JP2008076295A - Battery life prediction system, battery life prediction method, communication terminal device, battery life prediction device, data transmission program, battery life predicting program, and computer-readable recording medium stored with program - Google Patents

Battery life prediction system, battery life prediction method, communication terminal device, battery life prediction device, data transmission program, battery life predicting program, and computer-readable recording medium stored with program Download PDF

Info

Publication number
JP2008076295A
JP2008076295A JP2006257419A JP2006257419A JP2008076295A JP 2008076295 A JP2008076295 A JP 2008076295A JP 2006257419 A JP2006257419 A JP 2006257419A JP 2006257419 A JP2006257419 A JP 2006257419A JP 2008076295 A JP2008076295 A JP 2008076295A
Authority
JP
Japan
Prior art keywords
battery
internal resistance
life prediction
life
battery life
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006257419A
Other languages
Japanese (ja)
Inventor
Daisuke Tsuji
大介 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2006257419A priority Critical patent/JP2008076295A/en
Priority to CN2007101618355A priority patent/CN101149422B/en
Publication of JP2008076295A publication Critical patent/JP2008076295A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery life prediction system for predicting a life of a battery being operated in a remote site. <P>SOLUTION: The battery life prediction system includes a battery pack 10 connected to equipment 15, a communication terminal device 20, and a control center 30 provided in a position distant from the battery pack 10 and the communication terminal device 20. The communication terminal device 20 detects an internal resistance of the battery pack 10, to be transmitted to a server 32 provided in the control center 30 via a communication device 23. The server 32 predicts the life of the battery pack 10, based on an internal resistance value of the battery pack 10 transmitted from the communication terminal device 20. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、電池寿命予測システム、電池寿命予測方法、通信端末装置、電池寿命予測装置、データ送信プログラム、電池寿命予測プログラム、および、上記各プログラムを格納したコンピュータ読取可能記録媒体に関し、特に、遠隔地で作動している電池使用機器の電池の寿命が予測できる電池寿命予測システム、電池寿命予測方法、通信端末装置、電池寿命予測装置、データ送信プログラム、電池寿命予測プログラム、および、上記各プログラムを格納したコンピュータ読取可能記録媒体に関する。   The present invention relates to a battery life prediction system, a battery life prediction method, a communication terminal device, a battery life prediction device, a data transmission program, a battery life prediction program, and a computer-readable recording medium storing each of the above programs. A battery life prediction system, a battery life prediction method, a communication terminal device, a battery life prediction device, a data transmission program, a battery life prediction program, and the above programs that can predict the battery life of battery-operated equipment operating on the ground The present invention relates to a stored computer-readable recording medium.

従来の、電池の寿命予測に関連する装置が、たとえば、特開2005−93240号公報(特許文献1)や、特開2005−37233号公報(特許文献2)等に開示されている。   Conventional devices related to battery life prediction are disclosed in, for example, Japanese Patent Application Laid-Open No. 2005-93240 (Patent Document 1), Japanese Patent Application Laid-Open No. 2005-37233 (Patent Document 2), and the like.

特許文献1によれば、実際に測定することなく、事前に実験的に得られたデータから内部抵抗値の経時変化を状態データに応じて推定して、二次電池の劣化を判定している。 特許文献2によれば、電源装置のバックアップに用いられる蓄電池の放電可能容量を、蓄電池の内部抵抗成分の測定結果を用いて求めるときに、蓄電池の標準的な容量経年変化特性および蓄電池の標準的な内部抵抗成分経年変化特性を予め求め、内部抵抗成分経年変化特性の変化率を示す抵抗成分変化率予測値を求め、内部抵抗成分を所定の間隔で実際に測定し、この測定結果と抵抗成分変化率予測値とを比較して放電可能容量を推定している。
特開2005−93240号公報(段落番号0011等) 特開2005−37233号公報(要約)
According to Patent Document 1, the deterioration of the secondary battery is determined by estimating the temporal change of the internal resistance value according to the state data from the experimentally obtained data in advance without actually measuring. . According to Patent Document 2, when the dischargeable capacity of a storage battery used for backup of a power supply device is obtained using the measurement result of the internal resistance component of the storage battery, the standard capacity aging characteristics of the storage battery and the storage battery standard The internal resistance component aging characteristics are obtained in advance, the resistance component change rate predicted value indicating the rate of change of the internal resistance component aging characteristics is obtained, and the internal resistance component is actually measured at a predetermined interval. The dischargeable capacity is estimated by comparing with the predicted change rate.
JP-A-2005-93240 (paragraph number 0011, etc.) JP 2005-37233 A (summary)

従来の電池の寿命予測は上記のように行われていた。いずれの特許文献においても、電池のおかれている位置での寿命の予測が行われており、遠隔地で作動している電池の寿命については考慮されていなかった。また、特許文献1によれば、電池の寿命に関連する内部抵抗の値を実際に測定することなく予測しているため、正確な寿命を知ることができないという問題があった。さらに、特許文献2によれば、寿命として考慮されているのは、電池の放電可能容量であって、電池としての作動電圧については考慮されていなかった。   Conventional battery life prediction has been performed as described above. In any of the patent documents, the life of a battery at a position where the battery is placed is predicted, and the life of a battery operating in a remote place is not considered. Further, according to Patent Document 1, since the value of the internal resistance related to the life of the battery is predicted without actually measuring, there is a problem that the accurate life cannot be known. Furthermore, according to Patent Document 2, it is the dischargeable capacity of the battery that is considered as the lifetime, and the operating voltage as the battery is not considered.

また、上記のような予測をしない場合においては、現実的には、機器メーカの仕様書等に記載された電池寿命を目安として交換していた。この目安は比較的厳しい使い方をしたときにも問題が生じない期間に設定されている場合が多く、温度や使用頻度において、電池寿命にやさしい使い方をしていても、一律に決まった年数で交換しており、電池を寿命一杯まで十分使いきっていないという問題があった。   In the case where the above prediction is not made, the battery life is actually changed based on the battery life described in the specifications of the equipment manufacturer. This guideline is often set during a period when there is no problem even when using it relatively rigorously. Even if the usage is friendly to the battery life in terms of temperature and frequency of use, it should be replaced after a uniform number of years. However, there was a problem that the battery was not used up to its full life.

この発明は、上記のような問題点に着目してなされたもので、遠隔地で作動している電池の寿命を予測できる、電池寿命予測システム、電池寿命予測方法、通信端末装置、電池寿命予測装置、データ送信プログラム、電池寿命予測プログラム、および、上記各プログラムを格納したコンピュータ読取可能記録媒体を提供することを目的とする。   The present invention has been made paying attention to the above-mentioned problems, and can predict the life of a battery operating in a remote place, a battery life prediction system, a battery life prediction method, a communication terminal device, and a battery life prediction. It is an object of the present invention to provide a device, a data transmission program, a battery life prediction program, and a computer-readable recording medium storing the above programs.

この発明の他の目的は、電池を無駄なく使用できる、電池寿命予測システム、電池寿命予測方法、通信端末装置、電池寿命予測装置、データ送信プログラム、電池寿命予測プログラム、および、上記各プログラムを格納したコンピュータ読取可能記録媒体を提供することである。   Another object of the present invention is to store a battery life prediction system, a battery life prediction method, a communication terminal device, a battery life prediction device, a data transmission program, a battery life prediction program, and the above programs that can use the battery without waste. And a computer readable recording medium.

この発明に係る、電池の寿命を予測する電池寿命予測システムは、電池の内部抵抗を検出する内部抵抗検出手段と、内部抵抗検出手段が検出した電池の内部抵抗値を外部に設けられた寿命予測手段に送信する通信端末装置とを含み、寿命予測手段は、通信端末装置から送信された内部抵抗を基に、電池の寿命を予測する。   According to the present invention, a battery life prediction system for predicting battery life includes an internal resistance detection means for detecting the internal resistance of the battery, and a life prediction provided outside the internal resistance value of the battery detected by the internal resistance detection means. The life prediction means predicts the life of the battery based on the internal resistance transmitted from the communication terminal apparatus.

電池の内部抵抗を検出した後、それを、電池の存在する位置から離れた位置に設けられた寿命予測手段に送信して、送信された内部抵抗を基に、電池の寿命を予測するため、遠隔地電池作動している電池の寿命を、離れた位置で予測できる。   After detecting the internal resistance of the battery, it is transmitted to the life prediction means provided at a position away from the position where the battery exists, and the battery life is predicted based on the transmitted internal resistance. The life of a battery operating remotely can be predicted at a remote location.

好ましくは、寿命予測手段は、内部抵抗検出手段が検出した内部抵抗を基に電池が所定の電圧を維持可能な期間を、電池の寿命として予測する。   Preferably, the life prediction unit predicts a period during which the battery can maintain a predetermined voltage as the battery life based on the internal resistance detected by the internal resistance detection unit.

さらに好ましくは、所定の電圧は、停電時に作動する機器が安定動作可能な電圧を含む。   More preferably, the predetermined voltage includes a voltage at which a device that operates during a power failure can stably operate.

なお、内部抵抗検出手段は、電池に接続された定電流負荷回路を含み、定電流負荷回路に負荷をかけて電池の内部抵抗を検出してもよい。   The internal resistance detection means may include a constant current load circuit connected to the battery, and may detect the internal resistance of the battery by applying a load to the constant current load circuit.

この発明の一つの実施の形態においては、寿命予測手段は、内部抵抗値を所定の間隔でモニタするよう内部抵抗検出手段に指示する指示手段を含む。   In one embodiment of the present invention, the life prediction means includes instruction means for instructing the internal resistance detection means to monitor the internal resistance value at a predetermined interval.

好ましくは、寿命予測手段は、電池の寿命となる寿命内部抵抗値を格納する格納手段を含み、格納手段に格納された寿命内部抵抗値と、内部抵抗検出手段が検出した内部抵抗値とを比較して、電池の寿命を予測する。   Preferably, the life prediction means includes storage means for storing a life internal resistance value that is a battery life, and compares the life internal resistance value stored in the storage means with the internal resistance value detected by the internal resistance detection means. And predict the battery life.

この発明の他の局面は、停電時に、停電が発生したことを通報する、バックアップ用の電池の寿命を予測する電池寿命予測システムに関する。電池寿命予測システムは、停電通報後の電池の電池容量を基に、供給可能な電圧を求める第1演算手段と、停電時に作動する機器の安定動作が可能な最低電圧値を求める第2演算手段と、第1演算手段が演算した供給可能な電圧と第2演算手段が演算した安定動作が可能な最低電圧値との差電圧を求める第3演算手段と、第3演算手段が求めた差電圧を機器の動作時のピーク消費電流値で除して電池の内部抵抗値を求める第4演算手段と、第4演算手段が求めた内部抵抗値を基に、電池の寿命を予測する寿命予測手段とを含む。   Another aspect of the present invention relates to a battery life prediction system that predicts the life of a backup battery that reports that a power failure has occurred during a power failure. The battery life prediction system includes a first computing means for obtaining a voltage that can be supplied based on a battery capacity of the battery after a power failure notification, and a second computing means for obtaining a minimum voltage value capable of stable operation of a device that operates during a power failure. And a third computing means for obtaining a difference voltage between the supplyable voltage computed by the first computing means and the lowest voltage value capable of stable operation computed by the second computing means, and the differential voltage obtained by the third computing means Is divided by the peak current consumption during operation of the device to obtain the internal resistance value of the battery, and the life prediction means for predicting the battery life based on the internal resistance value obtained by the fourth computation means Including.

好ましくは、寿命予測手段は、電池とは離れた位置に設けられ、第4演算手段が求めた内部抵抗値を寿命予測手段に送信する送信手段をさらに含む。   Preferably, the life prediction means further includes a transmission means provided at a position distant from the battery and transmitting the internal resistance value obtained by the fourth calculation means to the life prediction means.

この発明のさらに他の局面は、停電時に、停電が発生したことを通報する、バックアップ用の電池の寿命を予測する電池寿命予測方法に関する。電池寿命予測方法は、停電通報後の電池容量を基に、供給可能な電圧を求めるステップと、停電時に作動する機器の安定動作が可能な最低電圧値を求めるステップと、停電通報後の電池容量を基に求められた供給可能な電圧と、安定動作可能な最低電圧値との差電圧を求めるステップと、上記ステップで求めた差電圧を、上記機器の動作時のピーク消費電流値で除して電池の内部抵抗値を求めるステップと、上記ステップで求めた電池の内部抵抗値を基に、電池の寿命を予測するステップとを含む。   Still another aspect of the present invention relates to a battery life prediction method for predicting the life of a backup battery that reports that a power failure has occurred at the time of a power failure. The battery life prediction method is based on the battery capacity after notification of power failure, the step of determining the voltage that can be supplied, the step of determining the minimum voltage value that allows stable operation of equipment that operates at the time of power failure, and the battery capacity after notification of power failure The step of obtaining the difference voltage between the supplyable voltage obtained based on the above and the lowest voltage value at which stable operation is possible, and the difference voltage obtained in the above step is divided by the peak current consumption value during operation of the device. The step of determining the internal resistance value of the battery and the step of predicting the battery life based on the internal resistance value of the battery determined in the above step are included.

好ましくは、求めた内部抵抗値を基に電池の寿命を予測するステップの前に、求めた内部抵抗値を外部に設けられたサーバに送信するステップを含み、電池の寿命を予測するステップは、サーバで行われる。   Preferably, before the step of predicting the battery life based on the obtained internal resistance value, the step of transmitting the obtained internal resistance value to a server provided outside, the step of predicting the battery life, Done on the server.

この発明のさらに他の局面においては、電池の寿命を遠隔地で予測する電池寿命予測方法は、所定のサーバから、遠隔地に設けられた電池の内部抵抗の検出を指示するステップと、遠隔地において、指示に応じて、電池の内部抵抗を検出するステップと、検出した内部抵抗をサーバに送信するステップと、送信された電池の内部抵抗に基づいて、サーバで電池の寿命を予測するステップとを含む。   In still another aspect of the present invention, a battery life prediction method for predicting battery life in a remote location is a step of instructing detection of internal resistance of a battery provided in a remote location from a predetermined server, And detecting the internal resistance of the battery in response to the instruction; transmitting the detected internal resistance to the server; predicting the battery life at the server based on the transmitted internal resistance of the battery; including.

この発明のさらに他の局面は、電池の寿命を遠隔地で予測するために、所定のデータを送信する通信端末装置に関する。通信端末装置は、所定のデータとして、電池の内部抵抗値を検出する内部抵抗検出手段と、内部抵抗検出手段が検出した電池の内部抵抗値を、外部へ送信する通信装置とを含む。   Still another aspect of the present invention relates to a communication terminal apparatus that transmits predetermined data in order to predict the battery life in a remote place. The communication terminal device includes, as predetermined data, an internal resistance detection unit that detects the internal resistance value of the battery and a communication device that transmits the internal resistance value of the battery detected by the internal resistance detection unit to the outside.

この発明のさらに他の局面は、遠隔地に設けられた電池の寿命を予測する電池寿命予測装置に関する。電池寿命予測装置は、遠隔地から、電池の内部抵抗値を受信する受信手段と、受信手段が受信した内部抵抗値を基に、電池の寿命を予測する寿命予測手段とを含む。   Still another aspect of the present invention relates to a battery life prediction apparatus that predicts the life of a battery provided in a remote place. The battery life prediction apparatus includes a receiving unit that receives the internal resistance value of the battery from a remote location, and a life prediction unit that predicts the battery life based on the internal resistance value received by the receiving unit.

この発明のさらに他の局面は、データ送信プログラムに関する。データ送信プログラムは、通信装置付きのコンピュータを、上記の通信端末装置として作動させる。   Still another aspect of the present invention relates to a data transmission program. The data transmission program operates a computer with a communication device as the communication terminal device.

この発明のさらに他の局面は、電池寿命予測プログラムに関する。電池寿命予測プログラムは、通信装置付きのコンピュータを、上記の電池寿命予測装置として作動させる。   Still another aspect of the present invention relates to a battery life prediction program. The battery life prediction program operates a computer with a communication device as the battery life prediction device.

なお、データ送信プログラムおよび電池寿命予測プログラムは、コンピュータ読取可能記録媒体に格納されていてもよい。   Note that the data transmission program and the battery life prediction program may be stored in a computer-readable recording medium.

以下、この発明の一実施の形態を、図面を参照して説明する。図1は、この実施の形態に係る電池寿命予測システムの一実施の形態の構成を示すブロック図である。この実施の形態においては、電池寿命予測システムは、遠隔地に設けられた電池使用機器の電池交換時期を、所定の管理センタで管理している。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing the configuration of an embodiment of a battery life prediction system according to this embodiment. In this embodiment, the battery life prediction system manages the battery replacement time of the battery using equipment provided in the remote place at a predetermined management center.

図1を参照して、電池寿命予測システムは、遠隔地に設けられた電池パック10に接続された通信端末装置20と、管理センタ30とを含む。通信端末装置20と管理センタ30とは、それぞれ、両者間で通信するための通信装置23,31とを含む。電池使用機器15に設けられた電池パック10の内部抵抗が通信端末装置20によって測定され、管理センタ30のサーバ32に送信される。ここで、電池パック10としては、たとえば、停電監視装置や漏電監視装置のバックアップ用の二次電池である、ニッケル水素電池であってもよい。なお、停電監視装置や漏電監視装置のような電池使用機器15は、常時は外部電源で動作し、外部電源が停電したときのみ、電池で動作する。また、管理センタ30が電池寿命予測装置として機能する。   Referring to FIG. 1, the battery life prediction system includes a communication terminal device 20 connected to a battery pack 10 provided at a remote place, and a management center 30. Communication terminal device 20 and management center 30 include communication devices 23 and 31 for communicating with each other. The internal resistance of the battery pack 10 provided in the battery using device 15 is measured by the communication terminal device 20 and transmitted to the server 32 of the management center 30. Here, the battery pack 10 may be, for example, a nickel hydride battery, which is a secondary battery for backup of a power failure monitoring device or a leakage monitoring device. Note that the battery-operated device 15 such as a power failure monitoring device or a leakage monitoring device always operates with an external power source, and operates with a battery only when the external power source fails. The management center 30 functions as a battery life prediction device.

通信端末装置20は、電池パック10に接続された電池コネクタ21と、電池コネクタ21に接続された電池電圧モニタ22と、電池電圧モニタ22でモニタされた値を、外部に設けられた管理センタ30へ送信するための通信装置23と、電池コネクタ21と電池電圧モニタ22との間に設けられ、定電流を流す定電流負荷回路25とを含む。電池電圧モニタ22はCPU26を含み、電池パック10の寿命を検出するときは、CPU26から出力される、内部抵抗を検出する所定の信号に応じて、定電流負荷回路25に定電流が流されて電池パック10の内部抵抗が検出され、管理センタ30へ送信される。   The communication terminal device 20 includes a battery connector 21 connected to the battery pack 10, a battery voltage monitor 22 connected to the battery connector 21, and a management center 30 provided outside with the values monitored by the battery voltage monitor 22. And a constant current load circuit 25 that is provided between the battery connector 21 and the battery voltage monitor 22 and flows a constant current. The battery voltage monitor 22 includes a CPU 26. When the life of the battery pack 10 is detected, a constant current is passed through the constant current load circuit 25 in response to a predetermined signal output from the CPU 26 to detect internal resistance. The internal resistance of the battery pack 10 is detected and transmitted to the management center 30.

なお、この通信装置23としては、FOMA(登録商標)通信装置が好ましい。また、CPU26および定電流負荷回路25が、電池パック10の内部抵抗を検出する内部抵抗検出手段として機能し、通信装置23が送信手段として機能し、通信装置31が受信手段として機能する。   The communication device 23 is preferably a FOMA (registered trademark) communication device. Further, the CPU 26 and the constant current load circuit 25 function as an internal resistance detection unit that detects the internal resistance of the battery pack 10, the communication device 23 functions as a transmission unit, and the communication device 31 functions as a reception unit.

管理センタ30のサーバ32は、通信端末装置20から送信される電池の内部抵抗に基づいて、電池パック10の寿命を予測する寿命予測手段として機能する、図示のないCPUを有する。   The server 32 of the management center 30 has a CPU (not shown) that functions as a life prediction unit that predicts the life of the battery pack 10 based on the internal resistance of the battery transmitted from the communication terminal device 20.

次に、通信端末装置20において内部抵抗が測定される電池パック10について説明する。図2は電池パック10回りの構成を示すブロック図である。図2を参照して電池パック10は、直列に接続された3つの電池(以下では、個々の電池を「セル」という場合がある)11a〜11cと、電池11a〜11cに接続された過電流保護素子12とを含む。電池パック10は電池コネクタ13a,13bを介して電池使用機器15の基板16に接続されている。なお、図示はされていないが、電池11a〜11cには内部抵抗があり、この内部抵抗の経年変化から、管理センタ30のサーバ32で電池パック10の期待寿命を予測する。ここでは、電池パック10の期待寿命は周囲温度が40℃以下の条件での期待寿命とする。また、ここでは、電池パック10の寿命は、外部の管理センタ30へ送信して管理センタ30で予測する必要があるため、停電時に作動する機器が安定動作可能な所定の電圧を保持可能な期間として定義する。したがって、この実施の形態でいう寿命は、上記した特許文献で述べたような放電可能容量とは異なる。   Next, the battery pack 10 whose internal resistance is measured in the communication terminal device 20 will be described. FIG. 2 is a block diagram showing a configuration around the battery pack 10. Referring to FIG. 2, battery pack 10 includes three batteries 11a to 11c connected in series (hereinafter, each battery may be referred to as a “cell”) and overcurrent connected to batteries 11a to 11c. Protective element 12. The battery pack 10 is connected to the substrate 16 of the battery using device 15 through the battery connectors 13a and 13b. Although not shown, the batteries 11a to 11c have an internal resistance, and the expected life of the battery pack 10 is predicted by the server 32 of the management center 30 from the secular change of the internal resistance. Here, the expected life of the battery pack 10 is the expected life under the condition where the ambient temperature is 40 ° C. or less. Further, here, since the life of the battery pack 10 needs to be transmitted to the external management center 30 and predicted by the management center 30, a period during which a device that operates at the time of a power failure can maintain a predetermined voltage that can be stably operated can be maintained. Define as Therefore, the lifetime in this embodiment is different from the dischargeable capacity as described in the above-mentioned patent document.

ここでは、電池パック10の寿命としては、停電時に停電通報を行う必要があるため、最大10分間電池使用機器15を駆動出来る電圧を保持している期間とする。停電は常時発生することはないので、常時100%充電されているものとする。停電時に電池で駆動される機器が安定動作可能な電池電圧(基板16の入力電圧)の最低値はここでは、たとえば、3.55Vとし、停電時の平均消費電流を0.3A、ピーク消費電流を0.5Aとして、寿命判定のための内部抵抗について検討する。   Here, as the life of the battery pack 10, since it is necessary to make a power failure notification at the time of a power failure, it is assumed that the battery pack 10 has a voltage holding voltage that can drive the battery using device 15 for a maximum of 10 minutes. Since a power failure does not always occur, it is assumed that 100% is always charged. Here, for example, the minimum value of the battery voltage (input voltage of the board 16) at which the device driven by the battery at the time of a power failure can stably operate is 3.55 V, the average current consumption at the time of the power failure is 0.3 A, and the peak current consumption Is set to 0.5 A, and the internal resistance for determining the life is examined.

なお、停電時に作動する機器が安定動作可能な所定の電圧の最小値は、CPU26が作動するのに必要な電圧に相当する。   Note that the minimum value of the predetermined voltage at which the device that operates in the event of a power failure can stably operate corresponds to the voltage necessary for the CPU 26 to operate.

図2に示した電池パック10のセル11を除く内部抵抗は、過電流保護素子12において0.08Ω、電池コネクタ13a,13bの接触抵抗を0.035Ω×2個=0.07Ωとする。これらの値から抵抗値の合計は0.15Ωとなる。   The internal resistance excluding the cell 11 of the battery pack 10 shown in FIG. 2 is 0.08Ω in the overcurrent protection element 12, and the contact resistance of the battery connectors 13a and 13b is 0.035Ω × 2 pieces = 0.07Ω. From these values, the total resistance value is 0.15Ω.

使用条件としては、製品の使用温度可能範囲は−10〜60℃、通年の大気平均温度は15℃とし、設置される環境からの煽り分+20℃、製品の発熱分+5℃を加味して40℃以下の期待寿命を求める。   As usage conditions, the usable temperature range of the product is −10 to 60 ° C., the year-round atmospheric average temperature is 15 ° C., 40% in consideration of the amount of rise from the installed environment + 20 ° C. and the product heat generation + 5 ° C. Find the expected life below ℃.

以上から停電通報に必要な電池容量は、0.3A×10分/60分=50mAhとなる。   From the above, the battery capacity required for power failure notification is 0.3 A × 10 minutes / 60 minutes = 50 mAh.

図3は、電池における放電特性の一例を示すグラフであり、横軸が放電容量を示し、縦軸が電圧を示す。図3を参照して、−10℃〜40℃の範囲においては、50mAh使用後の電池電圧は1セルあたり1.35V(初期セル内部抵抗ドロップ分含む)以上であり、製品に供給される電圧は、
1.35V×3セル−0.15Ω×0.5A=3.98V(負荷0.5A時)以上が期待できる。
FIG. 3 is a graph showing an example of the discharge characteristics of the battery, in which the horizontal axis indicates the discharge capacity and the vertical axis indicates the voltage. Referring to FIG. 3, in the range of −10 ° C. to 40 ° C., the battery voltage after using 50 mAh is 1.35 V per cell (including the initial cell internal resistance drop) or more, and the voltage supplied to the product Is
1.35V × 3 cells−0.15Ω × 0.5A = 3.98V (at load 0.5A) or more can be expected.

この値と、上記した回路が安定動作するために必要な電池電圧3.55Vとから、電池を構成する3セルの合計の内部抵抗は、
(3.98V−3.55V)÷0.5A=0.86Ω以下である必要がある。
これを1セルあたりに換算すると、0.86Ω÷3個=0.29Ω以下であれば良いことがわかる。
From this value and the battery voltage of 3.55 V required for stable operation of the above circuit, the total internal resistance of the three cells constituting the battery is
(3.98V−3.55V) ÷ 0.5A = 0.86Ω or less.
When this is converted per cell, it can be seen that 0.86Ω ÷ 3 = 0.29Ω or less is sufficient.

図4は、電池を、たとえば、40℃で、トリクル充電(1/30It=約65mA)で、常時充電した場合の1セルあたりの放電容量比と内部抵抗の変化特性を月単位で示す図である。左上から右へ延びているのが放電容量比の変化を示すグラフであり、左下から右へ延びているのが内部抵抗の変化である。図4を参照して、40℃において、セル1個あたりの内部抵抗を290mΩ以下に保持できる期間は、長くても24ヶ月程度であることがわかる。この内部抵抗値を基に、電池の寿命を予測する。   FIG. 4 is a diagram showing the change characteristics of the discharge capacity ratio and internal resistance per cell when the battery is always charged, for example, at 40 ° C. with trickle charge (1/30 It = about 65 mA), in units of months. is there. Extending from the upper left to the right is a graph showing a change in the discharge capacity ratio, and extending from the lower left to the right is a change in the internal resistance. Referring to FIG. 4, it can be seen that at 40 ° C., the period during which the internal resistance per cell can be kept below 290 mΩ is about 24 months at the longest. Based on this internal resistance value, the battery life is predicted.

すなわち、この実施の形態においては、停電通報後の電池の電池容量を基に、供給可能な電圧、停電時に作動する機器の安定動作可能な最低電圧値、および供給可能な電圧と安定動作可能な最低電圧値との差電圧を求め、この差電圧を機器の動作時のピーク消費電流値で除して電池の内部抵抗値を求め、この内部抵抗値を基に、電池の寿命を予測している。したがって、CPU26は第1から第4演算手段として作動する。   That is, in this embodiment, based on the battery capacity of the battery after the power failure notification, the voltage that can be supplied, the lowest voltage value that can be stably operated of the device that operates at the time of the power failure, and the voltage that can be supplied and the stable operation are possible. Obtain the voltage difference from the minimum voltage value, divide this voltage difference by the peak current consumption during device operation to obtain the internal resistance value of the battery, and predict the battery life based on this internal resistance value. Yes. Therefore, the CPU 26 operates as first to fourth calculation means.

図5は、パルス補充電方式とトリクル充電(過充電)方式との寿命差を示す図である。図において、横軸は寿命期間を示し、縦軸は電池の内部抵抗を示す。図5を参照して、パルス補充電方式の方がトリクル充電方式よりも寿命が長くなっている。   FIG. 5 is a diagram showing a difference in life between the pulse complementary charging method and the trickle charging (overcharge) method. In the figure, the horizontal axis indicates the lifetime, and the vertical axis indicates the internal resistance of the battery. Referring to FIG. 5, the pulse supplementary charging method has a longer life than the trickle charging method.

この実施の形態においては、トリクル充電ではなく、パルス補充電方式で自己放電分のみを補充電するため、上記トリクル充電(過充電)より内部抵抗変化が小さい特性を示すと考えられる。したがって、電池寿命としては、40℃以下において、24ヶ月以上が期待できる。   In this embodiment, it is considered that the internal resistance change is smaller than that of the trickle charge (overcharge) because only the self-discharge is supplemented by the pulse complementary charge method, not the trickle charge. Therefore, the battery life can be expected to be 24 months or longer at 40 ° C. or lower.

次に、寿命を判定する内部抵抗の他の測定例として、電池の高温時の特性について説明する。図6は高温(60℃)における放電時間(横軸)と電圧との関係の一例を示すグラフである。図6に示すように、60℃では、停電通報時に必要な電池寿命である50mAh消費時点で、1セルあたり電圧は1.33Vになっているため、
1.33V×3セル−0.15Ω×0.5A=3.92V(負荷0.5A時)以上となり、3セルの合計の内部抵抗は、(3.92−3.55)÷0.5A=0.74Ω以下である必要があるため、1セルに換算すると、0.74Ω÷3個=0.25Ω以下とする必要がある。
Next, characteristics of the battery at a high temperature will be described as another measurement example of the internal resistance for determining the lifetime. FIG. 6 is a graph showing an example of the relationship between discharge time (horizontal axis) and voltage at high temperature (60 ° C.). As shown in FIG. 6, at 60 ° C., the voltage per cell is 1.33 V at the time of 50 mAh consumption, which is the battery life required at the time of power failure notification.
1.33V x 3 cells-0.15Ω x 0.5A = 3.92V (at load 0.5A) or more, and the total internal resistance of 3 cells is (3.92-3.55) ÷ 0.5A = 0.74Ω or less, so when converted to 1 cell, 0.74Ω ÷ 3 = 0.25Ω or less.

内部抵抗変化特性60℃一定時のデータが存在しないため寿命を正しく予測することはできないが、一般にいわれている、「アレニウスの法則」、すなわち、使用環境の温度が10℃下がると、寿命は2倍に伸びるという「10℃2倍則」を適用すると40℃時の1/4程度になると考えられる。したがって、24ヶ月÷4=6ヶ月程度となる可能性がある。  The life cannot be predicted correctly because there is no data at a constant internal resistance change characteristic of 60 ° C., but the life expectancy is 2 when the temperature of the usage environment drops by 10 ° C., which is generally called “Arrhenius law”. If the “10 ° C. double rule” is applied, it will be about 1/4 of that at 40 ° C. Therefore, there is a possibility that 24 months ÷ 4 = 6 months.

次に充電効率について検討する。図7は電池の各温度における充電効率の一例を示すグラフである。図7を参照して、−10℃〜60℃のほぼ全温度範囲で、約85%から105%であり、特に充電効率に大きな問題はないことがわかる。   Next, the charging efficiency is examined. FIG. 7 is a graph showing an example of the charging efficiency at each temperature of the battery. Referring to FIG. 7, it is about 85% to 105% in almost the entire temperature range of −10 ° C. to 60 ° C., and it can be seen that there is no particular problem in charging efficiency.

次に、上記のような条件のもとで、サーバ32で電池パック10の交換時期を予測する方法について説明する。以上から、たとえば、寿命の2ヶ月前に電池を交換するためには電池の内部抵抗が約200mΩ/セル以上になったこと検出した時点で電池を交換すれば良い。   Next, a method for predicting the replacement time of the battery pack 10 by the server 32 under the above conditions will be described. From the above, for example, in order to replace the battery two months before the end of its life, the battery may be replaced when it is detected that the internal resistance of the battery is about 200 mΩ / cell or more.

図8は、CPU26が定電流負荷回路25を用いて定電流を負荷し、内部抵抗を測定したときの電池の電圧値の変化を示す図である。電池電圧モニタ22のCPU26は、サーバ32からの指示に応じて、図8に示すように、決められた時間間隔で、定電流負荷回路25にたとえば、1秒間電流を流し、それをAD変換することによって、その電圧差を取得し、その値を、定電流値(ここでは、たとえば、0.45Aとする)で割り算すれば電池の内部抵抗を推定することができる。   FIG. 8 is a diagram showing a change in the voltage value of the battery when the CPU 26 loads a constant current using the constant current load circuit 25 and measures the internal resistance. In response to an instruction from the server 32, the CPU 26 of the battery voltage monitor 22 sends a current to the constant current load circuit 25 at a predetermined time interval for 1 second, for example, as shown in FIG. Thus, if the voltage difference is acquired and the value is divided by a constant current value (here, 0.45 A, for example), the internal resistance of the battery can be estimated.

図8の例では、電圧差が124mVであるので、124mV÷0.45A=0.276Ωとなる。上記したように、電池パック10のセルを除く内部抵抗は、もともと0.15Ωあるから、
(0.276Ω−0.15Ω)÷3=42mΩと推定できる。
In the example of FIG. 8, since the voltage difference is 124 mV, 124 mV ÷ 0.45 A = 0.276Ω. As described above, the internal resistance excluding the cells of the battery pack 10 is originally 0.15Ω,
It can be estimated that (0.276Ω−0.15Ω) ÷ 3 = 42 mΩ.

次に、たとえば、500回程度充放電して劣化した電池を用いて、定電流負荷回路25に負荷をかけた場合について説明する。図9はこの場合の電圧の変化を示す図である。図9においても、図8と同じように、1秒間電流を流して差を求めた。ここでは、約320mVの差が生じている。したがって、320mV÷0.45A=0.711Ωとなる。上記と同様に、(0.711Ω−0.15Ω)÷3=187mΩと推定できる。したがって、寿命の2ヶ月前に近い状態の電池と考えられる。   Next, for example, a case where a load is applied to the constant current load circuit 25 using a battery that has deteriorated after being charged and discharged about 500 times will be described. FIG. 9 is a diagram showing a change in voltage in this case. In FIG. 9, as in FIG. 8, the current was passed for 1 second to obtain the difference. Here, there is a difference of about 320 mV. Therefore, 320 mV ÷ 0.45 A = 0.711Ω. Similarly to the above, it can be estimated that (0.711Ω−0.15Ω) ÷ 3 = 187 mΩ. Therefore, it is considered that the battery is in a state close to two months before the lifetime.

次に、管理センタ30について説明する。図1に戻って、管理センタ30のサーバ32は、予め定められた期間、たとえば、1〜30日に1回程度、通信装置31,23を介して、通信端末装置20に電池の内部抵抗を測定する指示を行うことによって電池の内部抵抗の変化をモニタする。通信端末装置20は、この指示に応じて、電池パック10の内部抵抗値を測定し、通信装置23を使ってサーバ32に送信する。したがって、サーバ32は指示手段として機能する。なお、サーバ32は、ハードディスクのような格納手段を有し、そこに電池11の寿命となる寿命内部抵抗値を格納しておき、この値を電池電圧モニタ22のCPU26が検出した電池11の内部抵抗とを比較して電池11の寿命を予測してもよい。   Next, the management center 30 will be described. Returning to FIG. 1, the server 32 of the management center 30 applies the internal resistance of the battery to the communication terminal device 20 via the communication devices 31 and 23 for a predetermined period, for example, once every 1 to 30 days. The change in the internal resistance of the battery is monitored by giving an instruction to measure. In response to this instruction, the communication terminal device 20 measures the internal resistance value of the battery pack 10 and transmits it to the server 32 using the communication device 23. Therefore, the server 32 functions as an instruction unit. Note that the server 32 has storage means such as a hard disk, and stores therein a lifetime internal resistance value that is the lifetime of the battery 11, and this value is detected by the CPU 26 of the battery voltage monitor 22. The life of the battery 11 may be predicted by comparing the resistance.

次にこの電池寿命の予測処理について説明する。図10は、図4と同様のグラフである。ここには、所定の電圧を出力可能な内部抵抗で表される寿命と、その2ヶ月前の内部抵抗値とが示されている。図1に示したサーバ32の図示のないCPUは、図10に示した、グラフを用いて電池の寿命を予測する。   Next, the battery life prediction process will be described. FIG. 10 is a graph similar to FIG. Here, a life represented by an internal resistance capable of outputting a predetermined voltage and an internal resistance value two months ago are shown. The CPU (not shown) of the server 32 shown in FIG. 1 predicts the battery life using the graph shown in FIG.

すなわち、管理センタ30のサーバ32は、予め寿命判定の基準となる内部抵抗値(たとえば、2ヶ月前であれば、200mΩ)と比較することで、電池の寿命を判定し、ユーザに連絡する。ここでは、サーバ32で電池の内部抵抗値を保存し、図10に示すようなグラフにすることで内部抵抗値の変化の傾きを予測して、寿命を推定するようにしたが、これに限らず、通信端末装置20において、内部抵抗の変化グラフを作成してもよい。   That is, the server 32 of the management center 30 determines the battery life by comparing with an internal resistance value (for example, 200 mΩ if 2 months ago) as a reference for life determination, and notifies the user. Here, the internal resistance value of the battery is stored in the server 32, and the graph as shown in FIG. 10 is used to predict the inclination of the change in the internal resistance value, so that the lifetime is estimated. Instead, the communication terminal device 20 may create a change graph of the internal resistance.

以上のように、この実施の形態においては、遠隔地に設けられた電池の寿命を管理センタで予測できるため、遠隔地で作動している電池の寿命を、わざわざ設置場所に行くことなく予測できる。   As described above, in this embodiment, since the life of a battery provided in a remote place can be predicted by a management center, the life of a battery operating in a remote place can be predicted without going to the installation site. .

また、リアルタイムで電池の寿命を知ることができるため、従来のように、予め定められた一定の時期に電池を交換することなく、電池を無駄なく使用できる。   In addition, since the battery life can be known in real time, the battery can be used without waste without replacing the battery at a predetermined time as in the prior art.

なお、上記実施の形態においては、電池の交換時期が寿命の2ヶ月前になるように予測したが、これに限らず、1ヶ月前、等任意の時期になるように予測してもよい。   In the embodiment described above, the battery replacement time is predicted to be two months before the lifetime, but the present invention is not limited to this, and may be predicted to be any time, such as one month before.

また、上記実施の形態においては、電池の内部抵抗を検出するために、定電流負荷回路に電流を流す、直流法によって行う例について説明したが、これに限らず、電池に微小の交流電流を通電したときの電圧変化から検出する、交流法を用いてもよい。交流法を用いれば、交流電流を通電するため、直流法とは異なり、測定の前後で電池の状態が変わらない(内部抵抗を測定しても容量が減少しない)という利点がある。   In the above embodiment, an example is described in which a direct current method is used to flow a current through a constant current load circuit in order to detect the internal resistance of the battery. However, the present invention is not limited to this, and a small alternating current is applied to the battery. You may use the alternating current method detected from the voltage change when it supplies with electricity. If the alternating current method is used, an alternating current is applied, and unlike the direct current method, there is an advantage that the state of the battery does not change before and after the measurement (the capacity does not decrease even if the internal resistance is measured).

また、上記実施の形態においては、常時使用することなく、停電時のみに使用される電池の寿命を予測する場合に適用したが、これに限らず、常時使用する二次電池に適用してもよい。   In the above embodiment, the present invention is applied to the case of predicting the life of a battery that is used only at the time of a power failure without being always used. Good.

この実施の形態においては、寿命を監視する電池の例として、漏電監視装置用の二次電池である、ニッケル水素電池をあげたが、これに限らず、任意の電池に適用が可能である。   In this embodiment, a nickel hydride battery, which is a secondary battery for a leakage monitoring device, is given as an example of a battery for monitoring the life. However, the present invention is not limited to this, and can be applied to any battery.

上記実施の形態においては、電池パックが3つのセルからなる場合の例について説明したが、これに限らず、任意の数のセルで電池パックを構成してもよい。   In the said embodiment, although the example in case a battery pack consists of three cells was demonstrated, not only this but a battery pack may be comprised by arbitrary numbers of cells.

また、上記実施の形態においては、通信端末装置は、遠隔地に設けられた管理サーバからの指示に応じて電池の内部抵抗を測定する場合について説明したが、これに限らず、電池の寿命を通信端末装置で予測し、その値を管理センタに送信してもよい。   In the above embodiment, the communication terminal device has been described for measuring the internal resistance of the battery in response to an instruction from a management server provided at a remote location. Prediction may be performed by the communication terminal device, and the value may be transmitted to the management center.

また、上記実施の形態においては、通信装置はFOMA(登録商標)通信装置を使用した場合について説明したが、これに限らず、他の通信装置を使用してもよい。また、無線装置に限らず、有線通信装置を使用してもよい。   In the above embodiment, the case where the FOMA (registered trademark) communication apparatus is used as the communication apparatus has been described. However, the present invention is not limited to this, and another communication apparatus may be used. Further, not only a wireless device but also a wired communication device may be used.

また、上記実施の形態においては、電池寿命予測システムを構成する、通信端末装置と管理センタに設けられたサーバ等とが、それぞれその専用装置である場合について説明したが、これに限らず、通信端末装置およびサーバ等を、それぞれ、通信装置付きの汎用パソコンとし、通信端末装置およびサーバ等の動作をそれぞれ、データ送信プログラム、および、電池寿命予測プログラムとして、パソコンをそれらのプログラムで作動させるようにしてもよい。この場合、これらのプログラムは、光ディスクやハードディスクのような記録媒体で提供してもよいし、ネットワークを介して、図示のないネット上のプログラムサーバからダウンロードするようにしてもよい。   In the above embodiment, the case where the communication terminal device and the server provided in the management center, which constitute the battery life prediction system, are dedicated devices, respectively, is not limited to this. The terminal device and the server are each a general-purpose personal computer with a communication device, and the operation of the communication terminal device and the server is a data transmission program and a battery life prediction program, respectively. May be. In this case, these programs may be provided on a recording medium such as an optical disk or a hard disk, or may be downloaded from a program server on a network (not shown) via a network.

以上、図面を参照してこの発明の実施形態を説明したが、この発明は、図示した実施形態のものに限定されない。図示された実施形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。   As mentioned above, although embodiment of this invention was described with reference to drawings, this invention is not limited to the thing of embodiment shown in figure. Various modifications and variations can be made to the illustrated embodiment within the same range or equivalent range as the present invention.

電池と、通信端末装置と、管理センタとの相互関係を説明するブロック図である。It is a block diagram explaining the mutual relationship with a battery, a communication terminal device, and a management center. 電池と電池使用機器との構成を示すブロック図である。It is a block diagram which shows the structure of a battery and a battery using apparatus. 放電特性を示すグラフである。It is a graph which shows a discharge characteristic. 電池を充電した場合の1セルあたりの放電容量比と内部抵抗の変化特性を月単位で示す図である。It is a figure which shows the discharge capacity ratio per cell at the time of charging a battery, and the change characteristic of internal resistance in a month unit. パルス補充電方式とトリクル充電(過充電)方式との寿命差を示す図である。It is a figure which shows the lifetime difference of a pulse supplement charge system and a trickle charge (overcharge) system. 高温における放電時間と電圧との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the discharge time and voltage in high temperature. 電池の各温度における充電効率の一例を示すグラフである。It is a graph which shows an example of the charging efficiency in each temperature of a battery. 定電流負荷回路を用いて内部抵抗を測定したときの電池の電圧値の変化を示す図である。It is a figure which shows the change of the voltage value of a battery when internal resistance is measured using a constant current load circuit. 劣化した電池を用いて、定電流負荷回路に負荷をかけた場合の電池の電圧値の変化を示す図である。It is a figure which shows the change of the voltage value of a battery at the time of applying a load to a constant current load circuit using the deteriorated battery. 寿命時と、寿命予測時の内部抵抗の変化特性を示す図である。It is a figure which shows the change characteristic of the internal resistance at the time of a lifetime and a lifetime prediction.

符号の説明Explanation of symbols

10 電池パック、11 電池(セル)、12 過電流保護素子、13 コネクタ、15 電池使用機器、20 通信端末装置、21 電池コネクタ、22 電池電圧モニタ、23 通信装置、25 定電流負荷回路、26 CPU、30 管理センタ、31 通信装置、32 サーバ。
DESCRIPTION OF SYMBOLS 10 Battery pack, 11 Battery (cell), 12 Overcurrent protection element, 13 Connector, 15 Battery use apparatus, 20 Communication terminal device, 21 Battery connector, 22 Battery voltage monitor, 23 Communication apparatus, 25 Constant current load circuit, 26 CPU , 30 management center, 31 communication device, 32 servers.

Claims (17)

電池の寿命を予測する電池寿命予測システムであって、
前記電池の内部抵抗を検出する内部抵抗検出手段と、前記内部抵抗検出手段が検出した前記電池の内部抵抗値を外部に送信する通信装置とを有する、通信端末装置と、
前記通信端末装置から送信された前記電池の内部抵抗を基に、前記電池の寿命を予測する寿命予測手段とを含む、電池寿命予測システム。
A battery life prediction system for predicting battery life,
A communication terminal device comprising: an internal resistance detection means for detecting an internal resistance of the battery; and a communication device for transmitting the internal resistance value of the battery detected by the internal resistance detection means to the outside.
A battery life prediction system including life prediction means for predicting the life of the battery based on the internal resistance of the battery transmitted from the communication terminal device.
前記寿命予測手段は、前記内部抵抗検出手段が検出した内部抵抗を基に前記電池が所定の電圧を維持可能な期間を、前記電池の寿命として予測する、請求項1に記載の電池寿命予測システム。 2. The battery life prediction system according to claim 1, wherein the life prediction unit predicts, as a life of the battery, a period during which the battery can maintain a predetermined voltage based on the internal resistance detected by the internal resistance detection unit. . 前記所定の電圧は、停電時に作動する機器が安定動作可能な電圧を含む、請求項2に記載の電池寿命予測システム。 The battery life prediction system according to claim 2, wherein the predetermined voltage includes a voltage at which a device that operates during a power failure can stably operate. 前記内部抵抗検出手段は、前記電池に接続された定電流負荷回路を含み、前記定電流負荷回路に負荷をかけて前記電池の内部抵抗を検出する、請求項1から3のいずれかに記載の電池寿命予測システム。 4. The internal resistance detection unit according to claim 1, wherein the internal resistance detection unit includes a constant current load circuit connected to the battery, and detects the internal resistance of the battery by applying a load to the constant current load circuit. 5. Battery life prediction system. 前記寿命予測手段は、前記内部抵抗値を所定の間隔でモニタする内部抵抗検出手段に指示する指示手段を含む、請求項1から4のいずれかに記載の電池寿命予測システム。 The battery life prediction system according to any one of claims 1 to 4, wherein the life prediction means includes an instruction means for instructing an internal resistance detection means for monitoring the internal resistance value at a predetermined interval. 前記寿命予測手段は、前記電池の寿命となる寿命内部抵抗値を格納する格納手段を含み、前記格納手段に格納された寿命内部抵抗値と、前記内部抵抗検出手段が検出した内部抵抗値とを比較して、前記電池の寿命を予測する、請求項1から5のいずれかに記載の電池寿命予測システム。 The life prediction means includes storage means for storing a life internal resistance value that is a life of the battery, and includes a life internal resistance value stored in the storage means and an internal resistance value detected by the internal resistance detection means. The battery life prediction system according to claim 1, wherein the life of the battery is predicted by comparison. 停電時に、停電が発生したことを通報する、バックアップ用の電池の寿命を予測する電池寿命予測システムであって、
停電通報後の前記電池の電池容量を基に、供給可能な電圧を求める第1演算手段と、
停電時に作動する機器の安定動作が可能な最低電圧値を求める第2演算手段と、
前記第1演算手段が演算した供給可能な電圧と第2演算手段が演算した安定動作可能な最低電圧値との差電圧を求める第3演算手段と、
前記第3演算手段が求めた前記差電圧を前記機器の動作時のピーク消費電流値で除して前記電池の内部抵抗値を求める第4演算手段と、
前記第4演算手段が求めた前記内部抵抗値を基に、電池の寿命を予測する寿命予測手段とを含む、電池の寿命予測システム。
A battery life prediction system that predicts the life of a backup battery that reports that a power failure has occurred during a power failure,
First computing means for obtaining a supplyable voltage based on the battery capacity of the battery after the power failure notification;
A second calculating means for obtaining a minimum voltage value capable of stable operation of the device operating at the time of a power failure;
Third calculating means for obtaining a difference voltage between the supplyable voltage calculated by the first calculating means and the lowest voltage value that can be stably operated calculated by the second calculating means;
Fourth arithmetic means for obtaining the internal resistance value of the battery by dividing the differential voltage obtained by the third arithmetic means by a peak current consumption value during operation of the device;
A battery life prediction system comprising: life prediction means for predicting battery life based on the internal resistance value obtained by the fourth calculation means.
前記寿命予測手段は、前記電池とは離れた位置に設けられ、
前記第4演算手段が求めた内部抵抗値を前記寿命予測手段に送信する送信手段をさらに含む、請求項7に記載の電池の寿命予測システム。
The life prediction means is provided at a position away from the battery,
The battery life prediction system according to claim 7, further comprising a transmission means for transmitting the internal resistance value obtained by the fourth calculation means to the life prediction means.
停電時に、停電が発生したことを通報する、バックアップ用の電池の寿命を予測する電池寿命予測方法であって、
停電通報後の電池容量を基に、供給可能な電圧を求めるステップと、
停電時に作動する機器の安定動作が可能な最低電圧値を求めるステップと、
停電通報後の電池容量を基に求められた供給可能な電圧と、安定動作可能な最低電圧値との差電圧を求めるステップと、
前記ステップで求めた差電圧を前記機器の動作時のピーク消費電流値で除して電池の内部抵抗値を求めるステップと、
前記ステップで求めた電池の内部抵抗値を基に、電池の寿命を予測するステップとを含む、電池の寿命予測方法。
A battery life prediction method for predicting the life of a backup battery, reporting that a power failure has occurred during a power failure,
Based on the battery capacity after the power failure notification, obtaining a voltage that can be supplied,
A step of obtaining a minimum voltage value capable of stable operation of a device that operates in the event of a power failure;
Obtaining a voltage difference between the supplyable voltage obtained based on the battery capacity after the power failure notification and the lowest voltage value capable of stable operation;
Dividing the differential voltage obtained in the step by the peak current consumption value during operation of the device to obtain the internal resistance value of the battery;
Predicting the life of the battery based on the internal resistance value of the battery determined in the above step.
求めた内部抵抗値を基に電池の寿命を予測するステップの前に、求めた内部抵抗値を外部に設けられたサーバに送信するステップを含み、
電池の寿命を予測するステップは、サーバで行われる、請求項9に記載の電池の寿命予測方法。
Before the step of predicting the battery life based on the determined internal resistance value, including the step of transmitting the determined internal resistance value to a server provided outside,
The battery life prediction method according to claim 9, wherein the step of predicting the battery life is performed by a server.
電池の寿命を遠隔地で予測する電池寿命予測方法であって、
所定の管理センタに設けられたサーバから、遠隔地に設けられた電池の内部抵抗の検出を指示するステップと、
遠隔地において、指示に応じて、電池の内部抵抗を検出するステップと、
検出した内部抵抗をサーバに送信するステップと、
送信された電池の内部抵抗に基づいて、サーバで電池の寿命を予測するステップとを含む、電池寿命予測方法。
A battery life prediction method for predicting battery life in a remote place,
Instructing detection of internal resistance of a battery provided in a remote place from a server provided in a predetermined management center;
Detecting the internal resistance of the battery in response to an instruction at a remote location;
Sending the detected internal resistance to the server;
Predicting the battery life at the server based on the transmitted internal resistance of the battery.
電池の寿命を遠隔地で予測するために、所定のデータを送信する通信端末装置であって、
前記所定のデータとして、前記電池の内部抵抗値を検出する内部抵抗検出手段と、
前記内部抵抗検出手段が検出した前記電池の内部抵抗値を、外部へ送信する通信装置とを含む、通信端末装置。
A communication terminal device that transmits predetermined data in order to predict battery life in a remote place,
An internal resistance detecting means for detecting an internal resistance value of the battery as the predetermined data;
A communication terminal device comprising: a communication device that transmits the internal resistance value of the battery detected by the internal resistance detection means to the outside.
遠隔地に設けられた電池の寿命を予測する電池寿命予測装置であって、
遠隔地から、前記電池の内部抵抗値を受信する受信手段と、
前記受信手段が受信した前記内部抵抗値を基に、前記電池の寿命を予測する寿命予測手段とを含む、電池寿命予測装置。
A battery life prediction device for predicting the life of a battery provided in a remote place,
Receiving means for receiving the internal resistance value of the battery from a remote location;
A battery life prediction device including life prediction means for predicting a life of the battery based on the internal resistance value received by the reception means.
通信装置付きのコンピュータを、請求項12に記載の通信端末装置として作動させる、データ送信プログラム。 A data transmission program for operating a computer with a communication device as the communication terminal device according to claim 12. 請求項14に記載のデータ送信プログラムを格納したコンピュータ読取可能記録媒体。 A computer-readable recording medium storing the data transmission program according to claim 14. 通信装置付きのコンピュータを、請求項13に記載の電池寿命予測装置として作動させる、電池寿命予測プログラム。 A battery life prediction program for operating a computer with a communication device as the battery life prediction device according to claim 13. 請求項16に記載の電池寿命予測プログラムを格納したコンピュータ読取可能記録媒体。




A computer-readable recording medium storing the battery life prediction program according to claim 16.




JP2006257419A 2006-09-22 2006-09-22 Battery life prediction system, battery life prediction method, communication terminal device, battery life prediction device, data transmission program, battery life predicting program, and computer-readable recording medium stored with program Pending JP2008076295A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006257419A JP2008076295A (en) 2006-09-22 2006-09-22 Battery life prediction system, battery life prediction method, communication terminal device, battery life prediction device, data transmission program, battery life predicting program, and computer-readable recording medium stored with program
CN2007101618355A CN101149422B (en) 2006-09-22 2007-09-24 Battery life forecasting system and method, communication terminal device and battery life forecasting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006257419A JP2008076295A (en) 2006-09-22 2006-09-22 Battery life prediction system, battery life prediction method, communication terminal device, battery life prediction device, data transmission program, battery life predicting program, and computer-readable recording medium stored with program

Publications (1)

Publication Number Publication Date
JP2008076295A true JP2008076295A (en) 2008-04-03

Family

ID=39250040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006257419A Pending JP2008076295A (en) 2006-09-22 2006-09-22 Battery life prediction system, battery life prediction method, communication terminal device, battery life prediction device, data transmission program, battery life predicting program, and computer-readable recording medium stored with program

Country Status (2)

Country Link
JP (1) JP2008076295A (en)
CN (1) CN101149422B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012252837A (en) * 2011-06-01 2012-12-20 Fujitsu Ltd Information processing unit, remaining battery capacity prediction method, and remaining battery capacity prediction program
JP2016167336A (en) * 2015-03-09 2016-09-15 中国電力株式会社 Storage battery remaining life estimation method, storage battery inspection date determination method, storage battery remaining life estimation device, and storage battery remaining life estimation system
JPWO2014076839A1 (en) * 2012-11-19 2017-01-05 日立化成株式会社 Storage battery voltage leveling device and storage battery state monitoring system
JP2018072346A (en) * 2017-11-14 2018-05-10 株式会社東芝 Battery state estimation apparatus of secondary battery
WO2018096969A1 (en) * 2016-11-24 2018-05-31 日本電気株式会社 Monitoring system, server, terminal device, monitoring method, and storage medium
WO2018190082A1 (en) * 2017-04-12 2018-10-18 日立化成株式会社 Cell service life diagnostic device and cell service life diagnostic method
JP2020008520A (en) * 2018-07-12 2020-01-16 Fdk株式会社 Life determination method of energy storage system, and energy storage system
JP6788768B1 (en) * 2019-10-31 2020-11-25 InsuRTAP株式会社 Processing system and processing method
KR102226363B1 (en) * 2019-09-20 2021-03-12 주식회사 한국파워셀 How to predict State Of Health of battery management system through remote device
EP3981639A1 (en) 2020-10-12 2022-04-13 Toyota Jidosha Kabushiki Kaisha Degradation determination device for secondary battery
EP3992013A1 (en) 2020-10-22 2022-05-04 Toyota Jidosha Kabushiki Kaisha Degradation determination device for secondary battery

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102213748B (en) * 2011-04-11 2013-06-19 王宜俊 Battery monitoring device and method
CN104714179A (en) * 2013-12-12 2015-06-17 中南大学 Method for estimating battery life based on alternating-current impedance spectrum
US10620274B2 (en) * 2014-12-10 2020-04-14 Datang NXP Semiconductor Co., Ltd. Method and apparatus for contact detection in battery packs
KR101684092B1 (en) * 2015-04-08 2016-12-07 현대자동차주식회사 Apparatus and Method for caculating degradation degree
WO2016198103A1 (en) * 2015-06-10 2016-12-15 Volvo Truck Corporation A method and system for optimizing the lifetime of an energy storage system
CN110832335B (en) * 2018-10-30 2021-11-09 深圳市大疆创新科技有限公司 Battery connector health state detection system and method and unmanned aerial vehicle
CN112289385B (en) * 2020-09-17 2022-08-09 西南交通大学 Electrochemical impedance spectrum prediction method for high-power proton exchange membrane fuel cell stack
CN114047453A (en) * 2021-10-26 2022-02-15 深圳蓝信电气有限公司 Small-capacity direct-current power supply service life testing system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136629A (en) * 1994-11-11 1996-05-31 Kyushu Electric Power Co Inc Device for diagnosing service life of battery
JPH08339829A (en) * 1995-06-09 1996-12-24 Matsushita Electric Ind Co Ltd Monitor device for battery set
JPH09115554A (en) * 1995-10-23 1997-05-02 Japan Storage Battery Co Ltd Residual service life estimating method of negative electrode absorbing type sealed lead-acid battery
JPH11194156A (en) * 1997-12-27 1999-07-21 Dokomo Engineering Hokkaido Kk Assembly battery automatic diagnostic device
JP2003123847A (en) * 2001-10-09 2003-04-25 Furukawa Battery Co Ltd:The Maintenance method of storage battery
JP2005108543A (en) * 2003-09-29 2005-04-21 Yuasa Corp Storage battery monitoring system, and method of monitoring storage battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6522361B2 (en) * 1996-03-08 2003-02-18 Sony Corporation Electronic apparatus having the function of displaying the battery residual quantity and method for displaying the battery residual quantity
JP2002075461A (en) * 2000-09-05 2002-03-15 Toyota Motor Corp Deterioration judging device for secondary cell, deterioration judging method, managing device and managing method of secondary cell
KR100546246B1 (en) * 2003-04-23 2006-01-26 주식회사 파워트론 Monitoring and diagnostic system for expected life of storage battery system
US7439745B2 (en) * 2004-08-05 2008-10-21 Matsushita Electric Industrial Co., Ltd. Nickel-hydride battery life determining method and life determining apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136629A (en) * 1994-11-11 1996-05-31 Kyushu Electric Power Co Inc Device for diagnosing service life of battery
JPH08339829A (en) * 1995-06-09 1996-12-24 Matsushita Electric Ind Co Ltd Monitor device for battery set
JPH09115554A (en) * 1995-10-23 1997-05-02 Japan Storage Battery Co Ltd Residual service life estimating method of negative electrode absorbing type sealed lead-acid battery
JPH11194156A (en) * 1997-12-27 1999-07-21 Dokomo Engineering Hokkaido Kk Assembly battery automatic diagnostic device
JP2003123847A (en) * 2001-10-09 2003-04-25 Furukawa Battery Co Ltd:The Maintenance method of storage battery
JP2005108543A (en) * 2003-09-29 2005-04-21 Yuasa Corp Storage battery monitoring system, and method of monitoring storage battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012252837A (en) * 2011-06-01 2012-12-20 Fujitsu Ltd Information processing unit, remaining battery capacity prediction method, and remaining battery capacity prediction program
JPWO2014076839A1 (en) * 2012-11-19 2017-01-05 日立化成株式会社 Storage battery voltage leveling device and storage battery state monitoring system
JP2016167336A (en) * 2015-03-09 2016-09-15 中国電力株式会社 Storage battery remaining life estimation method, storage battery inspection date determination method, storage battery remaining life estimation device, and storage battery remaining life estimation system
US11186178B2 (en) 2016-11-24 2021-11-30 Insurtap Inc. Monitoring system, server, terminal device, monitoring method, and storage medium
WO2018096969A1 (en) * 2016-11-24 2018-05-31 日本電気株式会社 Monitoring system, server, terminal device, monitoring method, and storage medium
JPWO2018096969A1 (en) * 2016-11-24 2019-10-31 日本電気株式会社 Monitoring system, server, terminal device, monitoring method, and storage medium
WO2018190082A1 (en) * 2017-04-12 2018-10-18 日立化成株式会社 Cell service life diagnostic device and cell service life diagnostic method
JP2018179733A (en) * 2017-04-12 2018-11-15 日立化成株式会社 Battery life diagnostic device and battery life diagnostic method
JP2018072346A (en) * 2017-11-14 2018-05-10 株式会社東芝 Battery state estimation apparatus of secondary battery
JP2020008520A (en) * 2018-07-12 2020-01-16 Fdk株式会社 Life determination method of energy storage system, and energy storage system
KR102226363B1 (en) * 2019-09-20 2021-03-12 주식회사 한국파워셀 How to predict State Of Health of battery management system through remote device
JP6788768B1 (en) * 2019-10-31 2020-11-25 InsuRTAP株式会社 Processing system and processing method
WO2021084714A1 (en) * 2019-10-31 2021-05-06 InsuRTAP株式会社 Processing system, monitoring device, processing method, monitoring method, and program
EP3981639A1 (en) 2020-10-12 2022-04-13 Toyota Jidosha Kabushiki Kaisha Degradation determination device for secondary battery
US11808818B2 (en) 2020-10-12 2023-11-07 Toyota Jidosha Kabushiki Kaisha Degradation determination device for secondary battery
EP3992013A1 (en) 2020-10-22 2022-05-04 Toyota Jidosha Kabushiki Kaisha Degradation determination device for secondary battery

Also Published As

Publication number Publication date
CN101149422A (en) 2008-03-26
CN101149422B (en) 2012-12-05

Similar Documents

Publication Publication Date Title
JP2008076295A (en) Battery life prediction system, battery life prediction method, communication terminal device, battery life prediction device, data transmission program, battery life predicting program, and computer-readable recording medium stored with program
JP4615439B2 (en) Secondary battery management device, secondary battery management method and program
JP6361643B2 (en) Energy storage service system
JP5092218B2 (en) Abnormality detection method for battery pack, battery pack and electronic device
JP5076835B2 (en) Secondary battery deterioration state judgment system
US20130245973A1 (en) Apparatus, computer program, method, and system for acquiring and analyzing battery metrics
JP6431644B2 (en) Storage battery evaluation device, power storage system, and storage battery evaluation method
AU2015404618A1 (en) Storage battery evaluating device, power storage system and storage battery evaluating method
JP6250298B2 (en) Secondary battery life prediction system and secondary battery characteristic evaluation device
JP2013195129A (en) Secondary battery device and abnormality detection method for secondary battery device
KR101547004B1 (en) Apparatus and method for estimating state of health of battery
CA2825006A1 (en) Uninterruptible power supplies for use in a distributed network
US10901046B2 (en) Information processing apparatus, control method, and program
KR20180102598A (en) Method for estimating discharge time period during high-rate battery discharge
JP2009300173A (en) Storage battery monitoring system
JP5696737B2 (en) Storage battery system, storage battery system status notification method and program
WO2017026175A1 (en) Power storage system and method for managing same
CA3223620A1 (en) Battery fault determination
JP6721170B1 (en) Remote monitoring system for emergency charger/discharger
KR102107731B1 (en) Battery remote control and management system and operation method of the same
KR101674636B1 (en) Batterty monitoring system for uninterruptible power supply
KR102484196B1 (en) Low-Discharge Battery Charge-Discharge Current Amount Control System
KR101674589B1 (en) System and method for battery management
AU2021416759B2 (en) Storage battery control device and storage battery control method
KR102529435B1 (en) Monitoring apparatus for monitoring battery equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120507

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120601

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20121207