑制されて、蓄熱タンク40の蓄熱の浪費が防止される。更に、上記バイパス流量が制御されるので、蓄熱用熱交換器70から暖房用放熱器87に供給される蓄熱水SWの温度が適切に目標暖房水温度に維持されることになる。
[Heating operation]
In the heating operation, the control device 80 does not allow the heat storage tank 40 in the heat storage tank bypass state to pass through so as to adjust the temperature of the heat storage water SW supplied to the heat radiator 87 to the target heating water temperature. , That is, the flow rate of the heat storage water SW in the bypass passage 54 (hereinafter referred to as “bypass flow rate”).
That is, the control device 80 puts the heat storage water circulation means X into the heat storage tank bypass state when performing the heating operation as the heat dissipation operation, and stores the heat storage water supplied to the heating radiator 87 detected by the temperature sensor 83. Monitor SW temperature. When the temperature of the heat storage water SW is higher than the target heating water temperature, the bypass flow rate is decreased. Conversely, when the temperature of the heat storage water SW is lower than the target heating water temperature, the bypass flow rate is increased. In the embodiment, the flow rate of the heat storage water SW flowing into the upper portion of the heat storage water circulation passage 50 through the bypass passage 54 without returning to the lower portion 48 of the heat storage tank 40 by adjusting the opening degree of the flow adjustment valve 55 provided in the bypass passage 54. Control as the bypass flow rate.
Then, at the time of the heating operation, at least a part of the still warm heat storage water returning from the heating radiator 87 does not return to the heat storage tank 40 by the heat storage water circulation means X in the heat storage tank bypass state, and the heat storage heat exchanger Since the heat is passed through the heater 70 and heated to a high temperature and then reflowed through the heating radiator 87, the heat of the heat storage water SW returning from the heating radiator 87 is effectively used. Further, the heat storage water from the heat storage tank 40 is used. The outflow of SW is suppressed and waste of heat storage in the heat storage tank 40 is prevented. Further, since the bypass flow rate is controlled, the temperature of the heat storage water SW supplied from the heat storage heat exchanger 70 to the heating radiator 87 is appropriately maintained at the target heating water temperature.

本発明に係る蓄放熱装置は、複数の熱需要家に対して高温の熱源水を循環させ、その熱源水が保有する熱を有効に利用でき、当該複数の熱需要家における熱利用を平準化でき、設備コストを低くすることができる蓄放熱装置及び熱供給システムとして利用可能で、特に、集合住宅やホテル等で用いられる熱供給システムにおいて、各住居若しくは各室等の各熱消費箇所に蓄放熱装置を分散設置する形態で有効に利用される。   The heat storage and heat dissipation apparatus according to the present invention circulates high-temperature heat source water to a plurality of heat consumers, can effectively use the heat held by the heat source water, and leveles the heat use in the plurality of heat consumers It can be used as a heat storage / dissipation device and heat supply system that can reduce the equipment cost. It is effectively used in a form in which heat dissipating devices are installed in a distributed manner.

蓄放熱装置を利用した熱供給システムの概念図Conceptual diagram of heat supply system using heat storage and heat dissipation device 第1実施形態の蓄放熱装置の概略構成図Schematic configuration diagram of the heat storage and heat dissipation device of the first embodiment 第2実施形態の蓄放熱装置の概略構成図Schematic configuration diagram of the heat storage and heat dissipation device of the second embodiment

符号の説明Explanation of symbols

1:住居(熱需要家)
2:熱源水循環ライン
3:給水ライン
6:熱電併給装置(熱源装置)
10(100,200):蓄放熱装置
13i:熱源水取り込み部
13:熱源水循環路
13o:熱源水戻り部
16i:給水取り込み部
16:給水路
30:混合部
34:熱源水供給路
37:給水供給路
40:蓄熱タンク
47:上部
48:下部
50:蓄熱水循環路
54:バイパス路
60:給湯追焚き用循環路
61:暖房用循環路
65:浴槽水循環路
70:蓄熱用熱交換器
75:給湯追焚き用熱交換器
75A:給湯用熱交換器
75B:追焚き用熱交換器
80:制御装置(制御手段)
85:給湯部
86:浴槽
87:暖房用放熱器
X:蓄熱水循環手段
Y:熱源水循環手段
Z:熱源水供給手段
F:水位維持手段
HW:熱源水
SW:蓄熱水
LW:給水
W:給湯水
BW:浴槽水
RA:室内空気
1: Housing (heat customers)
2: Heat source water circulation line 3: Water supply line 6: Combined heat and power supply device (heat source device)
10 (100, 200): heat storage / heat dissipation device 13i: heat source water intake unit 13: heat source water circulation path 13o: heat source water return unit 16i: water supply intake unit 16: water supply channel 30: mixing unit 34: heat source water supply channel 37: water supply supply Path 40: Thermal storage tank 47: Upper part 48: Lower part 50: Thermal storage water circulation path 54: Bypass path 60: Hot water supply circulation path 61: Heating circulation path 65: Bath water circulation path 70: Heat storage heat exchanger 75: Hot water supply supplement Heating exchanger 75A: hot water supply heat exchanger 75B: reheating heat exchanger 80: control device (control means)
85: Hot water supply section 86: Bathtub 87: Heating radiator X: Heat storage water circulation means Y: Heat source water circulation means Z: Heat source water supply means F: Water level maintenance means HW: Heat source water SW: Heat storage water LW: Hot water W: Hot water BW : Bath water RA: Indoor air

Claims (17)

熱源装置で加熱された熱源水を循環させる熱源水循環ラインから取り込んだ熱源水の熱を蓄熱して利用する蓄放熱装置であって、
蓄熱水を貯留する蓄熱タンクと、
前記熱源水と前記蓄熱水との間で熱交換を行う蓄熱用熱交換器と、
前記蓄熱水を放熱させる放熱用熱交換器と、
前記蓄熱タンクから取り出した蓄熱水を前記蓄熱用熱交換器と前記放熱用熱交換器とに順に通流させた後に同蓄熱タンクに戻す状態で前記蓄熱水を循環可能な蓄熱水循環手段と、
前記熱源水循環ラインから取り出した熱源水を、前記蓄熱用熱交換器に通流させた後に同熱源水循環ラインに戻す状態で前記熱源水を循環可能な熱源水循環手段と、
少なくとも前記蓄熱水循環手段及び前記熱源水循環手段を作動させて、前記蓄熱用熱交換器において前記熱源水との熱交換により前記蓄熱タンクとの間で循環する蓄熱水を加熱する蓄熱運転、及び、前記放熱用熱交換器において前記蓄熱水を放熱させる放熱運転を実行可能な制御手段とを備えた蓄放熱装置。
A heat storage and heat dissipation device that stores and uses heat from heat source water taken from a heat source water circulation line that circulates heat source water heated by the heat source device,
A heat storage tank for storing heat storage water;
A heat storage heat exchanger that exchanges heat between the heat source water and the heat storage water;
A heat-dissipating heat exchanger that dissipates the heat storage water; and
Thermal storage water circulation means capable of circulating the thermal storage water in a state where the thermal storage water taken out from the thermal storage tank is sequentially returned to the thermal storage tank after passing through the thermal storage heat exchanger and the heat radiation heat exchanger in order.
Heat source water circulation means capable of circulating the heat source water in a state where the heat source water taken out from the heat source water circulation line is passed through the heat storage heat exchanger and then returned to the heat source water circulation line;
At least the heat storage water circulation means and the heat source water circulation means, and heat storage operation for heating the heat storage water circulating between the heat storage tank by heat exchange with the heat source water in the heat storage heat exchanger, and A heat storage and heat dissipation device comprising: a control means capable of performing a heat radiation operation for radiating heat of the heat storage water in a heat dissipation heat exchanger.
前記放熱用熱交換器として、給水ラインから給湯用の給水が通流する給湯用熱交換器を備え、
前記制御手段が、前記放熱運転として、前記給湯用熱交換器において前記蓄熱水との熱交換により前記給水を加熱した給湯水を給湯部に供給する給湯運転を実行可能に構成されている請求項1に記載の蓄放熱装置。
As the heat dissipation heat exchanger, a hot water supply heat exchanger through which hot water supply water flows from a water supply line,
The said control means is comprised so that execution of the hot water supply operation which supplies the hot-water supply which heated the said hot-water supply by the heat exchange with the said thermal storage water in the said hot-water supply heat exchanger to the hot-water supply part as the said heat radiation operation is possible. 1. The heat storage and heat dissipation device according to 1.
前記蓄熱水循環手段が、前記蓄熱タンクの上部から取り出した蓄熱水を前記蓄熱用熱交換器と前記給湯用熱交換器とに順に通流させた後に同蓄熱タンクの下部に戻す高温蓄熱水循環状態で前記蓄熱水を循環可能に構成され、
前記制御手段が、前記給湯運転時において、前記蓄熱水循環手段を前記高温蓄熱水循環状態で作動させると共に、前記給湯用熱交換器で加熱された給水の温度を目標給湯温度に調整するように前記蓄熱水の循環流量を制御するように構成されている請求項2に記載の蓄放熱装置。
In the high-temperature heat storage water circulation state, the heat storage water circulation means returns the heat storage water taken out from the upper part of the heat storage tank to the lower part of the heat storage tank after sequentially passing the heat storage water through the heat storage heat exchanger and the hot water supply heat exchanger. The heat storage water is configured to be circulated,
In the hot water supply operation, the control means operates the heat storage water circulation means in the high temperature heat storage water circulation state, and adjusts the temperature of the hot water heated by the hot water heat exchanger to the target hot water supply temperature. The heat storage and heat dissipation device according to claim 2, which is configured to control a circulating flow rate of water.
前記熱源水循環手段における前記蓄熱用熱交換器の下流側から取り出した熱源水を前記給湯部に供給可能な熱源水供給手段を備えた請求項2又は3に記載の蓄放熱装置。   The heat storage and heat dissipation device according to claim 2 or 3, further comprising heat source water supply means capable of supplying heat source water extracted from a downstream side of the heat storage heat exchanger in the heat source water circulation means to the hot water supply section. 前記熱源水供給手段が、前記給湯水に対して前記熱源水を混合可能、且つ、前記給湯水における当該熱源水の混合割合を調整可能に構成され、
前記制御手段が、前記給湯運転時において、前記熱源水供給手段により前記混合割合を制御して、前記給湯部へ供給される給湯水の温度を目標給湯温度に調整するように構成されている請求項4に記載の蓄放熱装置。
The heat source water supply means is configured to be able to mix the heat source water with the hot water, and to adjust the mixing ratio of the heat source water in the hot water.
The control means is configured to adjust the temperature of the hot water supplied to the hot water supply unit to a target hot water temperature by controlling the mixing ratio by the heat source water supply means during the hot water supply operation. Item 5. The heat storage and dissipation device according to Item 4.
前記放熱用熱交換器として、前記蓄熱水循環手段における前記給湯用熱交換器の下流側に、浴槽との間で循環する浴槽水が通流する追焚き用熱交換器を備え、
前記制御手段が、前記放熱運転として、前記給湯運転と共に、前記追焚き用熱交換器において前記蓄熱水との熱交換により前記浴槽との間で循環する浴槽水を加熱する追焚き運転を実行可能に構成されており、且つ、前記給湯運転と前記追焚き運転との同時実行時において、前記蓄熱タンクから取り出された蓄熱水の温度が設定温度以下である場合に、前記給湯用熱交換器への給水の供給を停止して、前記熱源水供給手段により前記熱源水を前記給湯部に供給するように構成されている請求項4又は5に記載の蓄放熱装置。
As the heat-dissipating heat exchanger, on the downstream side of the hot-water supply heat exchanger in the heat storage water circulation means, a reheating heat exchanger through which the bath water circulating between the bath flows is provided,
The control means can execute, as the heat dissipation operation, a reheating operation that heats the bath water circulated between the bath and the heat storage water in the reheating heat exchanger by heat exchange with the heat storage water. And when the temperature of the heat storage water taken out from the heat storage tank is equal to or lower than a preset temperature during the simultaneous execution of the hot water supply operation and the reheating operation, to the hot water supply heat exchanger The heat storage and heat dissipation device according to claim 4 or 5, wherein the supply of water is stopped and the heat source water supply means supplies the heat source water to the hot water supply unit.
前記制御手段が、前記熱源水の温度及び前記蓄熱水の温度及び時刻の夫々に基づいて、前記蓄熱運転の実行タイミングを制御するように構成されている請求項1〜6の何れか一項に記載の蓄放熱装置。   The said control means is comprised so that the execution timing of the said thermal storage operation may be controlled based on each of the temperature of the said heat source water, the temperature of the said thermal storage water, and time. The heat storage and heat dissipation device described. 前記蓄熱水循環手段が、前記蓄熱タンクの上部から取り出した蓄熱水を前記蓄熱用熱交換器と前記放熱用熱交換器とに順に通流させた後に同蓄熱タンクの下部に戻す高温蓄熱水循環状態と、前記蓄熱タンクの下部から取り出した蓄熱水を前記蓄熱用熱交換器に通流させた後に同蓄熱タンクの上部に戻す低温蓄熱水循環状態との間で、前記蓄熱水の循環状態を切り替え可能に構成され、
前記制御手段が、前記蓄熱運転時には前記蓄熱水循環手段を前記低温蓄熱水循環状態で作動させ、前記放熱運転時には前記蓄熱水循環手段を前記高温蓄熱水循環状態で作動させるように構成されている請求項1〜7の何れか一項に記載の蓄放熱装置。
The high-temperature heat storage water circulation state in which the heat storage water circulation means returns the heat storage water taken out from the upper part of the heat storage tank to the lower part of the heat storage tank after sequentially passing the heat storage water through the heat storage heat exchanger and the heat radiation heat exchanger. The circulation state of the heat storage water can be switched between the low temperature heat storage water circulation state in which the heat storage water taken out from the lower part of the heat storage tank is passed through the heat storage heat exchanger and then returned to the upper part of the heat storage tank. Configured,
The control means is configured to operate the heat storage water circulation means in the low-temperature heat storage water circulation state during the heat storage operation, and to operate the heat storage water circulation means in the high-temperature heat storage water circulation state during the heat dissipation operation. The heat storage / dissipation device according to claim 7.
前記放熱用熱交換器として、浴槽との間で循環する浴槽水が通流する追焚き用熱交換器を備え、
前記制御手段が、前記放熱運転として、前記追焚き用熱交換器において前記蓄熱水との熱交換により前記浴槽との間で循環する浴槽水を加熱する追焚き運転を実行可能に構成されている請求項1〜8の何れか一項に記載の蓄放熱装置。
As the heat-dissipating heat exchanger, it comprises a reheating heat exchanger through which the bath water circulating between the baths flows,
The said control means is comprised so that execution of the reheating operation which heats the bath water circulated between the said bathtubs by the heat exchange with the said thermal storage water in the said reheating heat exchanger as the said heat radiation operation is possible. The heat storage and heat dissipation apparatus according to any one of claims 1 to 8.
前記放熱用熱交換器として、室内空気が通流する暖房用放熱器を備え、
前記制御手段が、前記放熱運転として、前記暖房用放熱器において前記蓄熱水との熱交換により前記室内空気を加熱する暖房運転を実行可能に構成されている請求項1〜9の何れか一項に記載の蓄放熱装置。
As the heat exchanger for heat dissipation, a heating radiator through which room air flows is provided,
The said control means is comprised so that execution of the heating operation which heats the said indoor air by heat exchange with the said thermal storage water in the said heat radiator as the said heat radiation operation is possible. The heat storage and heat dissipation device described in 1.
前記蓄熱水循環手段が、前記蓄熱タンクを通過させない蓄熱タンクバイパス状態で前記蓄熱水の少なくとも一部を循環可能に構成され、
前記制御手段が、前記暖房運転時において、前記暖房用放熱器に供給される蓄熱水の温度を目標暖房水温度に調整するように、前記蓄熱タンクバイパス状態での前記蓄熱タンクを通過させない前記蓄熱水の流量を制御するように構成されている請求項10に記載の蓄放熱装置。
The heat storage water circulation means is configured to be able to circulate at least a part of the heat storage water in a heat storage tank bypass state that does not allow the heat storage tank to pass through,
In the heating operation, the control means does not pass the heat storage tank in the heat storage tank bypass state so as to adjust the temperature of the heat storage water supplied to the heating radiator to a target heating water temperature. The heat storage and dissipation device according to claim 10, configured to control a flow rate of water.
前記放熱用熱交換器の複数が、前記蓄熱水循環手段において互いに並列に設けられている請求項1〜11の何れか一項に記載の蓄放熱装置。   The heat storage and heat dissipation device according to any one of claims 1 to 11, wherein a plurality of the heat exchangers for heat dissipation are provided in parallel with each other in the heat storage water circulation means. 前記蓄熱水循環手段が、前記蓄熱タンクを通過させない蓄熱タンクバイパス状態で前記蓄熱水の少なくとも一部を循環可能に構成され、
前記制御手段が、前記放熱運転時において、前記蓄熱タンクの上部から取り出された蓄熱水の温度が設定温度以下である場合に、前記蓄熱水循環手段を前記蓄熱タンクバイパス状態とするように構成されている請求項1〜12の何れか一項に記載の蓄放熱装置。
The heat storage water circulation means is configured to be able to circulate at least a part of the heat storage water in a heat storage tank bypass state that does not allow the heat storage tank to pass through,
The control means is configured to place the heat storage water circulation means in the heat storage tank bypass state when the temperature of the heat storage water taken out from the upper part of the heat storage tank is equal to or lower than a set temperature during the heat radiation operation. The heat storage / dissipation device according to any one of claims 1 to 12.
前記蓄熱タンクが、大気開放型のタンクであり、
前記蓄熱タンク内の前記蓄熱水の水位を一定に維持する水位維持手段を備えた請求項1〜13の何れか一項に記載の蓄放熱装置。
The heat storage tank is an open-air tank,
The heat storage and heat dissipation device according to any one of claims 1 to 13, further comprising water level maintaining means for maintaining a constant water level of the heat storage water in the heat storage tank.
前記制御手段が、前記蓄熱用熱交換器での前記熱源水の放熱量に基づいて前記蓄熱水循環手段による前記蓄熱水の循環流量を制御するように構成されている請求項1〜14の何れか一項に記載の蓄放熱装置。   The said control means is comprised so that the circulation flow rate of the said thermal storage water by the said thermal storage water circulation means may be controlled based on the thermal radiation amount of the said heat source water in the said heat storage heat exchanger. The heat storage and heat dissipation device according to one item. 複数の熱需要家に対して、熱源装置で加熱された熱源水を循環させる熱源水循環ラインを備えると共に、
前記複数の熱需要家の夫々に対して、熱源装置で加熱された熱源水を循環させる熱源水循環ラインから取り込んだ熱源水の熱を蓄熱して利用する蓄放熱装置を備えた熱供給システムであって、
前記蓄放熱装置が、請求項1〜15の何れか一項に記載の蓄放熱装置として構成されている熱供給システム。
A heat source water circulation line that circulates the heat source water heated by the heat source device for a plurality of heat consumers,
A heat supply system including a heat storage and heat dissipation device that stores and uses heat of heat source water taken from a heat source water circulation line that circulates heat source water heated by a heat source device for each of the plurality of heat consumers. And
The heat supply system with which the said thermal storage / radiation apparatus is comprised as a thermal storage / radiation apparatus as described in any one of Claims 1-15.
前記複数の熱需要家の夫々における前記蓄熱用熱交換器での前記熱源水の放熱量に基づいて、前記複数の熱需要家の夫々に課金する熱利用料金を計算する請求項16に記載の熱供給システム。   The heat usage fee charged to each of the plurality of heat consumers is calculated based on a heat radiation amount of the heat source water in the heat storage heat exchanger in each of the plurality of heat consumers. Heat supply system.
JP2006285154A 2006-08-31 2006-10-19 Heat supply system Expired - Fee Related JP4889438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006285154A JP4889438B2 (en) 2006-08-31 2006-10-19 Heat supply system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006236052 2006-08-31
JP2006236052 2006-08-31
JP2006285154A JP4889438B2 (en) 2006-08-31 2006-10-19 Heat supply system

Publications (2)

Publication Number Publication Date
JP2008082688A true JP2008082688A (en) 2008-04-10
JP4889438B2 JP4889438B2 (en) 2012-03-07

Family

ID=39353733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006285154A Expired - Fee Related JP4889438B2 (en) 2006-08-31 2006-10-19 Heat supply system

Country Status (1)

Country Link
JP (1) JP4889438B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163624A (en) * 2010-02-08 2011-08-25 Osaka Gas Co Ltd Heat source water supply system
CN104406255A (en) * 2014-11-28 2015-03-11 深圳达实智能股份有限公司 Chilled water storage based energy utilization system and method
KR102401798B1 (en) * 2020-11-23 2022-05-26 제주대학교 산학협력단 Multi-heat storage apparatus

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54117639A (en) * 1978-03-06 1979-09-12 Ricoh Denshi Kogyo Kk Method of reading numeral or like written on sheet by pencil or like and sheet and device used to execute same method
JPS63105354A (en) * 1986-10-22 1988-05-10 Agency Of Ind Science & Technol Hot water supply system
JPH02213620A (en) * 1989-02-09 1990-08-24 Shimizu Corp Heating hot water feeding system for multiple dwelling house
JPH03291428A (en) * 1990-04-06 1991-12-20 Fushiman Kk Circulator for hot water branch pipe in centralized hot water supply system
JPH07239152A (en) * 1994-02-28 1995-09-12 Kyushu Henatsuki Kk Circulation type water heating equipment
JP2004156806A (en) * 2002-11-05 2004-06-03 Sanyo Electric Co Ltd Warm/cold thermal system
JP2004211962A (en) * 2002-12-27 2004-07-29 Osaka Gas Co Ltd System and method for supplying energy to local community
JP2005030758A (en) * 2004-09-24 2005-02-03 Matsushita Electric Ind Co Ltd Heat pump type bath hot-water supply system
JP2005221203A (en) * 2004-02-09 2005-08-18 Denso Corp Storage water heater
JP2006029745A (en) * 2004-07-21 2006-02-02 Osaka Gas Co Ltd Hot water storage type hot water supplying heat source device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54117639A (en) * 1978-03-06 1979-09-12 Ricoh Denshi Kogyo Kk Method of reading numeral or like written on sheet by pencil or like and sheet and device used to execute same method
JPS63105354A (en) * 1986-10-22 1988-05-10 Agency Of Ind Science & Technol Hot water supply system
JPH02213620A (en) * 1989-02-09 1990-08-24 Shimizu Corp Heating hot water feeding system for multiple dwelling house
JPH03291428A (en) * 1990-04-06 1991-12-20 Fushiman Kk Circulator for hot water branch pipe in centralized hot water supply system
JPH07239152A (en) * 1994-02-28 1995-09-12 Kyushu Henatsuki Kk Circulation type water heating equipment
JP2004156806A (en) * 2002-11-05 2004-06-03 Sanyo Electric Co Ltd Warm/cold thermal system
JP2004211962A (en) * 2002-12-27 2004-07-29 Osaka Gas Co Ltd System and method for supplying energy to local community
JP2005221203A (en) * 2004-02-09 2005-08-18 Denso Corp Storage water heater
JP2006029745A (en) * 2004-07-21 2006-02-02 Osaka Gas Co Ltd Hot water storage type hot water supplying heat source device
JP2005030758A (en) * 2004-09-24 2005-02-03 Matsushita Electric Ind Co Ltd Heat pump type bath hot-water supply system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163624A (en) * 2010-02-08 2011-08-25 Osaka Gas Co Ltd Heat source water supply system
CN104406255A (en) * 2014-11-28 2015-03-11 深圳达实智能股份有限公司 Chilled water storage based energy utilization system and method
CN104406255B (en) * 2014-11-28 2017-10-17 深圳达实智能股份有限公司 Energy utilization system and method based on water cold storage
KR102401798B1 (en) * 2020-11-23 2022-05-26 제주대학교 산학협력단 Multi-heat storage apparatus

Also Published As

Publication number Publication date
JP4889438B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
JP4670491B2 (en) Water heater
JP2016044888A (en) Hot water supply system and cogeneration system
JP4971838B2 (en) Water heater and hot water heater
JP2008275182A (en) Exhaust heat recovering system and auxiliary heat storage tank
JP5146731B2 (en) Hot water supply apparatus and hot water supply system
JP4889438B2 (en) Heat supply system
JP4030394B2 (en) Hot water storage water heater
JP4560449B2 (en) Circulating hot water storage system
JP7260352B2 (en) energy supply system
JP5037985B2 (en) Bath equipment
JP5921416B2 (en) Cogeneration system and hot water supply equipment
JP2020106227A (en) Heat source device
US9033254B2 (en) Solar heated water distribution system
JP2016164472A (en) Heat source device
JP5060206B2 (en) Heat consumption calculation system
JP3869801B2 (en) Heat pump water heater / heater
JP5982636B2 (en) Heat pump water heater
JP2005009747A (en) Hot water storage type hot-water supply device
JP4953436B2 (en) Thermal storage and heat dissipation system
JP2020106225A (en) Heat source device
JP2002364912A (en) Multifunctional water-heater
JP2004232914A (en) Water heater
KR101015395B1 (en) A cold and heat room system
JP2004116890A (en) Hot water storage-type hot water supply device
JP7267738B2 (en) Heat source device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111213

R150 Certificate of patent or registration of utility model

Ref document number: 4889438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees