JP2008077741A - Diffraction grating measurement apparatus and diffraction grating measurement method - Google Patents

Diffraction grating measurement apparatus and diffraction grating measurement method Download PDF

Info

Publication number
JP2008077741A
JP2008077741A JP2006255112A JP2006255112A JP2008077741A JP 2008077741 A JP2008077741 A JP 2008077741A JP 2006255112 A JP2006255112 A JP 2006255112A JP 2006255112 A JP2006255112 A JP 2006255112A JP 2008077741 A JP2008077741 A JP 2008077741A
Authority
JP
Japan
Prior art keywords
diffraction
diffraction grating
luminance distribution
diffracted light
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006255112A
Other languages
Japanese (ja)
Inventor
Atsushi Saito
敦 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2006255112A priority Critical patent/JP2008077741A/en
Publication of JP2008077741A publication Critical patent/JP2008077741A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Head (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a diffraction grating measurement apparatus which has simple and compact constitution and nonetheless can accurately measure a diffraction angle and an intensity branching ratio in a diffraction grating and even when diffraction beams in the diffraction grating come close to and overlap with each other, can quickly separate the diffraction beams into several distribution functions by a simple method, and to provide a diffraction grating measurement method. <P>SOLUTION: The diffraction grating measurement apparatus is provided with: an imaging means 3 acquiring two-dimensional luminance distribution information on a luminous flux passing through the diffraction grating 1; a means 4 separating a luminance distribution in a diffraction direction by the diffraction grating 1 and a luminance distribution in a direction orthogonal to the diffraction direction from each other based on the two-dimensional luminance distribution information obtained by the imaging means 3 and determining parameters for luminous flux widths of respective beams diffracted by the diffraction grating by using the luminance distribution in the direction orthogonal to the diffraction direction; and the means 4 separating respective diffracted beam components diffracted by the diffraction grating 1 based on the luminance distribution in the diffraction direction and the determined parameters. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光ピックアップ装置や各種光学測定機器等に用いられる回折格子における回折角及び強度分岐比の測定を行う回折格子の測定装置及び回折格子の測定方法に関する。   The present invention relates to a diffraction grating measuring apparatus and a diffraction grating measuring method for measuring a diffraction angle and an intensity branching ratio in a diffraction grating used in an optical pickup device, various optical measuring instruments, and the like.

近年、高密度化及び高精度化の著しい光ピックアップ装置や、各種の光学測定機器等においては、回折格子が必要不可欠な部品となっている。機能性光学素子として用いられることが多い回折格子には、回折角や強度分岐比等の光学特性について、高い精度が求められている。したがって、回折格子の製造段階においては、回折角や強度分岐比等の光学特性の測定、確認を高精度、かつ、迅速に行うことが求められる。   In recent years, diffraction gratings have become an indispensable component in optical pickup devices and various optical measuring instruments that are remarkably increased in density and accuracy. A diffraction grating often used as a functional optical element is required to have high accuracy with respect to optical characteristics such as a diffraction angle and an intensity branching ratio. Therefore, at the manufacturing stage of the diffraction grating, it is required to measure and confirm optical characteristics such as diffraction angle and intensity branching ratio with high accuracy and speed.

従来、回折格子における回折角や強度分岐比の測定は、図9に示すように、回折格子を経た回折光をスクリーン上に投射し、各回折光の光スポットを分離させ、各光スポットの光強度及び各光スポット間の距離を測定して行っている。   Conventionally, as shown in FIG. 9, the diffraction angle and intensity branching ratio in a diffraction grating are measured by projecting diffracted light that has passed through the diffraction grating onto a screen, separating the light spots of each diffracted light, and the light of each light spot. This is done by measuring the intensity and the distance between each light spot.

すなわち、この測定方法においては、図示しないアパーチャ及びコリメータレンズを用いて円形に成型したレーザ光源からの平行光を、回折格子101に入射させ、回折させて、スクリーン102に投射させる。そして、スクリーン102に投射された0次光の光スポット103及び±1次回折光の光スポット104の強度及び相対位置を測定する。回折格子101からスクリーン102までの距離をL、0次光の光スポット103と1次回折光の光スポット104との距離をd、0次光の光スポット103、1次回折光の光スポット104の強度をそれぞれP、Pとすると、回折角θは、以下の(式1)で表され、強度分岐比Tは、以下の(式2)で表される。
θ=tan−1(d/L)≒d/L ・・・(式1)
T=P/P ・・・(式2)
That is, in this measurement method, parallel light from a laser light source molded in a circular shape using an aperture and a collimator lens (not shown) is incident on the diffraction grating 101, diffracted, and projected onto the screen 102. Then, the intensity and relative position of the light spot 103 of 0th order light and the light spot 104 of ± 1st order diffracted light projected on the screen 102 are measured. The distance from the diffraction grating 101 to the screen 102 is L, the distance between the zeroth-order light spot 103 and the first-order diffracted light spot 104 is d, the zero-order light spot 103, and the intensity of the first-order diffracted light spot 104. When the the P 0, P 1, respectively, the diffraction angle theta, expressed in the following equation (1), the intensity branching ratio T is expressed by the following equation (2).
θ = tan −1 (d / L) ≈d / L (Formula 1)
T = P 1 / P 0 (Equation 2)

光強度の測定は、光検出器やCCDカメラ等を用いて行われる。光検出器による測定では、各回折光の光スポットにおける光強度を座標ごとに個別に計測し、(式1)及び(式2)を用いて、回折角及び強度分岐比を算出する。CCDカメラによる測定では、図10に示すように、各回折光の光スポットの輝度分布情報が得られる。この輝度分布情報から、各光スポット間の距離d及び各光スポットの光強度(輝度)P,Pを得て、(式1)及び(式2)を用いて、回折角及び強度分岐比を算出する。 The light intensity is measured using a photodetector, a CCD camera, or the like. In the measurement by the photodetector, the light intensity at the light spot of each diffracted light is individually measured for each coordinate, and the diffraction angle and the intensity branching ratio are calculated using (Expression 1) and (Expression 2). In the measurement by the CCD camera, as shown in FIG. 10, luminance distribution information of the light spot of each diffracted light is obtained. From this luminance distribution information, the distance d between each light spot and the light intensity (luminance) P 0 , P 1 of each light spot are obtained, and the diffraction angle and intensity branching are obtained using (Expression 1) and (Expression 2). Calculate the ratio.

一方、非特許文献1には、スペクトル等の波形データを、数個の分布関数(例えば、ガウス分布)に分離する波形分析の方法が記載されている。この方法においては、まず、原波形の3次微分から、ピーク値やピーク個数を見積もる。次に、以下の(式3)に示す2乗残差Eが最小となるように、シンプレックス法により、各パラメータの値を修正しながら、計算を繰り返す。ここで、Qは、測定値、P(x)は、フィッティング関数、Nは、測定サンプル数である。分布関数には、幅、ピーク強度及び相対位置の3つのパラメータがあり、分離するピーク個数をn個とすると、最適化するパラメータの個数は、3n個となる。
E=Σ i=1{Q−P(x)} ・・・(式3)
On the other hand, Non-Patent Document 1 describes a waveform analysis method for separating waveform data such as a spectrum into several distribution functions (for example, Gaussian distribution). In this method, first, the peak value and the number of peaks are estimated from the third derivative of the original waveform. Next, the calculation is repeated while correcting the value of each parameter by the simplex method so that the square residual E shown in the following (Equation 3) is minimized. Here, Q i is a measurement value, P (x i ) is a fitting function, and N is the number of measurement samples. The distribution function has three parameters: width, peak intensity, and relative position. If the number of peaks to be separated is n, the number of parameters to be optimized is 3n.
E = Σ N i = 1 { Q i -P (x i)} 2 ··· ( Equation 3)

図11は、CCDカメラにより得られた輝度分布情報から、この方法によって、0次光及び±1次回折光の3つの波形に分離する手順を示すフローチャートである。この方法においては、まず、測定によって得られた原波形にノイズが多いかどうかを判断し(F101)、原波形にノイズが多い場合には、原波形のスムージングを行い(F102)、その後、スプライン法により、3次微分を行う(F103)。原波形にノイズが少ない場合には、原波形をそのまま用いて、スプライン法により、3次微分を行う(F103)
次に、3次微分の値が0になる点を検出し、ピークの数と、ピークの位置の初期値を決める(F104)。そして、各ピークの半値半幅と高さの初期値を、自動計算により求める(F105)。次に、シンプレックス法により、2乗残差Eが最小となるように、各パラメータを最適化していく(F106)。この場合、3つのピークに分離するが、中央のピークの位置は0なので、事実上は、8つのパラメータを最適化することとなる。最後に、最適化が適切かどうかを確認し(F107)、適切であれば、フィッティング終了する(F109)。最適化が適切かどうかの確認において、解に収束しない場合や、Eの値が大きい場合など、不適切な場合には、ピークパラメータを修正し、さらにフィッティングを繰り返し(F108)、再び確認を行う(F107)。
FIG. 11 is a flowchart showing a procedure for separating the luminance distribution information obtained by the CCD camera into three waveforms of 0th order light and ± 1st order diffracted light by this method. In this method, first, it is determined whether or not the original waveform obtained by measurement is noisy (F101). If the original waveform is noisy, the original waveform is smoothed (F102). The third order differentiation is performed by the method (F103). When there is little noise in the original waveform, the original waveform is used as it is, and the third order differentiation is performed by the spline method (F103).
Next, the point at which the value of the third derivative becomes 0 is detected, and the number of peaks and the initial value of the peak position are determined (F104). Then, the initial half-width and height of each peak are obtained by automatic calculation (F105). Next, each parameter is optimized by the simplex method so that the square residual E is minimized (F106). In this case, although it is separated into three peaks, since the position of the central peak is 0, in effect, eight parameters are optimized. Finally, it is confirmed whether the optimization is appropriate (F107), and if it is appropriate, the fitting is finished (F109). When checking whether optimization is appropriate or not, such as when it does not converge to the solution or when the value of E is large, the peak parameter is corrected, and fitting is repeated (F108), and the check is performed again. (F107).

この方法によれば、図12に示すように、CCDカメラによる測定で得られた輝度分布情報において、図13に示すように、0次光と±1次回折光とが接近して重なってしまい、輝度分布のピークが見えにくくなっている場合であっても、計測された輝度分布から、例えば、三つの異なるガウス分布に分離して、0次光の光スポット及び±1次回折光の光スポットの光強度と位置とを推定することができる。したがって、この方法を用いれば、回折格子における回折角及び強度分岐比を測定することが可能である。   According to this method, as shown in FIG. 12, in the luminance distribution information obtained by the measurement by the CCD camera, as shown in FIG. 13, the 0th order light and the ± 1st order diffracted light approach each other and overlap, Even if the peak of the luminance distribution is difficult to see, the measured luminance distribution is separated into, for example, three different Gaussian distributions, and the zero-order light spot and the ± first-order diffracted light spot are separated. The light intensity and position can be estimated. Therefore, by using this method, it is possible to measure the diffraction angle and the intensity branching ratio in the diffraction grating.

J.Chem.Softwere,Vol.6,No.2,p.55〜p.66(2000)J. Chem. Softwere, Vol. 6, No. 2, p. 55-p. 66 (2000)

ところで、前述した従来の回折格子の測定装置においては、以下のような問題がある。すなわち、従来の回折格子の測定装置において、光検出器を用いて光強度の測定を行う場合には、各次数の回折光をはっきりと分離させる必要があるため、回折格子と検出器との間の距離を十分に大きくとる必要があり、測定装置の全長が大きくなってしまう。また、この測定装置においては、各次数の回折光の光スポットの位置関係を正確に測定することが困難である。   By the way, the conventional diffraction grating measuring apparatus described above has the following problems. In other words, when measuring the light intensity using a photodetector in a conventional diffraction grating measurement device, it is necessary to clearly separate the diffracted light of each order, so that the diffraction grating and the detector are not separated. Needs to be sufficiently large, and the total length of the measuring apparatus becomes large. Further, in this measuring apparatus, it is difficult to accurately measure the positional relationship between the light spots of the diffracted lights of the respective orders.

従来の回折格子の測定装置において、CCDカメラを用いて光強度の測定を行うようにすれば、各光スポットの位置情報と輝度分布情報とを1つの画像情報として取り込めるため、回折格子とCCDカメラとの間の距離を短くすることができる。また、この場合には、各次数の回折光の光スポットの位置関係を、輝度分布情報に照合して、正確に知ることができる。0次光と1次回折光とが重なり、図13に示すように、輝度分布のピークが接近してしまった場合においても、前述したように、原波形データを数個の分布関数に分離する方法を用いて、各次数の回折光の成分に分離することが可能である。   In a conventional diffraction grating measuring apparatus, if the light intensity is measured using a CCD camera, the position information and luminance distribution information of each light spot can be taken in as one image information. The distance between can be shortened. In this case, the positional relationship of the light spots of the diffracted lights of the respective orders can be accurately known by collating with the luminance distribution information. Even when the zero-order light and the first-order diffracted light overlap and the peak of the luminance distribution approaches as shown in FIG. 13, as described above, the method of separating the original waveform data into several distribution functions Can be separated into components of diffracted light of each order.

しかし、原波形データを数個の分布関数に分離する方法には、以下のような問題点がある。すなわち、この方法においては、図11に示すように、最適化すべきパラメータの数が多く、また、高度な計算を要するステップが多いため、この方法を実行するには、高速のコンピュータが必要であり、計算に長時間を要するという問題がある。   However, the method of separating the original waveform data into several distribution functions has the following problems. That is, in this method, as shown in FIG. 11, the number of parameters to be optimized is large, and there are many steps that require high-level calculations. Therefore, a high-speed computer is required to execute this method. There is a problem that it takes a long time to calculate.

そこで、本発明は、前述の実情に鑑みて提案されるものであって、簡易、かつ、小型な構成でありながら、回折格子における回折角及び強度分岐比を正確に測定することができ、また、回折格子における各回折光が接近し重なっている場合であっても、簡単な手法によって、迅速に数個の分布関数に分離することにより各回折光の強度ピーク値や座標を検出することができる回折格子の測定装置及び回折格子の測定方法を提供することを目的とする。   Therefore, the present invention has been proposed in view of the above circumstances, and can measure the diffraction angle and the intensity branching ratio in the diffraction grating accurately while having a simple and compact configuration. Even when the diffracted lights in the diffraction grating are close and overlapping, it is possible to detect the intensity peak value and coordinates of each diffracted light by separating them into several distribution functions quickly by a simple method. An object of the present invention is to provide a diffraction grating measuring device and a diffraction grating measuring method.

前述の課題を解決し、前記目的を達成するため、本発明に係る回折格子の測定装置は、以下の構成のいずれか一を有するものである。   In order to solve the above-described problems and achieve the above object, a diffraction grating measuring apparatus according to the present invention has any one of the following configurations.

〔構成1〕
回折格子における回折角及び強度分岐比を測定する回折格子の測定装置であって、回折格子を経た光束の2次元輝度分布情報を取得する撮像手段と、撮像手段によって得られた2次元輝度分布情報に基づいて回折格子による回折方向の輝度分布と回折方向に直交する方向の輝度分布とを分離し回折方向に直交する方向の輝度分布によって回折格子による各回折光の光束幅に関するパラメータを決定する手段と、回折方向の輝度分布とパラメータとによって回折格子による各回折光成分を分離する手段とを備えたことを特徴とするものである。
[Configuration 1]
A diffraction grating measuring apparatus for measuring a diffraction angle and an intensity branching ratio in a diffraction grating, an imaging unit for acquiring two-dimensional luminance distribution information of a light beam that has passed through the diffraction grating, and two-dimensional luminance distribution information obtained by the imaging unit Based on the above, the luminance distribution in the diffraction direction by the diffraction grating and the luminance distribution in the direction orthogonal to the diffraction direction are separated, and the parameter relating to the beam width of each diffracted light by the diffraction grating is determined by the luminance distribution in the direction orthogonal to the diffraction direction And means for separating each diffracted light component by the diffraction grating according to the luminance distribution in the diffraction direction and the parameters.

〔構成2〕
回折格子における回折角及び強度分岐比を測定する回折格子の測定装置であって、回折格子を経た光束の2次元輝度分布情報を取得する撮像手段と、撮像手段によって得られた2次元輝度分布情報に基づいて回折格子による回折方向の輝度分布と回折方向に直交する方向の輝度分布とを分離するとともに回折方向の輝度分布から最も輝度の高い回折光の中心を通る回折方向に直交する方向の輝度分布を差し引くことによって回折格子による各回折光成分を分離する手段とを備えたことを特徴とするものである。
[Configuration 2]
A diffraction grating measuring apparatus for measuring a diffraction angle and an intensity branching ratio in a diffraction grating, an imaging unit for acquiring two-dimensional luminance distribution information of a light beam that has passed through the diffraction grating, and two-dimensional luminance distribution information obtained by the imaging unit The luminance distribution in the diffraction direction by the diffraction grating and the luminance distribution in the direction orthogonal to the diffraction direction are separated based on the luminance and the luminance in the direction orthogonal to the diffraction direction passing through the center of the diffracted light having the highest luminance from the luminance distribution in the diffraction direction. And a means for separating each diffracted light component by the diffraction grating by subtracting the distribution.

また、本発明に係る回折格子の測定方法は、以下の構成のいずれか一を有するものである。   The diffraction grating measuring method according to the present invention has any one of the following configurations.

〔構成3〕
回折格子における回折角及び強度分岐比を測定する回折格子の測定方法であって、回折格子を経た光束の2次元輝度分布情報を取得し、2次元輝度分布情報に基づいて回折格子による回折方向の輝度分布と回折方向に直交する方向の輝度分布とを分離し、回折方向に直交する方向の輝度分布によって回折格子による各回折光の光束幅に関するパラメータを決定し、回折方向の輝度分布とパラメータとによって回折格子による各回折光成分を分離することを特徴とするものである。
[Configuration 3]
A diffraction grating measuring method for measuring a diffraction angle and an intensity branching ratio in a diffraction grating, wherein two-dimensional luminance distribution information of a light beam that has passed through the diffraction grating is obtained, and a diffraction direction of the diffraction grating is determined based on the two-dimensional luminance distribution information. The brightness distribution and the brightness distribution in the direction orthogonal to the diffraction direction are separated, and the parameter related to the beam width of each diffracted light by the diffraction grating is determined by the brightness distribution in the direction orthogonal to the diffraction direction. The diffracted light components by the diffraction grating are separated by the above.

〔構成4〕
回折格子における回折角及び強度分岐比を測定する回折格子の測定方法であって、回折格子を経た光束の2次元輝度分布情報を取得し、2次元輝度分布情報に基づいて回折格子による回折方向の輝度分布と回折方向に直交する方向の輝度分布とを分離し、回折方向の輝度分布から最も輝度の高い回折光の中心を通る回折方向に直交する方向の輝度分布を差し引くことによって回折格子による各回折光成分を分離することを特徴とするものである。
[Configuration 4]
A diffraction grating measuring method for measuring a diffraction angle and an intensity branching ratio in a diffraction grating, wherein two-dimensional luminance distribution information of a light beam that has passed through the diffraction grating is obtained, and a diffraction direction of the diffraction grating is determined based on the two-dimensional luminance distribution information. Separate the luminance distribution and the luminance distribution in the direction perpendicular to the diffraction direction, and subtract the luminance distribution in the direction orthogonal to the diffraction direction passing through the center of the diffracted light with the highest luminance from the luminance distribution in the diffraction direction. The diffracted light component is separated.

構成1を有する本発明に係る回折格子の測定装置においては、撮像手段によって得られた2次元輝度分布情報に基づいて回折格子による回折方向の輝度分布と回折方向に直交する方向の輝度分布とを分離し回折方向に直交する方向の輝度分布によって回折格子による各回折光の光束幅に関するパラメータを決定する手段と、回折方向の輝度分布とパラメータとによって回折格子による各回折光成分を分離する手段とを備えているので、隣の次数の回折光の光スポット同士を完全に分離させる必要がなく、測定用光学系の長さを短くすることができ、また、回折角の小さい回折格子についても測定可能である。なお、本発明は、回折格子における回折方向が1次元方向であれば、多数の光スポットについて適用可能である。   In the diffraction grating measuring apparatus according to the present invention having the configuration 1, the luminance distribution in the diffraction direction by the diffraction grating and the luminance distribution in the direction orthogonal to the diffraction direction are obtained based on the two-dimensional luminance distribution information obtained by the imaging means. Means for determining a parameter relating to the beam width of each diffracted light beam by the diffraction grating based on the luminance distribution in a direction orthogonal to the diffraction direction; and means for separating each diffracted light component by the diffraction grating based on the luminance distribution and parameter in the diffraction direction; Because there is no need to completely separate the light spots of adjacent orders of diffracted light, the length of the measurement optical system can be shortened, and diffraction gratings with a small diffraction angle can also be measured. Is possible. The present invention is applicable to a large number of light spots as long as the diffraction direction in the diffraction grating is a one-dimensional direction.

また、構成2を有する本発明に係る回折格子の測定装置においては、撮像手段によって得られた2次元輝度分布情報に基づいて回折格子による回折方向の輝度分布と回折方向に直交する方向の輝度分布とを分離するとともに回折方向の輝度分布から最も輝度の高い回折光の中心を通る回折方向に直交する方向の輝度分布を差し引くことによって回折格子による各回折光成分を分離する手段を備えているので、輝度分布中で、高次回折光のピーク位置が検出しにくい場合でも、最も輝度の高い回折光の中心を通る回折方向に直交する方向の輝度分布を用いて、簡単な手法で各回折光のピークを分離することができる。したがって、この回折格子の測定装置においては、測定可能な回折角の分解能の向上や、測定用光学系の小型化を図ることができる。   Further, in the diffraction grating measuring apparatus according to the present invention having the configuration 2, the luminance distribution in the diffraction direction by the diffraction grating and the luminance distribution in the direction orthogonal to the diffraction direction based on the two-dimensional luminance distribution information obtained by the imaging means. And a means for separating each diffracted light component by the diffraction grating by subtracting the brightness distribution in the direction orthogonal to the diffraction direction passing through the center of the diffracted light with the highest brightness from the brightness distribution in the diffraction direction. Even if it is difficult to detect the peak position of high-order diffracted light in the brightness distribution, the brightness distribution in the direction orthogonal to the diffraction direction passing through the center of the diffracted light with the highest brightness can be Peaks can be separated. Therefore, in this diffraction grating measuring apparatus, it is possible to improve the resolution of measurable diffraction angles and to reduce the size of the measuring optical system.

構成3を有する本発明に係る回折格子の測定方法においては、回折格子を経た光束の2次元輝度分布情報に基づいて回折格子による回折方向の輝度分布と回折方向に直交する方向の輝度分布とを分離し、回折方向に直交する方向の輝度分布によって回折格子による各回折光の光束幅に関するパラメータを決定し、回折方向の輝度分布とパラメータとによって回折格子による各回折光成分を分離するので、隣の次数の回折光の光スポット同士を完全に分離させる必要がなく、測定用光学系の長さを短くすることができ、また、回折角の小さい回折格子についても測定可能である。なお、本発明は、回折格子における回折方向が1次元方向であれば、多数の光スポットについて適用可能である。   In the method for measuring a diffraction grating according to the present invention having the configuration 3, the luminance distribution in the diffraction direction by the diffraction grating and the luminance distribution in the direction orthogonal to the diffraction direction are obtained based on the two-dimensional luminance distribution information of the light beam that has passed through the diffraction grating. The parameters relating to the beam width of each diffracted light beam by the diffraction grating are determined by the luminance distribution in the direction orthogonal to the diffraction direction, and each diffracted light component by the diffraction grating is separated by the luminance distribution and parameter in the diffraction direction. It is not necessary to completely separate the light spots of the diffracted light of the order, the length of the measuring optical system can be shortened, and a diffraction grating having a small diffraction angle can be measured. The present invention is applicable to a large number of light spots as long as the diffraction direction in the diffraction grating is a one-dimensional direction.

構成4を有する本発明に係る回折格子の測定方法においては、回折格子を経た光束の2次元輝度分布情報に基づいて回折格子による回折方向の輝度分布と回折方向に直交する方向の輝度分布とを分離し、回折方向の輝度分布から最も輝度の高い回折光の中心を通る回折方向に直交する方向の輝度分布を差し引くことによって回折格子による各回折光成分を分離するので、輝度分布中で、高次回折光のピーク位置が検出しにくい場合でも、最も輝度の高い回折光の中心を通る回折方向に直交する方向の輝度分布を用いて、簡単な手法で各回折光のピークを分離することができる。したがって、この回折格子の測定方法を用いれば、測定可能な回折角の分解能の向上や、測定用光学系の小型化を図ることができる。   In the method for measuring a diffraction grating according to the present invention having the configuration 4, the luminance distribution in the diffraction direction by the diffraction grating and the luminance distribution in the direction orthogonal to the diffraction direction are obtained based on the two-dimensional luminance distribution information of the light beam that has passed through the diffraction grating. Separates each diffracted light component by the diffraction grating by subtracting the brightness distribution in the direction orthogonal to the diffraction direction passing through the center of the diffracted light with the highest brightness from the brightness distribution in the diffraction direction. Even if it is difficult to detect the peak position of the next diffracted light, the peak of each diffracted light can be separated by a simple method using the luminance distribution in the direction perpendicular to the diffraction direction passing through the center of the diffracted light with the highest luminance. . Therefore, by using this diffraction grating measurement method, it is possible to improve the resolution of measurable diffraction angles and to reduce the size of the measurement optical system.

すなわち、本発明は、簡易、かつ、小型な構成でありながら、回折格子における回折角及び強度分岐比を正確に測定することができ、また、回折格子における各回折光が接近し重なっている場合であっても、簡単な手法によって、迅速に数個の分布関数に分離することにより各回折光の強度ピーク値や座標を検出することができる回折格子の測定装置及び回折格子の測定方法を提供することができるものである。   That is, the present invention can accurately measure the diffraction angle and the intensity branching ratio in the diffraction grating while having a simple and small configuration, and each diffracted light in the diffraction grating approaches and overlaps. Even so, a diffraction grating measuring device and a diffraction grating measuring method capable of detecting the intensity peak value and coordinates of each diffracted light by quickly separating them into several distribution functions by a simple method are provided. Is something that can be done.

以下、本発明に係る回折格子の測定装置の構成及び回折格子の測定方法について詳細に説明する。なお、本発明に係る回折格子の測定方法は、以下に述べる本発明に係る回折格子の測定装置において実行される。   Hereinafter, the configuration of the diffraction grating measurement apparatus and the diffraction grating measurement method according to the present invention will be described in detail. The diffraction grating measuring method according to the present invention is executed in the diffraction grating measuring apparatus according to the present invention described below.

〔第1の実施の形態〕
図1は、本発明に係る回折格子の測定装置の第1の実施の形態における構成を示す平面図である。
[First Embodiment]
FIG. 1 is a plan view showing a configuration of a diffraction grating measuring apparatus according to a first embodiment of the present invention.

この回折格子の測定装置は、光源として、例えば、発光波長405nmの半導体レーザを有しており、この光源からの光は、等方的にビーム整形された後、アパーチャー及びコリメータレンズにより断面円形の平行光束となされて、図1に示すように、被測定対象となる回折格子1に入射される。   This diffraction grating measuring device has, for example, a semiconductor laser having an emission wavelength of 405 nm as a light source. Light from this light source is isotropically beam-shaped, and then has a circular cross section by an aperture and a collimator lens. As shown in FIG. 1, the light beam is made into a parallel light beam and is incident on the diffraction grating 1 to be measured.

この回折格子の測定装置において、回折格子1は、図示しない治具を介して、X軸、Y軸及びZ軸方向の可動ステージ及びX軸回り及びY軸回りのチルトステージにより支持されており、所望の入射角で光源からの光束が入射されるようになっている。   In this diffraction grating measuring apparatus, the diffraction grating 1 is supported by a movable stage in the X-axis, Y-axis, and Z-axis directions and a tilt stage around the X-axis and the Y-axis via a jig (not shown). A light beam from the light source is incident at a desired incident angle.

回折格子1を経た光束は、NDフィルタ2を透過して、撮像手段となるCCDカメラ3によって受光され撮像される。NDフィルタ2は、透過光量を調節し、CCDカメラ3によって撮像される画像の輝度を適切に調整するためのものである。また、CCDカメラ3は、入力ゲインレベル調整ができるようになっており、撮像可能な輝度範囲のダイナミックレンジを最大限に活用できるようになっている。   The light beam that has passed through the diffraction grating 1 passes through the ND filter 2 and is received and imaged by the CCD camera 3 serving as an imaging means. The ND filter 2 is for adjusting the amount of transmitted light and appropriately adjusting the luminance of an image captured by the CCD camera 3. The CCD camera 3 can adjust the input gain level so that the dynamic range of the luminance range that can be imaged can be utilized to the maximum.

また、回折格子1とCCDカメラ3との間の距離を常に正確に測ることができるように、回折格子1を支持する各ステージとしては、メモリ機能を有するものが使用されている。   In addition, each stage that supports the diffraction grating 1 has a memory function so that the distance between the diffraction grating 1 and the CCD camera 3 can always be accurately measured.

CCDカメラ3から出力される画像信号は、2次元輝度分布情報として、コンピュータ4に送られる。このコンピュータ4は、後述するように、CCDカメラ3によって得られた2次元輝度分布情報に基づいて回折格子1による回折方向の輝度分布と回折方向に直交する方向の輝度分布とを分離し、回折方向に直交する方向の輝度分布によって、回折格子1による各回折光の光束幅に関するパラメータを決定する手段として、また、回折方向の輝度分布とパラメータとによって回折格子1による各回折光成分を分離する手段として、CCDカメラ3から送られた画像信号に基づく画像解析を行う。このコンピュータ4が画像解析する画像信号においては、例えば、各ピクセルが0から1023までの輝度のダイナミックレンジを有している。また、CCDカメラ3から出力される画像信号は、コンピュータ4において、モニタにより画像として表示される。   An image signal output from the CCD camera 3 is sent to the computer 4 as two-dimensional luminance distribution information. As will be described later, the computer 4 separates the luminance distribution in the diffraction direction by the diffraction grating 1 and the luminance distribution in the direction perpendicular to the diffraction direction based on the two-dimensional luminance distribution information obtained by the CCD camera 3, and performs diffraction. As a means for determining a parameter relating to the beam width of each diffracted light beam by the diffraction grating 1 by the luminance distribution in the direction orthogonal to the direction, each diffracted light component by the diffraction grating 1 is separated by the luminance distribution and parameter in the diffraction direction. As a means, image analysis based on the image signal sent from the CCD camera 3 is performed. In the image signal analyzed by the computer 4, for example, each pixel has a dynamic range of luminance from 0 to 1023. The image signal output from the CCD camera 3 is displayed as an image on the computer 4 by the monitor.

この実施の形態において測定対象となる回折格子1は、入射光の波長が405nmである場合において、0次光に対する±1次回折光の回折角が、例えば、0.015°、また、0次光に対する+1次回折光の強度分岐比が50%、−1次回折光の強度分岐比が30%という設計値によって作製された回折素子である。なお、この実施の形態においては、±2次以上の高次回折光については考慮していないが、本発明は、以下に述べる手法を順次適用すれば、高次回折光についても適用できる。   In the diffraction grating 1 to be measured in this embodiment, when the wavelength of incident light is 405 nm, the diffraction angle of ± 1st order diffracted light with respect to 0th order light is, for example, 0.015 °, and 0th order light. This is a diffractive element manufactured with a design value in which the intensity branching ratio of + 1st order diffracted light is 50% and the intensity branching ratio of −1st order diffracted light is 30%. In this embodiment, high-order diffracted light of ± 2nd order or higher is not considered, but the present invention can also be applied to high-order diffracted light if the following methods are sequentially applied.

図2は、CCDカメラによって撮像された画像(a)及び0次光及び±1次回折光に分割された画像(b)を示す正面図である。   FIG. 2 is a front view showing an image (a) imaged by a CCD camera and an image (b) divided into 0th-order light and ± 1st-order diffracted light.

この回折格子の測定装置においては、図2中の(a)に示すように、回折格子における回折方向、すなわち、±1次回折光が表れる方向に伸びた楕円形状の二次元輝度分布情報が得られる。そして、この回折格子の測定装置においては、得られた二次元輝度分布情報に基づいて、以下に述べる解析手法により、図2中の(b)に示すように、0次光及の成分び±1次回折光の成分に分割する。   In this diffraction grating measuring apparatus, as shown in FIG. 2A, elliptical two-dimensional luminance distribution information extending in the diffraction direction of the diffraction grating, that is, in the direction in which ± first-order diffracted light appears is obtained. . In this diffraction grating measuring apparatus, based on the obtained two-dimensional luminance distribution information, as shown in (b) of FIG. Divided into components of the first-order diffracted light.

まず、回折格子1に代えて基準スケールをCCDカメラ3により撮像し、画像解析して、CCDにおける1ピクセルに相当する長さを算出しておく。さらに、CCDカメラ3と回折格子1(基準スケール)との間の距離を測定し、これらの結果から、1ピクセルに相当する角度を求めると、4.3×10−4〔deg/pix〕となった。以下の実施の形態においては、この値を用いている。 First, instead of the diffraction grating 1, a reference scale is imaged by the CCD camera 3, and image analysis is performed to calculate a length corresponding to one pixel in the CCD. Further, when the distance between the CCD camera 3 and the diffraction grating 1 (reference scale) is measured and an angle corresponding to one pixel is obtained from these results, 4.3 × 10 −4 [deg / pix] is obtained. became. This value is used in the following embodiments.

そして、基準スケールに代えて回折格子1を設置し、CCDカメラ3により光スポットの撮像を行うことにより、図2中の(a)に示すように、二次元輝度分布情報を得る。   Then, the diffraction grating 1 is installed instead of the reference scale, and the light spot is picked up by the CCD camera 3 to obtain two-dimensional luminance distribution information as shown in FIG.

この解析手法においては、得られた二次元輝度分布情報について、回折格子1における回折方向であるX軸と、回折方向に直交する方向であるY軸を確定する。各軸の決め方としては、例えば、まず、光源の出力を上げ、または、NDフィルタ2を透過率の高いものに交換し、あるいは、CCDカメラ3の感度を上げることにより、2次以上の回折光も画像に表示されるようにする。そして、高次回折光を用いて、まず、回折方向であるX軸を確定し、次に、光スポットの中心を通りX軸に垂直な軸として、Y軸を確定することができる。ただし、各軸の決め方としては、このような手法に限定されるものではない。   In this analysis method, for the obtained two-dimensional luminance distribution information, an X axis that is a diffraction direction in the diffraction grating 1 and a Y axis that is a direction orthogonal to the diffraction direction are determined. As a method for determining each axis, for example, first, the output of the light source is increased, or the ND filter 2 is replaced with one having a high transmittance, or the sensitivity of the CCD camera 3 is increased, so that the diffracted light of the second or higher order is obtained. Also be displayed on the image. Then, using the higher-order diffracted light, first, the X axis that is the diffraction direction can be determined, and then the Y axis can be determined as an axis that passes through the center of the light spot and is perpendicular to the X axis. However, how to determine each axis is not limited to such a method.

図3は、X軸方向及びY軸方向の輝度分布情報を示すグラフである。   FIG. 3 is a graph showing luminance distribution information in the X-axis direction and the Y-axis direction.

そして、X軸及びY軸を確定させた後に、図3に示すように、X軸上の輝度分布情報及びY軸上の輝度分布情報を得る。この輝度分布情報においては、Y軸方向よりもX軸方向に広がった輝度分布となっている。   Then, after determining the X axis and the Y axis, as shown in FIG. 3, luminance distribution information on the X axis and luminance distribution information on the Y axis are obtained. In this luminance distribution information, the luminance distribution is wider in the X-axis direction than in the Y-axis direction.

次に、X軸方向の輝度分布を三つの成分に分解し、0次光と±1次回折光に分離する。ここで、各成分は、全てが等方的なガウス分布とみなすことができる。得られた全体の輝度分布情報をP(x,y)とし、また0次及び±1次回折光をそれぞれP(x,y)、P+1(x,y)、P−1(x,y)とし、以下の(式4)、(式5−1)、(式5−2)及び(式5−3)で表す。
P(x,y)=P−1(x,y)+P(x,y)+P+1(x,y) ・・(式4)
−1(x,y)=A・t−1・exp〔−a{(x+X+y}〕 ・・(式5−1)
(x,y)=A・exp{−a(x+y)} ・・(式5−2)
+1(x,y)=A・t+1・exp〔−a{(x+X+y}〕 ・・(式5−3)
Next, the luminance distribution in the X-axis direction is decomposed into three components and separated into zero-order light and ± first-order diffracted light. Here, all the components can be regarded as an isotropic Gaussian distribution. The obtained entire luminance distribution information is P (x, y), and the 0th and ± 1st order diffracted lights are P 0 (x, y), P +1 (x, y), and P −1 (x, y), respectively. And the following (Expression 4), (Expression 5-1), (Expression 5-2) and (Expression 5-3).
P (x, y) = P −1 (x, y) + P 0 (x, y) + P +1 (x, y) (Equation 4)
P −1 (x, y) = A · t −1 · exp [−a {(x + X ) 2 + y 2 }] (Equation 5-1)
P 0 (x, y) = A · exp {−a (x 2 + y 2 )} (Equation 5-2)
P +1 (x, y) = A · t + 1 · exp [−a {(x + X + ) 2 + y 2 }] (Equation 5-3)

ここで、Aは、振幅を表すパラメータであり、t±1は、0次光に対する±1次回折光の強度比であり、aは、分布の広がりをあらわすパラメータであり、X±は、それぞれ0次光に対する±1次回折光の位置座標を表している。このとき、0次光のピーク位置を0とするとわかりやすい。なお、ガウス分布の幅aは、0次及び±1次回折光において同一であることとしている。 Here, A is a parameter representing amplitude, t ± 1 is an intensity ratio of ± 1st order diffracted light with respect to 0th order light, a is a parameter representing the spread of distribution, and X ± is 0 respectively. The position coordinates of ± 1st order diffracted light with respect to the next light are shown. At this time, it is easy to understand when the peak position of the zero-order light is zero. Note that the width a of the Gaussian distribution is the same in the 0th order and ± 1st order diffracted light.

測定された光スポットについて、Y軸上の輝度分布Py(X=0)は、以下の(式6)のように表すことができる。
Py(y)=P(0,y)=P(0,y)+P−1(0,y)+P+1(0,y)
・・・(式6)
For the measured light spot, the luminance distribution Py (X = 0) on the Y-axis can be expressed as in the following (Equation 6).
Py (y) = P (0, y) = P 0 (0, y) + P −1 (0, y) + P +1 (0, y)
... (Formula 6)

ここで、Pyは、3つのガウス分布のピーク位置がすべて中心(Y=0)にあるため、振幅A及び幅aの2つのパラメータのみによってフィッティングすることが可能である。ガウス分布において、振幅及び幅のパラメータは、互いに関連の弱いパラメータであるため、即座にパラメータを決定することができる。したがって、この実施の形態においては、まず、Y軸方向の輝度分布をPyにフィッティングする。また、フィッティングの際は、以下の(式7)に示す2乗残差Eyが最小となるように、各パラメータを最適化する。なお、Qyは、Y軸方向の輝度分布の実測値である。
Ey=Σ i=1{Qy−Py(y)} ・・・(式7)
Here, since all the peak positions of the three Gaussian distributions are in the center (Y = 0), Py can be fitted using only two parameters of amplitude A and width a. In the Gaussian distribution, the amplitude and width parameters are weak parameters that are related to each other, so the parameters can be determined immediately. Therefore, in this embodiment, first, the luminance distribution in the Y-axis direction is fitted to Py. Further, at the time of fitting, each parameter is optimized so that the square residual Ey shown in the following (Equation 7) is minimized. Qy i is an actual measurement value of the luminance distribution in the Y-axis direction.
Ey = Σ N i = 1 { Qy i -Py (y i)} 2 ··· ( Equation 7)

次に、X軸上の輝度分布Px(Y=0)は、以下の(式8)のように表すことができる。
Px(x)=P(x,0)=P(x,0)+P−1(x,0)+P+1(x,0)
・・・(式8)
Next, the luminance distribution Px (Y = 0) on the X-axis can be expressed as (Equation 8) below.
Px (x) = P (x, 0) = P 0 (x, 0) + P −1 (x, 0) + P +1 (x, 0)
... (Formula 8)

ここで、Pxは、振幅A、幅a、位置X±及び強度比t±のすべてのパラメータによって決まるが、aは、Y軸についてのフィッティングの時点で確定されているため、Pxをフィッティングする際に最適化するパラメータは、5つである。振幅Aは、位置X±及び強度比t±に関連するため、Pyのフィッティングのみでは定まらない。また、フィッティングの際は、以下の(式9)に示す2乗残差Exが最小となるように、パラメータを最適化する。なお、Qxは、X軸方向の輝度分布の実測値である。
Ex=Σ i=1{Qx−Px(x)} ・・・(式9)
Here, Px is determined by all parameters of the amplitude A, the width a, the position X ±, and the intensity ratio t ±. However, since a is determined at the time of fitting on the Y axis, when fitting Px There are five parameters to be optimized. Since the amplitude A is related to the position X ± and the intensity ratio t ± , it cannot be determined only by fitting Py. Further, at the time of fitting, the parameters are optimized so that the square residual Ex shown in the following (Equation 9) is minimized. Qx i is an actual measurement value of the luminance distribution in the X-axis direction.
Ex = Σ N i = 1 { Qx i -Px (x i)} 2 ··· ( Equation 9)

図4は、この回折格子の測定装置におけるフィッティングの手順を示すフローチャートである。   FIG. 4 is a flowchart showing a fitting procedure in the diffraction grating measuring apparatus.

すなわち、この回折格子の測定装置においては、図4に示すように、まず、測定された波形にノイズが多い場合にはスムージングを行い(F01、F02)、次に、初期値として、振幅A及び幅aに適当な値を代入する(F10)。   That is, in this diffraction grating measuring apparatus, as shown in FIG. 4, first, when the measured waveform is noisy, smoothing is performed (F01, F02), and then the amplitude A and the initial value are set as initial values. An appropriate value is substituted for the width a (F10).

そして、Y軸上の輝度分布をガウス分布にフィッティングする。具体的には、振幅A及び幅aを変化させて、(式7)に示した2乗残差Eyを最小化する(F11、F12)。なお、幅aは、この時点で決定し、振幅Aは、X軸上の輝度分布のフィッティングにおいて再び変更することになる。   Then, the luminance distribution on the Y axis is fitted to a Gaussian distribution. Specifically, the amplitude A and the width a are changed to minimize the square residual Ey shown in (Expression 7) (F11, F12). The width a is determined at this point, and the amplitude A is changed again in fitting the luminance distribution on the X axis.

次に、±1次回折光に関するパラメータの初期値を設定する。予め、設計値等により、位置X±及び強度比t±の見当がつく場合には、その値を初期値として代入し、そうでない場合には、X軸上の輝度分布及びY軸上の輝度分布の測定値から、それぞれの半値半幅を求めてそれらの差を取り、これを位置X±に代入するとよい(F13)。 Next, initial values of parameters relating to ± first-order diffracted light are set. If the position X ± and the intensity ratio t ± can be determined in advance by design values, etc., the values are substituted as initial values. Otherwise, the luminance distribution on the X-axis and the luminance on the Y-axis The half widths of the respective half values are obtained from the measured values of the distribution, and the difference between them is taken and substituted for the position X ± (F13).

パラメータの初期値を設定したならば、X軸上の輝度分布を3つのガウス分布の和にフィッティングさせる。X軸上の輝度分布は、(式8)に示したものであり、パラメータは、幅a、振幅A、位置X±及び強度比t±であるが、このうち、幅aはY軸上輝度分布のフィッティングで決まるので、パラメータは5つである。初期値を代入したら、振幅A、位置X±及び強度比t±の値を順次変化させ、(式9)に示す2乗残差Exを最小化していく(F14)。これを、Y軸上の輝度分布のフィッティングと同様に、2乗残差Exが変化しなくなるまで繰り返して(F15)、フィッティングが完了する(F16)。 If the initial value of the parameter is set, the luminance distribution on the X axis is fitted to the sum of three Gaussian distributions. The luminance distribution on the X axis is shown in (Equation 8), and the parameters are the width a, the amplitude A, the position X ±, and the intensity ratio t ±. Among these, the width a is the luminance on the Y axis. Since it is determined by distribution fitting, there are five parameters. After the initial values are substituted, the amplitude A, the position X ±, and the intensity ratio t ± are sequentially changed to minimize the square residual Ex shown in (Equation 9) (F14). Similar to the fitting of the luminance distribution on the Y axis, this is repeated until the square residual Ex does not change (F15), and the fitting is completed (F16).

図5は、この回折格子の測定装置におけるX軸についてのフィッティングの結果(a)及びY軸についてのフィッティングの結果(b)を示すグラフである。   FIG. 5 is a graph showing a fitting result (a) about the X axis and a fitting result (b) about the Y axis in this diffraction grating measuring apparatus.

前述した手順により、図5中の(a)に示すように、X軸上の輝度分布がフィッティングされ、また、図5中の(b)に示すように、Y軸上の輝度分布がフィッティングされる。   By the above-described procedure, the luminance distribution on the X axis is fitted as shown in (a) of FIG. 5, and the luminance distribution on the Y axis is fitted as shown in (b) of FIG. The

図6は、この回折格子の測定装置におけるX軸について三つの成分に分解した結果(a)及びY軸について三つの成分に分解した結果(b)を示すグラフである。   FIG. 6 is a graph showing the result (a) of decomposition into three components for the X axis and the result (b) of decomposition into three components for the Y axis in this diffraction grating measurement apparatus.

フィッティングの結果において、図6中の(a)に示すように、+1次回折光について、ピーク位置は、+41ピクセル、回折角は、0.018deg、強度は、0次光に対し61%、−1次回折光について、ピーク位置は、−44ピクセル、回折角は、0.019deg、強度は、0次光に対し56%という結果を得た。この結果を、以下の〔表1〕に示す。   In the fitting result, as shown in (a) of FIG. 6, for the + 1st order diffracted light, the peak position is +41 pixels, the diffraction angle is 0.018 deg, the intensity is 61% with respect to the 0th order light, −1 For the next-order diffracted light, the peak position was −44 pixels, the diffraction angle was 0.019 deg, and the intensity was 56% with respect to the 0th-order light. The results are shown in [Table 1] below.

Figure 2008077741
Figure 2008077741

〔第2の実施の形態〕
本発明に係る回折格子の測定装置において、±1次回折光の回折角がある程度大きく、0次光の光スポットから離れて観察され、0次光の光スポットの中心における±1次回折光の強度が無視できる場合については、以下のような第2の実施の形態を適用することができる。
[Second Embodiment]
In the diffraction grating measuring apparatus according to the present invention, the diffraction angle of ± 1st order diffracted light is large to some extent, observed away from the 0th order light spot, and the intensity of ± 1st order diffracted light at the center of the 0th order light spot is In the case where it can be ignored, the following second embodiment can be applied.

この実施の形態においては、CCDカメラ3によって得られた2次元輝度分布情報に基づいて、回折格子1による回折方向(X軸)の輝度分布と回折方向に直交する方向(Y軸)の輝度分布とを分離するとともに、X軸上の輝度分布から最も輝度の高い回折光の中心を通るY軸上の輝度分布を差し引くことによって、回折格子1による各回折光成分を分離する。   In this embodiment, based on the two-dimensional luminance distribution information obtained by the CCD camera 3, the luminance distribution in the diffraction direction (X axis) by the diffraction grating 1 and the luminance distribution in the direction orthogonal to the diffraction direction (Y axis). And the luminance distribution on the Y axis passing through the center of the diffracted light with the highest luminance are subtracted from the luminance distribution on the X axis to separate each diffracted light component by the diffraction grating 1.

すなわち、この場合には、0次光の光スポットの中心における±1次回折光の強度は無視できるので、Y軸上の輝度分布Pyは、(式6)の±1次回折光の項を除去し、以下の(式10)のように表すことができる。
Py(y)=P(0,y)≒P(0,y)=P(y,0) ・・・(式10)
That is, in this case, since the intensity of the ± 1st order diffracted light at the center of the 0th order light spot is negligible, the luminance distribution Py on the Y axis eliminates the ± 1st order diffracted light term of (Equation 6). And can be expressed as (Equation 10) below.
Py (y) = P (0, y) ≈P 0 (0, y) = P 0 (y, 0) (Equation 10)

この(式10)をみると、回折方向に直交する方向であるY軸上のプロファイルは、0次光の輝度分布そのものということになる。さらに、(式8)に(式10)を代入することにより、X軸上の輝度分布からY軸上の輝度分布を差し引けば、以下の(式11)のように、±1次回折光のみを取り出すこと可能である。
−1(x,0)+P+1(x,0)=Px(x,0)−Py(x,0)・・(式11)
Looking at this (Equation 10), the profile on the Y axis, which is the direction orthogonal to the diffraction direction, is the luminance distribution itself of the 0th-order light. Further, by subtracting the luminance distribution on the Y axis from the luminance distribution on the X axis by substituting (Equation 10) into (Equation 8), only ± first-order diffracted light is obtained as shown in the following (Equation 11). It is possible to take out.
P −1 (x, 0) + P +1 (x, 0) = Px (x, 0) −Py (x, 0) (Equation 11)

図7は、この回折格子の測定装置の第2の実施の形態におけるフィッティングの手順を示すフローチャートである。   FIG. 7 is a flowchart showing a fitting procedure in the diffraction grating measuring apparatus according to the second embodiment.

この実施の形態においては、図7に示すように、まず、前述の第1の実施の形態と同様に、測定された波形にノイズが多い場合はスムージングを行い(F01、F02)、X軸上の輝度分布のフィッティングを行う(F10、F11、F12)。   In this embodiment, as shown in FIG. 7, first, as in the first embodiment described above, when the measured waveform is noisy, smoothing is performed (F01, F02), and on the X axis. Are fitted (F10, F11, F12).

次に、X軸上の輝度分布から、Y軸上の輝度分布を差し引き、結果として出た2つスポットの輝度分布情報を、±1次回折光のピークとし(F17)、4つのパラメータ(位置X±及び強度比t±)を最適化し(F18、F19)、±1次回折光の光スポットを決定して、フィッティングを終了する(F20)。 Next, the luminance distribution on the Y-axis is subtracted from the luminance distribution on the X-axis, and the resulting luminance distribution information of the two spots is taken as the ± first-order diffracted light peak (F17), and the four parameters (position X ± and intensity ratio t ± ) are optimized (F18, F19), the light spot of ± first-order diffracted light is determined, and the fitting is finished (F20).

そして、±1次回折光のピークの強度及び座標を0次光のものと比較することにより、回折角及び強度分岐比を算出する。このときX、tが+1次回折光に、X、tが−1次回折光に対応する。 Then, the diffraction angle and the intensity branching ratio are calculated by comparing the intensity and coordinates of the peak of ± 1st order diffracted light with that of 0th order light. At this time, X + and t + correspond to the + 1st order diffracted light, and X and t correspond to the −1st order diffracted light.

図8は、この回折格子の測定装置の第2の実施の形態におけるX軸についてのフィッティングの結果(a)及びY軸についてのフィッティングの結果(b)を示すグラフである。   FIG. 8 is a graph showing a fitting result (a) about the X axis and a fitting result (b) about the Y axis in the second embodiment of the diffraction grating measuring apparatus.

前述のようにしてフィッティングして解析した結果、図8に示すように、0次光と+1次回折光との距離が38ピクセル、0次光と−1次回折光との距離が42ピクセルであった。ピクセルを回折角に変換すると、+1次回折光の回折角は、0.016deg、−1次回折光の回折角は、0.018degという結果を得た。また、0次光に対する強度比は、±1次回折光ともに、50%であった。この結果を、以下の〔表2〕に示す。   As a result of the fitting and analysis as described above, as shown in FIG. 8, the distance between the 0th order light and the + 1st order diffracted light was 38 pixels, and the distance between the 0th order light and the −1st order diffracted light was 42 pixels. . When the pixel was converted into a diffraction angle, the diffraction angle of the + 1st order diffracted light was 0.016 deg, and the diffraction angle of the −1st order diffracted light was 0.018 deg. The intensity ratio with respect to the 0th order light was 50% for both ± 1st order diffracted lights. The results are shown in [Table 2] below.

Figure 2008077741
Figure 2008077741

なお、本発明に係る回折格子の測定装置及び測定方法においては、まず、第2の実施の形態における解析手法を実行し、±1次回折光が0次光の光スポットに接近し、0次光の中心における±1次回折光の強度が無視できず、この解析ができなかった場合に、前述した第1の実施の形態における解析手法に移行するようにしてもよい。   In the diffraction grating measuring apparatus and measuring method according to the present invention, first, the analysis method in the second embodiment is executed, so that ± 1st order diffracted light approaches the light spot of 0th order light, and 0th order light. If the intensity of the ± 1st order diffracted light at the center of the light cannot be ignored and this analysis cannot be performed, the analysis method in the first embodiment described above may be used.

本発明に係る回折格子の測定装置の第1の実施の形態における構成を示す平面図である。It is a top view which shows the structure in 1st Embodiment of the measuring apparatus of the diffraction grating which concerns on this invention. 本発明に係る回折格子の測定装置において、CCDカメラによって撮像された画像(a)及び0次光及び±1次回折光に分割された画像(b)を示す正面図である。FIG. 4 is a front view showing an image (a) imaged by a CCD camera and an image (b) divided into 0th-order light and ± 1st-order diffracted light in the diffraction grating measurement apparatus according to the present invention. 本発明に係る回折格子の測定装置において得られたX軸方向及びY軸方向の輝度分布情報を示すグラフである。It is a graph which shows the luminance distribution information of the X-axis direction and Y-axis direction obtained in the measuring apparatus of the diffraction grating which concerns on this invention. 本発明に係る回折格子の測定装置の第1の実施の形態におけるフィッティングの手順を示すフローチャートである。It is a flowchart which shows the procedure of the fitting in 1st Embodiment of the measuring device of the diffraction grating which concerns on this invention. 本発明に係る回折格子の測定装置におけるX軸についてのフィッティングの結果(a)及びY軸についてのフィッティングの結果(b)を示すグラフである。It is a graph which shows the fitting result (a) about the X-axis and the fitting result (b) about the Y-axis in the diffraction grating measuring apparatus according to the present invention. 本発明に係る回折格子の測定装置におけるX軸について三つの成分に分解した結果(a)及びY軸について三つの成分に分解した結果(b)を示すグラフである。It is a graph which shows the result (b) decomposed | disassembled into three components about the X-axis about the X-axis in the measuring apparatus of the diffraction grating which concerns on this invention, and the three components about the Y-axis. 本発明に係る回折格子の測定装置の第2の実施の形態におけるフィッティングの手順を示すフローチャートである。It is a flowchart which shows the procedure of the fitting in 2nd Embodiment of the measuring apparatus of the diffraction grating which concerns on this invention. 本発明に係る回折格子の測定装置の第2の実施の形態におけるX軸についてのフィッティングの結果(a)及びY軸についてのフィッティングの結果(b)を示すグラフである。It is a graph which shows the fitting result (a) about the X-axis in the 2nd Embodiment of the measuring apparatus of the diffraction grating which concerns on this invention, and the fitting result (b) about the Y-axis. 従来の回折格子の測定装置の構成を示す側面図である。It is a side view which shows the structure of the measuring apparatus of the conventional diffraction grating. CCDカメラによって得られる各回折光の光スポットの輝度分布を示すグラフである。It is a graph which shows the luminance distribution of the light spot of each diffracted light obtained by a CCD camera. CCDカメラにより得られた輝度分布情報から0次光及び±1次回折光の3つの波形に分離する従来の回折格子の測定方法を示すフローチャートである。It is a flowchart which shows the measuring method of the conventional diffraction grating which isolate | separates from the luminance distribution information obtained with the CCD camera into three waveforms of 0th order light and +/- 1st order diffracted light. 0次光と±1次回折光が重なった状態を示す側面図である。It is a side view which shows the state which 0th order light and +/- 1st order diffracted light overlapped. 0次光と±1次回折光が重なり、各回折光の光スポットのピークが見えにくくなった状態の輝度分布を示すグラフである。It is a graph which shows the luminance distribution in the state where the 0th-order light and the ± 1st-order diffracted light overlap and the peak of the light spot of each diffracted light becomes difficult to see.

符号の説明Explanation of symbols

1 回折格子
2 NDフィルター
3 CCDカメラ
4 コンピュータ
1 Diffraction grating 2 ND filter 3 CCD camera 4 Computer

Claims (4)

回折格子における回折角及び強度分岐比を測定する回折格子の測定装置であって、
前記回折格子を経た光束の2次元輝度分布情報を取得する撮像手段と、
前記撮像手段によって得られた2次元輝度分布情報に基づいて、前記回折格子による回折方向の輝度分布と、前記回折方向に直交する方向の輝度分布とを分離し、前記回折方向に直交する方向の輝度分布によって、前記回折格子による各回折光の光束幅に関するパラメータを決定する手段と、
前記回折方向の輝度分布と前記パラメータとによって、前記回折格子による各回折光成分を分離する手段と
を備えたことを特徴とする回折格子の測定装置。
A diffraction grating measuring apparatus for measuring a diffraction angle and an intensity branching ratio in a diffraction grating,
Imaging means for acquiring two-dimensional luminance distribution information of a light beam that has passed through the diffraction grating;
Based on the two-dimensional luminance distribution information obtained by the imaging means, the luminance distribution in the diffraction direction by the diffraction grating and the luminance distribution in the direction orthogonal to the diffraction direction are separated, and in the direction orthogonal to the diffraction direction. Means for determining a parameter relating to the beam width of each diffracted light by the diffraction grating, according to the luminance distribution;
A diffraction grating measuring apparatus comprising: means for separating each diffracted light component by the diffraction grating based on the luminance distribution in the diffraction direction and the parameter.
回折格子における回折角及び強度分岐比を測定する回折格子の測定装置であって、
前記回折格子を経た光束の2次元輝度分布情報を取得する撮像手段と、
前記撮像手段によって得られた2次元輝度分布情報に基づいて、前記回折格子による回折方向の輝度分布と、前記回折方向に直交する方向の輝度分布とを分離するとともに、前記回折方向の輝度分布から、最も輝度の高い回折光の中心を通る前記回折方向に直交する方向の輝度分布を差し引くことによって、前記回折格子による各回折光成分を分離する手段と
を備えたことを特徴とする回折格子の測定装置。
A diffraction grating measuring apparatus for measuring a diffraction angle and an intensity branching ratio in a diffraction grating,
Imaging means for acquiring two-dimensional luminance distribution information of a light beam that has passed through the diffraction grating;
Based on the two-dimensional luminance distribution information obtained by the imaging means, the luminance distribution in the diffraction direction by the diffraction grating and the luminance distribution in the direction orthogonal to the diffraction direction are separated, and from the luminance distribution in the diffraction direction. Means for separating each diffracted light component by the diffraction grating by subtracting the brightness distribution in the direction orthogonal to the diffraction direction passing through the center of the diffracted light having the highest brightness. measuring device.
回折格子における回折角及び強度分岐比を測定する回折格子の測定方法であって、
前記回折格子を経た光束の2次元輝度分布情報を取得し、
前記2次元輝度分布情報に基づいて、前記回折格子による回折方向の輝度分布と、前記回折方向に直交する方向の輝度分布とを分離し、
前記回折方向に直交する方向の輝度分布によって、前記回折格子による各回折光の光束幅に関するパラメータを決定し、
前記回折方向の輝度分布と前記パラメータとによって、前記回折格子による各回折光成分を分離する
ことを特徴とする回折格子の測定方法。
A method of measuring a diffraction grating for measuring a diffraction angle and an intensity branching ratio in the diffraction grating,
Obtaining two-dimensional luminance distribution information of the light beam that has passed through the diffraction grating,
Based on the two-dimensional luminance distribution information, the luminance distribution in the diffraction direction by the diffraction grating and the luminance distribution in the direction orthogonal to the diffraction direction are separated,
A parameter relating to a beam width of each diffracted light by the diffraction grating is determined by a luminance distribution in a direction orthogonal to the diffraction direction,
Each diffraction light component by the said diffraction grating is isolate | separated by the luminance distribution of the said diffraction direction, and the said parameter. The measuring method of the diffraction grating characterized by the above-mentioned.
回折格子における回折角及び強度分岐比を測定する回折格子の測定方法であって、
前記回折格子を経た光束の2次元輝度分布情報を取得し、
前記2次元輝度分布情報に基づいて、前記回折格子による回折方向の輝度分布と、前記回折方向に直交する方向の輝度分布とを分離し、
前記回折方向の輝度分布から、最も輝度の高い回折光の中心を通る前記回折方向に直交する方向の輝度分布を差し引くことによって、前記回折格子による各回折光成分を分離する
ことを特徴とする回折格子の測定方法。
A method of measuring a diffraction grating for measuring a diffraction angle and an intensity branching ratio in the diffraction grating,
Obtaining two-dimensional luminance distribution information of the light beam that has passed through the diffraction grating,
Based on the two-dimensional luminance distribution information, the luminance distribution in the diffraction direction by the diffraction grating and the luminance distribution in the direction orthogonal to the diffraction direction are separated,
Each diffraction light component by the diffraction grating is separated by subtracting the brightness distribution in the direction perpendicular to the diffraction direction passing through the center of the diffracted light with the highest brightness from the brightness distribution in the diffraction direction. How to measure the lattice.
JP2006255112A 2006-09-20 2006-09-20 Diffraction grating measurement apparatus and diffraction grating measurement method Withdrawn JP2008077741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006255112A JP2008077741A (en) 2006-09-20 2006-09-20 Diffraction grating measurement apparatus and diffraction grating measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006255112A JP2008077741A (en) 2006-09-20 2006-09-20 Diffraction grating measurement apparatus and diffraction grating measurement method

Publications (1)

Publication Number Publication Date
JP2008077741A true JP2008077741A (en) 2008-04-03

Family

ID=39349639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006255112A Withdrawn JP2008077741A (en) 2006-09-20 2006-09-20 Diffraction grating measurement apparatus and diffraction grating measurement method

Country Status (1)

Country Link
JP (1) JP2008077741A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002387A (en) * 2009-06-19 2011-01-06 Canon Inc Image processor and image processing method
JP2014126836A (en) * 2012-12-27 2014-07-07 Dainippon Printing Co Ltd Illumination device, projection device, scanner, and exposure device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002387A (en) * 2009-06-19 2011-01-06 Canon Inc Image processor and image processing method
JP2014126836A (en) * 2012-12-27 2014-07-07 Dainippon Printing Co Ltd Illumination device, projection device, scanner, and exposure device

Similar Documents

Publication Publication Date Title
JP6382624B2 (en) Overlay measurement system and method based on phase control model
US9222897B2 (en) Method for characterizing a feature on a mask and device for carrying out the method
TWI434022B (en) Chromatic confocal microscope system and signal process method of the same
JP2005520353A (en) Overlay error detection
JP6161714B2 (en) Method for controlling the linear dimension of a three-dimensional object
JP6758309B2 (en) Optical measurement with reduced focus error sensitivity
JP5816297B2 (en) Method for characterizing structures on a mask and device for performing the method
US9927371B2 (en) Confocal line inspection optical system
JP6438157B2 (en) Lithographic in-situ high speed and high spatial resolution wavefront aberration measuring device and measuring method
TWI723129B (en) Method and system for optical three-dimensional topography measurement
WO2012057284A1 (en) Three-dimensional shape measurement device, three-dimensional shape measurement method, manufacturing method of structure, and structure manufacturing system
KR20120099504A (en) Surface shape measurement method and surface shape measurement device
JP4133753B2 (en) Method of measuring optical interference of detour surface and interferometer device for detour surface measurement
TW201807389A (en) Measurement system for determining a wavefront aberration
JP6232476B2 (en) System and method for automatic chip orientation to CAD layout with sub-optical resolution
JP2008215833A (en) Apparatus and method for measuring optical characteristics
KR101826127B1 (en) optical apparatus for inspecting pattern image of semiconductor wafer
JP2008077741A (en) Diffraction grating measurement apparatus and diffraction grating measurement method
US8456641B1 (en) Optical system
KR102122275B1 (en) Light distribution characteristic measurement apparatus and light distribution characteristic measurement method
US10504802B2 (en) Target location in semiconductor manufacturing
US10761022B2 (en) Rotated boundaries of stops and targets
JP5825622B2 (en) Displacement / strain distribution measurement optical system and measurement method
JP2007187623A (en) Method and apparatus for measuring three-dimensional shape
US20080116402A1 (en) Method and a device for measurement of scattered radiation at an optical system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081226

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100303