JP2008076321A - Earthquake prediction method and earthquake prediction device - Google Patents

Earthquake prediction method and earthquake prediction device Download PDF

Info

Publication number
JP2008076321A
JP2008076321A JP2006258272A JP2006258272A JP2008076321A JP 2008076321 A JP2008076321 A JP 2008076321A JP 2006258272 A JP2006258272 A JP 2006258272A JP 2006258272 A JP2006258272 A JP 2006258272A JP 2008076321 A JP2008076321 A JP 2008076321A
Authority
JP
Japan
Prior art keywords
electric field
lightning
earthquake
spectrum
field pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006258272A
Other languages
Japanese (ja)
Inventor
Kozo Takahashi
耕三 高橋
Vladimirovich Matveev Igor
ヴラジミロヴィチ マトヴェーフ イーゴル
Yukio Fujinawa
幸雄 藤縄
Shinobu Yazaki
忍 矢崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
REAL TIME JISHIN JOHO RIYO KYO
REAL TIME JISHIN JOHO RIYO KYOGIKAI
Original Assignee
REAL TIME JISHIN JOHO RIYO KYO
REAL TIME JISHIN JOHO RIYO KYOGIKAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by REAL TIME JISHIN JOHO RIYO KYO, REAL TIME JISHIN JOHO RIYO KYOGIKAI filed Critical REAL TIME JISHIN JOHO RIYO KYO
Priority to JP2006258272A priority Critical patent/JP2008076321A/en
Publication of JP2008076321A publication Critical patent/JP2008076321A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an earthquake prediction method and an earthquake prediction device that observe an electric field for indicating premonitory symptoms of an earthquake, discriminates the electric field for indicating the premonitory symptoms from an electric field, such as artificial noise and atmospherics, and detects the electric field for indicating the premonitory symptoms for predicting an earthquake. <P>SOLUTION: It has been observed that electric field pulses occurs over a wide frequency band in a seismic center region due to flow potential following diastrophism for indicating the premonitory symptoms of an earthquake in the seismic center region, charge separation, or the like following minute cracks before a large earthquake. They are distinguished according to the difference in the spectrum of the electric fields and that of occurrence time, thus predicting a large earthquake. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、地震の前兆現象を電界観測に基づいて検知し、大地震を予知する地震予知方法および地震予知装置に関するものである。   The present invention relates to an earthquake prediction method and an earthquake prediction apparatus for detecting a precursory phenomenon of an earthquake based on electric field observation and predicting a large earthquake.

大地震の前に震源域近傍において、電波雑音が観測されることは、50年以上前から良く知られていた。地震予知は、地震前兆の電界(以下、地電流・地表電荷などを含む)を観測することが広く行われていた。   It has been well known for more than 50 years that radio noise is observed in the vicinity of the epicenter before a major earthquake. Earthquake prediction was widely performed by observing the electric field (hereinafter, including ground current, surface charge, etc.) of a precursor to an earthquake.

たとえば、本出願人が提案した特願2006−184190号公報に記載されている緊急地震速報利用による防災システムおよび装置は、震源情報受信部で受信した震源情報と、位置情報設定部で設定された位置情報を基にして、予測地震強度と主要到達時間を演算している。特公平5−36000号公報に記載されている地震前兆の長波・地電流の発生領域のトモグラフィ法は、地震前兆の長波・地電流を地中または海底の少なくとも4箇所で同時に観測し、受信・検出した信号間の相互関係から、長波・地電流変動の発生地点と強度分布を3次元的に算出し、その立体画像と時間変化を得ている。
特願2006−184190号公報 特公平5−36000号公報
For example, the disaster prevention system and device using the emergency earthquake bulletin described in Japanese Patent Application No. 2006-184190 proposed by the present applicant is set by the epicenter information received by the epicenter information receiving unit and the position information setting unit Based on the location information, the predicted earthquake intensity and main arrival time are calculated. The tomography method for the area of occurrence of longwaves and ground currents of earthquake precursors described in Japanese Patent Publication No. 5-36000 is the simultaneous observation and reception of longwaves and ground currents of earthquake precursors in at least four locations in the ground or on the sea floor.・ From the interrelationship between the detected signals, the point of occurrence of the long wave / geoelectric current fluctuation and the intensity distribution are calculated three-dimensionally to obtain a stereoscopic image and temporal change.
Japanese Patent Application No. 2006-184190 Japanese Patent Publication No. 5-36000

しかし、従来の電波雑音および地震前兆の電界を観測する方法は、地震前兆電界と、人工雑音・空電等の自然雑音の電界との弁別が困難であり、これらによる地震予知の信頼性が欠けるという欠点があった。前記電界の観測による地震予知は、実用に供されず、地震前兆電界と人工雑音・自然雑音との弁別が解決すべき急務の課題であった。   However, the conventional methods of observing the electric field noise and the electric field of earthquake precursors are difficult to discriminate between the electric field of earthquake precursors and the electric field of natural noise such as artificial noise and static electricity, and the reliability of earthquake prediction due to these is lacking. There was a drawback. The earthquake prediction based on the observation of the electric field is not practically used, and the discrimination between the earthquake precursor electric field and the artificial noise / natural noise is an urgent issue to be solved.

(第1発明)
第1発明の地震予知方法は、強い雑音が観測されない互いに50kmから300km離れた3箇所または4箇所以上の観測点において、電界を観測することによって、地震の予知を行うものであり、1 kHzから13kHzを含む周波数帯で、落雷時以外の電界パルスを同時に前記観測点で観測して、前記電界パルスのスペクトルを求め、前記電界パルスのスペクトルと、既知の雷のスペクトル特性および雷の電離層伝播減衰特性とを比較し、前記既知の雷のスペクトルから、雷による電界パルスを除去し、近接雷および遠距離雷の受信スペクトルと異なる電界パルスのみを抽出し、さらに、前記3箇所または4箇所以上の観測点において、雷の電界を含まない前記電界パルスの中から、人工雑音を除去し、観測点間の伝播時間差以内のパルスのみを抽出し、前記観測点間の伝播時間差以内で観測された前記パルス間の2組または3組以上の時間差から、震源域を算出し、前記震源域と、前記観測点間の伝播時間差以内で観測された前記パルスの解析により、地震の予知を行うことを特徴とする。
(First invention)
The earthquake prediction method according to the first aspect of the invention predicts an earthquake by observing an electric field at three or four or more observation points separated from each other by 50 to 300 km where no strong noise is observed. In the frequency band including 13 kHz, an electric field pulse other than a lightning strike is simultaneously observed at the observation point to obtain the spectrum of the electric field pulse, and the spectrum of the electric field pulse, the spectral characteristics of the known lightning, and the ionospheric propagation attenuation of the lightning. And comparing the characteristics, removing the electric field pulses caused by lightning from the known lightning spectrum, extracting only the electric field pulses different from the reception spectra of the adjacent lightning and long-distance lightning, and further, At the observation point, artificial noise is removed from the electric field pulse not including the lightning electric field, and the pulse within the propagation time difference between the observation points is removed. The source region is calculated from the time difference between two or more pairs between the pulses observed within the difference in propagation time between the observation points, and within the propagation time difference between the source region and the observation points. The earthquake is predicted by analyzing the pulse observed in (1).

(第2発明)
第2発明の地震予知装置は、強い雑音が観測されない互いに50kmから300km離れた3箇所または4箇所以上の観測点において、電界を観測することによって地震の予知を行うものであり、1 kHzから13kHzを含む周波数帯で、前記観測点において、落雷時以外の電界パルスを観測し、前記電界パルスのスペクトルを求めるスペクトル抽出記憶手段と、スペクトル抽出記憶手段で求められたスペクトルと、既知の雷のスペクトル特性および雷の電離層伝播減衰特性と比較するスペクトル比較手段と、前記スペクトル比較手段によって雷による電界パルスを除去し、近接雷および遠距離雷の受信スペクトルとは異なる電界パルスのみを抽出する電界パルス抽出手段と、さらに、前記観測点における雷の電界を含まない前記電界パルスに、時刻信号を付与するタイマー手段と、時刻信号が付与された前記電界パルスの中から、前記観測点間の伝播時間差以内のパルスのみを抽出して、人工雑音を除去する雑音除去手段と、前記観測点間の伝播時間差以内で観測された前記電界パルス間の2組または3組以上の時間差から、震源域を算出する震源地算出手段と、前記震源地算出手段によって算出された震源域と、前記観測点間の伝播時間差以内で観測された前記電界パルスを解析する電界パルス解析手段と、から少なくとも構成されており、前記電界パルス解析手段により、大地震の直前予知を行うことを特徴とする。
(Second invention)
The earthquake prediction apparatus according to the second aspect of the invention predicts an earthquake by observing an electric field at three or four or more observation points separated from each other by 50 km to 300 km where no strong noise is observed. A spectrum extraction storage means for observing an electric field pulse other than a lightning strike at the observation point and obtaining a spectrum of the electric field pulse, a spectrum obtained by the spectrum extraction storage means, and a known lightning spectrum. Spectrum comparison means for comparing characteristics and lightning ionospheric propagation attenuation characteristics, and electric field pulse extraction that removes electric field pulses caused by lightning by the spectrum comparison means and extracts only electric field pulses that are different from the reception spectrum of near lightning and long-distance lightning Means, and further, the electric field pulse not including a lightning electric field at the observation point In addition, a timer means for giving a time signal, and a noise removing means for extracting only a pulse within a propagation time difference between the observation points from the electric field pulse to which the time signal is given, and removing artificial noise, An epicenter region calculating means for calculating an epicenter region from two or more sets of time differences between the electric field pulses observed within the propagation time difference between the observation points, and an epicenter region calculated by the epicenter source calculating unit; And an electric field pulse analyzing means for analyzing the electric field pulse observed within a difference in propagation time between the observation points, wherein the electric field pulse analyzing means makes a prediction immediately before a large earthquake. To do.

本発明によれば、人工雑音および自然雑音を除去することができるため、地震の前兆を表す電界パルスを観測することが容易にできる。また、本発明によれば、前記地震の前兆を表す電界パルスを容易に観測することができるため、大地震の予知が可能になった。   According to the present invention, since artificial noise and natural noise can be removed, it is possible to easily observe an electric field pulse representing an earthquake precursor. In addition, according to the present invention, it is possible to easily observe the electric field pulse indicating the precursor of the earthquake, so that a large earthquake can be predicted.

本発明の原理を説明する。大地震の前には、震源域の地震前兆の地殻変動に伴う流動電位・微小亀裂に伴う電荷分離などで、震源域において、広い周波数帯域に亙り、電界パルスが発生することが観測されている。また、自然雑音の多くは、電界強度が周波数に反比例する Pulse Burstであることが知られており、前兆電界パルスも、通常、下記の関係を満足している。
E(12kHz)<E(3kHz)<E(1.5kHz)・・・(1)
ここに、E(fkHz)は、周波数がfkHzの受信電界強度を示す。
The principle of the present invention will be described. Before a major earthquake, it has been observed that electric field pulses are generated over a wide frequency band in the source region due to the flow potential accompanying the crustal movement of the earthquake precursor in the source region and charge separation associated with microcracks. . Further, it is known that most of the natural noise is a pulse burst whose electric field intensity is inversely proportional to the frequency, and the precursor electric field pulse usually satisfies the following relationship.
E (12 kHz) <E (3 kHz) <E (1.5 kHz) (1)
Here, E (fkHz) indicates a received electric field strength having a frequency of fkHz.

自然雑音は、雷の電界が最大である。雷の電界強度最大の周波数は、通常、3kHzから10kHz(波長30kmから100km)の範囲内にある。前記雷の電界の周波数特性から、近接雷の電界は、(1) 式の右辺を満足しない。一方、雷の電界強度が大きい100Hzから1MHzでは、電離層伝播(約1000km以上)での減衰が1kHzから3kHzで大きい。この周波数特性と減衰特性のために、遠雷の強度は、12kHzのあたりで最大となる。前記遠雷の電界は、(1) 式の左辺を満足しない。すなわち、(1) 式を満足する電界は、雷起源では無いことになる。   Natural noise has the largest lightning electric field. The frequency of the lightning field strength maximum is usually in the range of 3 kHz to 10 kHz (wavelength 30 km to 100 km). From the frequency characteristics of the lightning electric field, the electric field of the adjacent lightning does not satisfy the right side of the equation (1). On the other hand, when the electric field intensity of lightning is 100 Hz to 1 MHz, attenuation due to ionospheric propagation (about 1000 km or more) is large from 1 kHz to 3 kHz. Due to this frequency characteristic and attenuation characteristic, the intensity of the deep lightning is maximized around 12 kHz. The electric field of the far lightning does not satisfy the left side of equation (1). In other words, the electric field that satisfies Equation (1) is not from lightning.

連続した強い雑音の少ない1kHzから13kHz帯では、これまでの10年以上の観測によれば、雷以外の一時的な雑音もパルス性であるが、あまり強くなく、50kmから300km程度離れた地点で、同時(観測点間の伝播時間より短い時間)に観測されない。一時的なパルスが、50kmから300km程度離れた2地点で1ms以上の時間差で観測された場合、発生源と2地点間の距離の差は300km以上となり、2地点で観測されたパルスの発生源は異なることになるため、同一の地震前兆パルスでは無いことになる。   In the 1kHz to 13kHz band where there is little continuous strong noise, according to observations over 10 years so far, temporary noise other than lightning is also pulsed, but it is not so strong, at a point about 50km to 300km away. , Not observed at the same time (shorter than the propagation time between observation points). When a temporary pulse is observed at a time difference of 1 ms or more at two points about 50 km to 300 km apart, the difference in distance between the source and the two points is 300 km or more, and the source of the pulse observed at the two points Will not be the same earthquake precursor pulse.

以上のことから、互いに、50kmから300km程度離れ、連続した強い雑音が無い、3箇所以上で、同時に(観測点間の伝播時間より短い時間で)観測されたパルスが、(1) 式を満たす場合、その波源は、雑音のものでは無く、地震の前に発生する前兆電界であるとする。   Based on the above, the pulses observed at three or more locations at the same time (with a shorter time than the propagation time between observation points) satisfying the formula (1) are separated from each other by about 50 km to 300 km and have no continuous strong noise. In this case, it is assumed that the wave source is not a noise source but a precursor electric field generated before an earthquake.

(第1発明)
第1発明の地震予知方法は、地震前兆電界パルスを検出・弁別することにより、大地震の直前予知を可能にするものである。前記地震予知方法は、強い雑音が観測されない互いに50kmから300km離れた3箇所または4箇所以上の観測点において、電界パルスを観測している。前記観測点は、1 kHzから13kHzを含む周波数帯で、落雷時以外の電界パルスを同時に観測して、前記電界パルスのスペクトルが求められる。次に、前記電界パルスのスペクトルは、既知の雷のスペクトル特性および雷の電離層伝播減衰特性と比較される。
(First invention)
The earthquake prediction method according to the first aspect of the present invention enables prediction immediately before a large earthquake by detecting and discriminating an earthquake precursor electric field pulse. In the earthquake prediction method, electric field pulses are observed at three or four or more observation points separated from each other by 50 to 300 km where no strong noise is observed. The observation point is a frequency band including 1 kHz to 13 kHz, and an electric field pulse other than that during lightning strike is simultaneously observed to obtain a spectrum of the electric field pulse. The spectrum of the electric field pulse is then compared with the known lightning spectral characteristics and lightning ionospheric propagation attenuation characteristics.

近接雷および遠距離雷の受信スペクトルと異なる電界パルスは、前記既知の雷のスペクトルから、雷による電界パルスが除去されて、抽出される。さらに、前記3箇所または4箇所以上の観測点は、雷の電界を含まない前記電界パルスの中から、人工雑音を除去し、観測点間の伝播時間差以内のパルスのみが抽出される。震源域は、前記観測点間の伝播時間差以内で観測された前記パルス間の2組または3組以上の時間差から算出される。   The electric field pulse different from the reception spectrum of the near lightning and the long distance lightning is extracted by removing the electric field pulse caused by the lightning from the known lightning spectrum. Further, at the three or four or more observation points, artificial noise is removed from the electric field pulse not including the electric field of lightning, and only pulses within the propagation time difference between the observation points are extracted. The hypocenter region is calculated from the time difference between two or more sets of the pulses observed within the propagation time difference between the observation points.

(第2発明)
第2発明の地震予知装置は、強い雑音が観測されない互いに50kmから300km離れた3箇所または4箇所以上の観測点において、電界を観測することによって大地震の直前の予知を行うものである。スペクトル抽出記憶手段は、前記距離だけ離れた観測点において、1 kHzから13kHzを含む周波数帯で、たとえば、1kHzから2kHz、2.5kHzから3.5kHz、10.5kHzから13kHz、前記観測点において、落雷時以外の電界パルスを観測し、前記電界パルスのスペクトルが求められるとともに、前記スペクトルが抽出され、記憶される。
(Second invention)
The earthquake prediction apparatus according to the second aspect of the invention predicts immediately before a large earthquake by observing an electric field at three or four or more observation points separated from each other by 50 to 300 km where no strong noise is observed. Spectral extraction storage means, at the observation points separated by the distance, in a frequency band including 1 kHz to 13 kHz, for example, 1 kHz to 2 kHz, 2.5 kHz to 3.5 kHz, 10.5 kHz to 13 kHz, at the observation point, An electric field pulse other than that during a lightning strike is observed to obtain a spectrum of the electric field pulse, and the spectrum is extracted and stored.

スペクトル比較手段は、前記スペクトル抽出記憶手段で求められたスペクトルと、予め、既知スペクトル抽出記憶手段に記憶されている既知の雷のスペクトル特性および雷の電離層伝播減衰特性とを比較する。電界パルス抽出手段は、前記スペクトル比較手段によって雷による電界パルスを除去し、近接雷および遠距離雷の受信スペクトルとは異なる電界パルスのみを抽出する。タイマー手段は、前記観測点における雷の電界を含まない前記電界パルスに、時刻信号を付与する。雑音除去手段は、前記時刻信号が付与された前記電界パルスの中から、前記観測点間の伝播時間差以内のパルスのみを抽出することにより、人工雑音を除去する。   The spectrum comparison means compares the spectrum obtained by the spectrum extraction storage means with the known lightning spectrum characteristics and lightning ionospheric propagation attenuation characteristics previously stored in the known spectrum extraction storage means. The electric field pulse extracting means removes the electric field pulse caused by the lightning by the spectrum comparing means, and extracts only the electric field pulse different from the reception spectrum of the near lightning and the long distance lightning. The timer means gives a time signal to the electric field pulse not including the electric field of lightning at the observation point. The noise removing means removes the artificial noise by extracting only the pulses within the propagation time difference between the observation points from the electric field pulse to which the time signal is given.

震源地算出手段は、前記観測点間の伝播時間差以内で観測された前記電界パルス間の2組または3組以上の時間差から、震源域を算出する。電界パルス解析手段は、前記震源地算出手段によって算出された震源域と、前記観測点間の伝播時間差以内で観測された前記電界パルスを解析する。前記電界パルス解析手段によって解析された震源域は、必要に応じて、ディスプレイに表示される。本発明の地震予知装置は、雷等の自然雑音が除去されているため、地震前に発生する電流あるいは地表電荷等による電界パルスが観測できるため、大地震の直前の電界を正確に観測することができる。   The epicenter calculation means calculates a hypocenter region from the time difference of two or more sets between the electric field pulses observed within the propagation time difference between the observation points. The electric field pulse analyzing means analyzes the electric field pulse observed within the propagation time difference between the epicenter area calculated by the epicenter calculation means and the observation point. The epicenter region analyzed by the electric field pulse analyzing means is displayed on the display as necessary. Since the natural noise such as lightning is removed, the earthquake prediction device of the present invention can observe an electric field pulse caused by a current or a surface charge generated before the earthquake, so that an electric field immediately before a large earthquake can be accurately observed. Can do.

図1は本発明の一実施例に係る地震前兆電界パルスの弁別・検出による大地震の直前予知方法を説明するための概略ブロック構成図である。図1において、 System 1は、観測点に設置する電界観測システムの一例である。 System 2から System iは、前記 System 1と同じブロック構成図から構成されているため、 System 1の構成のみを説明する。前記 System 1は、電界観測用アンテナ11で電界を受信し、その出力を増幅器12で増幅し、A/D変換機13でデジタル信号に変換し、低域濾波器14、中域濾波器15、高域濾波器16で三種類の周波数帯に分離し、それぞれの出力を第1コンピュータ17に入力する。   FIG. 1 is a schematic block diagram for explaining a method for immediately predicting a large earthquake by discrimination / detection of an earthquake precursor electric field pulse according to an embodiment of the present invention. In FIG. 1, System 1 is an example of an electric field observation system installed at an observation point. Since System 2 to System i are configured from the same block configuration diagram as that of System 1, only the configuration of System 1 will be described. The System 1 receives an electric field with an electric field observation antenna 11, amplifies the output with an amplifier 12, converts the output into a digital signal with an A / D converter 13, a low-pass filter 14, a mid-pass filter 15, The high frequency filter 16 separates the output into three types of frequency bands, and inputs each output to the first computer 17.

前記第1コンピュータ17は、前記三種類の周波数帯から、受信電界のスペクトルを求め、既知の雷などの雑音のスペクトルと比較し、既知の雑音のスペクトルと一致しない電界パルスのみを、GPS用アンテナ18から得られた時刻信号を附加して、モデム19を通して、公衆回線でモデム110に送り、第2コンピュータ113に入力する。前記第2コンピュータ113は、 System 1、 System 2、・・・ System iの3箇所以上の観測点から電送されてきた電界パルスをモデム111、112を通して受信する。   The first computer 17 obtains a spectrum of a received electric field from the three types of frequency bands, compares it with a spectrum of noise such as a known lightning, and uses only a field pulse that does not match the spectrum of a known noise as a GPS antenna. The time signal obtained from 18 is added, sent to the modem 110 through the public line via the modem 19, and input to the second computer 113. The second computer 113 receives electric field pulses transmitted from three or more observation points of System 1, System 2,... System i through the modems 111 and 112.

前記第2コンピュータ113は、各 System から電送されてきた電界パルスのうちで、同時(観測点間の伝播時間差以内)に受信されたもののみを記憶手段に記録する。前記第2コンピュータ113は、図示されていない描画手段により、観測点を焦点とし、それらの受信時刻差一定の点を軌跡とする双曲線を2個以上描き、その交点を波源とし、日時とともにディスプレイ114に表示する。   The second computer 113 records only the electric field pulses transmitted from each System that are received simultaneously (within the propagation time difference between observation points) in the storage means. The second computer 113 draws two or more hyperbolas with the observation point as a focal point and a locus with a constant reception time difference by drawing means (not shown), the intersection point as a wave source, and the display 114 along with the date and time. To display.

震源域は、前記第2コンピュータ113に描かれた波源の発生領域とし、規模は、前記波源の発生領域の広さとして、前兆電界の発生累積時間・強度から経験則に従って、前記第2コンピュータ113によって算出される。地震の発生日時は、前兆電界の発生開始から約10日以内で、地震の規模に比例して長くなる傾向がある。   The hypocenter area is the generation area of the wave source drawn on the second computer 113, and the scale is the width of the generation area of the wave source, and the second computer 113 is in accordance with an empirical rule from the accumulated time and intensity of the precursor electric field. Is calculated by The date and time of occurrence of an earthquake tends to be longer in proportion to the magnitude of the earthquake within about 10 days from the start of the occurrence of the precursor electric field.

図2は第1コンピュータを説明するためのブロック構成図である。図2において、第1コンピュータ17は、スペクトル抽出記憶手段21と、スペクトル比較手段22と、既知スペクトル記憶手段23と、電界パルス抽出手段25とから構成されている。前記第1コンピュータ17は、前記三種類の周波数帯から、受信電界のスペクトルf1、f2、f3を求め、スペクトル抽出記憶手段21に記憶される。既知のスペクトルF1は、同様に、既知スペクトル記憶手段23に記憶される。スペクトル比較手段22は、前記スペクトル抽出記憶手段21に記憶されている受信電界のスペクトルと、既知の雷などの雑音のスペクトルと比較する。電界パルス抽出手段25は、既知の雑音のスペクトルと一致しない電界パルスのみを、タイマー手段(GPS用アンテナ)24から得られた時刻信号を附加して、第2コンピュータ113に送信する。   FIG. 2 is a block diagram for explaining the first computer. In FIG. 2, the first computer 17 includes a spectrum extraction storage unit 21, a spectrum comparison unit 22, a known spectrum storage unit 23, and an electric field pulse extraction unit 25. The first computer 17 obtains the received electric field spectrums f1, f2, and f3 from the three types of frequency bands, and stores them in the spectrum extraction storage means 21. The known spectrum F1 is similarly stored in the known spectrum storage means 23. The spectrum comparison unit 22 compares the spectrum of the received electric field stored in the spectrum extraction storage unit 21 with a known spectrum of noise such as lightning. The electric field pulse extracting means 25 adds only the electric field pulse that does not match the known noise spectrum to the second computer 113 with the time signal obtained from the timer means (GPS antenna) 24 added thereto.

図3は第2コンピュータを説明するためのブロック構成図である。図3において、第2コンピュータ113は、雑音除去手段31と、記憶手段32と、震源地算出手段33と、電界パルス解析手段34とから構成されている。前記第2コンピュータ113は、 System 1、 System 2、・・・ System iの3箇所以上の観測点から電送されてきた電界パルスを雑音除去手段31により、雑音を除去する。前記第2コンピュータ113は、各 System から電送されてきた電界パルスのうちで、同時(観測点間の伝播時間差以内)に受信されたもののみを記憶手段32に記録する。前記第2コンピュータ113における震源地算出手段33は、観測点間の距離、および伝播時間等から震源地を算出する。   FIG. 3 is a block diagram for explaining the second computer. In FIG. 3, the second computer 113 includes noise removal means 31, storage means 32, epicenter calculation means 33, and electric field pulse analysis means 34. The second computer 113 removes noise from the electric field pulse transmitted from three or more observation points of System 1, System 2,. The second computer 113 records in the storage means 32 only the electric field pulses transmitted from each System that are received simultaneously (within the propagation time difference between observation points). The epicenter calculation means 33 in the second computer 113 calculates the epicenter from the distance between observation points, the propagation time, and the like.

電界パルス解析手段34は、電界パルスを解析するとともに、図示されていない描画手段により、観測点を焦点とし、それらの受信時刻差一定の点を軌跡とする双曲線を2個以上描き、その交点を波源とし、日時とともにディスプレイ114に表示させる。   The electric field pulse analyzing means 34 analyzes the electric field pulse, draws two or more hyperbolas with the observation point as the focal point and the locus of the constant reception time difference by the drawing means (not shown), and sets the intersection point. A wave source is displayed on the display 114 together with the date and time.

図4、上段は、従来の観測例で、中段は、上段のスペクトルから雷の雑音を除去した観測例で、下段は、中段のスペクトルから人工雑音を除去した観測例を説明するための図である。図4は、2004年9月5日の紀伊半島沖地震の際の観測例である。図4の上段は、従来の観測例で、雷・人工雑音を含む電界パルスを示す。図4の中段は、本発明の方法と装置により、前記上段の電界パルスから雷の電界パルスを消去した図である。前記電界パルスの数は、約1%に減少している。図4の下段は、本発明の地震予知方法と地震予知装置により、中段からさらに人工雑音を消去した電界パルスのみを示す。図4の下段は、地震の約1日前に多くの電界パルスが残り、地震前兆電界が弁別・検出されている。前記の地震の他、2004年10月23日の新潟県中越地震の際も、同様な前兆が観測されている。   4, the upper part is a conventional observation example, the middle part is an observation example in which lightning noise is removed from the upper spectrum, and the lower part is a diagram for explaining an observation example in which artificial noise is removed from the middle spectrum. is there. FIG. 4 is an example of observation at the time of the Kii Peninsula offing earthquake on September 5, 2004. The upper part of FIG. 4 shows an electric field pulse including lightning and artificial noise in a conventional observation example. The middle part of FIG. 4 is a diagram in which the lightning electric field pulse is erased from the electric field pulse of the upper part by the method and apparatus of the present invention. The number of electric field pulses is reduced to about 1%. The lower part of FIG. 4 shows only the electric field pulse in which the artificial noise is further eliminated from the middle part by the earthquake prediction method and the earthquake prediction apparatus of the present invention. In the lower part of FIG. 4, many electric field pulses remain about one day before the earthquake, and the earthquake precursor electric field is discriminated and detected. In addition to the earthquake described above, a similar precursor was observed during the Niigata Chuetsu earthquake on October 23, 2004.

本発明の一実施例に係る地震前兆電界パルスの弁別・検出による大地震の直前予知方法を説明するための概略ブロック構成図である。It is a schematic block diagram for demonstrating the prediction method immediately before a big earthquake by discrimination / detection of the earthquake precursor electric field pulse which concerns on one Example of this invention. 第1コンピュータを説明するためのブロック構成図である。It is a block block diagram for demonstrating a 1st computer. 第2コンピュータを説明するためのブロック構成図である。It is a block block diagram for demonstrating a 2nd computer. 上段は、従来の観測例で、中段は、上段のスペクトルから雷の雑音を除去した観測例で、下段は、中段のスペクトルから人工雑音を除去した観測例を説明するための図である。The upper part is a conventional observation example, the middle part is an observation example in which lightning noise is removed from the upper spectrum, and the lower part is a diagram for explaining an observation example in which artificial noise is removed from the middle spectrum.

符号の説明Explanation of symbols

11・・・電界観測用アンテナ
12・・・増幅器
13・・・A/D変換器
14・・・低域濾波器
15・・・中域濾波器
16・・・高域濾波器
17・・・第1コンピュータ
18・・・GPS用アンテナ
19、110、111、112・・・モデム
113・・・第2コンピュータ
114・・・ディスプレイ
21・・・スペクトル抽出記憶手段
22・・・スペクトル比較手段
23・・・既知スペクトル記憶手段
24・・・タイマー手段(GPS用アンテナ)
25・・・電界パルス抽出手段
31・・・雑音除去手段
32・・・記憶手段
33・・・震源地算出手段
34・・・電界パルス解析手段
DESCRIPTION OF SYMBOLS 11 ... Antenna for electric field observation 12 ... Amplifier 13 ... A / D converter 14 ... Low-pass filter 15 ... Middle-pass filter 16 ... High-pass filter 17 ... First computer 18: GPS antenna 19, 110, 111, 112 ... Modem 113 ... Second computer 114 ... Display 21 ... Spectral extraction storage means 22 ... Spectral comparison means 23. ..Known spectrum storage means 24 ... Timer means (GPS antenna)
25 ... Electric field pulse extraction means 31 ... Noise removal means 32 ... Storage means 33 ... Epicenter calculation means 34 ... Electric field pulse analysis means

Claims (2)

強い雑音が観測されない互いに50kmから300km離れた3箇所または4箇所以上の観測点において、電界を観測することによって、地震の予知を行う地震予知方法であって、
1 kHzから13kHzを含む周波数帯で、落雷時以外の電界パルスを同時に前記観測点で観測して、前記電界パルスのスペクトルを求め、
前記電界パルスのスペクトルと、既知の雷のスペクトル特性および雷の電離層伝播減衰特性とを比較し、
前記既知の雷のスペクトルから、雷による電界パルスを除去し、近接雷および遠距離雷の受信スペクトルと異なる電界パルスのみを抽出し、
さらに、前記3箇所または4箇所以上の観測点において、雷の電界を含まない前記電界パルスの中から、人工雑音を除去し、観測点間の伝播時間差以内のパルスのみを抽出し、
前記観測点間の伝播時間差以内で観測された前記パルス間の2組または3組以上の時間差から、震源域を算出し、
前記震源域と、前記観測点間の伝播時間差以内で観測された前記パルスの解析により、地震の予知を行うことを特徴とする地震予知方法。
An earthquake prediction method for predicting an earthquake by observing an electric field at three or four or more observation points separated from each other by 50 to 300 km where no strong noise is observed,
In the frequency band including 1 kHz to 13 kHz, an electric field pulse other than that during lightning strike is simultaneously observed at the observation point, and a spectrum of the electric field pulse is obtained.
Compare the spectrum of the electric field pulse with the known lightning spectral characteristics and lightning ionospheric propagation attenuation characteristics,
Removing the electric field pulses caused by lightning from the known lightning spectrum, and extracting only electric field pulses different from the reception spectra of the adjacent lightning and long-distance lightning,
Furthermore, at the three or four or more observation points, the artificial noise is removed from the electric field pulse not including the electric field of lightning, and only the pulses within the propagation time difference between the observation points are extracted.
From the time difference between two or more pairs between the pulses observed within the propagation time difference between the observation points, calculate the epicenter area,
An earthquake prediction method, wherein an earthquake is predicted by analyzing the pulse observed within a difference in propagation time between the source region and the observation point.
強い雑音が観測されない互いに50kmから300km離れた3箇所または4箇所以上の観測点において、電界を観測することによって地震の予知を行う地震予知装置であって、
1 kHzから13kHzを含む周波数帯で、前記観測点において、落雷時以外の電界パルスを観測し、前記電界パルスのスペクトルを求めるスペクトル抽出記憶手段と、
スペクトル抽出記憶手段で求められたスペクトルと、既知の雷のスペクトル特性および雷の電離層伝播減衰特性と比較するスペクトル比較手段と、
前記スペクトル比較手段によって雷による電界パルスを除去し、近接雷および遠距離雷の受信スペクトルとは異なる電界パルスのみを抽出する電界パルス抽出手段と、
さらに、前記観測点における雷の電界を含まない前記電界パルスに、時刻信号を付与するタイマー手段と、
時刻信号が付与された前記電界パルスの中から、前記観測点間の伝播時間差以内のパルスのみを抽出して、人工雑音を除去する雑音除去手段と、
前記観測点間の伝播時間差以内で観測された前記電界パルス間の2組または3組以上の時間差から、震源域を算出する震源地算出手段と、
前記震源地算出手段によって算出された震源域と、前記観測点間の伝播時間差以内で観測された前記電界パルスを解析する電界パルス解析手段と、
から少なくとも構成されており、前記電界パルス解析手段により、大地震の直前予知を行うことを特徴とする地震予知装置。
An earthquake prediction apparatus for predicting an earthquake by observing an electric field at three or four or more observation points separated from each other by 50 to 300 km where no strong noise is observed,
Spectrum extraction storage means for observing an electric field pulse other than a lightning strike at the observation point in a frequency band including 1 kHz to 13 kHz and obtaining a spectrum of the electric field pulse;
Spectrum comparison means for comparing the spectrum obtained by the spectrum extraction storage means with the known lightning spectral characteristics and lightning ionospheric propagation attenuation characteristics;
Electric field pulse extraction means for removing electric field pulses due to lightning by the spectrum comparison means, and extracting only electric field pulses different from the reception spectrum of the near lightning and long distance lightning,
Furthermore, timer means for giving a time signal to the electric field pulse not including the electric field of lightning at the observation point;
From the electric field pulse provided with the time signal, only a pulse within the propagation time difference between the observation points is extracted, and noise removing means for removing artificial noise,
An epicenter location calculating means for calculating an epicenter region from a time difference of two sets or three sets or more between the electric field pulses observed within a propagation time difference between the observation points;
An electric field pulse analyzing means for analyzing the electric field pulse observed within the difference in propagation time between the observation points and the epicenter area calculated by the epicenter calculation means;
An earthquake prediction apparatus characterized in that the electric field pulse analysis means predicts immediately before a large earthquake.
JP2006258272A 2006-09-25 2006-09-25 Earthquake prediction method and earthquake prediction device Pending JP2008076321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006258272A JP2008076321A (en) 2006-09-25 2006-09-25 Earthquake prediction method and earthquake prediction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006258272A JP2008076321A (en) 2006-09-25 2006-09-25 Earthquake prediction method and earthquake prediction device

Publications (1)

Publication Number Publication Date
JP2008076321A true JP2008076321A (en) 2008-04-03

Family

ID=39348534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006258272A Pending JP2008076321A (en) 2006-09-25 2006-09-25 Earthquake prediction method and earthquake prediction device

Country Status (1)

Country Link
JP (1) JP2008076321A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013246554A (en) * 2012-05-24 2013-12-09 Tokyo Metropolitan Univ Tsunami alarm system, tsunami alarm method and program for tsunami alarm system
JP2015012364A (en) * 2013-06-27 2015-01-19 株式会社東芝 Communication device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0990051A (en) * 1995-09-21 1997-04-04 Yuseisho Tsushin Sogo Kenkyusho Method and device for calculating magnitude and hypocentral region earthquake by observing electromagnetic field
JP2004251713A (en) * 2003-02-19 2004-09-09 Kansai Electric Power Co Inc:The Observation system of electrical phenomenon accompanying diastrophism
JP2006046938A (en) * 2004-07-30 2006-02-16 Chube Univ Feeble earth-current detection method and its system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0990051A (en) * 1995-09-21 1997-04-04 Yuseisho Tsushin Sogo Kenkyusho Method and device for calculating magnitude and hypocentral region earthquake by observing electromagnetic field
JP2004251713A (en) * 2003-02-19 2004-09-09 Kansai Electric Power Co Inc:The Observation system of electrical phenomenon accompanying diastrophism
JP2006046938A (en) * 2004-07-30 2006-02-16 Chube Univ Feeble earth-current detection method and its system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013246554A (en) * 2012-05-24 2013-12-09 Tokyo Metropolitan Univ Tsunami alarm system, tsunami alarm method and program for tsunami alarm system
JP2015012364A (en) * 2013-06-27 2015-01-19 株式会社東芝 Communication device

Similar Documents

Publication Publication Date Title
Heidarzadeh et al. Waveform and spectral analyses of the 2011 Japan tsunami records on tide gauge and DART stations across the Pacific Ocean
CN110023789B (en) Abnormality detection device, communication device, abnormality detection method, program, and storage medium
CN102565855B (en) Ground micro-seismic data processing method of oil field fracturing
JPH09105781A (en) Method for observing electromagnetic field related to premonitory symptoms of an earthquake and device therefor
JP2009150817A (en) Early earthquake information processing system
Peng et al. Exploring the feasibility of earthquake early warning using records of the 2008 Wenchuan earthquake and its aftershocks
Öztürk et al. Spatial variations of precursory seismic quiescence observed in recent years in the eastern part of Turkey
JP2008096203A (en) Information receiver, non-seismograph information receiver using the same, or information receiving system using the information receiver
JP2008076321A (en) Earthquake prediction method and earthquake prediction device
JP6103516B2 (en) Tsunami warning system, tsunami warning method, and program for tsunami warning system
CN102323618A (en) Coherent noise suppression method based on fractional order Fourier transformation
Okal et al. Quantification of hydrophone records of the 2004 Sumatra tsunami
Paros et al. Breakthrough underwater technology holds promise for improved local tsunami warnings
Wen et al. Earthquake early warning technology progress in Taiwan
KR101386255B1 (en) Apparatus for measuring earthquake magnitude and distance and method for measuring the same
Shashidhar et al. Detection of quarry blasts in the Koyna-Warna region, western India
RU2618671C1 (en) Radio-sonar system of environmental monitoring and protecting areas of oil and gas production
CN107064997A (en) Earth-quake predictor based on Extremely Low Frequency Electromagnetic method
Cummins et al. Introduction to “Tsunami science four years after the 2004 Indian Ocean tsunami, Part II: Observation and data analysis”
Zollo et al. Source characterization for earthquake early warning
KR101520399B1 (en) System and Method for Reducing of Seismic Noise using Micro Site Stacking
JP2012242362A (en) External force discrimination method in acceleration sensor response
JP6343863B1 (en) Earthquake prediction system and earthquake prediction method
CN206725775U (en) Earth-quake predictor based on Extremely Low Frequency Electromagnetic method
JP2006153830A (en) Earthquake prediction device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110107

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110726