JP2008082462A - Rotary damper - Google Patents

Rotary damper Download PDF

Info

Publication number
JP2008082462A
JP2008082462A JP2006264155A JP2006264155A JP2008082462A JP 2008082462 A JP2008082462 A JP 2008082462A JP 2006264155 A JP2006264155 A JP 2006264155A JP 2006264155 A JP2006264155 A JP 2006264155A JP 2008082462 A JP2008082462 A JP 2008082462A
Authority
JP
Japan
Prior art keywords
chamber
viscous liquid
flow path
movable member
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006264155A
Other languages
Japanese (ja)
Other versions
JP4837510B2 (en
Inventor
Hidenori Sugano
秀則 菅野
Yoshihiko Nagashima
良彦 長島
Masanori Itagaki
正典 板垣
Ryota Shimura
良太 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Somic Ishikawa KK
Original Assignee
Somic Ishikawa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Somic Ishikawa KK filed Critical Somic Ishikawa KK
Priority to JP2006264155A priority Critical patent/JP4837510B2/en
Publication of JP2008082462A publication Critical patent/JP2008082462A/en
Application granted granted Critical
Publication of JP4837510B2 publication Critical patent/JP4837510B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotary damper wherein excessive force caused by expansion of viscous liquid is prevented from acting on a casing and the like, and braking characteristics are prevented from being changed by change in the viscosity of the viscous liquid. <P>SOLUTION: The rotary chamber includes an operation chamber 3 wherein viscous liquid is filled, a first chamber 7 which is in communication with the operation chamber 3, and is capable of accommodating increase in volume by expansion of the liquid, a second chamber 8 which is provided adjacent to the first chamber 7 with a movable member 9 provided in between, and allows outside-air to flow through, a spring member 10 provided in the second chamber 8 in order to move the movable member 9 in response to the volume of the viscous liquid held in the first chamber 7, a flow path 11 for causing a resistance in the viscous liquid when the viscous liquid passes through by being pushed by vanes 5, and a throttling part 9a. The throttling part 9a is provided in the flow path 11 so as to narrow the flow path 11 in the case when the volume of the first chamber 7 is expanded in accordance with movement of the movable member 9, while in the case when the volume is reduced, the throttling part 9a expands the flow path 11. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ロータリーダンパに関するものである。   The present invention relates to a rotary damper.

下記特許文献1には、粘性液体が充填される作動室(2)と、該作動室に配設され、回転運動により粘性液体を押圧するベーン(4)と、前記作動室に連通し、粘性液体の膨張による体積増加分を収容可能な第1室(3a)と、該第1室との間に可動部材(15)を介在させて前記第1室に隣接する、外気が流通可能な第2室(3b)と、該第2室に設けられ、前記第1室に収容される粘性液体の量に応じて前記可動部材を移動させるばね部材(16)と、前記ベーンに押圧された粘性液体が通過するときに、粘性液体の抵抗を生じさせる流路(6)とを具備するロータリーダンパが記載されている。
かかるロータリーダンパによれば、粘性液体の膨張による体積増加分が第1室(3a)に収容されるため、温度の上昇によって粘性液体が膨張したときに、ケーシング等に過大な力が作用することを防ぐことができる。
しかしながら、かかるロータリーダンパは、粘性液体の粘度の変化に対応して流路(6)の大きさを変えることができないため、粘性液体の粘度が変化すると、それに伴い制動特性が変化するという問題があった。すなわち、粘性液体の粘度は、周囲の温度変化に伴い変化し、低温時には、粘性液体の粘度が高くなるため、制動力が強くなる一方、高温時には、粘性液体の粘度が低くなるため、制動力が弱くなっていた。
特開平6−117464号公報
In Patent Document 1 below, a working chamber (2) filled with a viscous liquid, a vane (4) disposed in the working chamber and pressing the viscous liquid by a rotational motion, and communicated with the working chamber, the viscosity is shown. A first chamber (3a) capable of accommodating an increase in volume due to the expansion of the liquid, and a movable member (15) interposed between the first chamber and the first chamber (3a), which is adjacent to the first chamber and is capable of circulating outside air. Two chambers (3b), a spring member (16) which is provided in the second chamber and moves the movable member according to the amount of the viscous liquid accommodated in the first chamber, and the viscosity pressed by the vane A rotary damper is described that includes a flow path (6) that creates a resistance of a viscous liquid when the liquid passes through.
According to such a rotary damper, since the volume increase due to the expansion of the viscous liquid is accommodated in the first chamber (3a), an excessive force acts on the casing or the like when the viscous liquid expands due to an increase in temperature. Can be prevented.
However, since the rotary damper cannot change the size of the flow path (6) in response to the change in the viscosity of the viscous liquid, there is a problem that when the viscosity of the viscous liquid changes, the braking characteristics change accordingly. there were. That is, the viscosity of the viscous liquid changes with changes in the ambient temperature, and the viscosity of the viscous liquid increases at low temperatures, so the braking force increases. Was weak.
JP-A-6-117464

本発明が解決しようとする課題は、温度上昇に伴う粘性液体の膨張によりケーシング及び他の構成部材に過大な力が作用することを防止し、さらに、温度変化に伴う粘性液体の粘度変化によって制動特性が変化することも抑制し得るロータリーダンパを提供することである。   The problem to be solved by the present invention is to prevent an excessive force from acting on the casing and other components due to the expansion of the viscous liquid as the temperature rises. It is to provide a rotary damper capable of suppressing changes in characteristics.

本発明は、上記課題を解決するため、以下のロータリーダンパを提供する。
粘性液体が充填される作動室と、該作動室に配設され、回転運動により粘性液体を押圧するベーンと、前記作動室に連通し、粘性液体の膨張による体積増加分を収容可能な第1室と、該第1室との間に可動部材を介在させて前記第1室に隣接する、外気が流通可能な第2室と、該第2室に設けられ、前記第1室に収容される粘性液体の量に応じて前記可動部材を移動させるばね部材と、前記ベーンに押圧された粘性液体が通過するときに、粘性液体の抵抗を生じさせる流路とを具備するロータリーダンパであって、
前記可動部材に、前記流路内に配置され、前記可動部材の移動に伴い前記第1室の容積が拡大するときは、前記流路の大きさを小さくし、前記可動部材の移動に伴い前記第1室の容積が縮小するときは、前記流路の大きさを大きくする絞り部が設けられていることを特徴とするロータリーダンパ。
In order to solve the above problems, the present invention provides the following rotary damper.
A working chamber filled with a viscous liquid, a vane that is disposed in the working chamber and presses the viscous liquid by a rotational motion, communicates with the working chamber, and can accommodate a volume increase due to the expansion of the viscous liquid. A second chamber adjacent to the first chamber with a movable member interposed between the chamber and the first chamber, through which the outside air can circulate, and provided in the second chamber and accommodated in the first chamber. A rotary damper comprising: a spring member that moves the movable member in accordance with the amount of viscous liquid to be generated; and a flow path that generates resistance of the viscous liquid when the viscous liquid pressed by the vane passes. ,
When the volume of the first chamber is increased with the movement of the movable member, the size of the flow path is reduced and the movable member is moved with the movement of the movable member. A rotary damper characterized in that when the volume of the first chamber is reduced, a throttle portion is provided to increase the size of the flow path.

本発明によれば、温度の上昇によって粘性液体が膨張したときには、可動部材が作動室から第1室に流入する粘性液体の圧力を受けて移動し、第1室の容積を拡大させる。その結果、粘性液体の体積増加分が第1室に収容される。この際、粘性液体の粘度は温度の上昇によって低くなるため、粘性液体が流路を通過し易くなる。しかし、可動部材の移動に伴い第1室の容積が拡大するときは、流路の大きさを小さくする絞り部の作用により、流路の大きさが小さくなり、流路を通過する粘性液体の流量が減少するため、制動力が弱くなることを抑制することが可能となる。一方、温度が低下したときには、粘性液体の体積が減少するとともに、可動部材がばね部材の圧力を受けて移動し、第1室の容積を縮小させる。この際、粘性液体の粘度は温度の低下によって高くなるため、粘性液体が流路を通過し難くなる。しかし、可動部材の移動に伴い第1室の容積が縮小するときは、流路の大きさを大きくする絞り部の作用により、流路が大きくなり、流路を通過する粘性液体の流量が増加するため、制動力が強くなることを抑制することが可能となる。
従って、本発明によれば、温度上昇に伴う粘性液体の膨張によりケーシング及び他の構成部材に過大な力が作用することを防止することができ、さらに、温度変化に伴う粘性液体の粘度変化によって制動特性が変化することも抑制し得る。また、本発明は、可動部材に絞り部を設けることにより、可動部材の動きに合わせて流路の大きさを変化させる構成であるため、構造を簡素化し得るという利点がある。
According to the present invention, when the viscous liquid expands due to an increase in temperature, the movable member receives the pressure of the viscous liquid flowing from the working chamber into the first chamber and moves to expand the volume of the first chamber. As a result, the volume increase of the viscous liquid is accommodated in the first chamber. At this time, since the viscosity of the viscous liquid decreases with an increase in temperature, the viscous liquid easily passes through the flow path. However, when the volume of the first chamber increases with the movement of the movable member, the size of the flow path is reduced by the action of the restricting portion that reduces the size of the flow path, and the viscous liquid passing through the flow path is reduced. Since the flow rate is reduced, it is possible to suppress the braking force from being weakened. On the other hand, when the temperature decreases, the volume of the viscous liquid decreases and the movable member moves under the pressure of the spring member to reduce the volume of the first chamber. At this time, since the viscosity of the viscous liquid increases as the temperature decreases, it becomes difficult for the viscous liquid to pass through the flow path. However, when the volume of the first chamber decreases with the movement of the movable member, the flow path becomes larger due to the action of the restricting portion that increases the size of the flow path, and the flow rate of the viscous liquid passing through the flow path increases. Therefore, it becomes possible to suppress the braking force from increasing.
Therefore, according to the present invention, it is possible to prevent an excessive force from acting on the casing and other components due to the expansion of the viscous liquid accompanying the temperature rise, and further, due to the viscosity change of the viscous liquid accompanying the temperature change. It is also possible to suppress changes in the braking characteristics. Moreover, since this invention is a structure which changes the magnitude | size of a flow path according to a motion of a movable member by providing a throttle part in a movable member, there exists an advantage that a structure can be simplified.

以下、本発明の実施の形態を図面に示した実施例に従って説明する。   Hereinafter, embodiments of the present invention will be described with reference to examples shown in the drawings.

図1は本発明の実施例1に係るロータリーダンパの内部構造を示す図、図2は図1におけるA−A部断面図、図3は図1におけるB−B部断面図、図4は図1におけるC−C部断面図、図5は図2におけるA−A部断面図である。これらの図に示したように、本実施例に係るロータリーダンパは、ケーシング1、軸2、作動室3、隔壁4、ベーン5、逆止弁機構6、第1室7、第2室8、可動部材9、ばね部材10及び流路11を有して構成される。   1 is a view showing an internal structure of a rotary damper according to a first embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line AA in FIG. 1, FIG. 3 is a cross-sectional view taken along line BB in FIG. 1 is a cross-sectional view taken along the line CC in FIG. 1, and FIG. 5 is a cross-sectional view taken along the line AA in FIG. As shown in these drawings, the rotary damper according to this embodiment includes a casing 1, a shaft 2, a working chamber 3, a partition wall 4, a vane 5, a check valve mechanism 6, a first chamber 7, a second chamber 8, The movable member 9, the spring member 10, and the flow path 11 are included.

ケーシング1は、一端が開口し、他端が底壁1cにより閉塞された本体部1aと、該本体部1aの開口部を閉塞する蓋1bとを有して構成される(図2参照)。軸2は、一端側が蓋1bに支持され、他端側が底壁1cに支持されることにより、ケーシング1の内部に形成された空間において、回転し得るように設けられる(図2参照)。作動室3は、ケーシング1と軸2との間に形成され、隔壁4により仕切られている(図1参照)。作動室3には、粘性液体が充填される。隔壁4は、ケーシング1に固定されている(図4参照)。ベーン5は、軸2と一体に形成され、作動室3内に配設される(図1参照)。作動室3は、ベーン5が配設されることにより、圧力室3aと非圧力室3bに区画される(図1参照)。ベーン5は、逆止弁機構6を有して構成される。逆止弁機構6は、圧力室3aに連通する大孔部6aと、大孔部6a及び非圧力室3bに連通する小孔部6bと、大孔部6a内に設けられる弁体6cとを有して構成される(図3参照)。   The casing 1 includes a main body 1a having one end opened and the other end closed by a bottom wall 1c, and a lid 1b closing the opening of the main body 1a (see FIG. 2). The shaft 2 is provided so that one end side is supported by the lid 1b and the other end side is supported by the bottom wall 1c so that it can rotate in a space formed inside the casing 1 (see FIG. 2). The working chamber 3 is formed between the casing 1 and the shaft 2 and is partitioned by a partition wall 4 (see FIG. 1). The working chamber 3 is filled with a viscous liquid. The partition 4 is fixed to the casing 1 (see FIG. 4). The vane 5 is formed integrally with the shaft 2 and is disposed in the working chamber 3 (see FIG. 1). The working chamber 3 is partitioned into a pressure chamber 3a and a non-pressure chamber 3b by arranging the vanes 5 (see FIG. 1). The vane 5 includes a check valve mechanism 6. The check valve mechanism 6 includes a large hole portion 6a communicating with the pressure chamber 3a, a small hole portion 6b communicating with the large hole portion 6a and the non-pressure chamber 3b, and a valve body 6c provided in the large hole portion 6a. (See FIG. 3).

第1室7及び第2室8は、隔壁4に形成される(図2及び図4参照)。第1室7は、作動室3(非圧力室3b)に連通している(図1及び図4参照)。第2室8は、第1室7との間に可動部材9を介在させて第1室7に隣接している(図2及び図4参照)。隔壁4の底部には、第2室8に外気が流通できるようにするため、第2室8と外部を連通させる孔部4aが形成されている(図2及び図4参照)。可動部材9は、テーパ状の絞り部9aを有して構成される(図2及び図4参照)。可動部材9の両端には、Oリング12が配設されている(図2及び図4参照)。ばね部材10は、第2室8に設けられる(図2及び図4参照)。ばね部材10は、コイルばねからなる。流路11は、隔壁4の内部において、絞り部9aの周囲に形成される第1流路11aと、隔壁4の一面側に開口し、第1流路11aと圧力室3aとを連通させる第2流路11bと、隔壁4の他面側に開口し、第1流路11aと非圧力室3bとを連通させる第3流路11bとから構成される(図4及び図5参照)。可動部材9の一端に設けられたOリング12は、粘性液体が第1流路11aから第1室7へ漏出することを防ぐ役割を果たし、可動部材9の他端に設けられたOリング12は、粘性液体が第1流路11aから第2室8へ漏出することを防ぐ役割を果たしている。   The first chamber 7 and the second chamber 8 are formed in the partition wall 4 (see FIGS. 2 and 4). The first chamber 7 communicates with the working chamber 3 (non-pressure chamber 3b) (see FIGS. 1 and 4). The second chamber 8 is adjacent to the first chamber 7 with a movable member 9 interposed between the second chamber 8 and the first chamber 7 (see FIGS. 2 and 4). In the bottom of the partition wall 4, a hole 4 a that allows the second chamber 8 to communicate with the outside is formed in order to allow outside air to flow through the second chamber 8 (see FIGS. 2 and 4). The movable member 9 is configured to have a tapered throttle portion 9a (see FIGS. 2 and 4). O-rings 12 are disposed at both ends of the movable member 9 (see FIGS. 2 and 4). The spring member 10 is provided in the second chamber 8 (see FIGS. 2 and 4). The spring member 10 is a coil spring. The flow path 11 is opened to the inside of the partition wall 4 on the one surface side of the first flow path 11a formed around the throttle portion 9a and the partition wall 4 so that the first flow path 11a and the pressure chamber 3a communicate with each other. The second flow path 11b and the third flow path 11b that opens to the other surface side of the partition wall 4 and connects the first flow path 11a and the non-pressure chamber 3b (see FIGS. 4 and 5). The O-ring 12 provided at one end of the movable member 9 serves to prevent the viscous liquid from leaking from the first flow path 11 a to the first chamber 7, and the O-ring 12 provided at the other end of the movable member 9. Plays a role of preventing the viscous liquid from leaking from the first flow path 11 a to the second chamber 8.

上記のように構成されるロータリーダンパは、軸2が図1において時計回り方向へ回転すると、それに伴いベーン5が回転して圧力室3aの粘性液体を押圧する。このとき、逆止弁機構6は、図3に示したように、弁体6cが小孔部6bの開口部を塞ぐことにより、粘性液体がベーン5を挟んで圧力室3aに隣接する非圧力室3bへ流入することを阻止する。ベーン5に押圧された粘性液体は、流路11を通過して、隔壁4を挟んで圧力室3aに隣接する非圧力室3bへ流入する。粘性液体が第1流路11aを通過するときに、粘性液体の抵抗が生じる。この抵抗により、軸2の回転を緩慢にさせる制動力が発生する。   In the rotary damper configured as described above, when the shaft 2 rotates in the clockwise direction in FIG. 1, the vane 5 rotates accordingly and presses the viscous liquid in the pressure chamber 3 a. At this time, as shown in FIG. 3, the check valve mechanism 6 is configured so that the viscous liquid is adjacent to the pressure chamber 3 a with the vane 5 interposed between the valve body 6 c and the opening of the small hole portion 6 b. The flow into the chamber 3b is prevented. The viscous liquid pressed by the vane 5 passes through the flow path 11 and flows into the non-pressure chamber 3b adjacent to the pressure chamber 3a with the partition wall 4 interposed therebetween. When the viscous liquid passes through the first flow path 11a, resistance of the viscous liquid occurs. This resistance generates a braking force that slows the rotation of the shaft 2.

一方、軸2が図1において反時計回り方向へ回転すると、それに伴いベーン5が回転して非圧力室3bの粘性液体を押圧する。このとき、逆止弁機構6は、図8に示したように、弁体6cが小孔部6bの開口部を開放することにより、粘性液体がベーン5を挟んで非圧力室3bに隣接する圧力室3aへ流入することを許容する。粘性液体が小孔部6b及び大孔部6aを通過するときには、粘性液体の抵抗が生じないため、制動力が発生しない。   On the other hand, when the shaft 2 is rotated in the counterclockwise direction in FIG. 1, the vane 5 is rotated accordingly and presses the viscous liquid in the non-pressure chamber 3b. At this time, in the check valve mechanism 6, as shown in FIG. 8, when the valve body 6 c opens the opening of the small hole portion 6 b, the viscous liquid is adjacent to the non-pressure chamber 3 b with the vane 5 interposed therebetween. It is allowed to flow into the pressure chamber 3a. When the viscous liquid passes through the small hole portion 6b and the large hole portion 6a, no resistance of the viscous liquid is generated, so that no braking force is generated.

温度の上昇によって粘性液体が膨張したときには、粘性液体の体積増加分が作動室3(非圧力室3b)に連通する第1室7に流入する。可動部材9は、非圧力室3bから第1室7に流入する粘性液体の圧力を受けることにより、ばね部材10を圧縮しながら移動し、第1室7の容積を拡大させる(図6参照)。その結果、粘性液体の体積増加分が第1室7に収容される。この際、第2室8の容積は縮小され、その内部の気体は、孔部4aを通じて外部に排出される。   When the viscous liquid expands due to an increase in temperature, the increased volume of the viscous liquid flows into the first chamber 7 communicating with the working chamber 3 (non-pressure chamber 3b). The movable member 9 moves while compressing the spring member 10 by receiving the pressure of the viscous liquid flowing into the first chamber 7 from the non-pressure chamber 3b, and expands the volume of the first chamber 7 (see FIG. 6). . As a result, the volume increase of the viscous liquid is accommodated in the first chamber 7. At this time, the volume of the second chamber 8 is reduced, and the gas inside the second chamber 8 is discharged to the outside through the hole 4a.

可動部材9が第1室7の容積を拡大させる方向へ移動するときには、テーパ状に形成された絞り部9aが第1流路11a内で、図6において下方向へ移動する。流路11の大きさは、この際の第2流路11b及び第3流路11cに対する絞り部9aの相対的な位置関係により、小さくなる(図6参照)。従って、粘性液体の粘度が温度の上昇によって低くなっても、流路11を通過する粘性液体の流量を減少させることができ、その結果、制動力が弱くなることを抑制することができる。   When the movable member 9 moves in the direction of expanding the volume of the first chamber 7, the tapered portion 9a formed in a tapered shape moves downward in FIG. 6 in the first flow path 11a. The size of the flow path 11 becomes smaller due to the relative positional relationship of the throttle portion 9a with respect to the second flow path 11b and the third flow path 11c at this time (see FIG. 6). Therefore, even if the viscosity of the viscous liquid decreases with an increase in temperature, the flow rate of the viscous liquid passing through the flow path 11 can be reduced, and as a result, the braking force can be prevented from becoming weak.

温度が低下したときには、粘性液体の体積が減少するとともに、可動部材9がばね部材10の圧力を受けて移動し、第1室7の容積を縮小させる(図7参照)。この際、第2室8の容積は拡大され、その内部には、孔部4aを通じて外気が流入する。   When the temperature decreases, the volume of the viscous liquid decreases and the movable member 9 moves under the pressure of the spring member 10 to reduce the volume of the first chamber 7 (see FIG. 7). At this time, the volume of the second chamber 8 is enlarged, and outside air flows into the inside of the second chamber 8 through the hole 4a.

可動部材9が第1室7の容積を縮小させる方向へ移動するときには、テーパ状に形成された絞り部9aが第1流路11a内で、図7において上方向へ移動する。流路11の大きさは、この際の第2流路11b及び第3流路11cに対する絞り部9aの相対的な位置関係により、大きくなる(図7参照)。従って、粘性液体の粘度が温度の低下によって高くなっても、流路11を通過する粘性液体の流量を増加させることができ、その結果、制動力が強くなることを抑制することができる。   When the movable member 9 moves in the direction of reducing the volume of the first chamber 7, the tapered portion 9a formed in a tapered shape moves upward in FIG. 7 within the first flow path 11a. The size of the flow path 11 increases due to the relative positional relationship of the throttle portion 9a with respect to the second flow path 11b and the third flow path 11c at this time (see FIG. 7). Therefore, even if the viscosity of the viscous liquid increases due to a decrease in temperature, the flow rate of the viscous liquid passing through the flow path 11 can be increased, and as a result, it is possible to suppress an increase in braking force.

本実施例に係るロータリーダンパによれば、上記したように、温度上昇に伴う粘性液体の膨張によりケーシング1及び他の構成部材に過大な力が作用することを防止できるとともに、粘性液体の粘度変化により制動特性が変化することも抑制することができる。また、可動部材9に絞り部9aを設けることにより、可動部材9の動きに合わせて流路11の大きさを変化させる構成であるため、構造を簡素化し得るという利点がある。   According to the rotary damper according to the present embodiment, as described above, it is possible to prevent an excessive force from acting on the casing 1 and other components due to the expansion of the viscous liquid accompanying the temperature rise, and to change the viscosity of the viscous liquid. Therefore, it is possible to suppress the change of the braking characteristic. Further, since the movable member 9 is provided with the narrowed portion 9a, the size of the flow path 11 is changed in accordance with the movement of the movable member 9, so that there is an advantage that the structure can be simplified.

図9は本発明の実施例2に係るロータリーダンパの内部構造を示す図、図10は図9におけるA−A部断面図、図11は図9におけるB−B部断面図、図12は図10におけるA−A部断面図、図13は図10におけるB−B部断面図である。これらの図に示したように、本実施例に係るロータリーダンパは、ケーシング1、軸2、作動室3、隔壁4、ベーン5、逆止弁機構6、第1室7、第2室8、可動部材9、ばね部材10及び流路11を有して構成される。   9 is a view showing the internal structure of the rotary damper according to the second embodiment of the present invention, FIG. 10 is a cross-sectional view taken along the line AA in FIG. 9, FIG. 11 is a cross-sectional view taken along the line BB in FIG. 10 is a cross-sectional view taken along line AA in FIG. 10, and FIG. 13 is a cross-sectional view taken along line BB in FIG. As shown in these drawings, the rotary damper according to this embodiment includes a casing 1, a shaft 2, a working chamber 3, a partition wall 4, a vane 5, a check valve mechanism 6, a first chamber 7, a second chamber 8, The movable member 9, the spring member 10, and the flow path 11 are included.

ケーシング1は、一端が開口し、他端が底壁1cにより閉塞された本体部1aと、該本体部1aの開口部を閉塞する蓋1bとを有して構成される(図10参照)。軸2は、一端側が蓋1bに支持され、他端側が本体部1aに支持されることにより、ケーシング1の内部に形成された空間において、回転し得るように設けられる(図9及び図10参照)。軸2は、一端に開口する第1孔部2aと、他端に開口し、第1孔部2aよりも大きな内径を有する第2孔部2bと、第1孔部2aと第2孔部2bとの間に形成され、第1孔部2aよりも大きく、第2孔部2bよりも小さい内径を有する第3孔部2cとを有して構成される(図10参照)。第1孔部2aと第3孔部2c、第2孔部2bと第3孔部2cは、それぞれ相互に連通している。軸2は、さらに、仕切り部材2dを有して構成される(図9及び図10参照)。仕切り部材2dは、第2孔部2b内に設けられ、第2孔部2bを2つの室に区画する壁部2eを有して構成される。流路11は、壁部2eの中央を貫通する穴からなる(図9乃至図10参照)。作動室3は、ケーシング1と軸2との間に形成され、隔壁4により仕切られている(図9参照)。作動室3には、粘性液体が充填される。隔壁4は、本体部1aの周壁の一部を窪ませることにより形成されている(図9参照)。ベーン5は、軸2と一体に形成され、作動室3内に配設される(図9参照)。作動室3は、ベーン5が配設されることにより、圧力室3aと非圧力室3bに区画される(図9参照)。逆止弁機構6は、仕切り部材2dの壁部2eに形成された流路11の周囲に、壁部2eを貫通するように形成される弁孔6dと、壁部2eの一面に当接することにより、弁孔6dを閉塞する環状の弁体6cとを有して構成される(図9乃至図11参照)。   The casing 1 includes a main body 1a having one end opened and the other end closed by a bottom wall 1c, and a lid 1b closing the opening of the main body 1a (see FIG. 10). The shaft 2 is provided such that one end side is supported by the lid 1b and the other end side is supported by the main body 1a so that the shaft 2 can rotate in a space formed inside the casing 1 (see FIGS. 9 and 10). ). The shaft 2 has a first hole 2a that opens at one end, a second hole 2b that opens at the other end and has a larger inner diameter than the first hole 2a, and the first hole 2a and the second hole 2b. And a third hole 2c having an inner diameter that is larger than the first hole 2a and smaller than the second hole 2b (see FIG. 10). The first hole portion 2a and the third hole portion 2c, and the second hole portion 2b and the third hole portion 2c communicate with each other. The shaft 2 further includes a partition member 2d (see FIGS. 9 and 10). The partition member 2d is provided in the second hole 2b, and includes a wall 2e that divides the second hole 2b into two chambers. The flow path 11 consists of a hole penetrating the center of the wall part 2e (refer FIG. 9 thru | or FIG. 10). The working chamber 3 is formed between the casing 1 and the shaft 2 and is partitioned by a partition wall 4 (see FIG. 9). The working chamber 3 is filled with a viscous liquid. The partition wall 4 is formed by recessing a part of the peripheral wall of the main body 1a (see FIG. 9). The vane 5 is formed integrally with the shaft 2 and is disposed in the working chamber 3 (see FIG. 9). The working chamber 3 is divided into a pressure chamber 3a and a non-pressure chamber 3b by arranging the vanes 5 (see FIG. 9). The check valve mechanism 6 is in contact with one surface of the wall portion 2e and a valve hole 6d formed so as to penetrate the wall portion 2e around the flow path 11 formed in the wall portion 2e of the partition member 2d. Thus, it is configured to have an annular valve body 6c that closes the valve hole 6d (see FIGS. 9 to 11).

第1室7及び第2室8は、軸2に形成される(図10及び図11参照)。第1室7は、作動室3(非圧力室3b)に連通している(図11及び図12参照)。第1室7と非圧力室3bを連通させる第1通路13は、軸2の周壁及び仕切り部材2dの周壁を貫通するように形成されている。第2室8は、第1室7との間に可動部材9を介在させて第1室7に隣接している(図10及び図11参照)。軸2に形成された第1孔部2aは、第2室8に外気が流通できるようにするために、第2室8と外部を連通させる役割を果たす(図10及び図11参照)。壁部2eを挟んで第1室7に隣接する第3室15は、作動室3(圧力室3a)に連通している(図11及び図13参照)。第3室15と圧力室3aを連通させる第2通路14は、軸2の周壁及び仕切り部材2dの周壁を貫通するように形成されている。可動部材9は、その本体部分から突出する棒状の部分に、テーパ状の絞り部9aを有して構成される(図9乃至図12参照)。可動部材9には、Oリング12が配設されている(図10参照)。ばね部材10は、第2室8に設けられる(図10及び図11参照)。ばね部材10は、コイルばねからなる。可動部材9に設けられたOリング12は、粘性液体が第1室7から第2室8へ漏出することを防ぐ役割を果たしている。   The first chamber 7 and the second chamber 8 are formed on the shaft 2 (see FIGS. 10 and 11). The first chamber 7 communicates with the working chamber 3 (non-pressure chamber 3b) (see FIGS. 11 and 12). The 1st channel | path 13 which connects the 1st chamber 7 and the non-pressure chamber 3b is formed so that the surrounding wall of the axis | shaft 2 and the surrounding wall of the partition member 2d may be penetrated. The second chamber 8 is adjacent to the first chamber 7 with a movable member 9 interposed between the second chamber 8 and the first chamber 7 (see FIGS. 10 and 11). The first hole 2a formed in the shaft 2 plays a role of communicating the second chamber 8 with the outside in order to allow the outside air to flow through the second chamber 8 (see FIGS. 10 and 11). The third chamber 15 adjacent to the first chamber 7 across the wall 2e communicates with the working chamber 3 (pressure chamber 3a) (see FIGS. 11 and 13). The 2nd channel | path 14 which connects the 3rd chamber 15 and the pressure chamber 3a is formed so that the surrounding wall of the axis | shaft 2 and the surrounding wall of the partition member 2d may be penetrated. The movable member 9 is configured to have a tapered throttle portion 9a in a rod-like portion protruding from the main body portion (see FIGS. 9 to 12). An O-ring 12 is disposed on the movable member 9 (see FIG. 10). The spring member 10 is provided in the second chamber 8 (see FIGS. 10 and 11). The spring member 10 is a coil spring. The O-ring 12 provided on the movable member 9 serves to prevent the viscous liquid from leaking from the first chamber 7 to the second chamber 8.

上記のように構成されるロータリーダンパは、軸2が図9において時計回り方向へ回転すると、それに伴いベーン5が回転して圧力室3aの粘性液体を押圧する。このとき、逆止弁機構6は、図11に示したように、弁体6cが弁孔6dの開口部を塞ぐことにより、粘性液体が弁孔6dを通じて圧力室3aから非圧力室3bへ流入することを阻止する。それにより、ベーン5に押圧された粘性液体は、流路11のみを通過して圧力室3aから非圧力室3bへ流入することになる。かかる粘性液体が流路11を通過するときに、粘性液体の抵抗が生じる。この抵抗により、軸2の回転を緩慢にさせる制動力が発生する。   In the rotary damper configured as described above, when the shaft 2 rotates in the clockwise direction in FIG. 9, the vane 5 rotates accordingly and presses the viscous liquid in the pressure chamber 3 a. At this time, as shown in FIG. 11, the check valve mechanism 6 causes the viscous liquid to flow from the pressure chamber 3a to the non-pressure chamber 3b through the valve hole 6d when the valve body 6c closes the opening of the valve hole 6d. To stop doing. Thereby, the viscous liquid pressed by the vane 5 passes only through the flow path 11 and flows into the non-pressure chamber 3b from the pressure chamber 3a. When such viscous liquid passes through the flow path 11, resistance of the viscous liquid occurs. This resistance generates a braking force that slows the rotation of the shaft 2.

一方、軸2が図9において反時計回り方向へ回転すると、それに伴いベーン5が回転して非圧力室3bの粘性液体を押圧する。このとき、逆止弁機構6は、図16に示したように、弁体6cが弁孔6dの開口部を開放することにより、粘性液体が弁孔6dを通過して非圧力室3bから圧力室3aへ流入することを許容する。粘性液体が弁孔6dを通過するときには、粘性液体の抵抗が生じないため、制動力が発生しない。   On the other hand, when the shaft 2 rotates in the counterclockwise direction in FIG. 9, the vane 5 rotates accordingly and presses the viscous liquid in the non-pressure chamber 3b. At this time, as shown in FIG. 16, in the check valve mechanism 6, the valve body 6c opens the opening of the valve hole 6d so that the viscous liquid passes through the valve hole 6d and is pressurized from the non-pressure chamber 3b. It is allowed to flow into the chamber 3a. When the viscous liquid passes through the valve hole 6d, no resistance of the viscous liquid is generated, so that no braking force is generated.

温度の上昇によって粘性液体が膨張したときには、粘性液体の体積増加分が作動室3(非圧力室3b)に連通する第1室7に流入する。可動部材9は、非圧力室3bから第1室7に流入する粘性液体の圧力を受けることにより、ばね部材10を圧縮しながら移動し、第1室7の容積を拡大させる(図14参照)。その結果、粘性液体の体積増加分が第1室7に収容される。この際、第2室8の容積は縮小され、その内部の気体は、第1孔部2aを通じて外部に排出される。   When the viscous liquid expands due to an increase in temperature, the increased volume of the viscous liquid flows into the first chamber 7 communicating with the working chamber 3 (non-pressure chamber 3b). The movable member 9 moves while compressing the spring member 10 by receiving the pressure of the viscous liquid flowing into the first chamber 7 from the non-pressure chamber 3b, and expands the volume of the first chamber 7 (see FIG. 14). . As a result, the volume increase of the viscous liquid is accommodated in the first chamber 7. At this time, the volume of the second chamber 8 is reduced, and the gas inside the second chamber 8 is discharged to the outside through the first hole 2a.

可動部材9が第1室7の容積を拡大させる方向へ移動するときには、テーパ状に形成された絞り部9aが流路11内で、図14において上方向へ移動する。流路11の大きさは、この際の流路11に対する絞り部9aの相対的な位置関係により、小さくなる(図14参照)。従って、粘性液体の粘度が温度の上昇によって低くなっても、流路11を通過する粘性液体の流量を減少させることができ、その結果、制動力が弱くなることを抑制することができる。   When the movable member 9 moves in a direction in which the volume of the first chamber 7 is enlarged, the throttle portion 9a formed in a tapered shape moves upward in FIG. The size of the flow path 11 becomes smaller due to the relative positional relationship of the throttle portion 9a with respect to the flow path 11 at this time (see FIG. 14). Therefore, even if the viscosity of the viscous liquid decreases with an increase in temperature, the flow rate of the viscous liquid passing through the flow path 11 can be reduced, and as a result, the braking force can be prevented from becoming weak.

温度が低下したときには、粘性液体の体積が減少するとともに、可動部材9がばね部材10の圧力を受けて移動し、第1室7の容積を縮小させる(図15参照)。この際、第2室8の容積は拡大され、その内部には、第1孔部2aを通じて外気が流入する。   When the temperature decreases, the volume of the viscous liquid decreases and the movable member 9 moves under the pressure of the spring member 10 to reduce the volume of the first chamber 7 (see FIG. 15). At this time, the volume of the second chamber 8 is enlarged, and the outside air flows into the second chamber 8 through the first hole 2a.

可動部材9が第1室7の容積を縮小させる方向へ移動するときには、テーパ状に形成された絞り部9aが流路11内で、図15において下方向へ移動する。流路11の大きさは、この際の流路11に対する絞り部9aの相対的な位置関係により、大きくなる(図15参照)。従って、粘性液体の粘度が温度の低下によって高くなっても、流路11を通過する粘性液体の流量を増加させることができ、その結果、制動力が強くなることを抑制することができる。   When the movable member 9 moves in the direction of reducing the volume of the first chamber 7, the tapered portion 9a formed in a tapered shape moves downward in FIG. The size of the flow path 11 increases due to the relative positional relationship of the throttle portion 9a with respect to the flow path 11 at this time (see FIG. 15). Therefore, even if the viscosity of the viscous liquid increases due to a decrease in temperature, the flow rate of the viscous liquid passing through the flow path 11 can be increased, and as a result, it is possible to suppress an increase in braking force.

本実施例に係るロータリーダンパによれば、上記したように、温度上昇に伴う粘性液体の膨張によりケーシング1及び他の構成部材に過大な力が作用することを防止できるとともに、粘性液体の粘度変化により制動特性が変化することも抑制することができる。また、可動部材9に絞り部9aを設けることにより、可動部材9の動きに合わせて流路11の大きさを変化させる構成であるため、構造を簡素化し得るという利点がある。   According to the rotary damper according to the present embodiment, as described above, it is possible to prevent an excessive force from acting on the casing 1 and other components due to the expansion of the viscous liquid accompanying the temperature rise, and to change the viscosity of the viscous liquid. Therefore, it is possible to suppress the change of the braking characteristic. Further, since the movable member 9 is provided with the narrowed portion 9a, the size of the flow path 11 is changed in accordance with the movement of the movable member 9, so that there is an advantage that the structure can be simplified.

本発明の実施例1に係るロータリーダンパの内部構造を示す図である。It is a figure which shows the internal structure of the rotary damper which concerns on Example 1 of this invention. 図1におけるA−A部断面図である。It is an AA section sectional view in FIG. 図1におけるB−B部断面図である。It is a BB section sectional view in FIG. 図1におけるC−C部断面図である。It is CC sectional view taken on the line in FIG. 図2におけるA−A部断面図である。FIG. 3 is a cross-sectional view taken along line AA in FIG. 2. 温度上昇時における可動部材の動きを説明するための図である。It is a figure for demonstrating the motion of the movable member at the time of temperature rise. 温度低下時における可動部材の動きを説明するための図である。It is a figure for demonstrating the movement of the movable member at the time of temperature fall. 逆止弁機構の開弁状態を示す図である。It is a figure which shows the valve opening state of a non-return valve mechanism. 本発明の実施例2に係るロータリーダンパの内部構造を示す図である。It is a figure which shows the internal structure of the rotary damper which concerns on Example 2 of this invention. 図9におけるA−A部断面図である。FIG. 10 is a cross-sectional view taken along line AA in FIG. 9. 図9におけるB−B部断面図である。FIG. 10 is a cross-sectional view taken along the line BB in FIG. 9. 図10におけるA−A部断面図である。It is AA section sectional drawing in FIG. 図10におけるB−B部断面図である。It is BB part sectional drawing in FIG. 温度上昇時における可動部材の動きを説明するための図である。It is a figure for demonstrating the motion of the movable member at the time of temperature rise. 温度低下時における可動部材の動きを説明するための図である。It is a figure for demonstrating the movement of the movable member at the time of temperature fall. 逆止弁機構の開弁状態を示す図である。It is a figure which shows the valve opening state of a non-return valve mechanism.

符号の説明Explanation of symbols

1 ケーシング
1a 本体部
1b 蓋
1c 底壁
2 軸
2a 第1孔部
2b 第2孔部
2c 第3孔部
2d 仕切り部材
2e 壁部
3 作動室
3a 圧力室
3b 非圧力室
4 隔壁
4a 孔部
5 ベーン
6 逆止弁機構
6a 大孔部
6b 小孔部
6c 弁体
6d 弁孔
7 第1室
8 第2室
9 可動部材
9a 絞り部
10 ばね部材
11 流路
11a 第1流路
11b 第2流路
11c 第3流路
12 Oリング
13 第1通路
14 第2通路
15 第3室
DESCRIPTION OF SYMBOLS 1 Casing 1a Main-body part 1b Cover 1c Bottom wall 2 Shaft 2a 1st hole 2b 2nd hole 2c 3rd hole 2d Partition member 2e Wall part 3 Working chamber 3a Pressure chamber 3b Non-pressure chamber 4 Partition 4a Hole 5 Vane 6 check valve mechanism 6a large hole portion 6b small hole portion 6c valve body 6d valve hole 7 first chamber 8 second chamber 9 movable member 9a throttle portion 10 spring member 11 flow channel 11a first flow channel 11b second flow channel 11c Third flow path 12 O-ring 13 First passage 14 Second passage 15 Third chamber

Claims (1)

粘性液体が充填される作動室と、該作動室に配設され、回転運動により粘性液体を押圧するベーンと、前記作動室に連通し、粘性液体の膨張による体積増加分を収容可能な第1室と、該第1室との間に可動部材を介在させて前記第1室に隣接する、外気が流通可能な第2室と、該第2室に設けられ、前記第1室に収容される粘性液体の量に応じて前記可動部材を移動させるばね部材と、前記ベーンに押圧された粘性液体が通過するときに、粘性液体の抵抗を生じさせる流路とを具備するロータリーダンパであって、
前記可動部材に、前記流路内に配置され、前記可動部材の移動に伴い前記第1室の容積が拡大するときは、前記流路の大きさを小さくし、前記可動部材の移動に伴い前記第1室の容積が縮小するときは、前記流路の大きさを大きくする絞り部が設けられていることを特徴とするロータリーダンパ。
A working chamber filled with a viscous liquid, a vane that is disposed in the working chamber and presses the viscous liquid by a rotational motion, communicates with the working chamber, and can accommodate a volume increase due to the expansion of the viscous liquid. A second chamber adjacent to the first chamber with a movable member interposed between the chamber and the first chamber, through which the outside air can circulate, and provided in the second chamber and accommodated in the first chamber. A rotary damper comprising: a spring member that moves the movable member in accordance with the amount of viscous liquid to be generated; and a flow path that generates resistance of the viscous liquid when the viscous liquid pressed by the vane passes. ,
When the volume of the first chamber is increased with the movement of the movable member, the size of the flow path is reduced and the movable member is moved with the movement of the movable member. A rotary damper characterized in that when the volume of the first chamber is reduced, a throttle portion is provided to increase the size of the flow path.
JP2006264155A 2006-09-28 2006-09-28 Rotary damper Expired - Fee Related JP4837510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006264155A JP4837510B2 (en) 2006-09-28 2006-09-28 Rotary damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006264155A JP4837510B2 (en) 2006-09-28 2006-09-28 Rotary damper

Publications (2)

Publication Number Publication Date
JP2008082462A true JP2008082462A (en) 2008-04-10
JP4837510B2 JP4837510B2 (en) 2011-12-14

Family

ID=39353536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006264155A Expired - Fee Related JP4837510B2 (en) 2006-09-28 2006-09-28 Rotary damper

Country Status (1)

Country Link
JP (1) JP4837510B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140048363A1 (en) * 2011-04-12 2014-02-20 Kabushiki Kaisha Somic Ishikawa Rotary Damper
US9027979B2 (en) 2011-04-12 2015-05-12 Kabushiki Kaisha Somic Ishikawa Rotary damper and opening and closing mechanism for a vehicle door

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4938065A (en) * 1972-08-22 1974-04-09
JPS5412077A (en) * 1977-06-30 1979-01-29 Tokico Ltd Rotary type liquid buffer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4938065A (en) * 1972-08-22 1974-04-09
JPS5412077A (en) * 1977-06-30 1979-01-29 Tokico Ltd Rotary type liquid buffer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140048363A1 (en) * 2011-04-12 2014-02-20 Kabushiki Kaisha Somic Ishikawa Rotary Damper
US9027979B2 (en) 2011-04-12 2015-05-12 Kabushiki Kaisha Somic Ishikawa Rotary damper and opening and closing mechanism for a vehicle door
US9206875B2 (en) * 2011-04-12 2015-12-08 Kabushiki Kaisha Somic Ishikawa Rotary damper

Also Published As

Publication number Publication date
JP4837510B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP5179506B2 (en) Hinge device
JP2006226343A (en) Accumulator and shock absorber
JP6684925B2 (en) Thermostatic valve
JP2008291898A (en) Shock absorber for opening/closing apparatus operating device
JP4751879B2 (en) Rotary damper and console box
JP4837510B2 (en) Rotary damper
JPWO2005095821A1 (en) Rotary damper
JP4778819B2 (en) Speed response type air damper
JP4885617B2 (en) Door check device
JP2005249300A (en) Expansion valve
JP2005188636A (en) Rotary damper
JP2017211019A (en) Rotary Damper
JP2012197863A (en) Rotary damper
JP2006300158A (en) Damper device and opening/closing mechanism having the same
JP2009257456A (en) Shock absorber
JP5106347B2 (en) Hydraulic buffer
JP2009121497A (en) Double-cylinder type buffer
JP2006207700A (en) Fluid pressure damper and elevating storage device equipped therewith
JP2007085503A (en) Motion control device
JP6647967B2 (en) One-way rotary damper
JPWO2018174024A1 (en) Air damper
CA2831400A1 (en) Rotary damper
JP7246607B2 (en) floor hinge
JP2008303619A (en) Door closer
KR20090072628A (en) Rotation type oil damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110922

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110928

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees