JP2008076370A - Radiation shielded camera for working - Google Patents

Radiation shielded camera for working Download PDF

Info

Publication number
JP2008076370A
JP2008076370A JP2006284331A JP2006284331A JP2008076370A JP 2008076370 A JP2008076370 A JP 2008076370A JP 2006284331 A JP2006284331 A JP 2006284331A JP 2006284331 A JP2006284331 A JP 2006284331A JP 2008076370 A JP2008076370 A JP 2008076370A
Authority
JP
Japan
Prior art keywords
camera
shielding
radiation
optical path
working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006284331A
Other languages
Japanese (ja)
Inventor
Yoshihisa Tanaka
吉久 田中
Koji Aono
好志 青野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ARUSU KK
Asahi Techno Co Ltd
Alss Co Ltd
Original Assignee
ARUSU KK
Asahi Techno Co Ltd
Alss Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ARUSU KK, Asahi Techno Co Ltd, Alss Co Ltd filed Critical ARUSU KK
Priority to JP2006284331A priority Critical patent/JP2008076370A/en
Publication of JP2008076370A publication Critical patent/JP2008076370A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact photographing camera of excellent portability, capable of enhancing omnidirectional radiation shielding performance of the camera used for monitoring and confirming visibly remote working under a radiation environment or the like, and a camera for working capable of regulating a view field by changing an attitude of the camera during the working when executing an operation such as the remote working. <P>SOLUTION: This camera is formed with shielding structure capable of filling a radiation shielding material to the limit, while obtaining an image, by periscope structure arranged with a camera main body 2 in the central lower part of a shielding main body 1, provided with a camera side conical optical path 4 in front thereof, installed with a mirror body 5 inclined to bend right-angledly an image optical axis 11, and installed with a subject side conical optical path 6 in front thereof. The camera is provided with a rotary operation mechanism capable of changing the attitude of the camera during the working, to regulate the view field, by forming multistructure of the shielding main body 1 and a shielding outer case 7 and by mounting a driving motor 8. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は原子力発電所、核燃料処理施設、核廃棄物処理施設、核廃棄物貯蔵施設、核施設の解体作業時などの放射線環境下における作業視認に用いる作業用カメラに関する。The present invention relates to a work camera used for visual recognition of a work in a radiation environment such as a nuclear power plant, a nuclear fuel treatment facility, a nuclear waste treatment facility, a nuclear waste storage facility, and a nuclear facility dismantling work.

従来、放射線雰囲気内での作業には、カメラの前方に鏡を斜めに取付けて反射を利用して光路を曲げて画像を取り込み、外装ケースに遮蔽を施して放射線から保護する方式のカメラが用いられ監視、視認を行っていた。Conventionally, for work in a radiation atmosphere, a camera with a mirror attached to the front of the camera and using a reflection to capture the image by bending the optical path and shielding the exterior case from radiation has been used. Was monitored and visually observed.

例えば、特開平7−270594においては、カメラ前方に斜めにミラーを配置し反射画像を取込み、放射線の発生源を一方向に特定した条件で撮影用の窓部以外をケーシングして周囲を鉛板で遮蔽を施すことで放射線源に近接して撮影できるようにするとともに、寿命の延長化を図っていた。For example, in Japanese Patent Application Laid-Open No. 7-270594, a mirror is arranged obliquely in front of the camera to capture a reflected image, and casings other than the window for photographing are specified under the condition that the source of radiation is specified in one direction, and the periphery is a lead plate In addition to being able to take a picture close to the radiation source by shielding at the same time, the lifetime was extended.

また、特開平4−188098においては、カメラ前方に屈折用ミラーと円柱空洞を配置し、カメラ視野を直角に折り曲げる構造を持ち、外部ケーシングをフラスコ型にして遮蔽材を外へ向かって厚くしたことで遮蔽性能を向上する構造であった。Japanese Patent Laid-Open No. 4-188098 has a structure in which a refracting mirror and a cylindrical cavity are arranged in front of the camera, the camera field of view is bent at a right angle, and the outer casing is made into a flask shape and the shielding material is thickened outward. With this structure, the shielding performance is improved.

特開平7−270594JP-A-7-270594 特開平4−188098JP-A-4-188098

しかしながら、例えば特開平7−270594の構造ではケーシングを鉛板で取り囲む構造を採用しているが、画像入射開口部が大きくケーシング内部に遮蔽材が充填されていないため設定された特定方向以外からの放射線の入射については遮蔽できずに直接入射するため、放射線源の方向が特定できなくなるような移動作業での撮影では撮像素子や半導体を含む各種機器類を十分保護するには至らない問題があった。However, for example, in the structure of JP-A-7-270594, a structure in which the casing is surrounded by a lead plate is adopted. However, since the image entrance opening is large and the casing is not filled with a shielding material, the direction from a direction other than the specified direction is set. Since radiation is incident directly without being shielded, there is a problem that cannot be adequately protected for various devices including image sensors and semiconductors when shooting in moving work where the direction of the radiation source cannot be specified. It was.

また、特開平4−188098の構造では、遮蔽材を外へ向かって厚くすることで外面までの遮蔽厚を得る構造であったが、画像入射開口部分においては空洞形状を円筒形にしたため必要光路以外の空隙に遮蔽材が充填されない構造になっており、遮蔽厚が他部分と比べて薄肉で遮蔽効果が劣っており部分的には放射線から十分に保護されないといった問題があった。また、予めセッティングしておく構造であるので、作業中にカメラの姿勢を変えることが出来ないという問題もあった。Further, in the structure of Japanese Patent Laid-Open No. 4-1888098, the shielding material is thickened toward the outside to obtain the shielding thickness up to the outer surface. However, since the cavity shape is made cylindrical at the image incident opening portion, the necessary optical path There is a problem that the gap is not filled with a shielding material other than the above, the shielding thickness is thinner than the other parts, the shielding effect is inferior, and it is partially not protected from radiation. Further, since the structure is set in advance, there is a problem that the posture of the camera cannot be changed during the work.

そこで、この発明は、放射線環境下の遠隔作業でロボットアームやマニピュレータに取付ける場合などにおいては、作業動作に伴い放射線源方向を特定できない現象を生ずるため、全方位からの放射線に対して遮蔽性能を向上させつつ尚且つ小型で可搬性の良好な作業用カメラを提供することと、作業に伴う観察視野を広くしつつ視線の微調整を可能にするために作業中の姿勢を可変出来得る、視認性の優れた作業用カメラを提供することを目的とするものである。Therefore, the present invention causes a phenomenon in which the direction of the radiation source cannot be specified along with the work operation, for example, when it is attached to a robot arm or manipulator by remote work in a radiation environment. Visualization that can improve the working posture in order to provide a work camera that is small and has good portability while being improved, and to enable fine adjustment of the line of sight while widening the observation field of view accompanying the work An object of the present invention is to provide a work camera with excellent performance.

この遮蔽性能を向上させつつ尚且つ小型で可搬性を良くするという目的を達成するために放射線遮蔽構造体を内部に向けて充填する方式とした、すなわちこの発明は、外形形状が円筒形をした遮蔽本体の軸心中央下部にカメラ本体を配置し、前記カメラ本体の受光部前方に空洞光路が設けてあり、その空洞光路内を通る光軸を直角に曲げるように遮蔽本体軸心の同軸上に傾斜をつけた鏡体を設置して潜望鏡構造にしたものであって、放射線遮蔽材を極限まで内部に充填できるよう光路形状を円錐型にしたところにある。In order to achieve the purpose of improving the shielding performance and reducing the size and improving the portability, the radiation shielding structure is filled inward. That is, the present invention has a cylindrical outer shape. A camera body is arranged at the lower center of the axis of the shielding body, a hollow optical path is provided in front of the light receiving portion of the camera body, and the optical axis passing through the hollow optical path is coaxial with the shielding body axis. A tilted mirror body is installed to form a periscope structure, and the optical path is conical so that the radiation shielding material can be filled to the limit.

さらに、もうひとつの目的である観察視野の広角化と視線の微調整を実現するために遮蔽本体を回動する構造とした。すなわち、潜望鏡構造で放射線遮蔽材が極限まで充填できるよう鏡体前後に円錐型光路を有する遮蔽本体が保持できるように放射線遮蔽外装ケースを前記遮蔽本体のカメラ側に取付けて、駆動モーターを前記放射線遮蔽外装ケースに固定装着し、駆動モーターの出力軸が外装ケース中央を貫通して内部の遮蔽本体に結合して、カメラ本体と鏡体を同軸一体構造にした前記遮蔽本体を回動(パンニング)するようにしたところにある。Furthermore, in order to realize another purpose, a wide viewing angle and fine line-of-sight adjustment, the shielding body is rotated. That is, a radiation shielding outer case is attached to the camera side of the shielding body so that the shielding body having a conical optical path can be held before and after the mirror so that the radiation shielding material can be filled to the limit in the periscope structure, and the drive motor is mounted on the radiation Fixedly attached to the shielding outer case, the output shaft of the drive motor passes through the center of the outer case and is connected to the inner shielding main body, and the camera main body and the mirror body are coaxially integrated to rotate (panning) the shielding main body. It is in the place where it was made to do.

以上の説明から明らかなように、遮蔽本体に円錐形状光路を採用したので鏡体で反射する画像は撮像素子に届くが、直進性の放射線は遮蔽本体の円錐型光路を除く全域に遮蔽材が充填されておりあらゆる方向に遮蔽厚さが確保できているので完全に遮蔽できるようになった。つまり遮蔽体を外に向かって厚くするのではなく内部に充填することで遮蔽厚を確保しつつ小型化・軽量化が図れて、放射線環境領域にて作業するマニピュレータやロボットアーム、クレーン等に取付けることが可能になり作業用に使用するカメラとしての放射線方向に影響されない可搬自在性に大きな効果力が得られる。As is clear from the above description, since the conical optical path is adopted for the shielding body, the image reflected by the mirror reaches the image sensor, but the radiation of the rectilinear radiation does not cover the entire area except the conical optical path of the shielding body. Since it is filled and the shielding thickness is secured in all directions, it can be completely shielded. In other words, instead of increasing the thickness of the shielding body outward, it is possible to reduce the size and weight while ensuring the shielding thickness, and attach it to manipulators, robot arms, cranes, etc. that work in the radiation environment area. Therefore, it is possible to obtain a great effect on the portability without being affected by the direction of the radiation as a camera used for work.

さらに、遮蔽本体と遮蔽外装ケースに駆動モーターを組み合わせることで回転動作(パンニング)による広範囲な視野を得つつ、カメラ本体と鏡体を同軸一体構造にして一緒に回動することで安定した画像が得られ、少しだけ視線をずらしたい場合の微調整についても可能にした。つまり作業中にカメラの姿勢を変えて視野を調整できることで遠隔における作業性向上に優れた効果をもたらすものである。Furthermore, by combining a drive motor with the shielding body and shielding exterior case, a wide range of field of view can be obtained by rotating operation (panning), and a stable image can be obtained by rotating the camera body and mirror together in a coaxial integrated structure. It is also possible to make fine adjustments when you want to shift your line of sight slightly. In other words, it is possible to adjust the field of view by changing the posture of the camera during work, thereby bringing about an excellent effect in improving workability in a remote place.

以下、本発明の実施例を図面1及び図面2に基いて説明する。
図1は本発明実施例の放射線遮蔽型作業用カメラの側面図、及び、図2はその平面図であり、1は放射線遮蔽本体、2はカメラ本体、3はカメラ本体に内蔵された撮像素子、4はカメラ側円錐型光路、5は鏡体、6は被写体側円錐型光路、7は放射線遮蔽外装ケース、8は駆動用モーター、9はモーター出力軸、10は遮蔽本体軸線、11は画像光軸、12は回転動作線を夫々示している。
即ち、図1においては、放射線遮蔽材を使用した円筒形の遮蔽本体1の遮蔽本体軸心10の中央下部にカメラ本体2を配置し、前記カメラ本体2の受光部前方にカメラ側円錐型光路4が設けてあり、画像光軸11を直角に曲げるように遮蔽本体軸線10の同軸上に傾斜をつけた鏡体5を設置し、その前方に被写体側円錐型光路6を設置して潜望鏡構造にしたものであって、放射線遮蔽材を極限まで充填してカメラ本体2に対して上下左右全周方向の遮蔽厚を確保できるよう光路を円錐状にした構造であり、カメラ側円錐型光路4を垂直に、被写体側円錐型光路6を水平にして潜望鏡のように立てて使うが、パイプ内壁などの狭小部位の観察には寝かして使用することも可能である。
さらに、カメラ本体2と鏡体5及びカメラ側円錐型光路4及び被写体側円錐型光路6を有する遮蔽本体1を保持するための放射線遮蔽外装ケース7を前記遮蔽本体1のカメラ本体2の側に取付けて、遮蔽本体軸線10の同軸上に駆動モーター8を設置し前記遮蔽外装ケース7に固定装着して、駆動モーター出力軸9が外装ケース7の中央を貫通して内部の遮蔽本体1に結合し、運転中にカメラの姿勢を左右に振ったり微調整したりできるようにしている。
この放射線遮蔽外装ケース7においては薄い構造にすれば軽量小型化効果が、厚い構造にすれば遮蔽厚の増厚効果が得られるとともに、遮蔽本体1及び放射線遮蔽外装ケース7夫々を複合構造化して遮蔽材質を変えることも可能で、遮蔽効果及び増厚効果の設計をしやすくしている。
又、放射線遮蔽外装ケース7で駆動モーター8を覆うように設置すれば駆動モーター8への放射線遮蔽も可能である。そしてこの放射線遮蔽外装ケース7は作業用アームなどに取付ける場合の接合治具としても利用できるものである。
また、図2においては前記遮蔽本体1を回転動作線12のように動かして画像光軸11がパンニングするようにしている。
Embodiments of the present invention will be described below with reference to FIGS.
FIG. 1 is a side view of a radiation shielding work camera according to an embodiment of the present invention, and FIG. 2 is a plan view thereof. 1 is a radiation shielding body, 2 is a camera body, and 3 is an image sensor built in the camera body. 4 is a camera-side conical optical path, 5 is a mirror, 6 is a subject-side conical optical path, 7 is a radiation shielding outer case, 8 is a driving motor, 9 is a motor output shaft, 10 is a shielding body axis, and 11 is an image. An optical axis 12 indicates a rotation operation line.
That is, in FIG. 1, the camera body 2 is arranged at the lower center of the shielding body axis 10 of the cylindrical shielding body 1 using the radiation shielding material, and the camera side conical optical path is in front of the light receiving part of the camera body 2. 4 is provided, and a mirror body 5 that is inclined on the same axis of the shielding main body axis 10 so as to bend the image optical axis 11 at a right angle is installed, and a subject-side conical optical path 6 is installed in front of the mirror body structure. The optical path has a conical shape so that a radiation shielding material can be filled to the utmost to secure a shielding thickness in all directions in the vertical and horizontal directions with respect to the camera body 2. Is vertically used, and the subject-side conical optical path 6 is set up horizontally like a periscope, but it is also possible to use it lying down for observation of a narrow part such as the inner wall of a pipe.
Further, a radiation shielding outer case 7 for holding the shielding body 1 having the camera body 2, the mirror body 5, the camera-side cone-shaped optical path 4 and the subject-side cone-shaped optical path 6 is provided on the camera body 2 side of the shielding body 1. The drive motor 8 is installed on the same axis of the shield main body axis 10 and fixedly mounted on the shield outer case 7. The drive motor output shaft 9 passes through the center of the outer case 7 and is coupled to the inner shield body 1. However, the camera can be swung left and right or finely adjusted while driving.
In this radiation shielding outer case 7, if it is made thin, a light weight reduction effect can be obtained, and if it is made thick, an effect of increasing the shielding thickness can be obtained, and each of the shielding main body 1 and the radiation shielding outer case 7 is made into a composite structure. It is also possible to change the shielding material, making it easier to design the shielding effect and the thickening effect.
Moreover, if the drive motor 8 is installed so as to cover the radiation shielding outer case 7, the radiation to the drive motor 8 can be shielded. The radiation shielding outer case 7 can also be used as a joining jig when attached to a work arm or the like.
In FIG. 2, the shielding main body 1 is moved as indicated by a rotational operation line 12 so that the image optical axis 11 is panned.

本発明の全体構成を示す縦断側面図である。It is a vertical side view which shows the whole structure of this invention. 本発明の実施例パンニングのイメージを示す平面図である。It is a top view which shows the image of the Example panning of this invention.

符号の説明Explanation of symbols

1 放射線遮蔽本体
2 カメラ本体
3 撮像素子
4 カメラ側円錐型光路
5 鏡体
6 被写体側円錐型光路
7 放射線遮蔽外装ケース
8 駆動モーター
9 モーター出力軸
10遮蔽本体軸線
11画像光軸
12回転動作線
DESCRIPTION OF SYMBOLS 1 Radiation shielding main body 2 Camera main body 3 Image pick-up element 4 Camera side conical optical path 5 Mirror body 6 Subject side conical optical path 7 Radiation shielding outer case 8 Drive motor 9 Motor output shaft 10 Shielding main body axis 11 Image optical axis 12 Rotation operation line

Claims (2)

外形形状が円筒形をした遮蔽本体の軸心中央下部にカメラ本体を配置し、前記カメラ本体の受光部前方に空洞光路が設けてあり、その空洞光路内を通る光軸を直角に曲げるように遮蔽本体軸心の同軸上に傾斜をつけた鏡体を設置して潜望鏡構造にしたものであって、放射線遮蔽材を極限まで内部に充填できるよう鏡体前後の光路形状を円錐型にしたことを特徴とする放射線遮蔽型作業用カメラ。The camera body is arranged at the lower center of the axial center of the shielding body having a cylindrical outer shape, and a hollow optical path is provided in front of the light receiving part of the camera body, and the optical axis passing through the hollow optical path is bent at a right angle. Installed a tilted mirror on the same axis of the shielding body axis to make a periscope structure, and made the conical shape of the optical path before and after the mirror so that the radiation shielding material could be filled inside as much as possible. Radiation shielding work camera characterized by 外形形状が円筒形の遮蔽本体の軸心中央下部にカメラ本体を配置し、前記カメラ本体受光部前方に空洞光路が設けてあり、その光軸を直角に曲げるように遮蔽本体軸心の同軸上に傾斜をつけた鏡体を設置して潜望鏡構造にしたものであって、放射線遮蔽材が極限まで充填できるよう鏡体前後に円錐型光路を有する遮蔽本体が保持できるように放射線遮蔽外装ケースを前記遮蔽本体のカメラ側に取付けて、駆動モーターを前記放射線遮蔽外装ケースに固定装着し、駆動モーターの出力軸が外装ケース中央を貫通して内部の遮蔽本体に結合して、前記遮蔽本体を回動(パンニング)するようにしたことを特徴とする放射線遮蔽型作業用カメラ。The camera body is arranged at the lower center of the axial center of the shielding body having a cylindrical outer shape, and a hollow optical path is provided in front of the light receiving part of the camera body. A tilting mirror is installed to form a periscope structure, and a radiation shielding outer case is provided so that a shielding body having a conical optical path can be held before and after the mirror so that the radiation shielding material can be filled to the limit. Mounted on the camera side of the shielding body, the drive motor is fixedly mounted on the radiation shielding outer case, the output shaft of the driving motor penetrates the center of the outer case and is coupled to the inner shielding body, and the shielding body is rotated. A radiation-shielding work camera characterized by moving (panning).
JP2006284331A 2006-09-21 2006-09-21 Radiation shielded camera for working Pending JP2008076370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006284331A JP2008076370A (en) 2006-09-21 2006-09-21 Radiation shielded camera for working

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006284331A JP2008076370A (en) 2006-09-21 2006-09-21 Radiation shielded camera for working

Publications (1)

Publication Number Publication Date
JP2008076370A true JP2008076370A (en) 2008-04-03

Family

ID=39348577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006284331A Pending JP2008076370A (en) 2006-09-21 2006-09-21 Radiation shielded camera for working

Country Status (1)

Country Link
JP (1) JP2008076370A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102540434A (en) * 2012-01-16 2012-07-04 赵小鹏 Design method for optical path structure with nuclear radiation-resistant function
JP2012522245A (en) * 2009-03-30 2012-09-20 バリンガー,ニクラス Radiation resistant camera
JP2013197955A (en) * 2012-03-21 2013-09-30 Mitsubishi Heavy Ind Ltd Radiation-resistant camera
EP2657746A1 (en) * 2012-04-27 2013-10-30 Raytheon Company Radiation shielded reflective optical system
JP2021177137A (en) * 2020-05-07 2021-11-11 株式会社神戸製鋼所 Radiation shield, 2d space measurement system, and control method of 2d space measurement system
JP7466399B2 (en) 2020-07-30 2024-04-12 三菱重工業株式会社 Optical measurement device and robot

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012522245A (en) * 2009-03-30 2012-09-20 バリンガー,ニクラス Radiation resistant camera
CN102540434A (en) * 2012-01-16 2012-07-04 赵小鹏 Design method for optical path structure with nuclear radiation-resistant function
JP2013197955A (en) * 2012-03-21 2013-09-30 Mitsubishi Heavy Ind Ltd Radiation-resistant camera
EP2657746A1 (en) * 2012-04-27 2013-10-30 Raytheon Company Radiation shielded reflective optical system
JP2021177137A (en) * 2020-05-07 2021-11-11 株式会社神戸製鋼所 Radiation shield, 2d space measurement system, and control method of 2d space measurement system
JP7350692B2 (en) 2020-05-07 2023-09-26 株式会社神戸製鋼所 2D space measurement system and control method for 2D space measurement system
JP7466399B2 (en) 2020-07-30 2024-04-12 三菱重工業株式会社 Optical measurement device and robot

Similar Documents

Publication Publication Date Title
JP2008076370A (en) Radiation shielded camera for working
US7298548B2 (en) Multi-directional viewing and imaging
JP4944091B2 (en) In particular, an imaging device for surveillance video and a method of using such a device
WO2016038831A1 (en) Camera device and camera device control method
TWI539808B (en) Photographing device
TWI748624B (en) Imaging lens assembly, imaging apparatus and electronic device
JP5295076B2 (en) Camera assembly
WO2015122117A1 (en) Optical system and image pickup device using same
JP2006235509A (en) Omnidirectional imaging device
JP2015035735A (en) Camera device and filter unit
US20140212126A1 (en) Image pickup apparatus
JP6077411B2 (en) Explosion-proof infrared camera
JP5582432B1 (en) Helical scanning mechanism and three-dimensional positioning device
JP5851701B2 (en) Camera device for monitoring under radiation environment
JP2018128554A (en) Lens barrel internal reflection prevention structure
JP2017069763A (en) Underwater visual recognition device and inspection method for underwater tubular structure executed using the same
CN207148417U (en) Industrial endoscope with rotation, turn over function
JP2009116085A (en) Lens barrel and imaging apparatus
KR102012865B1 (en) Camera Device for Monitoring
JPH04188098A (en) Inductrial television camera used in high radiation environment
WO2018042753A1 (en) Image pickup device
US8654460B2 (en) Lens barrel
JP2011191468A (en) Lens barrel
KR102121247B1 (en) Radiation shielding camera
JP2011237672A (en) Imaging apparatus