JP2008078423A - Cooling structure of semiconductor power converter - Google Patents

Cooling structure of semiconductor power converter Download PDF

Info

Publication number
JP2008078423A
JP2008078423A JP2006256424A JP2006256424A JP2008078423A JP 2008078423 A JP2008078423 A JP 2008078423A JP 2006256424 A JP2006256424 A JP 2006256424A JP 2006256424 A JP2006256424 A JP 2006256424A JP 2008078423 A JP2008078423 A JP 2008078423A
Authority
JP
Japan
Prior art keywords
wind tunnel
cooling
semiconductor element
cooling air
semiconductor power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006256424A
Other languages
Japanese (ja)
Inventor
Hiroshi Shiroichi
洋 城市
Toshiyuki Noda
稔之 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2006256424A priority Critical patent/JP2008078423A/en
Publication of JP2008078423A publication Critical patent/JP2008078423A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor power converter which can cool electrical equipment other than a semiconductor element using a common cooling passage without lowering the cooling capability of the semiconductor element. <P>SOLUTION: The semiconductor power converter 1 includes the semiconductor element 100 and a second circuit component 150 that are housed in an enclosure. The enclosure also includes a wind tunnel 20 through which cooling air is sent out of the enclosure, and a cooling unit 10 which is exposed to cooling air in the wind tunnel and transmits heat generated from the semiconductor element to cooling wind. The wind tunnel includes an opening 200 which is located closer to the downwind side than the cooling unit and leads air heated by the second circuit component into the wind tunnel. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、スイッチング動作により可変電圧を得る半導体素子を備えた半導体電力変換装置の構造に関するものであり、特に上記半導体素子を冷却するための構造に関する。   The present invention relates to a structure of a semiconductor power conversion device including a semiconductor element that obtains a variable voltage by a switching operation, and more particularly to a structure for cooling the semiconductor element.

半導体電力変換装置は、インバータ回路とコンバータ回路を組み合わせてなる半導体電力変換回路を筐体内に収納している。これらの回路は、例えばIGBT(Insulated gate bipolar transistor)やMOSFET(Metal Oxide Semiconductor Field Effect Transistor )等の半導体素子やコンデンサ等の他の電気部品で構成されており、その半導体素子のスイッチング動作により可変電圧を得ている。   The semiconductor power conversion device houses a semiconductor power conversion circuit formed by combining an inverter circuit and a converter circuit in a casing. These circuits are composed of semiconductor elements such as IGBTs (Insulated gate bipolar transistors) and MOSFETs (Metal Oxide Semiconductor Field Effect Transistors) and other electrical components such as capacitors, and the variable voltage is changed by the switching operation of the semiconductor elements. Have gained.

その半導体素子やその他の電気部品は、半導体電力変換装置の動作で発熱し、装置全体を温度上昇させる。上記半導体素子を安定動作させるためには半導体素子を所定の温度範囲内に維持しなければならない。このため、通常、半導体電力変換装置ではそれを冷却するための工夫がなされている。   The semiconductor element and other electrical components generate heat by the operation of the semiconductor power conversion device, and raise the temperature of the entire device. In order to stably operate the semiconductor element, the semiconductor element must be maintained within a predetermined temperature range. For this reason, the semiconductor power converter usually has a device for cooling it.

例えば、その筐体内部において、各部品を半導体素子郡と他の電気部品郡のように分けて配置して、更に受熱部と放熱部をもつ冷却体を上記半導体素子郡に隣接させて配置する。そしてその放熱部側をその筐体外部の大気中に露出させるように構成して上記半導体素子を自然冷却させる。   For example, inside the casing, each component is arranged separately as a semiconductor element group and other electrical component groups, and a cooling body having a heat receiving part and a heat radiating part is arranged adjacent to the semiconductor element group. . The heat dissipation part is exposed to the atmosphere outside the housing, and the semiconductor element is naturally cooled.

また、半導体素子の冷却が自然冷却だけでは十分でない場合は、その筐体内部に風洞とファンを設けて、上記冷却体の放熱部をその風洞内に露出させるように構成する。この場合、ファンの回転により風洞内を冷却風が通り抜けるため、その放熱部を積極的に冷却することができる。   Further, in the case where natural cooling alone is not sufficient for cooling the semiconductor element, a wind tunnel and a fan are provided inside the casing so that the heat radiating portion of the cooling body is exposed in the wind tunnel. In this case, since the cooling air passes through the wind tunnel by the rotation of the fan, the heat radiating portion can be actively cooled.

なおこの他にも、上記その他の電気部品の冷却に関する技術を開示した文献がある。その文献では、主回路とコンデンサとの通風路を主回路通風路及びコンデンサ通風路のように分けて、それぞれの通風路を流体的に並列接続させた構成を開示している。この構成では主回路通風路の冷却風とコンデンサ通風路の冷却風とが分流されるため、相互の温度影響がなくある一定の冷却能力を得ることができる(特許文献1参照)。
特開平3−155696号公報
In addition to this, there is a document disclosing a technique related to cooling of the above-described other electrical components. The document discloses a configuration in which the ventilation path between the main circuit and the capacitor is divided into a main circuit ventilation path and a capacitor ventilation path, and the respective ventilation paths are fluidly connected in parallel. In this configuration, since the cooling air in the main circuit ventilation path and the cooling air in the condenser ventilation path are diverted, a certain cooling ability can be obtained without mutual influence of temperature (see Patent Document 1).
Japanese Patent Laid-Open No. 3-155696

上述のように、従来の半導体電力変換装置では、半導体素子の冷却が自然冷却だけでは十分でない場合、その筐体内に風洞を構成し、ファンなどでその風洞内に強制的に冷却風を送り込むようにして、冷却能力不足を回避していた。   As described above, in the conventional semiconductor power conversion device, when cooling of the semiconductor element is not sufficient only by natural cooling, a wind tunnel is formed in the casing, and the cooling air is forcibly sent into the wind tunnel by a fan or the like. Thus, the lack of cooling capacity was avoided.

しかし、このような構成では一般的に、その風洞を通じて冷却が行われるのは半導体素子のみであり、その他の電気部品は自然冷却に頼るものが多い。このため、他の電気部品の発熱量が高まるにつれて、その熱による温度上昇の影響も大きくなり、それらの電気部品を他の構造物から離して配置するなどの工夫が必要となる。よって、この構成にした場合に装置全体は大型化してしまい問題であった。   However, in such a configuration, generally, only the semiconductor element is cooled through the wind tunnel, and many other electrical components rely on natural cooling. For this reason, as the calorific value of other electric parts increases, the influence of the temperature rise due to the heat increases, and it is necessary to devise such arrangement that these electric parts are arranged away from other structures. Therefore, when this configuration is used, the entire apparatus becomes large, which is a problem.

また、一部には、半導体素子の放熱部を基準とする風洞内の上手側に又は下手側に上記その他の電気部品を配置して、風洞内に取り込んだ冷却風によりその電気部品を冷却する構成のものもある。しかし、このような構成にも問題がある。   In addition, in part, the other electrical components described above are arranged on the upper side or the lower side in the wind tunnel with respect to the heat radiating portion of the semiconductor element, and the electrical components are cooled by the cooling air taken into the wind tunnel. Some are configured. However, such a configuration also has a problem.

例えば半導体素子の放熱部の上手側に上記その他の電子部品を配置した場合は、半導体素子の放熱部に注がれる風は上記その他の電子部品の熱を奪った熱い空気である。このため、外部の空気を放熱部に注ぐ場合に比べて半導体素子を冷却する能力が著しく低下してしまうという問題が発生する。   For example, when the other electronic components are arranged on the upper side of the heat radiating portion of the semiconductor element, the wind poured into the heat radiating portion of the semiconductor element is hot air that has taken the heat of the other electronic components. For this reason, the problem that the capability to cool a semiconductor element will fall remarkably compared with the case where external air is poured into a thermal radiation part.

一方、半導体素子の放熱部の下手側に上記その他の電子部品を配置した場合、その上手側に上記その他の電子部品を配置した場合においても同様に言えることだが、その冷却風の通路を電子部品によって遮断することになる。このため、風洞内における冷却風の風通しが悪くなり、風洞内を移動する冷却風の風速の低下を招く。この場合の風洞内の圧力損失は高く、更にその風速を補うためにファンを大型化しなければならないため問題である。   On the other hand, when the other electronic components are arranged on the lower side of the heat radiating part of the semiconductor element, the same applies to the case where the other electronic components are arranged on the upper side. Will be blocked by. For this reason, the ventilation of the cooling air in the wind tunnel is deteriorated, and the speed of the cooling air moving in the wind tunnel is reduced. In this case, the pressure loss in the wind tunnel is high, and it is a problem because the fan must be enlarged in order to compensate for the wind speed.

また、引用文献1のように、主回路とコンデンサの専用の冷却用通路を別々に設ける場合も、やはり、部品点数が多くなり装置が大型化するので問題である。
そこで本発明は、上記問題を鑑みてなされた発明であり、半導体素子の冷却能力を低下させることなく共通の冷却用通路を利用してその他の電気部品を強制的に冷却することのできる半導体電力変換装置を提供することを目的とする。
Also, as in the case of the cited document 1, there is a problem in the case where separate cooling passages dedicated to the main circuit and the capacitor are separately provided because the number of parts increases and the apparatus becomes large.
Accordingly, the present invention has been made in view of the above problems, and is a semiconductor power that can forcibly cool other electrical components by using a common cooling passage without reducing the cooling capacity of the semiconductor element. An object is to provide a conversion device.

本発明は上記課題を解決するために以下のように構成する。
本発明の半導体電力変換装置の態様の一つは、半導体素子及び第二回路部品(上記半導体素子以外の電気部品であり、例えば発熱量の多いコンデンサなどがそれに相当する)を筐体内に備えることを前提に、上記筐体内には、該筐体の外部に冷却空気を送り出す風洞と、上記風洞内で上記冷却空気に曝されており、上記半導体素子から発生する熱を上記冷却空気に伝導させる冷却体と、を備え、上記風洞には上記第二回路部品により熱せられた空気を上記風洞内に導く開口部を備えるようにする。
In order to solve the above problems, the present invention is configured as follows.
One aspect of the semiconductor power conversion device of the present invention includes a semiconductor element and a second circuit component (an electrical component other than the above-described semiconductor element, for example, a capacitor with a large amount of generated heat, for example) provided in the housing. Assuming that, in the casing, a wind tunnel for sending cooling air to the outside of the casing, and the cooling air being exposed to the cooling air in the wind tunnel, the heat generated from the semiconductor element is conducted to the cooling air. A cooling body, and the wind tunnel is provided with an opening for guiding the air heated by the second circuit component into the wind tunnel.

なお、例えば、上記第二回路部品を取り巻く空間を上記開口部でのみ上記風洞内と導通するように構成しても良い。
本発明では、半導体素子の熱から冷却体を通じて熱せられた冷却空気がその風洞を通じて外部に強制的に送り出されると共に、上記第二回路部品周囲の熱せられた空気が上記風洞内に導かれる。この導かれた空気は、やはりその共通の風洞(共通の冷却通路、例えば冷却体の上手側を除く下手側の風洞である)を通じて外部に強制的に送り出される。
For example, the space surrounding the second circuit component may be configured to be electrically connected to the inside of the wind tunnel only at the opening.
In the present invention, the cooling air heated from the heat of the semiconductor element through the cooling body is forced out through the wind tunnel, and the heated air around the second circuit component is guided into the wind tunnel. This guided air is also forced out to the outside through the common wind tunnel (a common cooling passage, for example, a wind tunnel on the lower side excluding the upper side of the cooling body).

本発明では、半導体素子の冷却能力を低下させることなく共通の冷却通路を利用してその他の電気部品を強制冷却することができる。
また、風洞内にその他の電気部品を配置しないため、風洞内の冷却風の風通しが悪くならない。このため、風洞内の圧力損失を低く抑えることができ、ファンの大きさも極めて小さくできる。
In the present invention, other electric components can be forcibly cooled using a common cooling passage without reducing the cooling capacity of the semiconductor element.
Further, since no other electrical components are arranged in the wind tunnel, the ventilation of the cooling air in the wind tunnel does not deteriorate. For this reason, the pressure loss in the wind tunnel can be kept low, and the size of the fan can be made extremely small.

よって、装置全体をコンパクトに構成できる。   Therefore, the entire apparatus can be configured compactly.

以下、本発明を実施するための最良の形態について、図面を参照しながら詳細に説明する。
図1には、本発明の半導体電力変換装置の内部構造の一例を示している。
Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.
FIG. 1 shows an example of the internal structure of the semiconductor power conversion device of the present invention.

図1(a)は、半導体電力変換装置の内部を斜め方向から作図したものである。
また、図1(b)は図1(a)をA方向から作図した正面図である。
各図において、半導体電力変換装置の筐体を破線で示し、その内部構造を実線で示している。
FIG. 1A shows the interior of the semiconductor power conversion device drawn from an oblique direction.
FIG. 1B is a front view of FIG. 1A drawn from the A direction.
In each figure, the housing | casing of a semiconductor power converter device is shown with the broken line, and the internal structure is shown with the continuous line.

本発明の半導体電力変換装置は、図1に一例として示した半導体電力変換装置1にある通り、冷却体10と風洞20とを備えている。
上記冷却体10は、受熱部と放熱部とで構成されている。図の例では、水平に設置されている1枚の平板形状の部材10−1が上記受熱部である。また、平板形状部材10−1の下面から下方向に延びている数枚の放熱フィン10−2が上記放熱部である。
The semiconductor power conversion device of the present invention includes a cooling body 10 and a wind tunnel 20 as in the semiconductor power conversion device 1 shown as an example in FIG.
The cooling body 10 includes a heat receiving portion and a heat radiating portion. In the example of the figure, one flat plate member 10-1 installed horizontally is the heat receiving portion. In addition, several radiating fins 10-2 extending downward from the lower surface of the flat plate member 10-1 are the radiating portions.

上記平板形状部材10−1と上記放熱フィン10−2には、熱伝導の良い材料が使用されている。
上記風洞20は、上記受熱部の下からその後方(図1(a)の右斜め上方)に渡って構成されている。
The plate-shaped member 10-1 and the heat radiating fin 10-2 are made of a material having good heat conduction.
The wind tunnel 20 is configured from the bottom of the heat receiving portion to the rear thereof (slightly upper right in FIG. 1A).

受熱部である平板形状部材10−1の下に、正面と背面が開口した筒形状の風洞(前方の風洞)20−1が設けられている。この前方の風洞20−1は、内部で上記放熱フィン10−2が剥き出しになっており、平板形状部材10−1以外の外周面が板金部材で覆われている。   A cylindrical wind tunnel (front wind tunnel) 20-1 having an open front and back is provided under the flat plate-shaped member 10-1 that is a heat receiving portion. In the front wind tunnel 20-1, the radiating fin 10-2 is exposed inside, and the outer peripheral surface other than the flat plate member 10-1 is covered with a sheet metal member.

受熱部の後方には、これまた正面と背面が開口し、更に側面に開口部200を有する筒形状の風洞(後方の風洞)20−2が設けられている。本例の半導体電力変換装置1は、不図示のファンにより冷却風を正面から取り込んで背面から排気する形態のものである。このため、風洞20内を冷却風が通り抜けしやすいように、その後方の風洞20−2は前方の風洞20−1よりも大きめに設計されている。   Behind the heat receiving portion, a cylindrical wind tunnel (rear wind tunnel) 20-2 having a front surface and a rear surface opened and further having an opening 200 on the side surface is provided. The semiconductor power conversion device 1 of this example has a configuration in which cooling air is taken in from the front by a fan (not shown) and exhausted from the back. For this reason, the rear wind tunnel 20-2 is designed to be larger than the front wind tunnel 20-1 so that the cooling air can easily pass through the wind tunnel 20.

図2は、上記冷却体10と風洞20によって構成される冷却構造の分解図である。
同図に示されるように、後方の風洞20−2の正面20−2Aは前方の風洞20−1の背面20−1Bと略同じ大きさにまたはそれよりも少し小さめに開口し、前方の風洞20−1の背面20−1Bと後方の風洞20−2の正面20−2Aとを接続することにより、前方から後方にかけ、風洞20を筒の内部で連通させている。
FIG. 2 is an exploded view of a cooling structure constituted by the cooling body 10 and the wind tunnel 20.
As shown in the figure, the front surface 20-2A of the rear wind tunnel 20-2 is opened to be approximately the same size or slightly smaller than the rear surface 20-1B of the front wind tunnel 20-1, and the front wind tunnel By connecting the back surface 20-1B of 20-1 and the front surface 20-2A of the rear wind tunnel 20-2, the wind tunnel 20 is communicated inside the cylinder from the front to the rear.

そして、図1で示すように、平板形状部材10−1の上面10−1Aに半導体素子郡(本例では、二つの半導体素子)100を配置し、半導体素子郡100から離れた位置の風洞20外にその他の電気部品(本例では3つのコンデンサ)150を配置している。   Then, as shown in FIG. 1, the semiconductor element group (two semiconductor elements in this example) 100 is disposed on the upper surface 10-1 </ b> A of the flat plate-shaped member 10-1, and the wind tunnel 20 at a position away from the semiconductor element group 100. Other electrical components (in this example, three capacitors) 150 are arranged outside.

筐体内のそのコンデンサ150が曝されている空間は、上記開口部200でのみ風洞20内の空間に通じている。
さて、ここで、風洞20を通過する冷却風が各種電気部品を冷却する原理について説明する。
The space where the capacitor 150 is exposed in the housing communicates with the space in the wind tunnel 20 only at the opening 200.
Now, the principle of cooling various electric components by the cooling air passing through the wind tunnel 20 will be described.

図3は、風洞内を流れる冷却風の向きを示した図である。
図3(a)は、図1(a)に冷却風の向きを加えた図である。ただし、風洞20−2の開口部200における空気の流れが分かりやすいように、同図ではコンデンサを横にずらして示している。
FIG. 3 is a view showing the direction of the cooling air flowing in the wind tunnel.
Fig.3 (a) is the figure which added the direction of the cooling air to Fig.1 (a). However, in order to make it easy to understand the air flow in the opening 200 of the wind tunnel 20-2, in the same figure, the capacitor is shifted to the side.

また、図3(b)は、風洞20内の空気の流れを装置上方から示した図である。本図は、図3(a)のC−C´線の位置から上側を省略して装置上方から示している。
半導体電力変換装置1の駆動中は、常に、半導体素子100やコンデンサ150から大量の熱が発生する。半導体素子100で発生した熱は、冷却体10の平板形状部材10−1で吸収されて放熱フィン10−2へ伝導する。また、コンデンサ150で発生した熱は周囲に放たれ、コンデンサ150を取り囲んでいる空気に伝導する。
FIG. 3B is a view showing the air flow in the wind tunnel 20 from above the apparatus. In this figure, the upper side is omitted from the position of the line CC ′ in FIG.
A large amount of heat is always generated from the semiconductor element 100 and the capacitor 150 while the semiconductor power converter 1 is being driven. The heat generated in the semiconductor element 100 is absorbed by the flat plate member 10-1 of the cooling body 10 and is conducted to the radiation fin 10-2. Further, the heat generated in the capacitor 150 is released to the surroundings and is conducted to the air surrounding the capacitor 150.

風洞20内では、不図示のファンの回転により大気中の空気(冷却空気)が風洞20の正面側から導かれている(矢印W1)。
この冷却空気は、冷却風として先ず前方の風洞20−1内を通過する。この通過時はその冷却風に曝されている放熱フィン10−2から熱を奪うため、後方の風洞20−2内にはそこで熱せられた冷却空気が冷却風として送り込まれる(矢印W2)。
In the wind tunnel 20, air in the atmosphere (cooling air) is guided from the front side of the wind tunnel 20 by the rotation of a fan (not shown) (arrow W1).
This cooling air first passes through the front wind tunnel 20-1 as cooling air. During this passage, heat is taken away from the radiating fin 10-2 exposed to the cooling air, so that the cooling air heated there is sent as cooling air into the rear wind tunnel 20-2 (arrow W2).

後方の風洞20−2では、その熱せられた冷却空気がそのまま後方まで送り出される(矢印W3)。この際、側面の開口部200からコンデンサ150に熱せられた風洞20外の空気が引き込まれる(矢印W4)。そして、それらの熱い空気を背面の開口部から大気中に放出する(矢印W5)。   In the rear wind tunnel 20-2, the heated cooling air is sent out as it is (arrow W3). At this time, the air outside the wind tunnel 20 heated by the capacitor 150 is drawn from the side opening 200 (arrow W4). And those hot air is discharge | released in air | atmosphere from the opening part of a back surface (arrow W5).

このようにして、常に、半導体素子100から発生した熱及びコンデンサ150から発生した熱は共通の風洞20を通じて外部に強制的に放出され、半導体素子やコンデンサ等が所定範囲内に温度が保たれる。   In this way, the heat generated from the semiconductor element 100 and the heat generated from the capacitor 150 are always forcibly released to the outside through the common wind tunnel 20, and the temperature of the semiconductor element, the capacitor, etc. is maintained within a predetermined range. .

なお、冷却体10の構造や大きさ、ファンが発生する風力、及び風洞20の形状等は、半導体素子100やその他の電気部品150の冷却が十分に行える程度に設計されれば良い。   Note that the structure and size of the cooling body 10, the wind force generated by the fan, the shape of the wind tunnel 20, and the like may be designed so that the semiconductor element 100 and other electrical components 150 can be sufficiently cooled.

特に、開口部200は、本例のように後方の風洞200−2に設けることが望ましいが、前方の風洞20−1に設けても良い。後者の場合においてもある程度の効果は得られる。   In particular, the opening 200 is desirably provided in the rear wind tunnel 200-2 as in this example, but may be provided in the front wind tunnel 20-1. Even in the latter case, a certain degree of effect can be obtained.

また、本例では風洞20の側面に開口部200を設けたが、その他の電気部品150が曝されている空間と風洞20内とが連通すれば効果は得られるので、その他の面に開口部200を設けても良い。またこのとき、その開口部200の数や形状や大きさは適宜決めて良い。   Further, in this example, the opening 200 is provided on the side surface of the wind tunnel 20. However, since the effect can be obtained if the space where the other electrical components 150 are exposed communicates with the inside of the wind tunnel 20, the opening is formed on the other surface. 200 may be provided. At this time, the number, shape, and size of the openings 200 may be appropriately determined.

本実施形態では、一例として、風洞の上記冷却体よりも風下側に開口部200を備えるようにした。このため、半導体素子で発生した熱を基に冷却体を通じて熱せられた冷却空気がその風洞を通じて外部に強制的に送り出されると共に、上記冷却体よりも風下側の開口部200において上記その他の電気部品周囲の熱せられた空気が上記風洞内に導かれる。この導かれた空気は、やはりその共通の風洞(共通の冷却通路、この場合は冷却体の上手側を除く下手側の風洞である)を通じて外部に強制的に送り出される。   In the present embodiment, as an example, the opening 200 is provided on the leeward side of the cooling body of the wind tunnel. For this reason, the cooling air heated through the cooling body based on the heat generated in the semiconductor element is forcibly sent to the outside through the wind tunnel, and the other electric components are provided in the opening 200 on the leeward side of the cooling body. The ambient heated air is guided into the wind tunnel. This guided air is also forced out through the common wind tunnel (common cooling passage, in this case, the wind tunnel on the lower side excluding the upper side of the cooling body).

以上より、半導体素子の冷却能力を低下させることなく共通の冷却通路を利用してその他の電気部品を強制冷却することができる。
また、風洞内の圧力損失を低く抑えることができ、装置内を冷却空気で効率よく通風できる。これは、ファンの大型化の抑止になる。
As described above, other electrical components can be forcibly cooled using the common cooling passage without reducing the cooling capacity of the semiconductor element.
Moreover, the pressure loss in the wind tunnel can be kept low, and the inside of the apparatus can be efficiently ventilated with cooling air. This prevents the fan from becoming large.

また、風洞に開口部を設けるだけでよいため、半導体電力変換装置の小型化、安価な製造が可能になる。   Moreover, since it is only necessary to provide an opening in the wind tunnel, the semiconductor power conversion device can be reduced in size and manufactured at low cost.

本発明の半導体電力変換装置の内部構造の一例である。It is an example of the internal structure of the semiconductor power converter device of this invention. 冷却体10と風洞20によって構成される冷却構造の分解図である。2 is an exploded view of a cooling structure constituted by a cooling body 10 and a wind tunnel 20. FIG. 風洞内を流れる冷却風の向きを示した図である。It is the figure which showed the direction of the cooling air which flows through the inside of a wind tunnel.

符号の説明Explanation of symbols

1 半導体電力変換装置
10 冷却体
10−1 平板形状の部材
10−2 放熱フィン
100 半導体素子郡
150 その他の電気部品
20 風洞
20−1 前方の風洞
20−2 後方の風洞
200 開口部
DESCRIPTION OF SYMBOLS 1 Semiconductor power converter 10 Cooling body 10-1 Flat plate member 10-2 Radiation fin 100 Semiconductor element group 150 Other electrical components 20 Wind tunnel 20-1 Front wind tunnel 20-2 Rear wind tunnel 200 Opening part

Claims (2)

半導体素子及び第二回路部品を筐体内に備える半導体電力変換装置であって、
前記筐体内には、
前記筐体の外部に冷却空気を送り出す風洞と、
前記風洞内で前記冷却空気に曝されており、前記半導体素子から発生する熱を前記冷却空気に伝導させる冷却体と、
が構成されており、
前記風洞には前記第二回路部品により熱せられた空気を前記風洞内に導く開口部が構成されている、
ことを特徴とする半導体電力変換装置。
A semiconductor power conversion device including a semiconductor element and a second circuit component in a housing,
In the housing,
A wind tunnel for sending cooling air to the outside of the housing;
A cooling body that is exposed to the cooling air in the wind tunnel and that conducts heat generated from the semiconductor element to the cooling air;
Is configured,
An opening for guiding the air heated by the second circuit component into the wind tunnel is configured in the wind tunnel.
The semiconductor power converter characterized by the above-mentioned.
前記第二回路部品を取り巻く空間は前記開口部でのみ前記風洞内と導通している、
ことを特徴とする請求項1に記載の半導体電力変換装置。
The space surrounding the second circuit component is electrically connected to the wind tunnel only at the opening.
The semiconductor power conversion device according to claim 1.
JP2006256424A 2006-09-21 2006-09-21 Cooling structure of semiconductor power converter Pending JP2008078423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006256424A JP2008078423A (en) 2006-09-21 2006-09-21 Cooling structure of semiconductor power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006256424A JP2008078423A (en) 2006-09-21 2006-09-21 Cooling structure of semiconductor power converter

Publications (1)

Publication Number Publication Date
JP2008078423A true JP2008078423A (en) 2008-04-03

Family

ID=39350170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006256424A Pending JP2008078423A (en) 2006-09-21 2006-09-21 Cooling structure of semiconductor power converter

Country Status (1)

Country Link
JP (1) JP2008078423A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012186352A (en) * 2011-03-07 2012-09-27 Fuji Electric Co Ltd Cooling structure of semiconductor power conversion device
JP2016032367A (en) * 2014-07-29 2016-03-07 株式会社安川電機 Electric power conversion system
WO2019111755A1 (en) * 2017-12-07 2019-06-13 三菱電機株式会社 Semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000174474A (en) * 1998-12-02 2000-06-23 Nippon Columbia Co Ltd Cooling device of electronic equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000174474A (en) * 1998-12-02 2000-06-23 Nippon Columbia Co Ltd Cooling device of electronic equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012186352A (en) * 2011-03-07 2012-09-27 Fuji Electric Co Ltd Cooling structure of semiconductor power conversion device
JP2016032367A (en) * 2014-07-29 2016-03-07 株式会社安川電機 Electric power conversion system
US9585293B2 (en) 2014-07-29 2017-02-28 Kabushiki Kaisha Yaskawa Denki Power conversion apparatus
WO2019111755A1 (en) * 2017-12-07 2019-06-13 三菱電機株式会社 Semiconductor device
JPWO2019111755A1 (en) * 2017-12-07 2020-04-09 三菱電機株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
JP4655987B2 (en) Electronics
JP5532623B2 (en) Air conditioner electrical equipment
JP2008103576A (en) Motor controller
US7345876B2 (en) Compact converter
EP3160029B1 (en) Inverter
BR122022019305B1 (en) APPLIANCE INCLUDING A ENGINE ASSEMBLY
JP2009147187A (en) Cooling device of heating element
JP2012060027A (en) Electronic equipment device
JP4720688B2 (en) Electronic control unit cooling system
JP2012119588A (en) Control unit with cooling function
JP2007005283A5 (en)
JP2006324464A (en) Structure for cooling electronic apparatus
JP2007165423A (en) Electronic appliance device
JP2008078423A (en) Cooling structure of semiconductor power converter
JP2005136211A (en) Cooling device
JP6074346B2 (en) Switchboard equipment
JP2012186352A (en) Cooling structure of semiconductor power conversion device
JPH08149621A (en) Sealed power source cooling device
JP5869093B1 (en) control panel
CN115413200A (en) Power equipment and photovoltaic system
US11540427B2 (en) Converter having a separate interior
JP2008166531A (en) Heat-dissipation structure
JP2019165588A (en) Cooling device, power converter, and storage battery system
US20240074091A1 (en) Directed cooling in heat producing systems
US20110198061A1 (en) Heat exchange device for closed electrical apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101228