JP2006046938A - Feeble earth-current detection method and its system - Google Patents

Feeble earth-current detection method and its system Download PDF

Info

Publication number
JP2006046938A
JP2006046938A JP2004224174A JP2004224174A JP2006046938A JP 2006046938 A JP2006046938 A JP 2006046938A JP 2004224174 A JP2004224174 A JP 2004224174A JP 2004224174 A JP2004224174 A JP 2004224174A JP 2006046938 A JP2006046938 A JP 2006046938A
Authority
JP
Japan
Prior art keywords
ground current
signal
current detection
detection system
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004224174A
Other languages
Japanese (ja)
Inventor
Masatada Hata
雅恭 畑
Masahiro Kurono
正裕 黒野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Chubu University
Original Assignee
Central Research Institute of Electric Power Industry
Chubu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Chubu University filed Critical Central Research Institute of Electric Power Industry
Priority to JP2004224174A priority Critical patent/JP2006046938A/en
Publication of JP2006046938A publication Critical patent/JP2006046938A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a feeble earth-current detection method and its system, capable of contributing to highly accurate detection of earthquake earth current which is a premonitory phenomenon of an earthquake, by detecting a feeble earth current with high sensitivity or to quantitative grasping of the electromagnetic environment. <P>SOLUTION: Polarization fluctuation caused by a current flowing in an overhead ground line 14, of an optical signal transmitted through an optical fiber 23 stored in the overhead ground line 14 of a power transmission line is converted into an electrical signal by a polarization detecting part 24, and a signal showing the feeble earth current is separated from other noises by an ultra-long wave band ELF component measuring part 26 from an output signal from the polarization detecting part 24. Hereby, the feeble earth current is measured with high accuracy, by utilizing the fact that the polarization fluctuation of the optical signal transmitted through the optical fiber 23 is changed by the earth current flowing in the overhead ground line 23. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は微弱地電流検出方法、地震地電流検出方法及びそのシステムに関し、特に地震前駆現象による地電流異常等、微弱地電流を高感度に検出する必要のある用途に適用して有用なものである。   The present invention relates to a weak ground current detection method, a seismic ground current detection method, and a system therefor, and is particularly useful when applied to applications that need to detect a weak ground current with high sensitivity, such as a ground current abnormality caused by an earthquake precursor. is there.

地震の前の数週間から数ヶ月間に電磁気的な各種の異常現象が検出されることが世界的に報告されている。これを受けて、地殻の膨張やずれなど機械的な計測量の異常から地震の直前に異常を検出する方式が現在主に採用されている。しかし、機械的な計測量の異常が地表近くで検出可能になるのは、半日程度前から数日前の直前になる場合が多い。このため、充分な防災活動が採択できない。   It has been reported worldwide that various electromagnetic phenomena are detected in the weeks and months before the earthquake. In response to this, a method of detecting an abnormality immediately before an earthquake from an abnormality of a mechanical measurement amount such as expansion or displacement of the crust is mainly employed at present. However, it is often the case that an abnormality in the mechanical measurement amount can be detected near the surface of the earth just before about half a day to just before a few days. For this reason, sufficient disaster prevention activities cannot be adopted.

したがって、電磁気的計測方法によって、早期の異常が検出できれば、防災上の効果ははかり知れない。ちなみに、地震に伴う電磁気現象の存在が世界的に報告されており、特に地震の前の数週間から数ヶ月間に電磁気的な異常現象がより早期に観測されることが報告されている。   Therefore, if an early abnormality can be detected by the electromagnetic measurement method, the effect on disaster prevention cannot be measured. Incidentally, the existence of electromagnetic phenomena associated with earthquakes has been reported worldwide, and in particular, it has been reported that electromagnetic abnormal phenomena are observed earlier in the weeks and months before the earthquake.

電磁現象の観測を基礎とする地震予知方法の一つは、直接大地の地電流や地電位、大地周辺の電磁界を観測する方法である。他は、航法電波や放送電波の伝搬異常から間接的に伝搬路上の地殻の異常を検知する方法である。   One of the earthquake prediction methods based on the observation of electromagnetic phenomena is a method of directly observing the earth current, earth potential and the electromagnetic field around the earth. The other is a method of indirectly detecting an abnormality of the crust on the propagation path from the propagation abnormality of navigation radio waves and broadcast radio waves.

しかし、これらの方法は人工雑音などによって十分な感度が安定に得られない場合が多く、装置が複雑になる。また、観測点の設置上の制約も大きいなどの問題がある。すなわち、検出される電磁気的な異常は量的に小さく、商用電源による人工雑音などによって検出信号がマスクされ検出できない場合が多い。   However, in these methods, sufficient sensitivity cannot be obtained stably due to artificial noise or the like, and the apparatus becomes complicated. In addition, there are problems such as large restrictions on the installation of observation points. That is, the detected electromagnetic anomaly is small in quantity, and the detection signal is often masked by artificial noise or the like by a commercial power supply and cannot be detected.

このほか、送電設備を用いて地電流異常を検出する方法が検討されている。例えば、送電変電所の中性点接地電流の異常から地電流異常を検出する方法がその一例である。しかし、この場合は検出性能が限定的であり、詳細な地殻異常の検知までには至っていない。その原因として、送電電流のリークや負荷変動による雑音のほか、雷などの放電雑音などが影響して、微弱な地電流信号の検出が困難であるためと考えられる。   In addition, methods for detecting ground current anomalies using power transmission equipment are being studied. For example, a method of detecting a ground current abnormality from a neutral ground current abnormality of a power transmission substation is an example. However, in this case, the detection performance is limited, and detailed detection of crustal anomalies has not been achieved. The cause is considered to be that it is difficult to detect a weak ground current signal due to noise caused by leakage of a transmission current and load fluctuations and discharge noise such as lightning.

なお、地電流の検出に係る公知文献としては次の非特許文献を挙げることができる。   In addition, the following nonpatent literature can be mentioned as a well-known literature regarding the detection of earth current.

上述の如く、地震の準備段階にある地殻では、高い圧力を受け、電気伝導度の変化や一部岩体の溶融によって帯電・地電流変化など電磁気的な異常が形成されると考えられているが、それらの異常地電流は地殻の広い範囲に分散して流れるため検出にかかる量は極めて小さく、一般に検知が困難である。特に送電設備内においては、送電電流のリークや負荷変動による雑音電流のほか雷などの放電雑音などが影響して、微弱な地電流の検出が困難である。また、架空地線内の光ファイバーを用いる場合においても架空地線を流れる地電流には、電力システムの電流や雑音が検出電流よりも大きく流れ、さらに雷放電電流や風によるケーブルのゆれによる偏波変動雑音が発生し、微弱な地電流の検出を妨げている。   As mentioned above, it is believed that the crust in the earthquake preparation stage is subjected to high pressure, and electromagnetic abnormalities such as electrification and earth current changes are formed due to changes in electrical conductivity and melting of some rock bodies. However, since these abnormal earth currents flow in a wide range of the crust, the amount of detection is extremely small and generally difficult to detect. In particular, in a power transmission facility, it is difficult to detect a weak ground current due to a noise current due to a leakage of a transmission current or a load current and a discharge noise such as lightning. In addition, even when using an optical fiber in an overhead ground wire, the ground current flowing through the overhead ground wire is larger than the detected current in the power system current and noise, and is further polarized due to lightning discharge current and cable fluctuations caused by wind. Fluctuating noise is generated, preventing detection of weak ground current.

また、微弱な電磁波を高精度に検出することにより環境の電磁波を定量的に把握する電磁環境の調査も行われている。現在、この調査は、各調査ポイント毎に観測装置を設置して実施している。したがって、調査点が増えれば増える程、調査に多大の労力を要するという問題がある。   In addition, investigations of electromagnetic environments have been conducted in which weak electromagnetic waves are detected with high accuracy to quantitatively grasp environmental electromagnetic waves. Currently, this survey is carried out with an observation device installed at each survey point. Therefore, there is a problem that the greater the number of survey points, the more labor is required for the survey.

愛知,堀井,黒野, 電学高圧研究会 HV-00-4,2000Aichi, Horii, Kurono, Denki High Voltage Study Group HV-00-4, 2000 黒野,森村,堀井, 電学電磁環境研究会 EMC-02-10,2002Kurono, Morimura, Horii, Electromagnetic environment study group EMC-02-10, 2002

本発明は、上記従来技術に鑑み、送電線の架空地線内に収容されている光ファイバー中を伝搬する光波の偏波回転量が架空地線を流れる地電流に関連することを利用して高感度に微弱地電流を検出して地震の前駆現象の地震地電流の高精度な検出や、電磁環境の定量的な把握に資することができる微弱地電流検出方法、地震地電流検出方法及びそのシステムを提供することを目的とする。   In view of the above prior art, the present invention uses the fact that the polarization rotation amount of the light wave propagating in the optical fiber accommodated in the overhead ground wire of the transmission line is related to the ground current flowing through the overhead ground wire. Sensitive ground current detection method, seismic ground current detection method and system capable of contributing to highly accurate detection of seismic ground current of earthquake precursory by detecting sensitive ground current in sensitivity and quantitative understanding of electromagnetic environment The purpose is to provide.

本発明の第1の解決手段として、強い送電電流や負荷変動の影響を避けるために、変電所等における中性点接地電流から直接、地電流信号を検出するのではなく、送電鉄塔上の架空地線を流れる地電流を架空地線内に収容されている光ファイバーの光信号の偏波変動から間接的に検出する方式を採用することにより、送電電流や負荷変動などの電力システムからの雑音を大幅に軽減できる光ファイバー検出方式を採用することを前提とする。そして、この解決手段だけでは、架空地線を流れる送電雑音や雷放電雑音、さらには架空地線のゆれによる光ファイバー検出雑音が影響して高感度な検出が達成できないので、次の第2乃至第6の解決手段を付加して高感度化を達成している。   As a first solution of the present invention, in order to avoid the influence of strong transmission current and load fluctuation, the ground current signal is not directly detected from the neutral grounding current in a substation or the like, but the overhead on the transmission tower is By adopting a method that indirectly detects the ground current flowing through the ground line from the polarization fluctuation of the optical signal of the optical fiber accommodated in the overhead ground line, noise from the power system such as transmission current and load fluctuation is reduced. It is assumed that an optical fiber detection method that can be greatly reduced is adopted. Then, with this solution alone, high-sensitivity detection cannot be achieved due to power transmission noise and lightning discharge noise flowing through the overhead ground wire, and also optical fiber detection noise due to the fluctuation of the overhead ground wire. The six means of solution are added to achieve high sensitivity.

これらのうちの第2の解決手段としては、光の偏波変動を検出した後、その検出信号から低周波数域で直接地電流変化を検出するのではなく、雑音の多い低周波域をはずして搬送周波数域で地電流現象の変動スペクトラムを狭帯域に検出することにより、検出信号に含まれる雑音を除去する手段を用いる。   Of these, the second solution is not to detect the ground current change directly in the low frequency range from the detected signal after detecting the polarization fluctuation of the light, but to remove the noisy low frequency range. A means for removing noise contained in the detection signal is detected by detecting the fluctuation spectrum of the ground current phenomenon in a narrow band in the carrier frequency range.

第3の手段としては、検出信号に残存する強い送電電流の倍調波、分調波またそれらの混変調雑音成分を除去するため、それらの周波数を避けて検出周波数を選定する。ここで、一つの周波数の選定方法として、50又は60Hzの送電電流に対して、17,223Hzといった素数周波数を検出周波数に選定する。また、検出帯域も混変調周波成分の周波数間隔が1Hzとなることから1Hz以下に選定し、電力システムからの雑音を除外して高感度に地電流変化を検出する方式を採用した。   As a third means, in order to remove the double harmonic wave, the sub-harmonic wave, and their intermodulation noise components of the strong transmission current remaining in the detection signal, the detection frequency is selected avoiding those frequencies. Here, as one frequency selection method, a prime frequency such as 17,223 Hz is selected as a detection frequency for a transmission current of 50 or 60 Hz. In addition, the detection band is selected to be 1 Hz or less because the frequency interval of the intermodulation frequency component is 1 Hz, and a method of detecting a ground current change with high sensitivity by excluding noise from the power system is adopted.

また,第4の解決手段としては、観測装置に近接して存在する人工雑音によって、検出信号に人工雑音が混入する場合があるが、この人工雑音を除去するために、人工雑音の変動周期よりも充分長い時間の積分回路により平均化することで、人工雑音を平滑化して除去する手段を採用する。具体的には、1日程度の観測時間に対して、積分時間は60乃至200秒(好ましくは、60乃至150秒)である。ここで、人工雑音の変動周期より充分長く、検出すべき地電流変化周期よりも充分短い積分時間の採用が必要になるが、地殻変動の周期は多くの場合、150秒よりも充分長いことが判っている。なお、急激な早い変動現象の検出には、6秒平均を用いて人工雑音の除去とバランスをとった観測を行っている。   Further, as a fourth solution, there is a case where the artificial noise is mixed in the detection signal due to the artificial noise that exists in the vicinity of the observation device. However, a means for smoothing and removing the artificial noise is adopted by averaging with a sufficiently long integration circuit. Specifically, the integration time is 60 to 200 seconds (preferably 60 to 150 seconds) with respect to the observation time of about one day. Here, it is necessary to employ an integration time that is sufficiently longer than the fluctuation period of the artificial noise and sufficiently shorter than the earth current change period to be detected, but the period of the crustal movement is often sufficiently longer than 150 seconds. I understand. In order to detect a sudden and rapid fluctuation phenomenon, the observation is performed in a balanced manner with the removal of artificial noise using an average of 6 seconds.

また、第5の解決手段としては、全国的に張りめぐらされた電力送電設備網の架空地線内に収容された光ファイバーを用いて地電流観測を送電経路ごとに行い、異常検知信号を複数取得することにより、相互の相関成分と非相関成分を相関検出器により分離し、後者は雑音による場合が多いことからこれを除去する。さらに、同期検波方式によって位相変化を検出し、検出対象の移動や広がりなどの解析性能を向上することを特徴とする改善手段により検出性能を向上させる。   In addition, as a fifth solution, ground current observation is performed for each power transmission path using an optical fiber housed in an overhead ground wire of a power transmission facility network spread nationwide, and a plurality of abnormality detection signals are acquired. Thus, the correlation component and the non-correlation component are separated by the correlation detector, and the latter is often caused by noise and is removed. Further, the detection performance is improved by an improvement means characterized in that the phase change is detected by the synchronous detection method and the analysis performance such as movement and spread of the detection target is improved.

第6の解決手段としては、経路方向による検出信号の差異から、異常信号の発生領域を推定する。   As a sixth solution, an abnormal signal generation region is estimated from a difference in detection signals depending on a path direction.

具体的な構成は次の通りである。
1) 電力送電線の架空地線内に収容されている光ファイバーを伝送される光信号の偏波状態が前記架空地線を流れる電流によって変化することを利用して、前記光信号の偏波状態の変化である偏波変動を電気信号に変換した後、フィルタリングして、微弱地電流を表す信号と他の雑音とを分離することにより前記微弱地電流を高精度に検出することを特徴とする。
The specific configuration is as follows.
1) Utilizing the fact that the polarization state of the optical signal transmitted through the optical fiber accommodated in the overhead ground wire of the power transmission line is changed by the current flowing through the overhead ground wire, the polarization state of the optical signal After the polarization fluctuation, which is a change in frequency, is converted into an electric signal, it is filtered and the weak ground current is detected with high accuracy by separating the signal representing the weak ground current from other noises. .

この結果、電力送電線の架空地線内に収容されている光ファイバーを流れる光信号の偏波変動が架空地線を流れる地電流によって変化することを利用して、微弱な地電流を高精度に計測することができる。
2) 上記1)に記載する微弱地電流検出方法において、
前記微弱地電流を表す信号に基づき地震の前駆現象を検出することを特徴とする。
As a result, by using the fact that the polarization fluctuation of the optical signal flowing through the optical fiber accommodated in the overhead ground wire of the power transmission line changes due to the ground current flowing through the overhead ground wire, the weak ground current can be accurately obtained. It can be measured.
2) In the weak ground current detection method described in 1) above,
An earthquake precursor is detected based on the signal representing the weak ground current.

この結果、地電流に基づき地電流異常を介して地震予知に有用な情報を得ることができる。
3) 電力送電線の架空地線内に収容されている光ファイバーと、
この光ファイバーを伝送される光信号の、前記架空地線を流れる電流による偏波変動を表す電気信号を形成する偏波検出手段と、
この偏波検出手段の出力信号から微弱地電流を表す信号と他の雑音とを分離するフィルタリング手段とを有することを特徴とする。
As a result, information useful for earthquake prediction can be obtained based on the ground current via the ground current abnormality.
3) an optical fiber housed in the overhead ground wire of the power transmission line;
A polarization detecting means for forming an electrical signal representing a polarization fluctuation caused by a current flowing through the aerial ground wire of the optical signal transmitted through the optical fiber;
It has a filtering means for separating a signal representing a weak ground current and other noise from the output signal of the polarization detecting means.

この結果、電力送電線の架空地線内に収容されている光ファイバーを流れる光信号の偏波変動が架空地線を流れる地電流によって変化することを利用して、微弱な地電流を高精度に計測することができる。
4) 上記3)に記載する微弱地電流検出システムにおいて、
前記フィルタリング手段は、偏波検出手段で変換した電気信号を、10乃至500Hzの周波数帯で微弱地電流を表す信号を検出することを特徴とする。
As a result, by using the fact that the polarization fluctuation of the optical signal flowing through the optical fiber accommodated in the overhead ground wire of the power transmission line changes due to the ground current flowing through the overhead ground wire, the weak ground current can be accurately obtained. It can be measured.
4) In the weak ground current detection system described in 3) above,
The filtering means detects a signal representing a weak ground current in a frequency band of 10 to 500 Hz from the electrical signal converted by the polarization detecting means.

この結果、送電系統に基づく雑音、風による架空地線のゆれ雑音、雷放電雑音を排除することができる。
5) 上記3)又は4)に記載する微弱地電流検出システムにおいて、
前記フィルタリング手段は、さらに送電電流の基本周波数、送電及び電力利用機器システムの非線形特性によって発生する高調波及び分調波並びにそれらの混変調周波数成分に対して素数となる周波数を中心周波数として選択するとともに、検出帯域を混変調周波数成分の周波数の間隔よりも小さく選定したことを特徴とする。
As a result, it is possible to eliminate noise based on the power transmission system, vibration noise of the overhead ground wire due to wind, and lightning discharge noise.
5) In the weak ground current detection system described in 3) or 4) above,
The filtering means further selects, as a center frequency, a frequency that is a prime number with respect to a fundamental frequency of transmission current, harmonics and subharmonics generated by nonlinear characteristics of transmission and power utilization equipment systems, and their intermodulation frequency components. In addition, the detection band is selected to be smaller than the frequency interval of the intermodulation frequency component.

この結果、送電電流の基本周波数は50又は60Hzであるが、送電及び電力利用機器システムの非線形特性によって発生する高調波、分調波とそれらの混変調周波数成分を、検出周波数を17Hzや223Hzなどの素数周波数に選定し、かつ検出帯域を混変調周波数成分の周波数間隔である1Hzよりも小さく選定して増幅することで、高感度に地電流変動信号を得ることができ、送電システムからの妨害雑音を軽減することができる。
6) 上記3)乃至5)の何れか一つに記載する微弱地電流検出システムにおいて、
前記フィルタリング手段は、雑音を平滑化して除去するために、人工雑音の発生周期よりも十分長く、前記微弱地電流を表す信号の変動周期よりも十分短い積分時間である150秒を中心として60乃至200秒の積分手段を含むことを特徴とする。
As a result, the basic frequency of the transmission current is 50 or 60 Hz, but the harmonics, subharmonic waves and their intermodulation frequency components generated by the non-linear characteristics of the transmission and power utilization equipment system, the detection frequency of 17 Hz, 223 Hz, etc. By selecting the prime frequency and amplifying the detection band smaller than 1 Hz, which is the frequency interval of the intermodulation frequency component, it is possible to obtain a ground current fluctuation signal with high sensitivity and to prevent interference from the power transmission system. Noise can be reduced.
6) In the weak ground current detection system described in any one of 3) to 5) above,
In order to smooth and remove noise, the filtering means has an integration time that is sufficiently longer than an artificial noise generation period and shorter than a fluctuation period of a signal representing the weak ground current, which is about 60 seconds. It includes 200 seconds of integration means.

この結果、電力システム雑音のほか、観測装置に近接して設備された商用電力利用機器や近接の空電雑音、自動車のイグニッション雑音、その他の機器が発生する人工雑音を、この人工雑音の発生周期よりも十分長く、観測する地震地電流のほとんど変動周期よりも十分短い積分時間である積分手段により平滑化して除外することができる。
7) 上記6)に記載する微弱地電流検出システムにおいて、
前記積分手段は、数秒乃至6秒としたことを特徴とする。
As a result, in addition to power system noise, commercial power use equipment installed in the vicinity of the observation device, nearby static noise, automobile ignition noise, and artificial noise generated by other equipment are Can be smoothed out by an integration means having an integration time that is sufficiently longer than that and is sufficiently shorter than almost the fluctuation period of the observed seismic ground current.
7) In the weak ground current detection system described in 6) above,
The integration means is characterized in that it is set for several seconds to 6 seconds.

この結果、地殻変動の細やかな変化を観測する場合において、雷雑音や人工雑音の改善効果とのバランスを保つことができる。
8) 上記3)乃至7)の何れか一つに記載する微弱地電流検出システムにおいて、
前記フィルタ手段は、狭帯域増幅手段及び同期検波手段を有し、基準信号発生手段から得た時刻基準クロックを用いてデジタル処理するとともに、前記狭帯域増幅手段の周波数と同一周波数の基準信号をクロック回路より形成し、この信号を基準として同期検波することにより検出信号の同相成分と直交成分との2成分を検出して、信号の位相的な変化を検出するようにしたことを特徴とする。
As a result, when observing subtle changes in crustal deformation, it is possible to maintain a balance with the effects of improving lightning noise and artificial noise.
8) In the weak ground current detection system according to any one of 3) to 7) above,
The filter means includes a narrowband amplifying means and a synchronous detection means, digitally processing using a time reference clock obtained from the reference signal generating means, and clocking a reference signal having the same frequency as that of the narrowband amplifying means. It is formed by a circuit, and by detecting synchronously with this signal as a reference, two components of an in-phase component and a quadrature component of the detection signal are detected, and a phase change of the signal is detected.

この結果、信号の位相的な変化を検出して詳細な地電流解析を行うことが可能になる。
9) 上記8)に記載する微弱地電流検出システムを、送電線経路ごとにそれぞれ設置して複数箇所の観測点を構築し、前記各観測点における検波方式を、GPSによる時間基準クロックを基準とする同期検波により前記同相成分及び直交成分を各観測点毎に検出するとともに、解析センターに集めて、各位相変化状態から地震前駆現象による地電流異常の源の変化状態を検出することを特徴とする。
As a result, detailed ground current analysis can be performed by detecting a phase change of the signal.
9) The weak ground current detection system described in 8) above is installed for each transmission line route to construct a plurality of observation points, and the detection method at each observation point is based on a time reference clock by GPS. The in-phase component and the quadrature component are detected at each observation point by synchronous detection, and collected at the analysis center to detect the change state of the source of the ground current abnormality due to the earthquake precursor phenomenon from each phase change state. To do.

この結果、広帯域の地震地電流を一括して検出することができ、より精度の高い地震予知に資することができる。
10) 上記8)に記載する微弱地電流検出システムを、送電線経路ごとにそれぞれ設置して複数箇所の観測点を構築し、前記各観測点における検波方式を、GPSによる時間基準クロックを基準とする同期検波により前記同相成分及び直交成分を各観測点毎に検出するとともに、解析センターに集めて、各観測点における検出信号間の相関と非相関成分を抽出し、信号と雑音とを区別して非相関雑音成分を除去するようにしたことを特徴とする。
As a result, a broadband seismic current can be detected collectively, which contributes to more accurate earthquake prediction.
10) The weak ground current detection system described in 8) above is installed for each transmission line route to construct a plurality of observation points, and the detection method at each observation point is based on the time reference clock by GPS. The in-phase and quadrature components are detected at each observation point by synchronous detection, and collected at the analysis center to extract the correlation and non-correlation components between the detection signals at each observation point, and distinguish the signal and noise. It is characterized in that the uncorrelated noise component is removed.

この結果、広帯域の地震地電流を一括して検出するとともに各検出信号の相関も加味することにより、S/N比の改善を図ることができる。   As a result, it is possible to improve the S / N ratio by collectively detecting broadband seismic currents and taking into account the correlation between the detection signals.

上述の如き構成を有する本発明によれば、送電線架空地線内の光ファイバーの偏波回転量を電気信号に変換した後、必要な周波数成分をフィルタリングにより抽出しているので、雑音を除去して、従来方式に比べ格段に高感度な地電流の計測が可能になる。このため、地震の前兆的な微小地電流変化の検出など各種の計測に応用が可能になる。また、既設の送電設備を用いて、地震前兆の観測を高精度に行うことができるので、防災に果たす効果や電力送電線をはじめとするライフラインの震災対策に果たす役割は多大なものがある。   According to the present invention having the above-described configuration, the necessary frequency component is extracted by filtering after converting the polarization rotation amount of the optical fiber in the transmission line overhead ground wire into an electrical signal, so that noise is removed. Therefore, it becomes possible to measure the ground current with much higher sensitivity than the conventional method. For this reason, it becomes possible to apply to various measurements such as detection of a small change in earth current that is a sign of an earthquake. In addition, since existing power transmission equipment can be used to observe earthquake precursors with high accuracy, the effects of disaster prevention and the role played by earthquake countermeasures for lifelines such as power transmission lines are significant. is there.

すなわち、従来の送電線中性点接地電流から直接計測する方法に較べて、送電系統からの雑音が著しく軽減されるほか、さらに従来の架空地線光ファイバーの数Hz以下の偏波変動を用いる方式に比べて、10乃至500Hzの周波数において狭帯域に検出する方式を採用したため、混入雑音が除去され、従来方式に較べて感度を千倍から1万倍に高めることができる。また、検知できる地電流変化を数10μAの微弱な値まで検出できるようになる。   In other words, compared to the conventional method of measuring directly from the neutral point ground current of the transmission line, noise from the transmission system is remarkably reduced, and furthermore, a method using polarization fluctuation of several Hz or less of the conventional overhead ground optical fiber. In contrast, since a method of detecting in a narrow band at a frequency of 10 to 500 Hz is adopted, mixed noise is removed, and the sensitivity can be increased from 1000 times to 10,000 times compared to the conventional method. Further, it is possible to detect a change in the ground current that can be detected up to a weak value of several tens of μA.

さらに、送電線を用いた各種目的の新たな地電流計測装置、例えば環境電磁波の分布状況の調査等が実現可能となる。すなわち、従来、ポイント毎に観測機器を設置して微弱電磁波を計測していたが、これを全国にくまなく張りめぐらしてある送電線をアンテナとして計測することができ、計測効率が飛躍的に向上するという効果も得る。   Furthermore, it becomes possible to realize a new earth current measuring device for various purposes using a power transmission line, for example, an investigation of the distribution state of environmental electromagnetic waves. In other words, in the past, observation equipment was installed at each point and weak electromagnetic waves were measured. However, it is possible to measure transmission lines that are spread all over the country as antennas, dramatically improving measurement efficiency. The effect of doing.

本発明の実施の形態を図面に基づき詳細に説明する。   Embodiments of the present invention will be described in detail with reference to the drawings.

図1は送電線設備の構成図とこれを利用した地電流計測の概念図である。同図に示すように、3相変圧器の巻線11の端子はそれぞれ3本の送電線(代表的に1本のみが示されている)12に接続される。また変圧器巻線の共通の中性点13は接地されている。架空地線14は雷障害から送電線を保護するために送電線鉄塔の最上部に架空されている。この架空地線14は複数の導線をらせん状に巻きつけた構造をしており、中空で適当な可撓性をもっている。架空地線14の中空部には複数の通信用の光ファイバーが収容されている。なお、導線の外側に光ファイバーを巻き付けた構成でも適用できる。   FIG. 1 is a configuration diagram of power transmission line equipment and a conceptual diagram of ground current measurement using this. As shown in the figure, each terminal of the winding 11 of the three-phase transformer is connected to three power transmission lines 12 (typically, only one is shown) 12. The common neutral point 13 of the transformer winding is grounded. The overhead ground wire 14 is suspended at the top of the transmission line tower in order to protect the transmission line from lightning failure. The aerial ground wire 14 has a structure in which a plurality of conductive wires are spirally wound, and is hollow and has an appropriate flexibility. A plurality of optical fibers for communication are accommodated in the hollow portion of the overhead ground wire 14. In addition, the structure which wound the optical fiber around the conducting wire is applicable.

図1では左から右に光信号が伝送される模式図が示されている。架空地線14には鉄塔間の大地電位差による電流、負荷変動による中性点不平衡電流のほか、架空地線に誘導される雷誘導電流など多くの電流が流れる。このi区間の地電流をIgi15で示している。これらの値は一般的に区間ごとに相違する。 FIG. 1 shows a schematic diagram in which an optical signal is transmitted from left to right. In addition to the current due to the earth potential difference between the towers, the neutral point unbalanced current due to load fluctuations, a lot of current flows through the overhead ground wire 14 such as the lightning induced current induced in the overhead ground wire. The earth current of this i section is indicated by I gi 15. These values generally differ from section to section.

本形態に係る地電流は伝送経路途中に出現した震源域16によって発生する地殻内の異常地電流や電磁波が関連しており、それらの一部が鉄塔間に電位差Ei17を生じ、それによって各区間の架空地線14に地電流変化が形成される。図中、18は距離に対する地殻内の異常電位分布の一例を示している。 The earth current according to this embodiment is related to abnormal earth currents and electromagnetic waves in the crust generated by the seismic source region 16 that appeared in the middle of the transmission path, and some of them cause a potential difference E i 17 between the steel towers, thereby A ground current change is formed in the overhead ground wire 14 of each section. In the figure, 18 shows an example of the abnormal potential distribution in the crust with respect to the distance.

上述の如き各種の要因による地電流は重なり合って架空地線14を流れる。この際に架空地線14の巻線構造により、光ファイバーの周りを巻きつくように流れてゆく。このため、光ファイバーに沿う方向の磁界が形成される。この磁界によって、ファラディ効果と命名される光波信号の偏波回転が生じる。その偏波回転量は架空地線14を流れる地電流量と伝送距離に概ね比例する。このため受端では観測経路全体の総偏波回転量(変動)が検出される。この中に検出対象となる地震地電流による偏波変動量が含まれているのを、偏波変動の性質の違いから振るい分けて検出する。詳細は次の通りである。   The ground currents due to various factors as described above flow through the overhead ground wire 14 in an overlapping manner. At this time, it flows around the optical fiber by the winding structure of the overhead ground wire 14. For this reason, the magnetic field of the direction along an optical fiber is formed. This magnetic field causes polarization rotation of the lightwave signal, termed the Faraday effect. The amount of polarization rotation is approximately proportional to the amount of ground current flowing through the overhead ground wire 14 and the transmission distance. Therefore, the total polarization rotation amount (variation) of the entire observation path is detected at the receiving end. The amount of polarization fluctuation due to the seismic ground current to be detected is included in this, and is detected based on the difference in the nature of the polarization fluctuation. Details are as follows.

図2は本発明の実施の形態に係る光ファイバーの送端側に設置される半導体レーザ21からなる光源と受端側の偏波検出部24とを架空地線14内の光ファイバー23を介して接続している。地電流の検出信号としては、偏波検出部24で偏波変動を電気信号に変換して得る出力信号25を狭帯域な極超長波帯(ELF)成分測定部26に入力して高感度に地電流を検出する。本装置の導入によって、地電流の検出感度が千倍ないし1万倍に高められる。   FIG. 2 shows a connection between a light source composed of a semiconductor laser 21 installed on the transmission end side of an optical fiber according to an embodiment of the present invention and a polarization detection unit 24 on the reception end side via an optical fiber 23 in the overhead ground wire 14. is doing. As a detection signal of the ground current, an output signal 25 obtained by converting the polarization fluctuation into an electric signal by the polarization detection unit 24 is input to the narrow ultra-long wave band (ELF) component measurement unit 26 for high sensitivity. Detect earth current. With the introduction of this device, the detection sensitivity of ground current can be increased by a factor of 1000 to 10,000.

図3は図2に示す偏波検出部の詳細な構造を示すブロック線図である。同図に示すように、この偏波検出部24では、光ファイバー23の出力光を受光レンズ31で収束した後、分岐回路32で分岐し、ある方向の偏波のみを通過させる偏光子33など3種の偏光子検出系から偏波変動を検出する。偏光子33の出力を検出するフォトダイオード34など、各組の検出系からなり、S,S,Sの3つの偏波成分出力35、36、37を得ることにより偏波変動量を検出する。また、最上位の検出系38は光の全電力P039を検出して、上記の偏波成分出力を基準化し角度に変換するのに用いられる。 FIG. 3 is a block diagram showing a detailed structure of the polarization detector shown in FIG. As shown in the figure, in this polarization detecting unit 24, the output light of the optical fiber 23 is converged by the light receiving lens 31, and then branched by the branch circuit 32 so that only the polarized light in a certain direction is passed through. Polarization fluctuation is detected from a kind of polarizer detection system. Each set of detection systems, such as a photodiode 34 that detects the output of the polarizer 33, is used to obtain the polarization fluctuation amount by obtaining three polarization component outputs 35, 36, and 37 of S 1 , S 2 , and S 3. To detect. The uppermost detection system 38 is used to detect the total power P 0 39 of light and to standardize the polarization component output and convert it into an angle.

図4は、偏波検出部24の各検出出力S,S,Sと基準時刻からの偏波変動量の対応を示す。 FIG. 4 shows the correspondence between the detection outputs S 1 , S 2 , S 3 of the polarization detector 24 and the polarization fluctuation amount from the reference time.

図5は図2に示す極超長波帯成分測定部26の詳細な構成を示すブロック線図である。同図に示すように、この極超長波帯成分測定部26は狭帯域増幅部51、検波部53、6秒の積分回路55及び150秒の積分回路57からなり、これらが偏波成分出力35乃至37に対して一組づつ対応して設けてある。   FIG. 5 is a block diagram showing a detailed configuration of the ultra-long waveband component measuring unit 26 shown in FIG. As shown in the figure, the ultra-long wave band component measurement unit 26 includes a narrow band amplification unit 51, a detection unit 53, an integration circuit 55 for 6 seconds, and an integration circuit 57 for 150 seconds. 1 to 37 are provided corresponding to one set.

すなわち、当該極超長波帯成分測定部26の入力信号は偏波検出部24からの出力25であるが、図3に示すように、偏波検出部24からは3種類の偏波成分出力35乃至37が送出されるので、それらがそれぞれ3系統の処理系に入力される。   That is, the input signal of the ultra-long wave band component measuring unit 26 is the output 25 from the polarization detecting unit 24, but as shown in FIG. Thru 37 are sent out, so that they are respectively input to three processing systems.

当該極超長波帯成分測定部26における狭帯域増幅部51は10乃至500Hzの周波数帯域(極超長波帯ELF)の中で、17Hz又は223Hzといった送電電流周波数成分と互いに素となる素数周波数を増幅周波数とするとともに、その増幅帯域は1Hz弱の狭帯域であり、たとえば高増幅度15万倍の増幅器である。この極超長波帯成分測定部26は検出したい周波数毎に並列に複数台用いることもできる。   The narrow band amplifying unit 51 in the ultra-long wave band component measuring unit 26 amplifies a prime frequency that is mutually prime with a transmission current frequency component such as 17 Hz or 223 Hz in a frequency band of 10 to 500 Hz (ultra-long wave band ELF). In addition to the frequency, the amplification band is a narrow band of less than 1 Hz, for example, an amplifier having a high amplification degree of 150,000 times. A plurality of ultra-long wave band component measuring units 26 can be used in parallel for each frequency to be detected.

狭帯域増幅部51の出力信号52は、電力システム雑音のほか、低周波の各種要因による雑音が除去された地電流検出信号である。この出力信号52は選定した周波数の狭帯域信号であるため、その振幅成分が検波部53で検波され、地電流信号の振幅54が検出される。   The output signal 52 of the narrow-band amplifier 51 is a ground current detection signal from which noise due to various low-frequency factors is removed in addition to power system noise. Since this output signal 52 is a narrow band signal of the selected frequency, its amplitude component is detected by the detection unit 53, and the amplitude 54 of the ground current signal is detected.

さらに、雷放電電流や人工雑音による時間的に変化の早い細かな変動が残留して検出されるので、それらを除去するために積分回路55が付加されている。   Furthermore, since minute fluctuations that change rapidly with time due to lightning discharge current and artificial noise remain and are detected, an integration circuit 55 is added to remove them.

ここで、地殻活動による地電流は、雑音に較べると早く変化する成分が少なく、数秒から数時間、さらに変動周期の長いものが多いことが観測から明らかになっている。一方、人工雑音等による変動は6秒から150秒程度よりも十分に早い成分が多いことが明らかになっている。このため、積分回路55により6秒平均値を出力56としている。なお、雑音の除去効果の高い150秒平均値は6秒平均値25個を平均する積分回路57により作ることができ、その出力58を得る。   Here, it is clear from observations that the earth current due to crustal activity has fewer components that change more quickly than noise, and that there are many components with a long fluctuation period of several seconds to several hours. On the other hand, it has been clarified that the fluctuation due to artificial noise or the like has many components that are sufficiently faster than about 6 seconds to 150 seconds. For this reason, the 6-second average value is output 56 by the integrating circuit 55. An average value of 150 seconds with a high noise removal effect can be created by an integrating circuit 57 that averages 25 6-second average values, and an output 58 is obtained.

以上により、人工的な雑音を平滑化して除外し、地殻の異常に基づく地電流信号成分のみを高感度に検出することができる。なお、図3および図5において、装置の簡略化のために、35乃至37の1系統または2系統を省略しても、感度は劣るが、ある程度の信号を得ることができる。   As described above, artificial noise can be smoothed out and only the ground current signal component based on the crustal abnormality can be detected with high sensitivity. In FIGS. 3 and 5, even if one or two of 35 to 37 are omitted for simplification of the apparatus, a certain level of signal can be obtained although the sensitivity is inferior.

図6は検出すべき地電流のスペクトラム61と低周波雑音スペクトラム62、電力システムの雑音63及び狭帯域増幅特性64との関係を模式的に示す特性図である。   FIG. 6 is a characteristic diagram schematically showing the relationship between the spectrum 61 of the ground current to be detected, the low frequency noise spectrum 62, the noise 63 of the power system, and the narrowband amplification characteristic 64.

電力システムの雑音スペクトラム63は電力周波数とその高調波、および分調波で強いことが一般的に知られているが、最近では電力システムで非線形制御機器が多く利用されており、それら非線形特性による混変調作用で発生する各周波数成分はさらに多くなっている。本形態では、地震前駆現象に関わる検出対象が微弱な地電流信号であるため、小さな混変調成分まで考慮することが必要になる。このため、非線形性の高次数によって発生する雑音スペクトラムまで考慮する必要があり、強度の差はあるが1Hz周波数ごとに存在すると考えなければならない。また、それらの周波数成分は電力の負荷変動により変化し周波数軸上で広がった雑音と見られることを、図6の電力システムの雑音63は模式的に示している。なお、素数周波数で発生する混変調成分は特に高次数の結合によるため、その振幅は小さい。   Although it is generally known that the noise spectrum 63 of the power system is strong at the power frequency, its harmonics, and subharmonic, recently, non-linear control devices are widely used in the power system, and due to their non-linear characteristics. Each frequency component generated by the cross modulation action is further increased. In this embodiment, since the detection target related to the earthquake precursor phenomenon is a weak ground current signal, it is necessary to consider even a small cross modulation component. For this reason, it is necessary to consider the noise spectrum generated due to the higher order of nonlinearity, and it must be considered that there is a difference in intensity but exists for each 1 Hz frequency. Further, the noise 63 of the power system in FIG. 6 schematically shows that these frequency components are seen as noise that changes due to power load fluctuations and spreads on the frequency axis. Note that the amplitude of the intermodulation component generated at the prime frequency is small because of the high-order coupling.

ここで、検出すべき地電流スペクトラム61は地殻の各種の高速や低速の変化・変動や揺らぎによって特性付けられ、広い周波数までフラクタルな揺らぎ雑音として分布している。そのスペクトラム強度(面積あたり、ヘルツあたりの電力密度)は小さいが全体の電力は膨大である。   Here, the earth current spectrum 61 to be detected is characterized by various high-speed and low-speed changes / fluctuations and fluctuations of the crust, and is distributed as fractal fluctuation noise up to a wide frequency. Its spectrum intensity (per area, power density per hertz) is small, but the total power is enormous.

一般に、離れた深い地殻にソースを持つ地電流変化を地表近くで検出する場合、その検出信号レベルは電力システム雑音よりずっと弱い。しかしながら、特定周波数で狭帯域な観測ではあるが、本形態に係る地電流検出システムによって強い電力システム雑音を排除することができ、微弱な地電流成分を測定することができる。なお、検出信号を検波すれば、低周波変動成分の再生が可能となるので観測上の問題はない。   In general, when detecting a ground current change with a source in a remote deep crust near the ground surface, the detected signal level is much weaker than the power system noise. However, although it is a narrow band observation at a specific frequency, strong power system noise can be eliminated by the ground current detection system according to this embodiment, and a weak ground current component can be measured. If the detection signal is detected, the low frequency fluctuation component can be reproduced, so there is no problem in observation.

図7は図5の構成をより詳細に示したブロック線図である。同図は、偏波成分出力35乃至37のうちの一つの信号の処理系を示しているが、実際は、図5の場合と同様に、同様の処理系が3系統設けてある。   FIG. 7 is a block diagram showing the configuration of FIG. 5 in more detail. This figure shows a processing system for one of the polarization component outputs 35 to 37, but actually, three similar processing systems are provided as in the case of FIG.

狭帯域増幅器71は、クロック回路72のクロックにより動作するデジタル信号処理回路型のフィルタからなる狭帯域増幅器であり、その出力73は分岐され、2つの同期検波器74、75に供給される。同期検波器74にはクロック回路72から、狭帯域フィルタの中心周波数と同一の周波数の搬送波が供給され、同期検波器75にはその周波数で90度位相を遅らせる遅延回路76を介したクロックが供給される。同期検波器74、75の出力側にはそれぞれ積分回路77、78が接続してあり、6秒程度の時間平均を行った後、出力79、80として出力される。ここで、出力79は同相出力、出力80は直交出力と呼ぶ。これらのベクトル合成したのが振幅出力となり、図5の出力56と同じになる。   The narrowband amplifier 71 is a narrowband amplifier composed of a digital signal processing circuit type filter operated by the clock of the clock circuit 72, and its output 73 is branched and supplied to two synchronous detectors 74 and 75. The synchronous detector 74 is supplied with a carrier wave having the same frequency as the center frequency of the narrow band filter from the clock circuit 72, and the synchronous detector 75 is supplied with a clock via a delay circuit 76 that delays the phase by 90 degrees at that frequency. Is done. Integration circuits 77 and 78 are connected to the output sides of the synchronous detectors 74 and 75, respectively, and after performing time averaging for about 6 seconds, they are output as outputs 79 and 80. Here, the output 79 is called an in-phase output, and the output 80 is called a quadrature output. These vectors are combined to produce an amplitude output, which is the same as the output 56 in FIG.

図7に示す構成においては、同相、直交成分から信号の位相情報が得られ、信号(地電流)の変化が早くなりつつあるか遅くなりつつあるか、近づいているか遠ざかっているかなどの情報が得られるため、地震現象を解明するのに有力な手段となる。   In the configuration shown in FIG. 7, the phase information of the signal is obtained from the in-phase and quadrature components, and information such as whether the change of the signal (ground current) is getting faster or slower, approaching or moving away, etc. Because it is obtained, it is an effective means to elucidate the earthquake phenomenon.

なお、クロック回路72をGPSなど時刻基準信号70で同期することにより、異なる観測点の検出信号と比較し、より詳細な信号の検出と処理が可能となる。   In addition, by synchronizing the clock circuit 72 with the time reference signal 70 such as GPS, it is possible to detect and process more detailed signals compared to detection signals at different observation points.

図8は遠隔の観測点間で検出信号の位相変化を比較することにより、地殻の現象がどのように変化し移動しているかなどの情報を得るための構成を示す。A,B,C・・は観測点を示し、それぞれの観測装置81等において、GPS受信機82によって各観測点A,B,C・・の時間基準となるクロック回路83を同期し、各局ごとの基準クロック信号84を獲得する。図1から図7までで説明してきた架空地線14の光ファイバー23を利用した偏波変動を検出するセンサー系85の出力86を、基準クロック84により図7で詳細構造を説明した狭帯域増幅、同期検波回路87を駆動して同相成分88、直交成分89を得る。   FIG. 8 shows a configuration for obtaining information such as how the crustal phenomenon changes and moves by comparing the phase change of the detection signal between remote observation points. A, B, C,... Indicate observation points. In each observation device 81 or the like, the GPS receiver 82 synchronizes the clock circuit 83 serving as the time reference for each observation point A, B, C,. The reference clock signal 84 is obtained. The output 86 of the sensor system 85 that detects polarization fluctuations using the optical fiber 23 of the overhead ground wire 14 described with reference to FIGS. The synchronous detection circuit 87 is driven to obtain an in-phase component 88 and a quadrature component 89.

以上のようにして地震準備地域からの信号をそれぞれの観測点で同相、直交2成分データとして獲得し、それらを解析センター90に通信回線で転送し、各観測点の検出信号を総合化して位相差から距離的なずれやその進行方向などを解析し、地殻異常の場所の推定や変化を詳細に把握する。   As described above, signals from the earthquake preparation area are acquired as in-phase and quadrature two-component data at each observation point, transferred to the analysis center 90 via a communication line, and the detection signals at each observation point are integrated and ranked. Analyze the distance shift from the phase difference and the direction of its travel, etc., and grasp the estimation and change of the location of crustal anomalies in detail.

また、解析センター90では、各観測点間の信号の相関成分と非相関成分をデジタル信号処理により検出し、関連のない非相関成分は雑音として除去し、更なる信号品質の向上と現象の解析評価が可能となる。デジタル信号解析手法としては、主成分解析、独立成分解析のほか、最近では非線形解析手法まで多くの方法が開発されており、多信号による解析の効果が期待できる。   The analysis center 90 detects the correlation component and non-correlation component of the signal between the observation points by digital signal processing, removes the unrelated non-correlation component as noise, and further improves the signal quality and analyzes the phenomenon. Evaluation is possible. As digital signal analysis methods, in addition to principal component analysis and independent component analysis, many methods such as nonlinear analysis methods have been developed recently, and the effect of multi-signal analysis can be expected.

なお、本形態に係る地電流検出システムにおいて、観測周波数を10乃至500Hzの極超長波帯に選定した理由は次の通りである。すなわち、地球磁場変動は1Hz以下mHz帯で強く、また増幅のための電子回路の揺らぎ雑音は100Hz以下の低周波数になるほど増加することが知られている。また、風による送電線のゆれによる光ファイバー23のひずみによる機械的検出特性によって不要な低周波変動信号が発生するが、それらは15Hz以下で顕著であることが知られている。また、雷放電による雑音は逆に500Hz以上の周波数で急激に強くなり放送波帯まで顕著に存在している。   In the ground current detection system according to the present embodiment, the reason why the observation frequency is selected to be a very long wave band of 10 to 500 Hz is as follows. That is, it is known that the earth magnetic field fluctuation is strong in the 1 Hz or less mHz band, and the fluctuation noise of the electronic circuit for amplification increases as the frequency becomes lower than 100 Hz. Further, unnecessary low-frequency fluctuation signals are generated due to mechanical detection characteristics due to distortion of the optical fiber 23 caused by the fluctuation of the power transmission line due to wind, but it is known that they are remarkable at 15 Hz or less. On the other hand, the noise due to lightning discharge increases sharply at a frequency of 500 Hz or higher, and is prominently present up to the broadcast wave band.

これらを考慮すると、偏波出力信号の評価周波数として10乃至500Hzが各種の雑音を除去して、微弱な地電流の観測に適した周波数であることが分かる。なお、図6で考察したように、観測対象の地電流も変化し揺らいでおり、周波数にほぼ逆比例する連続な電力スペクトラム分布を持つため、検知信号の強度は広い周波数にわたって存在している。   Considering these, it can be seen that 10 to 500 Hz as an evaluation frequency of the polarization output signal is a frequency suitable for observation of a weak ground current by removing various noises. Note that, as discussed in FIG. 6, the ground current to be observed also changes and fluctuates, and has a continuous power spectrum distribution that is approximately inversely proportional to the frequency, so that the intensity of the detection signal exists over a wide frequency range.

図9に各種の観測データ波形を比較のために示す。同図中最上段の第1列(1)は本発明に係る観測データを比較検討するために、本発明とは直接関係のないELF帯223Hzを用いたコイルセンサーによるある地点における大気中の東西磁束密度の変動観測データ(縦軸はピコテスラ/ルートヘルツ)を示す。第2列(2)のβは、架空地線光ファイバーの偏波変動出力を本発明に係る極超長波成分測定部で雑音を除去した後、60秒平均した高感度の観測データを示す。なお、積分時間は150秒でなく60秒としたのは、従来の方法(3)、(4)による1分データと比較するためである。縦軸はラヂアンで規格化され、最上位の1は10-4ラヂアン(rad)を示す。本発明に係る極超長波成分測定部を使用しない場合、(3)の検知レベルは約20分の1ラヂアンであった。本発明による第2列のβが示す観測の最低レベルは約10-5ラヂアンであることがわかる。この値は観測系の残存雑音を示し、観測の限界を示す。 FIG. 9 shows various observed data waveforms for comparison. The first column (1) at the top of the figure shows the east-west in the atmosphere at a certain point by a coil sensor using the ELF band 223 Hz which is not directly related to the present invention in order to compare the observation data according to the present invention. This shows magnetic flux density fluctuation observation data (vertical axis is picotesla / root hertz). Β e in the second column (2) indicates high-sensitivity observation data obtained by averaging the polarization fluctuation output of the aerial ground optical fiber for 60 seconds after removing noise from the ultralong wave component measuring unit according to the present invention. The reason why the integration time is set to 60 seconds instead of 150 seconds is to compare with 1 minute data by the conventional methods (3) and (4). The vertical axis is normalized in radians, with the highest one representing 10 -4 radians (rad). When the ultralong wave component measuring unit according to the present invention was not used, the detection level of (3) was about 1/20 radians. It can be seen that the lowest level of observation indicated by β e in the second column according to the present invention is about 10 −5 radians. This value indicates the residual noise of the observation system and indicates the limit of observation.

したがって、本発明によって20分の1ラヂアンから約10-5ラヂアンまで感度が千倍から1万倍高まったことが示されている。 Thus, it has been shown that the present invention has increased the sensitivity from 1000 times to 10,000 times from 1/20 radians to about 10 -5 radians.

また、第3列(3)、第4列(4)のβ、βは従来方式による光偏波変動出力を低速変動測定系で観測した変動量を示し、βは1秒間隔の変動、βは1分間隔の変動を示す。 In addition, β s and β m in the third column (3) and the fourth column (4) indicate the amount of variation obtained by observing the optical polarization variation output according to the conventional method in the low-speed variation measurement system, and β s is an interval of 1 second. The variation, β m , indicates the variation at 1 minute intervals.

図9において、13日にβ、β、βともに強い変化が見られるが、それは風の強い日であり光ファイバー23が風で振動したためと見られる。β、βと気象との関連については、先行する22ヶ月間の観測期間における検討結果があり、以下のことが判明している。すなわち、1時間平均で最大風速1m/sの場合、βでほぼ0〜0.2rad/sec の変動となる。第5列(5)は観測期間の1時間平均最大風速を示す。また、変動雑音は風向にも関連し北東の風に対して強く変動する。送電線の走行方位である北西から南東と関連すると見られる。また、βは日射量と関連があり、日中大きくなるのはファイバー温度変化が原因と見られる。最下部の第6列(6)は太陽照射熱量(平方メートル当りメガジュール)を示すが、(4)βは太陽照射熱量との対応が見られる。 In FIG. 9, strong changes are observed in β e , β s , and β m on the 13th, which is considered to be a windy day and the optical fiber 23 vibrates with the wind. Regarding the relationship between β s , β m and weather, there are examination results in the observation period of the preceding 22 months, and the following has been found. That is, when the maximum wind speed is 1 m / s on an average for one hour, the fluctuation in β s is approximately 0 to 0.2 rad / sec. The fifth column (5) shows the hourly average maximum wind speed during the observation period. Fluctuation noise is also related to the wind direction and fluctuates strongly with respect to the northeastern wind. It seems to be related to northwest to southeast, which is the traveling direction of the transmission line. In addition, β m is related to the amount of solar radiation, and the increase in the daytime can be attributed to the fiber temperature change. The sixth column (6) at the bottom shows the amount of solar irradiation heat (megajoule per square meter), while (4) β m shows a correspondence with the amount of solar irradiation heat.

ELF成分測定部を経由して観測された偏波変動量βは、βよりβとの類似性が見られるが、10日や15日以降においてはβとも類似せず、また風の変化とも異なっている。15日以降は(1)と類似の変化が見られる。したがって、βはELF磁束密度に対応する電流成分を検出していると考えられる。このβの値を評価すると、10-5ラヂアンで架空地線地電流にして約数10μAのオーダとなる。16日、17日の最大レベルで大よそ100μAの地電流が存在したことになる。地電流は大地を分散して流れるために、架空地線に分流する地電流はかなり小さな値であることが観測から明らかになった。また、以上の評価から数10〜100μAの高感度な地電流観測が可能であることが明らかになった。 The polarization fluctuation amount β e observed through the ELF component measurement unit is similar to β s from β m , but is not similar to β s on the 10th and 15th days, and the wind It is also different from the change. After 15th, changes similar to (1) are observed. Therefore, it is considered that β e detects a current component corresponding to the ELF magnetic flux density. When the value of β e is evaluated, the ground wire ground current is 10 −5 radians, which is on the order of about several tens of μA. On the 16th and 17th, the ground current of about 100 μA was present at the maximum level. It was clarified from the observation that the earth current diverted to the ground line because the earth current flows in a distributed manner. Moreover, it became clear from the above evaluation that high-sensitivity earth current observation of several 10 to 100 μA is possible.

本発明は微弱地電流の正確な検出が必要な地震予知、環境の電磁界分布の観測等の産業分野で利用することができる。   The present invention can be used in industrial fields such as earthquake prediction that requires accurate detection of weak ground currents and observation of electromagnetic field distribution in the environment.

本発明に係る架空地線光ファイバー(OPGW)による地電流検出の原理を送電設備の概要とともに示す概念図である。It is a conceptual diagram which shows the principle of the earth current detection by the overhead ground wire optical fiber (OPGW) which concerns on this invention with the outline | summary of power transmission equipment. 本発明の実施の形態に係る地電流検出システムを示すブロック線図である。It is a block diagram which shows the earth current detection system which concerns on embodiment of this invention. 図2に示すブロック線図中の偏波検出部の詳細構造を示すブロック線図である。It is a block diagram which shows the detailed structure of the polarization | polarized-light detection part in the block diagram shown in FIG. 偏波変動量の定義を示す説明図である。It is explanatory drawing which shows the definition of polarization fluctuation amount. 図2に示すブロック図中の極超長波帯ELF成分測定部の詳細構造を示すブロック線図である。It is a block diagram which shows the detailed structure of the ultra-long wave band ELF component measurement part in the block diagram shown in FIG. 地電流スペクトラムと電力システムの雑音および低周波雑音と、狭帯域増幅特性との関連を示す特性図である。It is a characteristic view which shows the relationship between a ground current spectrum, the noise of a power system, low frequency noise, and a narrow-band amplification characteristic. GPS時刻基準による同期検波と同相と直交成分の検出回路を示すブロック線図である。It is a block diagram which shows the detection circuit of an in-phase and a quadrature component with the synchronous detection by GPS time reference | standard. 他観測点からの同期検波による同相、直交成分を利用した地震準備地域の詳細観測システムを示すブロック線図である。It is a block diagram which shows the detailed observation system of the earthquake preparation area using the in-phase and quadrature component by the synchronous detection from another observation point. 本発明の実施の形態に係る観測データの一例を示すグラフである。It is a graph which shows an example of the observation data concerning an embodiment of the invention.

符号の説明Explanation of symbols

14 架空地線
23 光ファイバー
24 偏波検出部
26 極超長波帯成分測定部
51 狭帯域増幅部
53 検波部
55 積分回路
57 積分回路
71 狭帯域増幅部
72 クロック回路
74 同期検波器
75 同期検波器
82 GPS受信機
14 Overhead ground wire 23 Optical fiber 24 Polarization detection unit 26 Ultra-long wave band component measurement unit 51 Narrow band amplification unit 53 Detection unit 55 Integration circuit 57 Integration circuit 71 Narrow band amplification unit 72 Clock circuit 74 Synchronous detector 75 Synchronous detector 82 GPS receiver

Claims (10)

電力送電線の架空地線内に収容されている光ファイバーを伝送される光信号の偏波状態が前記架空地線を流れる電流によって変化することを利用して、前記光信号の偏波状態の変化である偏波変動を電気信号に変換した後、フィルタリングして、微弱地電流を表す信号と他の雑音とを分離することにより前記微弱地電流を高精度に検出することを特徴とする微弱地電流検出方法。   A change in the polarization state of the optical signal by utilizing the fact that the polarization state of the optical signal transmitted through the optical fiber accommodated in the overhead ground wire of the power transmission line is changed by the current flowing through the overhead ground wire. The weak ground current is detected with high accuracy by converting the polarization fluctuation to an electric signal and then filtering to separate the signal representing the weak ground current from other noises. Current detection method. 請求項1に記載する微弱地電流検出方法において、
前記微弱地電流を表す信号に基づき地震の前駆現象を検出することを特徴とする地震地電流検出方法。
The weak ground current detection method according to claim 1,
An earthquake ground current detection method, comprising: detecting an earthquake precursor based on a signal representing the weak ground current.
電力送電線の架空地線内に収容されている光ファイバーと、
この光ファイバーを伝送される光信号の、前記架空地線を流れる電流による偏波変動を表す電気信号を形成する偏波検出手段と、
この偏波検出手段の出力信号から微弱地電流を表す信号と他の雑音とを分離するフィルタリング手段とを有することを特徴とする微弱地電流検出システム。
An optical fiber housed in the overhead power line of the power transmission line,
A polarization detecting means for forming an electrical signal representing a polarization fluctuation caused by a current flowing through the aerial ground wire of the optical signal transmitted through the optical fiber;
A weak ground current detection system comprising filtering means for separating a signal representing a weak ground current and other noise from an output signal of the polarization detection means.
請求項3に記載する微弱地電流検出システムにおいて、
前記フィルタリング手段は、偏波検出手段で変換した電気信号を、10乃至500Hzの周波数帯で微弱地電流を表す信号を検出することを特徴とする微弱地電流検出システム。
The weak ground current detection system according to claim 3,
The weak ground current detection system, wherein the filtering means detects a signal representing a weak ground current in a frequency band of 10 to 500 Hz from the electrical signal converted by the polarization detection means.
請求項3又は請求項4に記載する微弱地電流検出システムにおいて、
前記フィルタリング手段は、さらに送電電流の基本周波数、送電及び電力利用機器システムの非線形特性によって発生する高調波及び分調波並びにそれらの混変調周波数成分に対して素数となる周波数を中心周波数として選択するとともに、検出帯域を混変調周波数成分の周波数の間隔よりも小さく選定したことを特徴とする微弱地電流検出システム。
In the weak ground current detection system according to claim 3 or claim 4,
The filtering means further selects, as a center frequency, a frequency that is a prime number with respect to a fundamental frequency of transmission current, harmonics and subharmonics generated by nonlinear characteristics of transmission and power utilization equipment systems, and their intermodulation frequency components. In addition, a weak ground current detection system, wherein the detection band is selected to be smaller than the frequency interval of the intermodulation frequency component.
請求項3乃至請求項5の何れか一つに記載する微弱地電流検出システムにおいて、
前記フィルタリング手段は、雑音を平滑化して除去するために、人工雑音の発生周期よりも十分長く、前記微弱地電流を表す信号の変動周期よりも十分短い積分時間である150秒を中心として60乃至200秒の積分手段を含むことを特徴とする微弱地電流検出システム。
The weak ground current detection system according to any one of claims 3 to 5,
In order to smooth and remove noise, the filtering means has an integration time that is sufficiently longer than an artificial noise generation period and shorter than a fluctuation period of a signal representing the weak ground current, which is about 60 seconds. A weak ground current detection system comprising an integration means for 200 seconds.
請求項6に記載する微弱地電流検出システムにおいて、
前記積分手段は、数秒乃至6秒としたことを特徴とする微弱地電流検出システム。
The weak ground current detection system according to claim 6,
The weak ground current detection system characterized in that the integration means is set to several seconds to six seconds.
請求項3乃至請求項7の何れか一つに記載する微弱地電流検出システムにおいて、
前記フィルタ手段は、狭帯域増幅手段及び同期検波手段を有し、基準信号発生手段から得た時刻基準クロックを用いてデジタル処理するとともに、前記狭帯域増幅手段の周波数と同一周波数の基準信号をクロック回路より形成し、この信号を基準として同期検波することにより検出信号の同相成分と直交成分との2成分を検出して、信号の位相的な変化を検出するようにしたことを特徴とする微弱地電流検出システム。
The weak ground current detection system according to any one of claims 3 to 7,
The filter means includes a narrowband amplifying means and a synchronous detection means, digitally processing using a time reference clock obtained from the reference signal generating means, and clocking a reference signal having the same frequency as that of the narrowband amplifying means. It is formed by a circuit, and by detecting synchronously with this signal as a reference, the two components of the in-phase component and the quadrature component of the detection signal are detected, and the phase change of the signal is detected. Ground current detection system.
請求項8に記載する微弱地電流検出システムを、送電線経路ごとにそれぞれ設置して複数箇所の観測点を構築し、前記各観測点における検波方式を、GPS(Global Positioning System)による時間基準クロックを基準とする同期検波により前記同相成分及び直交成分を各観測点毎に検出するとともに、解析センターに集めて、各位相変化状態から地震前駆現象による地電流異常の源の変化状態を検出することを特徴とする地震地電流検出システム。   A weak ground current detection system according to claim 8 is installed for each transmission line route to construct a plurality of observation points, and a detection method at each observation point is set as a time reference clock by GPS (Global Positioning System). The in-phase and quadrature components are detected at each observation point by synchronous detection with reference to, and collected at the analysis center to detect the change state of the source of ground current anomaly due to the earthquake precursor phenomenon from each phase change state. A seismic ground current detection system. 請求項8に記載する微弱地電流検出システムを、送電線経路ごとにそれぞれ設置して複数箇所の観測点を構築し、前記各観測点における検波方式を、GPSによる時間基準クロックを基準とする同期検波により前記同相成分及び直交成分を各観測点毎に検出するとともに、解析センターに集めて、各観測点における検出信号間の相関と非相関成分を抽出し、信号と雑音とを区別して非相関雑音成分を除去するようにしたことを特徴とする地震地電流検出システム。
The weak ground current detection system according to claim 8 is installed for each transmission line route to construct a plurality of observation points, and the detection method at each observation point is synchronized with a time reference clock by GPS as a reference. The in-phase and quadrature components are detected at each observation point by detection, collected at the analysis center, and the correlation and non-correlation components between the detection signals at each observation point are extracted. An earthquake ground current detection system characterized by eliminating noise components.
JP2004224174A 2004-07-30 2004-07-30 Feeble earth-current detection method and its system Pending JP2006046938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004224174A JP2006046938A (en) 2004-07-30 2004-07-30 Feeble earth-current detection method and its system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004224174A JP2006046938A (en) 2004-07-30 2004-07-30 Feeble earth-current detection method and its system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010180636A Division JP2010249848A (en) 2010-08-11 2010-08-11 Feeble earth-current detection method and system therefor

Publications (1)

Publication Number Publication Date
JP2006046938A true JP2006046938A (en) 2006-02-16

Family

ID=36025669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004224174A Pending JP2006046938A (en) 2004-07-30 2004-07-30 Feeble earth-current detection method and its system

Country Status (1)

Country Link
JP (1) JP2006046938A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076321A (en) * 2006-09-25 2008-04-03 Kozo Takahashi Earthquake prediction method and earthquake prediction device
WO2011126110A1 (en) * 2010-04-09 2011-10-13 マド・プランニング有限会社 Earthquake prediction system, earthquake prediction program, and earthquake prediction method
CN102324740A (en) * 2011-09-09 2012-01-18 国网电力科学研究院 Online correction method for interference of DC (Direct Current) power transmission line on geomagnetic observation
CN102692638A (en) * 2012-06-21 2012-09-26 山东大学 Blasting vibration ultra-wideband signal receiving detector in construction using borehole-blasting method and application method thereof
JP2020176972A (en) * 2019-04-22 2020-10-29 株式会社コンポン研究所 Method and system for predicting occurrence of earthquake
CN117686783A (en) * 2023-12-12 2024-03-12 武汉朗德电气有限公司 High-voltage cable grounding current on-line monitoring device based on load dynamic management

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0980163A (en) * 1995-09-18 1997-03-28 Koichi Iwata Method and apparatus for predicting earthquake
JPH09133777A (en) * 1995-11-10 1997-05-20 Kanazawa Kogyo Univ Extremely low frequency magnetic measuring system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0980163A (en) * 1995-09-18 1997-03-28 Koichi Iwata Method and apparatus for predicting earthquake
JPH09133777A (en) * 1995-11-10 1997-05-20 Kanazawa Kogyo Univ Extremely low frequency magnetic measuring system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076321A (en) * 2006-09-25 2008-04-03 Kozo Takahashi Earthquake prediction method and earthquake prediction device
WO2011126110A1 (en) * 2010-04-09 2011-10-13 マド・プランニング有限会社 Earthquake prediction system, earthquake prediction program, and earthquake prediction method
JP5069377B2 (en) * 2010-04-09 2012-11-07 マド・プランニング有限会社 Earthquake prediction apparatus, earthquake prediction program, and earthquake prediction method
CN102324740A (en) * 2011-09-09 2012-01-18 国网电力科学研究院 Online correction method for interference of DC (Direct Current) power transmission line on geomagnetic observation
CN102324740B (en) * 2011-09-09 2014-04-16 国网电力科学研究院 Online correction method for interference of DC (Direct Current) power transmission line on geomagnetic observation
CN102692638A (en) * 2012-06-21 2012-09-26 山东大学 Blasting vibration ultra-wideband signal receiving detector in construction using borehole-blasting method and application method thereof
JP2020176972A (en) * 2019-04-22 2020-10-29 株式会社コンポン研究所 Method and system for predicting occurrence of earthquake
JP7136741B2 (en) 2019-04-22 2022-09-13 株式会社コンポン研究所 Earthquake occurrence prediction method and earthquake occurrence prediction system
US11480697B2 (en) 2019-04-22 2022-10-25 Genesis Research Institute, Inc. Earthquake prediction method and earthquake prediction system
CN117686783A (en) * 2023-12-12 2024-03-12 武汉朗德电气有限公司 High-voltage cable grounding current on-line monitoring device based on load dynamic management

Similar Documents

Publication Publication Date Title
Trivedi et al. Geomagnetically induced currents in an electric power transmission system at low latitudes in Brazil: A case study
Coughlin et al. Subtraction of correlated noise in global networks of gravitational-wave interferometers
RU2437105C2 (en) Sensor, method and system for monitoring power lines
Pilipenko Space weather impact on ground-based technological systems
CN103823244B (en) Magnetic resonance three-component noise removing device and noise removing method
CA2930914C (en) Apparatus and method for monitoring and controlling detection of stray voltage anomalies using a photonic sensor
Hayakawa et al. Interpretation in terms of gyrotropic waves of Schumann-resonance-like line emissions observed at Nakatsugawa in possible association with nearby Japanese earthquakes
JP2006046938A (en) Feeble earth-current detection method and its system
JP2010249848A (en) Feeble earth-current detection method and system therefor
Ariannik et al. Processing magnetometer signals for accurate wide-area geomagnetic disturbance monitoring and resilience analysis
Heddebaut et al. Wideband analysis of railway catenary line radiation and new applications of its unintentional emitted signals
Kolobov et al. The KVVN-7 multifunction digital measuring station for electromagnetic monitoring of seismoactive zones
JP4406193B2 (en) Degradation diagnosis method for power cable and degradation diagnosis device for power cable
CN107064997A (en) Earth-quake predictor based on Extremely Low Frequency Electromagnetic method
JP5562237B2 (en) Method and apparatus for monitoring storm activity on the surface of the earth in real time
JPS60225084A (en) Specific resistance measuring apparatus for earth&#39;s crust
Zheng et al. Experimental system to detect the electromagnetic response of high-frequency gravitational waves
Pu et al. Acceleration of the frequency-shift demodulation in phase-sensitive OTDR
RU2188439C2 (en) Unified generator-and-measurement complex of extremely low and superlow frequencies for geophysical investigations
CN106680595B (en) Double probe field measurement devices based on integrated light guide
JPS5845587A (en) Probing and analyzing method and device for underground structure
Zakaria et al. VLF monitoring system for characterizing the lower region ionospheric layer
Farris et al. Grid-Induced Telluric Currents for Non-Contact Load Monitoring and Fault Detection
Lackey et al. Low-cost magnetometer sensing system for detecting geomagnetically induced currents in transmission lines
Song et al. A virtual instrument for diagnosis to substation grounding grids in harsh electromagnetic environment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100512