JP7350692B2 - 2D space measurement system and control method for 2D space measurement system - Google Patents

2D space measurement system and control method for 2D space measurement system Download PDF

Info

Publication number
JP7350692B2
JP7350692B2 JP2020082257A JP2020082257A JP7350692B2 JP 7350692 B2 JP7350692 B2 JP 7350692B2 JP 2020082257 A JP2020082257 A JP 2020082257A JP 2020082257 A JP2020082257 A JP 2020082257A JP 7350692 B2 JP7350692 B2 JP 7350692B2
Authority
JP
Japan
Prior art keywords
radiation
dimensional
measuring instrument
dimensional measuring
dose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020082257A
Other languages
Japanese (ja)
Other versions
JP2021177137A (en
Inventor
洵平 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2020082257A priority Critical patent/JP7350692B2/en
Publication of JP2021177137A publication Critical patent/JP2021177137A/en
Application granted granted Critical
Publication of JP7350692B2 publication Critical patent/JP7350692B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、放射線遮蔽体、2次元空間計測システム及び2次元空間計測システムの制御方法に関する。 The present invention relates to a radiation shield, a two-dimensional space measurement system, and a method of controlling a two-dimensional space measurement system.

放射線レベルが高い放射性廃棄物の保管庫で、放射性廃棄物の搬送を行う場合、保管庫内の放射線レベルが高く、作業者が立ち入れない場合がある。このような厳しい環境では放射性廃棄物の搬送を無人で実施することがある。このような無人搬送システムとしては、搬送車が予め定められた軌道を移動できるよう床面に埋め込まれたレールや電磁誘導装置と、搬送車の前方を視認できるカメラとを備えるものが公知である。 When transporting radioactive waste in a storage facility with high radiation levels, workers may not be able to enter due to the high radiation level inside the storage facility. In such harsh environments, radioactive waste may be transported unmanned. As such an unmanned transport system, one that is equipped with rails and electromagnetic induction devices embedded in the floor so that the transport vehicle can move along a predetermined trajectory, and a camera that can visually check the front of the transport vehicle is known. .

上記カメラは、そのまま搬送車に搭載すると放射線により不具合を生じるため、放射線を遮蔽する必要がある。このような耐放射線カメラとしては、撮像素子への放射線を遮蔽する放射線遮蔽部材を有するものが公知であり、この耐放射線カメラを備えたロボットが提案されている(特開2019-124747号公報参照)。 If the above-mentioned camera is mounted on a carrier as it is, it will cause problems due to radiation, so it is necessary to shield it from radiation. As such a radiation-resistant camera, one having a radiation shielding member that blocks radiation to the image sensor is known, and a robot equipped with this radiation-resistant camera has been proposed (see Japanese Patent Application Laid-Open No. 2019-124747). ).

上記従来の耐放射線カメラは、放射線を遮蔽する遮蔽本体と、被写体の像を結像し、その像をリレーすると共に途中で光の進行方向を変える撮像光学系と、リレーされた上記像を撮像する撮像素子とを有し、上記撮像光学系及び上記撮像素子が上記遮蔽本体の内部に設けられた内部空間に配置されている。 The conventional radiation-resistant camera described above includes a shielding body that blocks radiation, an imaging optical system that forms an image of the subject, relays that image, and changes the direction of light travel midway through, and an imaging optical system that captures the relayed image. The imaging optical system and the imaging device are arranged in an internal space provided inside the shielding body.

上記耐放射線カメラでは、あらゆる方向から上記撮像素子等に到達する放射線の量が等しくなるよう遮蔽本体は半球形状部を有している。上記耐放射線カメラは、上記ロボットに軸状の支持部材により固定されている。また、上記ロボットは、軸周りに回動可能な回動機構を有し、この支持部材を回転させることで周囲の撮影を可能としている。 In the radiation-resistant camera, the shielding body has a hemispherical shape so that the amount of radiation reaching the image pickup device etc. from all directions is equal. The radiation-resistant camera is fixed to the robot by a shaft-shaped support member. Further, the robot has a rotation mechanism that can rotate around an axis, and by rotating this support member, it is possible to photograph the surrounding area.

特開2019-124747号公報Japanese Patent Application Publication No. 2019-124747

上記従来の耐放射線カメラを用いる場合、周囲の確認には回動機構を必要とし、この回動機構自体への放射線も遮蔽する必要があることから、重量が増加し易い。 When using the above-mentioned conventional radiation-resistant camera, a rotating mechanism is required to check the surroundings, and the rotating mechanism itself also needs to be shielded from radiation, which tends to increase the weight.

また、近年、無人搬送システムとして軌道を定めず、搬送車に自己位置認識をさせて柔軟に搬送をさせるシステムが求められている。搬送車に自己位置認識をさせるためには、2次元空間で物体(障害物)を把握させる必要がある。上記従来の耐放射線カメラでは、回動機構の回転速度が不足し十分に2次元空間で物体を把握できないおそれがある。一方、十分な回転速度を得ようとするとさらに回動機構の大きさや重量は増大してしまう。 In addition, in recent years, there has been a demand for an unmanned transport system that does not have a fixed trajectory and allows a transport vehicle to recognize its own position and perform flexible transport. In order to make a guided vehicle recognize its own position, it is necessary to make it grasp objects (obstacles) in a two-dimensional space. In the conventional radiation-resistant camera described above, the rotation speed of the rotation mechanism is insufficient, and there is a possibility that the object cannot be sufficiently grasped in two-dimensional space. On the other hand, if an attempt is made to obtain a sufficient rotational speed, the size and weight of the rotation mechanism will further increase.

本発明は、上述のような事情に基づいてなされたものであり、2次元計測器に用いることができる小型かつ軽量の放射線遮蔽体、この放射線遮蔽体を用いた2次元空間計測システム、及びこの2次元空間計測システムの制御方法の提供を目的とする。 The present invention has been made based on the above-mentioned circumstances, and provides a small and lightweight radiation shield that can be used in a two-dimensional measuring instrument, a two-dimensional space measurement system using this radiation shield, and a two-dimensional space measurement system using this radiation shield. The purpose is to provide a control method for a two-dimensional space measurement system.

本発明の一態様に係る放射線遮蔽体は、2次元計測器に用いる放射線遮蔽体であって、上記2次元計測器が、2次元空間に対してスキャンした照射波における物体の反射波により周囲の物体の位置を把握するものであり、上記2次元計測器全体を被覆可能な遮蔽壁と、上記遮蔽壁に被覆された上記2次元計測器の照射波を通過させ、上記遮蔽壁の外部に向かってスキャン可能とするスリットとを備える。 A radiation shielding body according to one aspect of the present invention is a radiation shielding body used in a two-dimensional measuring instrument, in which the two-dimensional measuring instrument uses a reflected wave of an object in an irradiation wave scanned with respect to a two-dimensional space. A shielding wall that can cover the entire two-dimensional measuring device, and a shielding wall that allows the radiation waves from the two-dimensional measuring device covered by the shielding wall to pass through and head toward the outside of the shielding wall. and a slit to enable scanning.

当該放射線遮蔽体は、スリットが2次元計測器の照射波を通過させ、遮蔽壁の外部に向かってスキャン可能とするので、遮蔽壁を回転等させることなく、2次元空間で物体の位置を把握することができる。このため、当該放射線遮蔽体は、遮蔽壁で2次元計測器全体を被覆するのみで耐放射性を高められるので、容易に小型化及び軽量化を図ることができる。 The radiation shield has a slit that allows the irradiation waves from the two-dimensional measuring instrument to pass through and scan towards the outside of the shielding wall, so it is possible to grasp the position of the object in two-dimensional space without rotating the shielding wall. can do. Therefore, the radiation resistance of the radiation shielding body can be increased simply by covering the entire two-dimensional measuring instrument with a shielding wall, so that it can be easily made smaller and lighter.

上記遮蔽壁が中空の円柱状であり、上記スリットが上記遮蔽壁の側面に設けられており、上記遮蔽壁の中心軸周りにおける上記スリットのなす開口角が60度以上であるとよい。このようにスリットのなす開口角を上記下限以上とすることで、少ない数の2次元計測器で搬送車の周囲の物体の位置の把握を容易に行うことができる。 Preferably, the shielding wall has a hollow cylindrical shape, the slit is provided on a side surface of the shielding wall, and the opening angle of the slit around the central axis of the shielding wall is 60 degrees or more. By setting the aperture angle of the slit to be equal to or greater than the above lower limit in this manner, it is possible to easily grasp the position of objects around the transport vehicle using a small number of two-dimensional measuring instruments.

上記照射波がレーザ光であり、上記2次元計測器が、上記レーザ光の投射及び物体の反射光の受光をする投受光部と、上記投受光部から投射された上記レーザ光が上記スリットを通過するようにその進行方向を変える反射板とを有するものであり、上記遮蔽壁が、上記2次元計測器を被覆した際、上記投受光部が上記スリットの死角に位置するように構成されているとよい。照射波がレーザ光である2次元計測器では、投受光部が放射線の影響を受け易い部分であり、上記投受光部をスリットの死角に位置させることで、上記投受光部が直接浴びる放射線量を低減できる。従って、2次元計測器の放射線による故障の発生を抑制し、放射線環境下で使用される際の2次元計測器の寿命を延ばすことができる。 The irradiated wave is a laser beam, and the two-dimensional measuring device includes a light projecting/receiving section that projects the laser beam and receives reflected light from an object, and the laser beam projected from the light projecting/receiving section passes through the slit. and a reflecting plate that changes the traveling direction of the light so as to pass through the light, and is configured such that when the shielding wall covers the two-dimensional measuring instrument, the light emitting and receiving section is located in a blind spot of the slit. Good to have. In a two-dimensional measuring instrument whose irradiation wave is a laser beam, the light emitting/receiving part is easily affected by radiation, and by positioning the light emitting/receiving part in the blind spot of the slit, the amount of radiation that the light emitting/receiving part is directly exposed to can be reduced. can be reduced. Therefore, it is possible to suppress the occurrence of failure of the two-dimensional measuring instrument due to radiation, and to extend the life of the two-dimensional measuring instrument when used in a radiation environment.

本発明の別の一態様に係る2次元空間計測システムは、本発明の放射線遮蔽体と、上記放射線遮蔽体に格納される2次元計測器と、上記2次元計測器の浴びる放射線量を計測する放射線計測器と、上記2次元計測器及び上記放射線計測器を制御する制御部とを備える。 A two-dimensional space measurement system according to another aspect of the present invention includes a radiation shielding body of the present invention, a two-dimensional measuring instrument stored in the radiation shielding body, and measuring a radiation dose exposed to the two-dimensional measuring instrument. The radiation measuring device includes a radiation measuring device, and a control unit that controls the two-dimensional measuring device and the radiation measuring device.

当該2次元空間計測システムは、本発明の放射線遮蔽体を用いるので、2次元計測器の放射線を浴びることによる交換周期が比較的長い。また、当該2次元空間計測システムでは、放射線計測器により2次元計測器の浴びる放射線量を計測するので、その集積吸収線量からこの2次元計測器の交換の必要性を把握できる。従って、当該2次元空間計測システムは、2次元計測器の交換回数を削減しつつ、安定して2次元空間で物体の位置の把握を行うことができる。 Since the two-dimensional space measurement system uses the radiation shielding body of the present invention, the replacement cycle due to exposure to radiation from the two-dimensional measuring instrument is relatively long. In addition, in the two-dimensional space measurement system, since the radiation dose to which the two-dimensional measuring device is exposed is measured by the radiation measuring device, it is possible to grasp the necessity of replacing the two-dimensional measuring device from the accumulated absorbed dose. Therefore, the two-dimensional space measurement system can stably grasp the position of an object in two-dimensional space while reducing the number of times the two-dimensional measuring instrument is replaced.

本発明のさらに別の一態様に係る2次元空間計測システムの制御方法は、本発明の2次元空間計測システムの制御方法であって、上記放射線計測器により実空間線量を測定する工程と、上記2次元計測器の実作動時間を計測する工程と、上記線量測定工程で得られる上記実空間線量及び上記時間計測工程で得られる実作動時間から実集積線量を算出する工程と、上記算出工程で得られる実集積線量が、予め定められた上限値を超えていないことを監視する工程とを備える。 A method for controlling a two-dimensional space measurement system according to yet another aspect of the present invention is a method for controlling a two-dimensional space measurement system according to the present invention, comprising: measuring a real space dose using the radiation measuring device; a step of measuring the actual operating time of the two-dimensional measuring instrument; a step of calculating the actual integrated dose from the real space dose obtained in the dose measuring step and the actual operating time obtained in the time measuring step; and monitoring that the obtained actual integrated dose does not exceed a predetermined upper limit.

当該2次元空間計測システムの制御方法は、上述の工程により2次元計測器の交換の必要性を把握できる。従って、当該2次元空間計測システムの制御方法を用いることで、2次元計測器の交換回数を削減しつつ、安定して2次元空間で物体の位置の把握を行うことができる。 The method for controlling the two-dimensional space measurement system allows the necessity of replacing the two-dimensional measuring instrument to be determined through the above-described steps. Therefore, by using the control method for the two-dimensional space measurement system, it is possible to stably grasp the position of an object in the two-dimensional space while reducing the number of times the two-dimensional measuring instrument is replaced.

ここで、「波」には、音波、電磁波等の波に加え、光も含む。「2次元計測器全体を被覆する」とは、任意の方向の放射線照射に対して少なくともその一部が遮蔽されることを意味し、2次元計測器が遮蔽壁により密閉されていることを意味するものではない。 Here, "wave" includes light as well as waves such as sound waves and electromagnetic waves. "Covering the entire two-dimensional measuring instrument" means that at least a portion of it is shielded from radiation irradiation in any direction, and means that the two-dimensional measuring instrument is sealed by a shielding wall. It's not something you do.

以上説明したように、本発明の放射線遮蔽体は、2次元計測器に用いることができるとともに、小型かつ軽量である。また、本発明の2次元空間計測システム及び本発明の2次元空間計測システムの制御方法は、本発明の放射線遮蔽体を用いることで、2次元計測器の交換回数を削減しつつ、安定して2次元空間で物体の位置の把握を行うことができる。 As described above, the radiation shield of the present invention can be used in a two-dimensional measuring instrument, and is small and lightweight. In addition, the two-dimensional space measurement system of the present invention and the control method for the two-dimensional space measurement system of the present invention use the radiation shield of the present invention, thereby reducing the number of times the two-dimensional measuring device is replaced and stably. It is possible to grasp the position of an object in two-dimensional space.

図1は、本発明の一実施形態に係る放射線遮蔽体の模式的側面図である。FIG. 1 is a schematic side view of a radiation shield according to an embodiment of the present invention. 図2は、図1の放射線遮蔽体をII-II線で上から見た模式的水平断面図である。FIG. 2 is a schematic horizontal cross-sectional view of the radiation shield shown in FIG. 1 viewed from above along line II-II. 図3は、図1の放射線遮蔽体を横から見た模式的側面断面図である。FIG. 3 is a schematic side sectional view of the radiation shield shown in FIG. 1 viewed from the side. 図4は、本発明の一実施形態に係る2次元空間計測システムの構成を示す模式的平面図である。FIG. 4 is a schematic plan view showing the configuration of a two-dimensional space measurement system according to an embodiment of the present invention. 図5は、図4の2次元空間計測システムの構成を示す模式的側面図である。FIG. 5 is a schematic side view showing the configuration of the two-dimensional space measurement system of FIG. 4. 図6は、本発明の一実施形態に係る2次元空間計測システムの制御方法を示すフロー図である。FIG. 6 is a flow diagram showing a method for controlling a two-dimensional space measurement system according to an embodiment of the present invention. 図7は、図1とは異なる放射線遮蔽体の模式的側面図である。FIG. 7 is a schematic side view of a radiation shield different from that in FIG. 1. 図8は、図7の放射線遮蔽体をVIII-VIII線で上から見た模式的水平断面図である。FIG. 8 is a schematic horizontal cross-sectional view of the radiation shield shown in FIG. 7 viewed from above along line VIII-VIII.

以下、本発明の実施の形態について適宜図面を参照しつつ詳説する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.

〔第1実施形態〕
[放射線遮蔽体]
図1、図2及び図3に示す放射線遮蔽体10は、2次元計測器20であるレーザスキャナに用いる放射線遮蔽体である。当該放射線遮蔽体10は、遮蔽壁11と、スリット12とを備える。なお、2次元計測器とは、2次元空間に対してスキャンした照射波における物体の反射波により周囲の物体の位置を把握するものである。
[First embodiment]
[Radiation shield]
A radiation shield 10 shown in FIGS. 1, 2, and 3 is a radiation shield used in a laser scanner, which is a two-dimensional measuring instrument 20. The radiation shield 10 includes a shielding wall 11 and a slit 12. Note that a two-dimensional measuring device is a device that grasps the position of surrounding objects based on reflected waves of objects in irradiated waves scanned in a two-dimensional space.

<レーザスキャナ>
本実施形態において、2次元計測器20は、上記照射波がレーザ光である。2次元計測器20であるレーザスキャナは、上記レーザ光の投射及び物体の反射光の受光をする投受光部21と、投受光部21から投射された上記レーザ光が後述するスリット12を通過するようにその進行方向を変える反射板22と、投受光部21及び反射板22を格納する筐体23とを有する。
<Laser scanner>
In this embodiment, in the two-dimensional measuring instrument 20, the irradiation wave is a laser beam. The laser scanner, which is a two-dimensional measuring instrument 20, includes a light emitting/receiving section 21 that projects the laser beam and receives reflected light from an object, and the laser beam projected from the light emitting/receiving section 21 passes through a slit 12, which will be described later. It has a reflecting plate 22 that changes its direction of movement, and a casing 23 that houses the light emitting/receiving section 21 and the reflecting plate 22.

2次元計測器20は、投受光部21がレーザ及び受光素子を有している。2次元計測器20は、投受光部21のレーザから照射されたレーザ光は反射板22で反射し、その進行方向を変える。このレーザ光はスリット12を通過して外部へ出射され、その進行方向に物体があると、その物体で反射される。この反射光はスリット12を再び通過して反射板22でその進行方向を投受光部21の受光素子に向けられ、上記受光素子で検知される。このレーザ光がレーザから照射され、受光素子が検知するまでの時間差から反射した物体までの距離を知ることができる。一方、スリット12を通過して外部へ出射されたレーザ光は、その進行方向に物体がないと、反射光は返ってこないため、物体が存在しないことが分かる。 In the two-dimensional measuring instrument 20, a light emitting/receiving section 21 includes a laser and a light receiving element. In the two-dimensional measuring instrument 20, the laser beam emitted from the laser of the light projecting/receiving section 21 is reflected by the reflecting plate 22 and changes its traveling direction. This laser light passes through the slit 12 and is emitted to the outside, and if there is an object in the direction of travel, it will be reflected by that object. This reflected light passes through the slit 12 again, and is directed by the reflecting plate 22 in the direction of travel toward the light receiving element of the light projecting/receiving section 21, where it is detected by the light receiving element. The distance to the reflected object can be determined from the time difference between when this laser light is emitted from the laser and when it is detected by the light receiving element. On the other hand, if there is no object in the traveling direction of the laser beam emitted to the outside through the slit 12, the reflected light will not return, indicating that no object exists.

反射板22は、例えばモータ等により一定の速度で回転可能に構成されている。反射板22は、一方向に360度回転してもよいが、一定の角度範囲(開口角)で往復運動してもよい。また、反射板22が360度回転する場合であっても、一定の角度範囲のみで照射が行われる構成であってもよい。 The reflecting plate 22 is configured to be rotatable at a constant speed by, for example, a motor. The reflecting plate 22 may rotate 360 degrees in one direction, or may reciprocate within a certain angular range (aperture angle). Further, even if the reflection plate 22 rotates 360 degrees, the configuration may be such that irradiation is performed only within a certain angular range.

<遮蔽壁>
遮蔽壁11は、2次元計測器20全体を被覆可能である。具体的には、遮蔽壁11は中空の円柱状である。
<Shielding wall>
The shielding wall 11 can cover the entire two-dimensional measuring instrument 20. Specifically, the shielding wall 11 has a hollow cylindrical shape.

遮蔽壁11は、放射線を減衰する遮蔽体で構成されている。遮蔽壁11の厚さは、その減衰率と曝される放射線量とから適宜決定されるが、軽量化の観点から2次元計測器20に到達する放射線量が所望の大きさ以下となる範囲で薄いほどよい。 The shielding wall 11 is composed of a shielding body that attenuates radiation. The thickness of the shielding wall 11 is appropriately determined based on its attenuation rate and the radiation dose to which it is exposed, but from the viewpoint of weight reduction, it should be within a range where the radiation dose reaching the two-dimensional measuring instrument 20 is below a desired size. The thinner the better.

遮蔽壁11は、2次元計測器20を被覆した際、投受光部21がスリット12の死角に位置するように構成されているとよい。つまり、図3に示すように、スリット12を通過して直進する放射線が直接当たることがない位置に投受光部21が配置される。放射線は、比較的薄い反射板22は透過するので、反射板22で反射され投受光部21に実質的に直接当たる放射線量が少ない。また、遮蔽壁11で反射して間接的に投受光部21に当たる放射線は減衰している。従って、この投受光部21をスリット12の死角に位置させることで、投受光部21が浴びる放射線量を低減できる。照射波がレーザ光である2次元計測器20では、投受光部21が放射線の影響を受け易い部分であるから、投受光部21が浴びる放射線量を低減することで、2次元計測器20の放射線による故障の発生を抑制し、放射線環境下で使用される際の2次元計測器20の寿命を延ばすことができる。 The shielding wall 11 is preferably configured such that the light emitting/receiving section 21 is located in a blind spot of the slit 12 when the two-dimensional measuring instrument 20 is covered. That is, as shown in FIG. 3, the light emitting/receiving section 21 is arranged at a position where it is not directly hit by the radiation passing through the slit 12 and proceeding straight. Since the radiation passes through the relatively thin reflecting plate 22, the amount of radiation reflected by the reflecting plate 22 and substantially directly hitting the light emitting/receiving section 21 is small. Further, the radiation reflected by the shielding wall 11 and indirectly hitting the light emitting/receiving section 21 is attenuated. Therefore, by locating the light emitting/receiving section 21 in the blind spot of the slit 12, the amount of radiation that the light emitting/receiving section 21 is exposed to can be reduced. In the two-dimensional measuring instrument 20 whose irradiation wave is a laser beam, the light emitting/receiving section 21 is a part that is easily affected by radiation. It is possible to suppress the occurrence of failures due to radiation and extend the life of the two-dimensional measuring instrument 20 when used in a radiation environment.

<スリット>
スリット12は、遮蔽壁11に被覆された2次元計測器20の照射波を通過させ、遮蔽壁11の外部に向かってスキャン可能とする。具体的には、スリット12は、遮蔽壁11の側面に設けられている。スリット12は、水平方向に対して直線状であり、平面視では扇形状である。
<Slit>
The slit 12 allows the irradiation wave from the two-dimensional measuring device 20 covered with the shielding wall 11 to pass therethrough, and allows scanning toward the outside of the shielding wall 11 . Specifically, the slit 12 is provided on the side surface of the shielding wall 11. The slit 12 is linear in the horizontal direction and has a fan shape in plan view.

遮蔽壁11の中心軸周りにおけるスリット12のなす開口角(図2のθ)の下限としては60度が好ましく、90度がより好ましく、120度がさらに好ましい。スリット12のなす開口角θが上記下限未満であると、2次元計測器20が2次元空間に対してスキャンできる範囲が限定され、周囲の物体の位置の把握が困難となるおそれや、周囲の物体の位置の把握を行うために多数の2次元計測器20を必要とするおそれがある。一方、上記開口角θの上限としては、特に限定されない。 The lower limit of the opening angle (θ in FIG. 2) formed by the slit 12 around the central axis of the shielding wall 11 is preferably 60 degrees, more preferably 90 degrees, and even more preferably 120 degrees. If the aperture angle θ of the slit 12 is less than the above lower limit, the range that the two-dimensional measuring instrument 20 can scan in two-dimensional space will be limited, and it may be difficult to grasp the position of surrounding objects or There is a possibility that a large number of two-dimensional measuring instruments 20 are required to grasp the position of the object. On the other hand, the upper limit of the aperture angle θ is not particularly limited.

なお、スリット12のなす開口角θは、2次元計測器20のスキャン角度範囲(反射板22が回転する角度範囲)と一致していることが好ましい。スリット12のなす開口角θが2次元計測器20のスキャン角度範囲未満であると、2次元計測器20が2次元空間に対してスキャンできる範囲の全部を利用して物体の位置の把握することができなくなる。逆に、スリット12のなす開口角θが2次元計測器20のスキャン角度範囲を超えると、スリット12を通過して遮蔽壁11内部に侵入する放射線量が不必要に増大し、2次元計測器20の寿命が短くなるおそれがある。 Note that the aperture angle θ formed by the slit 12 preferably matches the scan angle range of the two-dimensional measuring instrument 20 (the angle range in which the reflection plate 22 rotates). If the aperture angle θ formed by the slit 12 is less than the scan angle range of the two-dimensional measuring device 20, the position of the object can be grasped using the entire range that the two-dimensional measuring device 20 can scan in the two-dimensional space. become unable to do so. On the other hand, if the aperture angle θ of the slit 12 exceeds the scan angle range of the two-dimensional measuring instrument 20, the amount of radiation passing through the slit 12 and entering the shielding wall 11 increases unnecessarily, and the two-dimensional measuring instrument There is a possibility that the lifespan of 20 will be shortened.

<利点>
当該放射線遮蔽体10は、スリット12が2次元計測器20の照射波を通過させ、遮蔽壁11の外部に向かってスキャン可能とするので、遮蔽壁11を回転等させることなく、2次元空間で物体の位置を把握することができる。このため、当該放射線遮蔽体10は、遮蔽壁11で2次元計測器20全体を被覆するのみで耐放射性を高められるので、容易に小型化及び軽量化を図ることができる。
<Advantages>
In the radiation shielding body 10, the slit 12 allows the irradiation wave from the two-dimensional measuring device 20 to pass through and scanning toward the outside of the shielding wall 11. Therefore, the radiation shielding body 10 can be scanned in two-dimensional space without rotating the shielding wall 11. It is possible to grasp the position of objects. Therefore, the radiation resistance of the radiation shield 10 can be increased simply by covering the entire two-dimensional measuring instrument 20 with the shielding wall 11, so that it can be easily made smaller and lighter.

[2次元空間計測システム]
図4及び図5に示す2次元空間計測システムは、図1から図3に示す本発明の一実施形態である放射線遮蔽体10と、放射線遮蔽体10に格納される2次元計測器20と、2次元計測器20の浴びる放射線量を計測する放射線計測器30と、2次元計測器20及び放射線計測器30を制御する制御部(不図示)とを備える。
[Two-dimensional space measurement system]
The two-dimensional space measurement system shown in FIGS. 4 and 5 includes a radiation shield 10 which is an embodiment of the present invention shown in FIGS. 1 to 3, a two-dimensional measuring instrument 20 stored in the radiation shield 10, The radiation measuring device 30 includes a radiation measuring device 30 that measures the radiation dose that the two-dimensional measuring device 20 receives, and a control unit (not shown) that controls the two-dimensional measuring device 20 and the radiation measuring device 30.

当該2次元空間計測システムは、例えば放射線廃棄物保管庫で廃棄物Lの搬送を行う搬送車Xに用いられる。図4及び図5の例では4組の放射線遮蔽体10、2次元計測器20及び放射線計測器30が搭載されている。なお、上記制御部は、各放射線遮蔽体10、2次元計測器20及び放射線計測器30に対して個別に設けてもよいし、共通して1つ設けてもよい。 The two-dimensional space measurement system is used, for example, in a transport vehicle X that transports waste L in a radioactive waste storage facility. In the example of FIGS. 4 and 5, four sets of radiation shielding bodies 10, two-dimensional measuring instruments 20, and radiation measuring instruments 30 are mounted. In addition, the said control part may be provided individually with respect to each radiation shield 10, the two-dimensional measuring device 20, and the radiation measuring device 30, and may be provided one in common.

<放射線遮蔽体及び2次元計測器>
放射線遮蔽体10及び2次元計測器20は、上述したものと同等であるので個々の説明を省略する。
<Radiation shield and two-dimensional measuring instrument>
The radiation shield 10 and the two-dimensional measuring instrument 20 are the same as those described above, and therefore their individual explanations will be omitted.

2次元計測器20が格納された放射線遮蔽体10の配置は、格納された2次元計測器20がスキャンできる角度範囲と、搬送車X自体が障害となって見通せない範囲等を考慮して決定されるが、例えば図4に示すように、搬送車Xの前方、後方、左右の側方に配置されるとよい。このように配置することで、全方位について周囲の物体の位置を把握することができる。 The arrangement of the radiation shield 10 in which the two-dimensional measuring device 20 is stored is determined by taking into account the angular range that the stored two-dimensional measuring device 20 can scan, the range that cannot be seen due to the transport vehicle X itself being an obstacle, etc. However, as shown in FIG. 4, for example, it is preferable to arrange them at the front, rear, left and right sides of the transport vehicle X. By arranging it in this way, it is possible to grasp the positions of surrounding objects in all directions.

<放射線計測器>
放射線計測器30は、放射線遮蔽体10の近傍、より正確には放射線遮蔽体10の中に格納されている2次元計測器20の近傍に配置される。
<Radiation measuring device>
The radiation measuring instrument 30 is arranged near the radiation shielding body 10, more precisely, near the two-dimensional measuring instrument 20 stored in the radiation shielding body 10.

放射線計測器30は、4つの2次元計測器20に対して共通に1つの放射線計測器30を設けることもできるが、図4及び図5に示すように、2次元計測器20それぞれについて近傍に放射線計測器30を設けることが好ましい。図4及び図5に示すように、搬送車Xは放射性廃棄物Lを搬送するが、放射線を浴びる量が廃棄物Lとの距離や方向に依存するため、4つの2次元計測器20が同量の放射線を浴びるとは限らない。このため、2次元計測器20それぞれについて近傍に放射線計測器30を設けることで、2次元計測器20の浴びる放射線量の計測精度を向上させることができる。一方、4つの2次元計測器20に対して共通に1つの放射線計測器30を設ける場合は、当該2次元空間計測システムを小型化及び軽量化することができる。 Although one radiation measuring instrument 30 can be provided in common for the four two-dimensional measuring instruments 20, as shown in FIGS. 4 and 5, each of the two-dimensional measuring instruments 20 may be provided with Preferably, a radiation measuring device 30 is provided. As shown in FIGS. 4 and 5, the transportation vehicle There is no guarantee that you will be exposed to a certain amount of radiation. Therefore, by providing a radiation measuring device 30 in the vicinity of each two-dimensional measuring device 20, it is possible to improve the measurement accuracy of the radiation dose exposed to the two-dimensional measuring device 20. On the other hand, when one radiation measuring instrument 30 is provided in common for the four two-dimensional measuring instruments 20, the two-dimensional space measuring system can be made smaller and lighter.

放射線計測器30は、それ自体の耐放射性が高いため、図4及び図5に示すように、遮蔽体内に配置することは必ずしも必要とせず、搬送車Xに直接搭載することができる。このように直接搭載することで、放射線計測器30ひいては当該2次元空間計測システムを小型化及び軽量化することができる。この場合、放射線計測器30が計測する放射線量は、放射線遮蔽体10外部の実空間での線量となるため、放射線遮蔽体10を通過する際の放射線の減衰を加味して2次元計測器20の浴びる放射線量を測定することとなる。具体的には例えば上記制御部で実測定値に減衰係数を乗じればよい。あるいは、実測定値を直接用いることも可能である。実測定値は2次元計測器20の浴びる放射線量に比例係数(減衰係数の逆数)を乗じた値となるため、実測定値を用いたとしても、実質的に2次元計測器20の浴びる放射線量を計測することと等価である。この場合、減衰係数を算出することは必要とされない。 Since the radiation measuring device 30 itself has high radiation resistance, it does not necessarily need to be placed inside a shielding body, as shown in FIGS. 4 and 5, and can be directly mounted on the transport vehicle X. By directly mounting it in this way, the radiation measuring instrument 30 and, by extension, the two-dimensional space measuring system can be made smaller and lighter. In this case, the radiation dose measured by the radiation measuring device 30 is the dose in the real space outside the radiation shielding body 10, so the two-dimensional measuring device 20 takes into account the attenuation of the radiation when passing through the radiation shielding body 10. The amount of radiation that people are exposed to will be measured. Specifically, for example, the actual measured value may be multiplied by an attenuation coefficient in the control section. Alternatively, it is also possible to use actual measured values directly. The actual measurement value is the value obtained by multiplying the radiation dose exposed to the two-dimensional measuring instrument 20 by a proportional coefficient (the reciprocal of the attenuation coefficient), so even if the actual measured value is used, it is actually the radiation dose exposed to the two-dimensional measuring instrument 20. It is equivalent to measuring. In this case it is not necessary to calculate the damping coefficient.

あるいは、放射線計測器30は、放射線遮蔽体10と同等の遮蔽体で被覆してもよい。この構成では、放射線計測器30は遮蔽体の内部の放射線量を測定することとなるため、測定値を減衰係数等で調整する必要がない。また、放射線計測器30と、2次元計測器20が格納された放射線遮蔽体10が別体であるため、搬送車Xへ搭載する際の配置の自由度が高められる。 Alternatively, the radiation measuring device 30 may be covered with a shielding body equivalent to the radiation shielding body 10. In this configuration, since the radiation measuring device 30 measures the radiation dose inside the shielding body, there is no need to adjust the measured value using an attenuation coefficient or the like. Moreover, since the radiation measuring device 30 and the radiation shielding body 10 in which the two-dimensional measuring device 20 is housed are separate bodies, the degree of freedom in arrangement when mounting on the carrier vehicle X is increased.

あるいは、放射線計測器30は、放射線遮蔽体10そのものに内包されていてもよい。この構成によれば、2次元計測器20の浴びる放射線量をさらに精度良く測定することができる。 Alternatively, the radiation measuring device 30 may be included in the radiation shielding body 10 itself. According to this configuration, the radiation dose to which the two-dimensional measuring instrument 20 is exposed can be measured with higher accuracy.

なお、放射線計測器30で測定された放射線量の結果は、上記制御部へ転送される。 Note that the radiation dose results measured by the radiation measuring device 30 are transferred to the control section.

<制御部>
上記制御部は、放射線計測器30が測定した放射線量の時間積分により実集積線量を算出し、この実集積線量が予め定められた上限値に達するまで監視する。上限値に達した場合、上記制御部は、例えば2次元計測器20の交換を促すよう警告を発する。上記制御部は、2次元計測器20が交換されたことを検知すれば、実集積線量を初期化し、交換された2次元計測器20に対して監視を継続する。
<Control unit>
The control unit calculates the actual integrated dose by time integration of the radiation dose measured by the radiation measuring instrument 30, and monitors the actual integrated dose until it reaches a predetermined upper limit. When the upper limit is reached, the control section issues a warning to prompt replacement of the two-dimensional measuring device 20, for example. If the control unit detects that the two-dimensional measuring device 20 has been replaced, it initializes the actual integrated dose and continues monitoring the replaced two-dimensional measuring device 20.

上記制御部による2次元空間計測システムの制御方法について、以下に詳説する。 A method for controlling the two-dimensional space measurement system by the control section will be described in detail below.

<2次元空間計測システムの制御方法>
図6に示す2次元空間計測システムの制御方法は、本発明の2次元空間計測システムの制御方法である。当該2次元空間計測システムの制御方法は、線量測定工程S1と、時間計測工程S2と、集積線量算出工程S3と、監視工程S4とを備える。
<Control method of two-dimensional space measurement system>
The control method for a two-dimensional space measurement system shown in FIG. 6 is a control method for a two-dimensional space measurement system according to the present invention. The control method for the two-dimensional space measurement system includes a dose measurement step S1, a time measurement step S2, an integrated dose calculation step S3, and a monitoring step S4.

(線量測定工程)
線量測定工程S1では、放射線計測器30により実空間線量を測定する。
(Dose measurement process)
In the dose measurement step S1, the radiation measuring device 30 measures the real space dose.

測定された放射線計測器30の線量は上記制御部へ送られる。また、上述したように放射線計測器30が放射線遮蔽体10外部の実空間での線量を測定している場合は、放射線遮蔽体10による減衰係数を乗じた値を実空間線量としてもよいし、実空間線量そのものを2次元計測器20の浴びる放射線量の指標として用いてもよい。 The measured dose of the radiation measuring device 30 is sent to the control section. Further, as described above, when the radiation measuring instrument 30 measures the dose in the real space outside the radiation shield 10, the value multiplied by the attenuation coefficient by the radiation shield 10 may be used as the real space dose, The real space dose itself may be used as an index of the radiation dose to which the two-dimensional measuring device 20 is exposed.

この実空間線量は、例えば搬送車Xが保管された廃棄物Lに近づくと上昇し、廃棄物Lを持ち上げた状態で顕著に増大するから、逐次測定する必要がある。なお、逐次測定するとは、一定の時間間隔をおいて断続的に測定する場合を含む。 This real space dose increases, for example, when the transport vehicle X approaches the stored waste L, and increases significantly when the waste L is lifted up, so it is necessary to measure it sequentially. Note that "sequential measurement" includes cases in which measurements are performed intermittently at fixed time intervals.

(時間計測工程)
時間計測工程S2では、2次元計測器20の実作動時間を計測する。この工程は、線量測定工程S1と並行して同時に行われる。
(Time measurement process)
In the time measurement step S2, the actual operating time of the two-dimensional measuring device 20 is measured. This process is performed simultaneously in parallel with the dose measurement process S1.

2次元計測器20は、搬送車Xが移動可能な状態、つまり搬送車Xのシステム電源が投入されている場合に作動していると考えられる。一方、搬送車Xのシステム電源が投入されていない場合、搬送車Xは休止状態にあり、通常は放射線を浴びる状態で休止することはないと考えられるため、2次元計測器20の実作動時間からは除外して考えてよい。 The two-dimensional measuring instrument 20 is considered to be operating when the guided vehicle X is in a movable state, that is, when the system power of the guided vehicle X is turned on. On the other hand, if the system power of the conveyance vehicle X is not turned on, the conveyance vehicle You can consider excluding it from .

この時間計測工程S2は、上記制御部で行うとよい。計測された時間と線量測定工程S1で測定された実空間線量との対応を取り易く、次工程である集積線量算出工程S3で、集積線量を容易に算出することができる。 This time measurement step S2 is preferably performed by the control section. It is easy to correlate the measured time with the real space dose measured in the dose measurement step S1, and the integrated dose can be easily calculated in the next step, the integrated dose calculation step S3.

(集積線量算出工程)
集積線量算出工程S3では、線量測定工程S1で得られる上記実空間線量及び時間計測工程S2で得られる実作動時間から実集積線量を算出する。
(Integrated dose calculation process)
In the integrated dose calculation step S3, the actual integrated dose is calculated from the real space dose obtained in the dose measurement step S1 and the actual operating time obtained in the time measurement step S2.

具体的には、実集積線量は、時間計測工程S2で計測された時間の関数として表される実空間線量を数値積分することで算出することができる。この実空間線量は、2次元計測器20の浴びる放射線量を近似する。 Specifically, the actual integrated dose can be calculated by numerically integrating the real space dose expressed as a function of time measured in the time measurement step S2. This real space dose approximates the radiation dose to which the two-dimensional measuring instrument 20 is exposed.

(監視工程)
監視工程S4では、算出工程S3で得られる実集積線量が、予め定められた上限値を超えていないことを監視する。
(Monitoring process)
In the monitoring step S4, it is monitored that the actual integrated dose obtained in the calculation step S3 does not exceed a predetermined upper limit.

上記上限値は、2次元計測器20に対して予め放射線を用いた照射試験により正常に動作する集積線量を確認することで決定できる。この上限値は、浴びる放射線の強さによらず固定値としてもよいが、単位時間当たり(例えば1時間当たり)の平均線量に応じて異なる上限値としてもよい。実平均線量は、集積線量算出工程S3で算出した実集積線量を時間計測工程S2で得られる総作動時間で除することで算出可能である。従って、この実平均線量から上限値を定めて監視することが可能である。 The above upper limit value can be determined by confirming the integrated dose at which the two-dimensional measuring device 20 operates normally through an irradiation test using radiation in advance. This upper limit value may be a fixed value regardless of the intensity of the radiation to which the radiation is applied, but it may also be a different upper limit value depending on the average dose per unit time (for example, per hour). The actual average dose can be calculated by dividing the actual integrated dose calculated in the integrated dose calculation step S3 by the total operating time obtained in the time measurement step S2. Therefore, it is possible to determine and monitor the upper limit value from this actual average dose.

この監視は、図4及び図5に示す2次元空間計測システムでは、2次元計測器20ごとに放射線計測器30が設けられているので、個々の2次元空間計測システムに対して独立して行うことができる。一方、複数の2次元計測器20に対して1つの放射線計測器30が設けられている場合では、上記複数の2次元計測器20を1グループとして監視することとなる。 In the two-dimensional space measurement systems shown in FIGS. 4 and 5, a radiation measuring device 30 is provided for each two-dimensional measuring device 20, so this monitoring is performed independently for each two-dimensional space measuring system. be able to. On the other hand, in a case where one radiation measuring instrument 30 is provided for a plurality of two-dimensional measuring instruments 20, the plurality of two-dimensional measuring instruments 20 are monitored as one group.

なお、上限値に達した場合、上述したように上記制御部が例えば2次元計測器20の交換を促すよう警告を発するとよい。この警告に基づいて2次元計測器20を交換することで、放射線による故障の発生を抑制できる。 Note that when the upper limit is reached, the control unit may issue a warning to prompt the two-dimensional measuring device 20 to be replaced, for example, as described above. By replacing the two-dimensional measuring instrument 20 based on this warning, it is possible to suppress the occurrence of failures due to radiation.

<利点>
当該2次元空間計測システムは、本発明の放射線遮蔽体10を用いるので、2次元計測器20の放射線を浴びることによる交換周期が比較的長い。また、当該2次元空間計測システムでは、放射線計測器30により2次元計測器20の浴びる放射線量を計測するので、その集積吸収線量からこの2次元計測器20の交換の必要性を把握できる。従って、当該2次元空間計測システムは、2次元計測器20の交換回数を削減しつつ、安定して2次元空間で物体の位置の把握を行うことができる。
<Advantages>
Since the two-dimensional space measuring system uses the radiation shielding body 10 of the present invention, the replacement cycle due to exposure to radiation from the two-dimensional measuring instrument 20 is relatively long. Furthermore, in the two-dimensional space measurement system, since the radiation measuring device 30 measures the radiation dose to which the two-dimensional measuring device 20 is exposed, it is possible to determine whether the two-dimensional measuring device 20 needs to be replaced from the accumulated absorbed dose. Therefore, the two-dimensional space measurement system can stably grasp the position of an object in two-dimensional space while reducing the number of times the two-dimensional measuring instrument 20 is replaced.

また、当該2次元空間計測システムの制御方法は、上述の工程により2次元計測器20の交換の必要性を把握できる。従って、当該2次元空間計測システムの制御方法を用いることで、2次元計測器の交換回数を削減しつつ、安定して2次元空間で物体の位置の把握を行うことができる。 Furthermore, the control method for the two-dimensional space measurement system can determine the necessity of replacing the two-dimensional measuring device 20 through the above-described steps. Therefore, by using the control method for the two-dimensional space measurement system, it is possible to stably grasp the position of an object in the two-dimensional space while reducing the number of times the two-dimensional measuring instrument is replaced.

〔第2実施形態〕
[放射線遮蔽体]
図7及び図8に示す放射線遮蔽体40は、2次元計測器20であるレーザスキャナに用いる放射線遮蔽体である。当該放射線遮蔽体40は、遮蔽壁41と、スリット42とを備える。2次元計測器20は、第1実施形態における2次元計測器20と同様であるので、同一符号を付して説明を省略する。
[Second embodiment]
[Radiation shield]
The radiation shield 40 shown in FIGS. 7 and 8 is a radiation shield used in a laser scanner, which is the two-dimensional measuring instrument 20. The radiation shield 40 includes a shield wall 41 and a slit 42 . The two-dimensional measuring instrument 20 is the same as the two-dimensional measuring instrument 20 in the first embodiment, so the same reference numerals are given and the description thereof will be omitted.

当該放射線遮蔽体40では、スリット42が遮蔽壁41の一部を構成する4本の支柱41aを除き全周にわたって設けられている。換言すればスリット42は、4本の支柱41aにより区切られた開口角360度のスリットとして構成されている。 In the radiation shielding body 40, slits 42 are provided all around the circumference except for the four pillars 41a that constitute a part of the shielding wall 41. In other words, the slit 42 is configured as a slit with an opening angle of 360 degrees separated by four pillars 41a.

支柱41aは、板状である。開口角360度のスリットをそのまま構成すると、遮蔽壁41は、上下に完全に分断されることとなり、放射線遮蔽体40として形状が維持できなくなる。支柱41aは開口角360度のスリットにおいても放射線遮蔽体40の形状を維持するため設けられている。なお、開口角が360度に至らなくとも、例えば開口角が180度超となると、遮蔽壁41の強度が不足し、スリット部分が高さ方向に潰れ易くなる場合がある。このような場合においてもスリットの一部に支柱41aを設けて補強するとよい。 The support column 41a is plate-shaped. If a slit with an opening angle of 360 degrees is configured as is, the shielding wall 41 will be completely divided into upper and lower parts, and the shape of the radiation shielding body 40 will not be maintained. The pillars 41a are provided to maintain the shape of the radiation shield 40 even in a slit having an opening angle of 360 degrees. Note that even if the opening angle does not reach 360 degrees, if the opening angle exceeds 180 degrees, for example, the strength of the shielding wall 41 may be insufficient and the slit portion may be easily crushed in the height direction. Even in such a case, it is preferable to provide a support 41a in a part of the slit to reinforce it.

4本の支柱41aは、隣接する支柱41aと90度の角度、すなわち等角度間隔をなすように反射板22の回転軸から放射状に配置されている。このように配置することで、支柱41aは、遮蔽壁41の形状を維持しつつ、2次元計測器20の照射波であるレーザ光の照射を阻害し難い。なお、図7及び図8に示す放射線遮蔽体40では、4本の支柱41aで遮蔽壁41の形状を維持しているが、支柱41aの本数は、3本あるいは5本以上であってもよい。 The four pillars 41a are arranged radially from the rotation axis of the reflecting plate 22 so as to form an angle of 90 degrees with the adjacent pillars 41a, that is, at equal angular intervals. By arranging it in this way, the pillar 41a maintains the shape of the shielding wall 41 and is less likely to interfere with the irradiation of the laser beam, which is the irradiation wave of the two-dimensional measuring instrument 20. In addition, in the radiation shielding body 40 shown in FIGS. 7 and 8, the shape of the shielding wall 41 is maintained by four pillars 41a, but the number of pillars 41a may be three or five or more. .

遮蔽壁41及びスリット42は上述の構成を除き第1実施形態における遮蔽壁11及びスリット12と同様に構成できるので、その他の説明を省略する。 Since the shielding wall 41 and the slit 42 can be configured in the same manner as the shielding wall 11 and the slit 12 in the first embodiment except for the above-mentioned configuration, other explanations will be omitted.

当該放射線遮蔽体40では、スリット42が支柱41aを除き全周にわたって設けられているので、全周(360度)照射する2次元計測器20に対しても効果的に使用することができる。 In the radiation shield 40, the slits 42 are provided all around the circumference except for the pillar 41a, so that it can be effectively used for the two-dimensional measuring instrument 20 that irradiates the entire circumference (360 degrees).

[その他の実施形態]
なお、本発明は、上記実施形態に限定されるものではない。
[Other embodiments]
Note that the present invention is not limited to the above embodiments.

上記実施形態では、2次元計測器がレーザスキャナである場合を説明したが、2次元計測器はレーザスキャナに限定されるものではない。他の光源を用いたスキャナであってもよく、音波やX線等の他の波を用いたものであってもよい。 In the above embodiment, a case has been described in which the two-dimensional measuring instrument is a laser scanner, but the two-dimensional measuring instrument is not limited to a laser scanner. A scanner using another light source may be used, or a scanner using other waves such as sound waves or X-rays may be used.

上記実施形態では、遮蔽壁が円柱状である場合を説明したが、遮蔽壁の形状は円柱状に限定されるものではない。遮蔽壁は例えば四角柱状等の他の形状を採用してもよい。 In the embodiment described above, the shielding wall is cylindrical, but the shape of the shielding wall is not limited to the cylindrical shape. The shielding wall may have another shape, such as a rectangular prism shape.

上記実施形態では、スリットが遮蔽壁の側面に設けられている場合を説明したが、スリットは2次元測定器の照射波が通過できる位置に設けられ、その位置が遮蔽壁の側面に限定されるものではない。 In the above embodiment, a case has been described in which the slit is provided on the side surface of the shielding wall, but the slit is provided at a position through which the irradiation wave of the two-dimensional measuring device can pass, and the position is limited to the side surface of the shielding wall. It's not a thing.

本発明の放射線遮蔽体は、2次元計測器に用いることができるとともに、小型かつ軽量である。また、本発明の2次元空間計測システム及び本発明の2次元空間計測システムの制御方法は、本発明の放射線遮蔽体を用いることで、2次元計測器の交換回数を削減しつつ、安定して2次元空間で物体の位置の把握を行うことができる。 The radiation shield of the present invention can be used in a two-dimensional measuring instrument, and is small and lightweight. In addition, the two-dimensional space measurement system of the present invention and the control method for the two-dimensional space measurement system of the present invention use the radiation shield of the present invention, thereby reducing the number of times the two-dimensional measuring device is replaced and stably. It is possible to grasp the position of an object in two-dimensional space.

10 放射線遮蔽体
11 遮蔽壁
12 スリット
20 2次元計測器
21 投受光部
22 反射板
23 筐体
30 放射線計測器
40 放射線遮蔽体
41 遮蔽壁
41a 支柱
42 スリット
X 搬送車
L 廃棄物
10 Radiation shielding body 11 Shielding wall 12 Slit 20 Two-dimensional measuring instrument 21 Light projecting/receiving section 22 Reflector plate 23 Housing 30 Radiation measuring instrument 40 Radiation shielding body 41 Shielding wall 41a Support column 42 Slit X Transport vehicle L Waste

Claims (4)

放射線遮蔽体と、
上記放射線遮蔽体に格納される2次元計測器と、
上記2次元計測器の浴びる放射線量を計測する放射線計測器と、
上記2次元計測器及び上記放射線計測器を制御する制御部と
を備え
上記2次元計測器が、2次元空間に対してスキャンした照射波における物体の反射波により周囲の物体の位置を把握するものであり、
上記放射線遮蔽体が、
上記2次元計測器全体を被覆可能な遮蔽壁と、
上記遮蔽壁に被覆された上記2次元計測器の照射波を通過させ、上記遮蔽壁の外部に向かってスキャン可能とするスリットと
を備える2次元空間計測システム。
a radiation shield;
a two-dimensional measuring instrument stored in the radiation shield;
a radiation measuring device that measures the radiation dose exposed to the two-dimensional measuring device;
A control unit that controls the two-dimensional measuring instrument and the radiation measuring instrument ,
The two-dimensional measuring instrument grasps the position of surrounding objects by the reflected waves of the objects in the irradiated waves scanned in the two-dimensional space,
The radiation shielding body is
a shielding wall capable of covering the entire two-dimensional measuring instrument;
a slit that allows the irradiation wave of the two-dimensional measuring device covered on the shielding wall to pass through and scan toward the outside of the shielding wall;
A two-dimensional space measurement system equipped with
上記遮蔽壁が中空の円柱状であり、
上記スリットが上記遮蔽壁の側面に設けられており、
上記遮蔽壁の中心軸周りにおける上記スリットのなす開口角が60度以上である請求項1に記載の2次元空間計測システム
The shielding wall has a hollow cylindrical shape,
The slit is provided on a side surface of the shielding wall,
The two-dimensional space measurement system according to claim 1, wherein the opening angle of the slit around the central axis of the shielding wall is 60 degrees or more.
上記照射波がレーザ光であり、
上記2次元計測器が、
上記レーザ光の投射及び物体の反射光の受光をする投受光部と、
上記投受光部から投射された上記レーザ光が上記スリットを通過するようにその進行方向を変える反射板と
を有するものであり、
上記遮蔽壁が、上記2次元計測器を被覆した際、上記投受光部が上記スリットの死角に位置するように構成されている請求項1又は請求項2に記載の2次元空間計測システム。
The irradiated wave is a laser beam,
The above two-dimensional measuring instrument is
a light emitting/receiving unit that projects the laser beam and receives the reflected light from the object;
and a reflecting plate that changes the traveling direction of the laser beam projected from the light projecting/receiving section so that it passes through the slit,
The two-dimensional space measurement system according to claim 1 or 2, wherein when the shielding wall covers the two-dimensional measuring device, the light projecting and receiving section is located in a blind spot of the slit.
請求項1から請求項3のいずれか1項に記載の2次元空間計測システムの制御方法であって、
上記放射線計測器により実空間線量を測定する工程と、
上記2次元計測器の実作動時間を計測する工程と、
上記線量測定工程で得られる上記実空間線量及び上記時間計測工程で得られる実作動時間から実集積線量を算出する工程と、
上記算出工程で得られる実集積線量が、予め定められた上限値を超えていないことを監視する工程と
を備える2次元空間計測システムの制御方法。
A method for controlling a two-dimensional space measurement system according to any one of claims 1 to 3 ,
a step of measuring real space dose with the radiation measuring instrument;
a step of measuring the actual operating time of the two-dimensional measuring instrument;
Calculating an actual integrated dose from the real space dose obtained in the dose measurement step and the actual operating time obtained in the time measurement step;
A method for controlling a two-dimensional spatial measurement system, comprising: monitoring that the actual integrated dose obtained in the calculation step does not exceed a predetermined upper limit.
JP2020082257A 2020-05-07 2020-05-07 2D space measurement system and control method for 2D space measurement system Active JP7350692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020082257A JP7350692B2 (en) 2020-05-07 2020-05-07 2D space measurement system and control method for 2D space measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020082257A JP7350692B2 (en) 2020-05-07 2020-05-07 2D space measurement system and control method for 2D space measurement system

Publications (2)

Publication Number Publication Date
JP2021177137A JP2021177137A (en) 2021-11-11
JP7350692B2 true JP7350692B2 (en) 2023-09-26

Family

ID=78409385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020082257A Active JP7350692B2 (en) 2020-05-07 2020-05-07 2D space measurement system and control method for 2D space measurement system

Country Status (1)

Country Link
JP (1) JP7350692B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7466399B2 (en) 2020-07-30 2024-04-12 三菱重工業株式会社 Optical measurement device and robot

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130956A (en) 2001-10-24 2003-05-08 Hitachi Ltd Exposure control/radiation work control system and method therefor
JP2008076370A (en) 2006-09-21 2008-04-03 Asahi Techno:Kk Radiation shielded camera for working
US20080151264A1 (en) 2006-12-20 2008-06-26 Csl Surveys (Stevenage) Limited Profiling device
JP2014185967A (en) 2013-03-25 2014-10-02 Hitachi Ltd Mobile radiation dose measuring device
JP2019217612A (en) 2018-06-22 2019-12-26 日立Geニュークリア・エナジー株式会社 Monitoring device for remote-operated device and monitoring method of the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04188098A (en) * 1990-11-22 1992-07-06 Mitsubishi Atom Power Ind Inc Inductrial television camera used in high radiation environment
JPH09113627A (en) * 1995-10-16 1997-05-02 Toshiba Corp Radiation source intensity measuring equipment
JPH11101642A (en) * 1997-09-29 1999-04-13 Asahi Optical Co Ltd Method for horizontal adjustment of beam image, and apparatus for horizontal adjustment of beam image

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130956A (en) 2001-10-24 2003-05-08 Hitachi Ltd Exposure control/radiation work control system and method therefor
JP2008076370A (en) 2006-09-21 2008-04-03 Asahi Techno:Kk Radiation shielded camera for working
US20080151264A1 (en) 2006-12-20 2008-06-26 Csl Surveys (Stevenage) Limited Profiling device
JP2014185967A (en) 2013-03-25 2014-10-02 Hitachi Ltd Mobile radiation dose measuring device
JP2019217612A (en) 2018-06-22 2019-12-26 日立Geニュークリア・エナジー株式会社 Monitoring device for remote-operated device and monitoring method of the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
三浦 悟ほか,放射線環境下における建設機械の自動運転システム,JCMA報告 平成26年度 建設施工と建設機械シンポジウム開催報告,日本,JCMA,https://jcmanet.or.jp/bunken/symposium/2014/2014r01.pdf

Also Published As

Publication number Publication date
JP2021177137A (en) 2021-11-11

Similar Documents

Publication Publication Date Title
JP4228018B2 (en) Medical equipment
EP2538206B1 (en) Integrated backscatter X-ray system
US9439267B2 (en) Analyte-information acquisition apparatus
JP5149524B2 (en) Method for aligning a radiographic inspection system
US8439565B2 (en) Remotely-aligned arcuate detector array for high energy X-ray imaging
KR102121721B1 (en) Mobile x-ray imaging apparatus and control method for the same
US9658173B2 (en) Portable x-ray backscattering imaging system including a radioactive source
JP7350692B2 (en) 2D space measurement system and control method for 2D space measurement system
JP2009508276A (en) Method and system for identifying moving body, and method and system for radiation imaging inspection of moving body
CA2901327C (en) Collection of tomographic inspection data using compton scattering
WO2006116100A1 (en) X-ray backscatter inspection with coincident optical beam
US20140153701A1 (en) Gamma source tracking system
JP4064952B2 (en) Radiotherapy apparatus and method of operating radiotherapy apparatus
SE531638C2 (en) Stand for a radiation therapy device
JP6249715B2 (en) X-ray diagnostic equipment
US11029265B2 (en) X-ray scattering apparatus
JP2022189968A (en) Neutron capture therapy system
JP7162227B2 (en) distance measuring device
KR102017945B1 (en) Radioactive-rays irradiating device
JP2007319496A (en) Control device for radiotherapy system and radiation irradiation method
KR101783778B1 (en) Container scanning device capable of 2d or 3d scanning internal goods of container
JP6463450B2 (en) Information acquisition device
JP6261645B2 (en) Information acquisition device
JP2022026051A (en) Optical measuring instrument support device, optical measuring instrument, and robot
JP2013039244A (en) X-ray ct apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230913

R150 Certificate of patent or registration of utility model

Ref document number: 7350692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150