JP2008074831A - New pyrimidinyl group-containing iridium complex, luminous material comprising the same and organic el element using the same - Google Patents

New pyrimidinyl group-containing iridium complex, luminous material comprising the same and organic el element using the same Download PDF

Info

Publication number
JP2008074831A
JP2008074831A JP2007117238A JP2007117238A JP2008074831A JP 2008074831 A JP2008074831 A JP 2008074831A JP 2007117238 A JP2007117238 A JP 2007117238A JP 2007117238 A JP2007117238 A JP 2007117238A JP 2008074831 A JP2008074831 A JP 2008074831A
Authority
JP
Japan
Prior art keywords
butyl
iridium complex
layer
pyridin
spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007117238A
Other languages
Japanese (ja)
Other versions
JP4648922B2 (en
Inventor
Junji Kido
淳二 城戸
Yoshinori Omae
吉則 大前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemipro Kasei Kaisha Ltd
Original Assignee
Chemipro Kasei Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemipro Kasei Kaisha Ltd filed Critical Chemipro Kasei Kaisha Ltd
Priority to JP2007117238A priority Critical patent/JP4648922B2/en
Publication of JP2008074831A publication Critical patent/JP2008074831A/en
Application granted granted Critical
Publication of JP4648922B2 publication Critical patent/JP4648922B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plural Heterocyclic Compounds (AREA)
  • Electroluminescent Light Sources (AREA)
  • Pyridine Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new pyrimidinyl group-containing iridium complex, luminous material composed of the complex and an organic EL element using the complex. <P>SOLUTION: The pyrimidinyl group-iridium complex is represented by general formula (I). The luminous material is composed of the complex. The organic EL element is obtained by using the complex. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、新規なピリミジニル基含有イリジウム錯体、それよりなる発光材料およびそれを用いた有機EL素子に関する。   The present invention relates to a novel pyrimidinyl group-containing iridium complex, a light emitting material comprising the same, and an organic EL device using the same.

有機EL素子は、電極から注入されたホールと電子の再結合によって生成した励起エネルギーが発光過程を経て基底状態に緩和されることにより自発光する。しかしながら、ホールと電子の再結合によって生成する励起状態には一重項励起状態と三重項励起状態の2種類がそれぞれ1対3の割合で存在する。これまでの多くは一重項励起状態からの発光を利用した蛍光材料が発光材料に利用されていたため、内部量子効率が最大で25%であるので、この時取り出し効率を20%とすると、最大外部量子効率は5%が理論限界であった。   The organic EL element emits light when excitation energy generated by recombination of holes and electrons injected from an electrode is relaxed to a ground state through a light emission process. However, there are two types of excited states generated by recombination of holes and electrons, a singlet excited state and a triplet excited state, in a ratio of 1: 3. In many cases, a fluorescent material utilizing light emission from a singlet excited state has been used as a light emitting material, and therefore, the internal quantum efficiency is 25% at the maximum. The quantum efficiency was the theoretical limit of 5%.

近年、イリジウムやプラチナなどの重原子効果を利用した錯体化合物を用い三重項励起状態からの発光、すなわちリン光発光を用いることにより発光効率の向上が報告されるようになった(例えば、非特許文献1)。一重項励起状態に加え、三重項励起状態からの発光を利用することで最大内部量子効率は理論上100%に到達することが可能で、リン光材料は発光材料として注目を浴びている。   In recent years, improvement in luminous efficiency has been reported by using light emission from a triplet excited state, that is, phosphorescence emission, using a complex compound utilizing a heavy atom effect such as iridium or platinum (for example, non-patented) Reference 1). The maximum internal quantum efficiency can theoretically reach 100% by utilizing light emission from the triplet excited state in addition to the singlet excited state, and phosphorescent materials are attracting attention as light emitting materials.

例えば緑色材料として、下記式

Figure 2008074831
に示すトリス(2−フェニルピリジナト)イリジウム(III)[Ir(ppy)]が広く利用されている。 For example, as a green material, the following formula
Figure 2008074831
Tris (2-phenylpyridinato) iridium (III) [Ir (ppy) 3 ] shown in FIG.

また安達らによる非特許文献2などにより青色発光材料である下記式

Figure 2008074831
で示すビス[2−(4,6−ジフルオロフェニル)ピリジル−N,C2′]イリジウム(III)ピコリレート(FIrpic)が注目を浴びるようになり、それ以降FIrpicを用いた有機EL素子の高効率化検討および新規な青色リン光錯体探索研究が盛んに行われるようになった。 In addition, the following formula, which is a blue light-emitting material according to Non-Patent Document 2 by Adachi et al.
Figure 2008074831
Bis [2- (4,6-difluorophenyl) pyridyl-N, C2 ′] iridium (III) picolylate (FIrpic) has been attracting attention, and since then, the efficiency of organic EL devices using FIrpic has been increased. Studies and new blue phosphorescent complex exploration studies have been actively conducted.

その結果最近ではS.R.Forrestらによる非特許文献1では下記式

Figure 2008074831
で示すトリス{1−[4−(トリフルオロメチル)フェニル]−1H−ピラゾラート,N,C2′}イリジウム(III)[Ir(tfmppz3)]やM.E.Thompsonらによる非特許文献4では下記式
Figure 2008074831
で示すビス[2−(4′,6′−ジフルオロフェニル)ピリジナト−N,C2′]イリジウム(III)テトラキス(1−ピラゾリル)ボレート(Fir6)が開発された。 As a result, S. R. Non-patent document 1 by Forrest et al.
Figure 2008074831
Tris {1- [4- (trifluoromethyl) phenyl] -1H-pyrazolate, N, C2 ′} iridium (III) [Ir (tfmpppz3)] and M. E. Non-Patent Document 4 by Thompson et al.
Figure 2008074831
Bis [2- (4 ′, 6′-difluorophenyl) pyridinato-N, C2 ′] iridium (III) tetrakis (1-pyrazolyl) borate (Fir6) has been developed.

青色リン光材料については、波長的に440nm〜450nm付近に発光ピークを持つものが一般的に好ましい。しかしながら上記非特許文献中にある化合物については、FIrpicで474nm、Ir(tfmppz3)で430nm、Fir6で457nmといずれもこの波長帯に発光ピークを持たず青色としては十分満足できるものではない。
青色に関しては3原色を基調とするディスプレーのみならず、照明で必要とされる白色に関しても重要なウェートを示しており、このような観点より新規な青色用リン光材料の開発が急務であった。
As the blue phosphorescent material, those having an emission peak in the vicinity of 440 nm to 450 nm in terms of wavelength are generally preferable. However, for the compounds in the above non-patent literature, FIrpic 474 nm, Ir (tfmpppz3) 430 nm, and Fire6 457 nm do not have a light emission peak in this wavelength band, and are not sufficiently satisfactory as blue.
For blue, not only displays based on the three primary colors, but also important weights for white that is required for lighting, and from this perspective, the development of new phosphorescent materials for blue was urgently needed. .

M.A.Baldo, S.Lamansky, P.E.Burrows, M.E.Thompson, S.R.Forrest APPLIED PHYSICS LETTER 1999 75(1) 4−7M.M. A. Baldo, S.M. Lamansky, P.M. E. Burrows, M.M. E. Thompson, S.M. R. Forrest APPLYED PHYSICS LETTER 1999 75 (1) 4-7 Appl.Phys.Lett.,79, 2082(2001)Appl. Phys. Lett. 79, 2082 (2001) J.Appl.Phys.90 5048(2001)J. et al. Appl. Phys. 90 5048 (2001) 4Polyhedron 23 (2004) 419−4284 Polyhedron 23 (2004) 419-428

本発明の第1の目的は、新規なピリミジニル基含有イリジウム錯体を提供する点にある。
本発明の第2の目的は、新規なピリミジニル基含有イリジウム錯体よりなる発光材料を提供する点にある。
本発明の第3の目的は、それを用いた有機EL素子を提供する点にある。
The first object of the present invention is to provide a novel pyrimidinyl group-containing iridium complex.
The second object of the present invention is to provide a light emitting material comprising a novel pyrimidinyl group-containing iridium complex.
The third object of the present invention is to provide an organic EL device using the same.

本発明の第1は、下記一般式(I)

Figure 2008074831
{式中、Yは、
Figure 2008074831
よりなる群から選ばれた複素環基であり、〔A〕は、
Figure 2008074831
よりなる群から選ばれた配位子であり、R〜R34は、水素およびC1〜4のアルキル基よりなる群から選ばれた基である。}
で示されるピリミジニル基含有イリジウム錯体に関する。
本発明の第2は、請求項1記載のピリミジニル基含有イリジウム錯体よりなる発光材料に関する。
本発明の第3は、請求項1記載のピリミジニル基含有イリジウム錯体を用いた有機EL素子に関する。 The first of the present invention is the following general formula (I)
Figure 2008074831
{Where Y is
Figure 2008074831
A heterocyclic group selected from the group consisting of: [A] is
Figure 2008074831
And R 1 to R 34 are groups selected from the group consisting of hydrogen and C 1-4 alkyl groups. }
The pyrimidinyl group containing iridium complex shown by these.
The second of the present invention relates to a light emitting material comprising the pyrimidinyl group-containing iridium complex according to claim 1.
A third aspect of the present invention relates to an organic EL device using the pyrimidinyl group-containing iridium complex according to claim 1.

前記本発明のピリミジニル基含有イリジウム錯体におけるR〜R34は、すべてのものが水素の場合、R〜R34のいずれか1つがメチル基の場合が、もっとも一般的であるが、これら置換基のうちのいずれか2つあるいはいずれか3つがメチル基であってもよい。また場合によっては、これら置換基のうち4つ以上のものがメチル基であってもかまわない。さらにメチル基の代わりにエチル基、プロピル基、ブチル基であってもよく、いろいろの置換基の位置にこれらの基が2種以上混在していてもよい。
本発明化合物の具体例としては、下記の化合物群などを挙げることができる。
Wherein R 1 to R 34 in pyrimidinyl group-containing iridium complex of the present invention, when everything is hydrogen, if any one of a methyl group of R 1 to R 34 is, but is most common, these substituents Any two or any three of the groups may be methyl groups. In some cases, four or more of these substituents may be methyl groups. Furthermore, an ethyl group, a propyl group, or a butyl group may be used instead of the methyl group, and two or more of these groups may be mixed at various substituent positions.
Specific examples of the compound of the present invention include the following compound groups.

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

Figure 2008074831
Figure 2008074831

本発明化合物の合成方法としては、塩化イリジウムに、

Figure 2008074831
を反応させて、下記中間体を合成し、
Figure 2008074831
これに、前記〔A〕に対応する下記の化合物を反応させて製造することができる。
Figure 2008074831
As a synthesis method of the compound of the present invention, iridium chloride,
Figure 2008074831
To synthesize the following intermediates:
Figure 2008074831
This can be produced by reacting the following compound corresponding to the above [A].
Figure 2008074831

次に本発明の有機エレクトロルミネッセンス素子について説明する。本発明の有機エレクトロルミネッセンス素子は、陽極と陰極間に機能をもたせた複数の層の有機化合物を積層した素子であり、該有機化合物層の少なくとも一層が本発明のピリミジニル基含有イリジウム錯体を含む層から成り立つ。本発明化合物を含む発光層は、陽極から注入した正孔(ホール)もしくは陰極から注入した電子を発光材料まで輸送するのが目的で、正孔注入材料もしくは電子注入材料を含有していても良い。複数の層からなる有機エレクトロルミネッセンス素子の構成例としては、例えば陽極/正孔輸送層/発光層/電子輸送層/陰極、陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極、陽極/正孔注入層/正孔輸送層/発光層/正孔ブロック層/電子輸送層/陰極、陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極、陽極/正孔輸送層/発光層/正孔ブロック層/電子輸送層/電子注入層/陰極、陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極、陽極/正孔注入層/正孔輸送層/発光層/正孔ブロック層/電子輸送層/電子注入層/陰極等の複数の層構成からなるものがあげられる。また、必要に応じて陰極上に封止層を有していても良い。   Next, the organic electroluminescence element of the present invention will be described. The organic electroluminescence device of the present invention is a device in which a plurality of layers of organic compounds having functions are provided between an anode and a cathode, and at least one layer of the organic compound layer includes the pyrimidinyl group-containing iridium complex of the present invention. It consists of The light emitting layer containing the compound of the present invention may contain a hole injection material or an electron injection material for the purpose of transporting holes injected from the anode or electrons injected from the cathode to the light emitting material. . Examples of the configuration of an organic electroluminescence device comprising a plurality of layers include, for example, an anode / hole transport layer / light emitting layer / electron transport layer / cathode, anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer. / Cathode, anode / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode, anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode, anode / Hole transport layer / light emitting layer / hole blocking layer / electron transport layer / electron injection layer / cathode, anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode, anode Examples thereof include those composed of a plurality of layers such as / hole injection layer / hole transport layer / light emitting layer / hole block layer / electron transport layer / electron injection layer / cathode. Moreover, you may have a sealing layer on a cathode as needed.

本発明の有機エレクトロルミネッセンス素子は発光層と電子輸送層の間に正孔ブロック層を挿入することもできる。正孔ブロック層は、素子に注入される正孔と電子のバランスを整える重要な働きをする。通常有機エレクトロルミネッセンス素子では、正孔が電子に比べて多い状態をとっており、過剰に存在する正孔が発光層内で電子と再結合せず発光層から電子輸送層に向けて突抜をおこす。そのため電子輸送層での再結合が起こり素子の効率低下を引き起こしてしまう。
本発明の有機エレクトロルミネッセンス素子に使用する正孔ブロック層に使用するブロック化合物は、前記の好ましい性質を有するものであれば特に制限はない。従来から光導電材料において正孔のブロック材料として慣用されているものや有機エレクトロルミネッセンス素子の正孔ブロック層に使用されている公知の材料の中から任意のものを選択して用いることができる。
前記のブロック材料としては、たとえば4,7−ジフェニル−1,10−フェナントロリン(BPhen)や2,5−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(BCP)が挙げられる。正孔(ホール)ブロック層としてはこれらの化合物を単独層で構成されたものが好ましい。
正孔(ホール)ブロック層としては、下記化合式に示すBPhenやBCPなどを挙げることができる。

Figure 2008074831
In the organic electroluminescence device of the present invention, a hole blocking layer can be inserted between the light emitting layer and the electron transporting layer. The hole blocking layer plays an important role in balancing the holes and electrons injected into the device. Usually, in organic electroluminescence devices, the number of holes is larger than that of electrons, and excessive holes do not recombine with electrons in the light emitting layer, and penetrate from the light emitting layer to the electron transport layer. . As a result, recombination occurs in the electron transport layer, causing a reduction in device efficiency.
The block compound used for the hole blocking layer used in the organic electroluminescence device of the present invention is not particularly limited as long as it has the above-mentioned preferable properties. Any one of materials conventionally used as a hole blocking material in a photoconductive material and known materials used for a hole blocking layer of an organic electroluminescence element can be selected and used.
Examples of the block material include 4,7-diphenyl-1,10-phenanthroline (BPhen) and 2,5-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP). As the hole blocking layer, those composed of these compounds in a single layer are preferable.
Examples of the hole blocking layer include BPhen and BCP shown in the following chemical formula.
Figure 2008074831

正孔輸送層、電子輸送層、および発光層のそれぞれの層は、一層構造であっても、多層構造であっても良い。また正孔輸送層、電子輸送層はそれぞれの層で注入機能を受け持つ層(正孔注入層及び電子注入層)と輸送機能を受け持つ層(正孔輸送層および電子輸送層)を別々に設けることもできる。   Each of the hole transport layer, the electron transport layer, and the light emitting layer may have a single layer structure or a multilayer structure. In addition, the hole transport layer and the electron transport layer should be provided separately with a layer responsible for the injection function (hole injection layer and electron injection layer) and a layer responsible for the transport function (hole transport layer and electron transport layer). You can also.

本発明の有機エレクトロルミネッセンス素子は、上記構成例に限らず、種々の構成とすることができる。必要に応じて、正孔輸送層成分と発光層成分、あるいは電子輸送層成分と発光層成分を混合した層を設けても良い。   The organic electroluminescence element of the present invention is not limited to the above configuration example, and can have various configurations. If necessary, a layer in which a hole transport layer component and a light emitting layer component or an electron transport layer component and a light emitting layer component are mixed may be provided.

以下本発明の有機エレクトロルミネッセンス素子の構成要素に関して、陽極/正孔輸送層/発光層/電子輸送層/陰極からなる素子構成を例として取り上げて詳細に説明する。本発明の有機エレクトロルミネッセンス素子は、基板に支持されていることが好ましい。   Hereinafter, the constituent elements of the organic electroluminescence element of the present invention will be described in detail by taking as an example an element structure comprising an anode / hole transport layer / light emitting layer / electron transport layer / cathode. The organic electroluminescence device of the present invention is preferably supported on a substrate.

基板の素材については特に制限はなく、従来の有機エレクトロルミネッセンス素子に慣用されているものであれば良く、例えばガラス、石英ガラス、透明プラスチックなどからなるものを用いることができる。   There is no restriction | limiting in particular about the raw material of a board | substrate, What is necessary is just used for the conventional organic electroluminescent element, For example, what consists of glass, quartz glass, a transparent plastic etc. can be used.

本発明の有機エレクトロルミネッセンス素子の陽極としては、仕事関数の大きな金属単体(4eV以上)、仕事関数の大きな金属同士の合金(4eV以上)または導電性物質およびこれらの混合物を電極材料とすることが好ましい。このような電極材料の具体例としては、金、銀、銅等の金属、ITO(インジウム−スズオキサイド)、酸化スズ(SnO)、酸化亜鉛(ZnO)などの導電性透明材料、ポリピロール、ポリチオフェン等の導電性高分子材料が挙げられる。陽極はこれらの電極材料を、例えば蒸着、スパッタリング、塗布などの方法により基板上に形成することができる。陽極のシート電気抵抗は数百Ω/cm以下が好ましい。陽極の膜厚は材料にもよるが、一般に5〜1,000nm程度、好ましくは10〜500nmである。 As an anode of the organic electroluminescence device of the present invention, an electrode material may be a single metal having a high work function (4 eV or more), an alloy of metals having a high work function (4 eV or more), a conductive substance, or a mixture thereof. preferable. Specific examples of such electrode materials include metals such as gold, silver, and copper, conductive transparent materials such as ITO (indium-tin oxide), tin oxide (SnO 2 ), and zinc oxide (ZnO), polypyrrole, and polythiophene. Examples thereof include conductive polymer materials such as For the anode, these electrode materials can be formed on the substrate by a method such as vapor deposition, sputtering, or coating. The sheet electrical resistance of the anode is preferably several hundred Ω / cm 2 or less. The thickness of the anode depends on the material, but is generally about 5 to 1,000 nm, preferably 10 to 500 nm.

陰極としては、仕事関数の小さな金属単体(4eV以下)、仕事関数の小さな金属同士の合金(4eV以下)または導電性物質およびこれらの混合物を電極材料とすることが好ましい。このような電極材料の具体例としては、リチウム、リチウム−インジウム合金、ナトリウム、ナトリウム−カリウム合金、マグネシウム、マグネシウム−銀合金、マグネシウム−インジウム合金、アルミニウム、アルミニウム−リチウム合金、アルミニウム−マグネシウム合金などが挙げられる。陰極はこれらの電極材料を、例えば蒸着、スパッタリングなどの方法により、薄膜を形成させることにより作製することができる。陰極のシート電気抵抗は数百Ω/cm以下が好ましい。陰極の膜厚は材料にもよるが、一般に5〜1,000nm程度、好ましくは10〜500nmである。本発明の有機エレクトロルミネッセンス素子の発光を効率良く取り出すために、陽極または陰極の少なくとも一方の電極は、透明もしくは半透明であることが好ましい。 As the cathode, an electrode material is preferably a single metal having a small work function (4 eV or less), an alloy of metals having a small work function (4 eV or less), a conductive substance, or a mixture thereof. Specific examples of such electrode materials include lithium, lithium-indium alloy, sodium, sodium-potassium alloy, magnesium, magnesium-silver alloy, magnesium-indium alloy, aluminum, aluminum-lithium alloy, and aluminum-magnesium alloy. Can be mentioned. The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet electrical resistance of the cathode is preferably several hundred Ω / cm 2 or less. The thickness of the cathode depends on the material, but is generally about 5 to 1,000 nm, preferably 10 to 500 nm. In order to efficiently extract light emitted from the organic electroluminescence device of the present invention, at least one of the anode and the cathode is preferably transparent or translucent.

本発明の有機エレクトロルミネッセンス素子の正孔輸送層は、正孔伝達化合物からなるもので、陽極より注入された正孔を発光層に伝達する機能を有している。電界が与えた2つの電極間に正孔伝達化合物が配置されて陽極から正孔が注入された場合、少なくとも10−6cm/V・秒以上の正孔移動度を有する正孔伝達化合物が好ましい。本発明の有機エレクトロルミネッセンス素子に使用する正孔輸送層に使用する正孔伝達化合物は、前記の好ましい性質を有するものであれば特に制限はない。従来から光導電材料において正孔の電荷注入輸送材料として慣用されているものや有機エレクトロルミネッセンス素子の正孔輸送層に使用されている公知の材料の中から任意のものを選択して用いることができる。 The hole transport layer of the organic electroluminescence device of the present invention is made of a hole transfer compound and has a function of transferring holes injected from the anode to the light emitting layer. When a hole transport compound is disposed between two electrodes to which an electric field is applied and holes are injected from the anode, a hole transport compound having a hole mobility of at least 10 −6 cm 2 / V · second or more is obtained. preferable. The hole transport compound used in the hole transport layer used in the organic electroluminescence device of the present invention is not particularly limited as long as it has the above-mentioned preferable properties. It is possible to select and use any of the materials conventionally used as hole charge injection / transport materials in photoconductive materials and known materials used for the hole transport layer of organic electroluminescent devices. it can.

前記の正孔伝達化合物としては、N,N,N′,N′−テトラフェニル−1,4−フェニレンジアミン、N,N′−ジ(m−トリル)−N,N′−ジフェニル−4,4′−ジアミノビフェニル(TPD)、N,N′−ジ(1−ナフチル)−N,N′−ジフェニル−4,4′−ジアミノビフェニル(α−NPD)、1,1−ビス〔4−(N,N′−ジ(p−トリル)アミノフェニル)〕シクロヘキサン(TAPC)等のトリアリールアミン誘導体、ポリフェニレンジアミン誘導体、ポリチオフェン誘導体、および水溶性のPEDOT−PSS(ポリエチレンジオキサチオフェン−ポリスチレンスルホン酸)が挙げられる。正孔輸送層は、これらの他の正孔伝達化合物一種または二種以上からなる一層で構成されたもので良く、前記の正孔伝達物質とは別の化合物からなる正孔輸送層を積層したものでもよい。
正孔注入材料としては、下記化学式に示すPEDOT:PSS(ポリマー混合物)、TPDPESのような高分子化合物やDNTPDを挙げることができる。

Figure 2008074831
正孔輸送材料としては、下記化学式に示すTPD、α−NPD、TAPC、3DTAPBPなどを挙げることができる。なお、前記nは固体状を形成するに充分な数を示す。
Figure 2008074831
Examples of the hole transfer compound include N, N, N ′, N′-tetraphenyl-1,4-phenylenediamine, N, N′-di (m-tolyl) -N, N′-diphenyl-4, 4′-diaminobiphenyl (TPD), N, N′-di (1-naphthyl) -N, N′-diphenyl-4,4′-diaminobiphenyl (α-NPD), 1,1-bis [4- ( N, N'-di (p-tolyl) aminophenyl)] cyclohexane (TAPC), triarylamine derivatives, polyphenylenediamine derivatives, polythiophene derivatives, and water-soluble PEDOT-PSS (polyethylenedioxathiophene-polystyrenesulfonic acid) Is mentioned. The hole transport layer may be composed of one or more of these other hole transport compounds, and a hole transport layer composed of a compound different from the hole transport material is laminated. It may be a thing.
Examples of the hole injection material include polymer compounds such as PEDOT: PSS (polymer mixture), TPDPES, and DNTPD represented by the following chemical formula.
Figure 2008074831
Examples of the hole transport material include TPD, α-NPD, TAPC, and 3DTAPBP represented by the following chemical formula. Note that n represents a number sufficient to form a solid.
Figure 2008074831

発光層は、ホスト材料と本発明化合物のようなゲスト材料(ドーパント)から形成することもできる[Appl.Phys.Lett.,65 3610(1989)]。特に本発明のようなリン光材料を発光層に使用する場合、ホスト材料の使用が必要でありこの時使用されるホスト材料としては4,4′−ジ(N−カルバゾリル)−1,1′−ビフェニル(CBP)、1,4−ジ(N−カルバゾリル)ベンゼン(mCB)、2,2′−ジ〔4″−(N−カルバゾリル)フェニル〕−1,1′−ビフェニル(4CzPBP)等があげられる。   The light emitting layer can also be formed from a host material and a guest material (dopant) such as the compound of the present invention [Appl. Phys. Lett. 65 3610 (1989)]. In particular, when the phosphorescent material as in the present invention is used for the light emitting layer, it is necessary to use a host material. As the host material used at this time, 4,4'-di (N-carbazolyl) -1,1 ' -Biphenyl (CBP), 1,4-di (N-carbazolyl) benzene (mCB), 2,2'-di [4 "-(N-carbazolyl) phenyl] -1,1'-biphenyl (4CzPBP), etc. can give.

ゲスト材料は、ホスト材料に対して、好ましくは0.01〜40重量%であり、より好ましくは0.1〜20重量%である。ゲスト材料としては、本発明化合物を挙げることができる。   The guest material is preferably 0.01 to 40% by weight, more preferably 0.1 to 20% by weight, based on the host material. Examples of the guest material include the compound of the present invention.

本発明の有機エレクトロルミネッセンス素子の電子輸送層は、電子伝達化合物(電子輸送材料)からなるもので、陰極より注入された電子を発光層に伝達する機能を有している。電界が与えた2つの電極間に電子伝達化合物が配置されて陰極から電子が注入された場合、少なくとも10−6cm/V・秒以上の電子移動度を有する電子伝達化合物が望ましい。本発明の有機エレクトロルミネッセンス素子に使用する電子輸送層に使用する電子伝達化合物は、前記の好ましい性質を有するものであれば特に制限はない。従来から光導電材料において電子の電荷注入材料として慣用されているものや有機エレクトロルミネッセンス素子の電子輸送層に使用されている公知の材料の中から任意のものを選択して用いることができる。 The electron transport layer of the organic electroluminescent element of the present invention is made of an electron transfer compound (electron transport material) and has a function of transmitting electrons injected from the cathode to the light emitting layer. When an electron transfer compound is disposed between two electrodes to which an electric field is applied and electrons are injected from the cathode, an electron transfer compound having an electron mobility of at least 10 −6 cm 2 / V · sec or more is desirable. The electron transfer compound used for the electron transport layer used in the organic electroluminescence device of the present invention is not particularly limited as long as it has the above-mentioned preferable properties. Any one of materials conventionally used as electron charge injection materials in photoconductive materials and known materials used for electron transport layers of organic electroluminescent elements can be selected and used.

前記の電子伝達化合物としては、例えばトリス(8−キノリノラト)アルミニウム(Alq)、3−[1,1′−ビフェニル]−4−イル−5−[4−(1,1−ジメチルエチル)フェニル]−4−フェニル−4H−1,2,4−トリアゾール(TAZ)、1,3,5−トリス[3−(3−ピリジル)フェニル]ベンゼン(TmPyPhB)が挙げられる。電子輸送層は、これらの他電子伝達化合物一種または二種以上からなる一層で構成されたもので良く、前記の正孔伝達物質とは別の化合物からなる電子輸送層を積層させたものでも良い。
電子輸送材料としては、下記化学式に示すAlq、TAZ、TmPyPhBなどを挙げることができる。

Figure 2008074831
Examples of the electron transfer compound include tris (8-quinolinolato) aluminum (Alq 3 ), 3- [1,1′-biphenyl] -4-yl-5- [4- (1,1-dimethylethyl) phenyl. ] -4-phenyl-4H-1,2,4-triazole (TAZ), 1,3,5-tris [3- (3-pyridyl) phenyl] benzene (TmPyPhB). The electron transport layer may be composed of one or more of these other electron transport compounds, or may be a stack of electron transport layers composed of a compound different from the hole transport material. .
Examples of the electron transport material include Alq 3 , TAZ, and TmPyPhB shown in the following chemical formula.
Figure 2008074831

本発明の有機エレクトロルミネッセンス素子は、電子注入性をさらに向上させる目的で、陰極と有機層の間に絶縁体で構成される電子注入層をさらに設けても良い。ここで使用される絶縁体としては、アルカリ金属ハロゲン化物、アルカリ土類金属ハロゲン化物から選択される少なくとも一つの金属化合物を使用することが好ましい。アルカリ金属ハロゲン化物としては、フッ化リチウム、フッ化ナトリウム、フッ化カリウム、フッ化セシウム、塩化リチウム等が挙げられる。アルカリ土類金属ハロゲン化物としては、フッ化マグネシウム、フッ化カルシウム、フッ化バリウム、フッ化ストロンチウム等が挙げられる。   The organic electroluminescent device of the present invention may further include an electron injection layer composed of an insulator between the cathode and the organic layer for the purpose of further improving the electron injection property. As the insulator used here, it is preferable to use at least one metal compound selected from alkali metal halides and alkaline earth metal halides. Examples of the alkali metal halide include lithium fluoride, sodium fluoride, potassium fluoride, cesium fluoride, and lithium chloride. Examples of the alkaline earth metal halide include magnesium fluoride, calcium fluoride, barium fluoride, and strontium fluoride.

本発明化合物を用いた有機エレクトロルミネッセンス素子の形成方法については特に限定されるものではない。乾式成膜法(例えば真空蒸着法、イオン化蒸着法など)、湿式成膜法〔溶液塗布法(例えば、スピンコート法、キャスト法、インクジェット法など)〕を使用することができる。望ましくは乾式成膜法を用いるのが良い。また素子の作製については上記の成膜方法を併用しても構わない。   The method for forming an organic electroluminescence device using the compound of the present invention is not particularly limited. A dry film forming method (for example, a vacuum vapor deposition method, an ionization vapor deposition method) or a wet film forming method [a solution coating method (for example, a spin coating method, a casting method, an ink jet method, etc.)] can be used. Desirably, a dry film forming method is used. In addition, the above-described film formation method may be used in combination for manufacturing the element.

正孔輸送層、発光層を溶媒塗布法で形成する場合、各層を構成する成分を溶媒に溶解または分散させて塗布液とする。溶媒としては、炭化水素系溶媒(例えば、ヘプタン、トルエン、キシレン、シクロヘキサン等)、ケトン系溶媒(例えばアセトン、メチルエチルケトン、メチルイソブチルケトン等)、ハロゲン系溶媒(例えばジクロロメタン、クロロホルム、クロロベンゼン、ジクロロベンゼン等)、エステル系溶媒(例えば酢酸エチル、酢酸ブチル等)、アルコール系溶媒(例えばメタノール、エタノール、ブタノール、メチルセロソルブ、エチルセロソルブ等)、エーテル系溶媒(例えばジブチルエーテル、テトラヒドロフラン、1,4−ジオキサン、1,2−ジメトキシエタン等)、非プロトン性溶媒(例えばN,N′−ジメチルアセトアミド、ジメチルスルホキシド等)、水等が挙げられる。溶媒は単独で使用しても良く、複数の溶媒を併用しても良い。   When forming the hole transport layer and the light emitting layer by a solvent coating method, the components constituting each layer are dissolved or dispersed in a solvent to obtain a coating solution. Solvents include hydrocarbon solvents (eg, heptane, toluene, xylene, cyclohexane, etc.), ketone solvents (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.), halogen solvents (eg, dichloromethane, chloroform, chlorobenzene, dichlorobenzene, etc.) ), Ester solvents (eg, ethyl acetate, butyl acetate, etc.), alcohol solvents (eg, methanol, ethanol, butanol, methyl cellosolve, ethyl cellosolve, etc.), ether solvents (eg, dibutyl ether, tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane and the like), aprotic solvents (for example, N, N'-dimethylacetamide, dimethyl sulfoxide and the like), water and the like. The solvent may be used alone, or a plurality of solvents may be used in combination.

正孔輸送層、発光層、電子輸送層等の各層の膜厚は、特に限定されるものではないが、通常5〜5,000nmになるようにする。   The thickness of each layer such as the hole transport layer, the light emitting layer, and the electron transport layer is not particularly limited, but is usually 5 to 5,000 nm.

本発明の有機エレクトロルミネッセンス素子は、酸素や水分等との接触を遮断する目的で保護層(封止層)を設けたり、不活性物質中に素子を封入して保護することができる。不活性物質としては、パラフィン、シリコンオイル、フルオロカーボン等が挙げられる。保護層に使用する材料としては、フッ素樹脂、エポキシ樹脂、シリコーン樹脂、ポリエステル、ポリカーボネート、光硬化性樹脂等が挙げられる。   The organic electroluminescence device of the present invention can be protected by providing a protective layer (sealing layer) for the purpose of blocking contact with oxygen, moisture, or the like, or by encapsulating the device in an inert substance. Examples of the inert substance include paraffin, silicon oil, and fluorocarbon. Examples of the material used for the protective layer include fluorine resin, epoxy resin, silicone resin, polyester, polycarbonate, and photocurable resin.

本発明の有機エレクトロルミネッセンス素子は、通常直流駆動の素子として使用できる。直流電圧を印加する場合、陽極をプラス、陰極をマイナスの極性として電圧を通常1.5〜20V程度印加すると発光が観測される。また、本発明の有機エレクトロルミネッセンス素子は交流駆動の素子としても使用できる。交流電圧を印加する場合には、陽極がプラス、陰極がマイナスの状態になった時に発光する。本発明の有機エレクトロルミネッセンス素子は、例えば電子写真感光体、フラットパネルディスプレイなどの平面発光体、複写機、プリンター、液晶ディスプレイのバックライト、計器等の光源、各種発光素子、各種表示素子、各種標識、各種センサー、各種アクセサリーなどに使用することができる。   The organic electroluminescence device of the present invention can be used as a normal DC drive device. When a DC voltage is applied, light emission is observed when a voltage of about 1.5 to 20 V is applied with the positive polarity of the anode and the negative polarity of the cathode. Moreover, the organic electroluminescent element of this invention can be used also as an element of an alternating current drive. When an AC voltage is applied, light is emitted when the anode is in a positive state and the cathode is in a negative state. The organic electroluminescent device of the present invention is, for example, a flat light emitter such as an electrophotographic photosensitive member or a flat panel display, a copying machine, a printer, a backlight of a liquid crystal display, a light source such as an instrument, various light emitting devices, various display devices, various signs. It can be used for various sensors and various accessories.

図36〜50に、本発明の有機エレクトロルミネッセンス素子の好ましい例を示す。   36 to 50 show preferred examples of the organic electroluminescence device of the present invention.

図36は、本発明の有機エレクトロルミネッセンス素子の一例を示す断面図である。図36は、基板1上に陽極2、発光層3および陰極4を順次設けた構成のものである。ここで使用する発光素子は、それ自体が正孔輸送性、電子輸送性及び発光性の機能を単一で有している場合や、それぞれの機能を有する化合物を混合して使用する場合に有用である。   FIG. 36 is a cross-sectional view showing an example of the organic electroluminescence element of the present invention. FIG. 36 shows a configuration in which an anode 2, a light emitting layer 3, and a cathode 4 are sequentially provided on a substrate 1. The light-emitting element used here is useful when it has a single hole-transporting property, electron-transporting property, and light-emitting function, or a mixture of compounds having the respective functions. It is.

図37は、本発明の有機エレクトロルミネッセンス素子における他の例を示す断面図である。図37は、基板1上に、陽極2、正孔輸送層5、発光層3及び陰極4を順次設けた構成のものである。この場合、発光層が電子輸送性の機能を有している場合に有用である。   FIG. 37 is a cross-sectional view showing another example of the organic electroluminescence element of the present invention. FIG. 37 shows a configuration in which an anode 2, a hole transport layer 5, a light emitting layer 3, and a cathode 4 are sequentially provided on a substrate 1. In this case, it is useful when the light emitting layer has an electron transporting function.

図38は、本発明の有機エレクトロルミネッセンス素子における他の例を示す断面図である。図38は、基板1上に、陽極2、発光層3、電子輸送層6及び陰極4を順次設けた構成のものである。これは、発光層が正孔輸送性の機能を有している場合に有用である。   FIG. 38 is a cross-sectional view showing another example of the organic electroluminescence element of the present invention. FIG. 38 shows a configuration in which an anode 2, a light emitting layer 3, an electron transport layer 6 and a cathode 4 are sequentially provided on a substrate 1. This is useful when the light emitting layer has a hole transporting function.

図39は、本発明の有機エレクトロルミネッセンス素子における他の例を示す断面図である。図39は、基板1上に、陽極2、正孔輸送層5、発光層3、電子輸送層6及び陰極4を順次設けた構成のものである。これは、キャリア輸送と発光の機能を分離したものであり、材料選択の自由度が増すために、発光の高効率化や発光色の自由度が増すことになる。図40は図39の電子輸送層6の代りに電子注入層8を設けたケースである。これは、発光層が電子輸送性の機能を有している場合に有用である。   FIG. 39 is a cross-sectional view showing another example of the organic electroluminescence element of the present invention. FIG. 39 shows a structure in which an anode 2, a hole transport layer 5, a light emitting layer 3, an electron transport layer 6 and a cathode 4 are sequentially provided on a substrate 1. This separates the functions of carrier transport and light emission, and the degree of freedom in material selection increases, so that the efficiency of light emission and the degree of freedom in light emission color increase. FIG. 40 shows a case where an electron injection layer 8 is provided in place of the electron transport layer 6 of FIG. This is useful when the light emitting layer has an electron transporting function.

図41は、本発明の有機エレクトロルミネッセンス素子における他の例を示す断面図である。図41は、基板1上に、陽極2、正孔注入層7、正孔輸送層5、発光層3、電子輸送層6及び陰極4を順次設けた構成のものである。この場合、正孔注入層7を設けることにより、陽極2とその上製膜した層との密着性を高めたり、陽極から正孔の注入を良くし、発光素子の低電圧駆動に効果がある。   FIG. 41 is a cross-sectional view showing another example of the organic electroluminescence element of the present invention. FIG. 41 shows a configuration in which an anode 2, a hole injection layer 7, a hole transport layer 5, a light emitting layer 3, an electron transport layer 6 and a cathode 4 are sequentially provided on a substrate 1. In this case, the provision of the hole injection layer 7 improves the adhesion between the anode 2 and the layer formed thereon, improves the injection of holes from the anode, and is effective in driving the light emitting element at a low voltage.

図42は、本発明の有機エレクトロルミネッセンス素子における他の例を示す断面図である。図42は、基板1上に、陽極2、正孔輸送層5、発光層3、電子輸送層6、電子注入層8及び陰極4を順次設けた構成のものである。この場合、陰極4から電子の注入を良くし、発光素子の低電圧駆動に効果がある。   FIG. 42 is a cross-sectional view showing another example of the organic electroluminescence element of the present invention. FIG. 42 shows a structure in which an anode 2, a hole transport layer 5, a light emitting layer 3, an electron transport layer 6, an electron injection layer 8 and a cathode 4 are sequentially provided on a substrate 1. In this case, injection of electrons from the cathode 4 is improved, which is effective for driving the light emitting element at a low voltage.

図43は、本発明の有機エレクトロルミネッセンス素子における他の例を示す断面図である。図43は、基板1上に、陽極2、正孔注入層7、正孔輸送層5、発光層3、電子輸送層6、電子注入層8及び陰極4を順次設けた構成のものである。この場合、陽極2から正孔の注入を良くし、陰極4からは電子の注入を良くし、最も低電圧駆動に効果がある構成である。   FIG. 43 is a cross-sectional view showing another example of the organic electroluminescence element of the present invention. FIG. 43 shows a configuration in which an anode 2, a hole injection layer 7, a hole transport layer 5, a light emitting layer 3, an electron transport layer 6, an electron injection layer 8 and a cathode 4 are sequentially provided on a substrate 1. In this case, injection of holes from the anode 2 is improved and injection of electrons from the cathode 4 is improved, which is the most effective for low voltage driving.

図44〜50は、本発明の有機エレクトロルミネッセンス素子における他の例を示す断面図である。図44〜50は、発光層3と陰極4あるいは電子輸送層6の間に正孔ブロック層9を挿入した構成のものである。陽極から注入された正孔、あるいは発光層3で再結合により生成した励起子が、陰極4側に抜けることを防止する効果があり、有機エレクトロルミネッセンス素子の発光効率の向上に効果がある。   44-50 is sectional drawing which shows the other example in the organic electroluminescent element of this invention. 44 to 50 show a configuration in which a hole blocking layer 9 is inserted between the light emitting layer 3 and the cathode 4 or the electron transporting layer 6. This has the effect of preventing holes injected from the anode or excitons generated by recombination in the light-emitting layer 3 from escaping to the cathode 4 side, and is effective in improving the light emission efficiency of the organic electroluminescence device.

図44〜50で、正孔輸送層5、正孔注入層7、電子輸送層6、電子注入層8、発光層3、正孔ブロック層9のそれぞれの層は、一層構造であっても、多層構造であってもよい。   44 to 50, each of the hole transport layer 5, the hole injection layer 7, the electron transport layer 6, the electron injection layer 8, the light emitting layer 3, and the hole blocking layer 9 has a single layer structure, A multilayer structure may be used.

図44〜50は、あくまで基本的な素子構成であり、本発明の化合物を用いた有機エレクトロルミネッセンス素子の構成は、これに限定されるものではない。   44 to 50 are basic device configurations to the last, and the configuration of the organic electroluminescence device using the compound of the present invention is not limited thereto.

本発明のピリミジニル基含有イリジウム錯体は、これまで知られている代表的な青色リン光材料FIrpicに比べて短波長であり、従来にはない色よい青色発光が得られるものである。このことは素子のフルカラー化だけでなく白色化においても大きなプラス要素を提供する。従って本発明のピリミジニル基含有イリジウム錯体は工業的に極めて重要なものである。   The pyrimidinyl group-containing iridium complex of the present invention has a shorter wavelength than that of a typical blue phosphorescent material FIrpic known so far, and can emit blue light having a color that is unprecedented. This provides a great plus factor not only in the full color of the device but also in whitening. Therefore, the pyrimidinyl group-containing iridium complex of the present invention is extremely important industrially.

本発明のピリミジニル基含有イリジウム錯体は、実施例に示されるようにこれまでに知られている代表的な青色リン光材料FIrpicよりも発光波長において青色に近い材料である。このため青色有機エレクトロルミネッセンス素子のみならず白色有機エレクトロルミネッセンス素子に適した材料を提供することが可能になった。また本発明のピリミジニル基含有イリジウム錯体を使用することで、従来の青色材料よりも色純度の良い有機エレクトロルミネッセンス素子を提供することが可能になった。従って本発明のピリミジニル基含有イリジウム錯体は、工業的に極めて重要なものである。   The pyrimidinyl group-containing iridium complex of the present invention is a material closer to blue in the emission wavelength than the typical blue phosphorescent material FIrpic known so far as shown in Examples. For this reason, it became possible to provide the material suitable for not only a blue organic electroluminescent element but a white organic electroluminescent element. In addition, by using the pyrimidinyl group-containing iridium complex of the present invention, it has become possible to provide an organic electroluminescence device having better color purity than a conventional blue material. Accordingly, the pyrimidinyl group-containing iridium complex of the present invention is extremely important industrially.

以下、実施例により本発明を具体的に説明するが、本発明はこれらにより何ら限定されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.

実施例1
(その1)〔2−(t−ブチル)−5−(ピリジン−2−イル)ピリミジン〕〔2−(tert−butyl)−5−(pyridine−2−yl)pyrimidine{Bppm}の合成
(1)経路A

Figure 2008074831
(イ)ZnCl:テトラヒドロフラン(THF)溶液の調製
ZnClを乳ばちですり潰し、撹拌子・三方コックを取り付けたナスフラスコに入れロータリーポンプ真空下で乾燥(約170℃、2〜3時間)する。
室温まで冷却した後Nでリークし、三方コックをセプタムに変える。ZnCl粉末を撹拌しながら脱水テトラヒドロフラン(THF)を加え、撹拌して溶解させる。
(ロ)ネギシカップリング[Negishi coupling]
気流下に下記の反応を行う。四口フラスコで脱水THFを蒸留し、得られた蒸留THFに5−ブロモ−2−t−ブチルピリミジン(5−bromo−2−tert−butylpyrimidine)(BrBuPm)を加え撹拌して溶解させる。ついで、系を−80℃に冷却し、シリンジでn−BuLiを加える。溶液は速やかに暗赤色になる。この系を−80℃で20min保つ。系を−80℃に保った状態でZnCl溶液をキャヌラで加える。四口フラスコを室温雰囲気に曝し撹拌して緩やかに昇温する。0℃の時点で2−ブロモピリジン(2−bromopyridine)(2−BrPy)、テトラキストリフェニルホスフィンパラジウム錯体{Pd[PPh}の順に加え、その後2時間還流させる。反応終了後エバポレータでTHFを除去する。CHCl、水で共洗いして試料を分液ロートに移し、EDTA(エチレンジアミン四酢酸)水溶液と振り、NaOH水溶液で中和して、pH8〜9に調整する。
CHCl相を回収し、一方水相からは抽出を2回行い、MgSOで乾燥、濾過、エバポレータで濃縮する。カラム(CHCl:acetone=9:1)で精製後、エバポレータで極力濃縮(100mmHg、40℃)し、真空乾燥(室温、1時間)して白色の固体を得る。収率 85%
Figure 2008074831
Example 1
(No. 1) Synthesis of [2- (t-butyl) -5- (pyridin-2-yl) pyrimidine] [2- (tert-butyl) -5- (pyridine-2-yl) pyrimidine {Bppm} (1 ) Route A
Figure 2008074831
(Ii) Preparation of ZnCl 2 : tetrahydrofuran (THF) solution ZnCl 2 is crushed with a milk beak, placed in an eggplant flask equipped with a stirring bar and a three-way cock, and dried under a rotary pump vacuum (about 170 ° C., 2-3 hours) To do.
After cooling to room temperature, leak with N 2 and change the three-way cock to a septum. Dehydrated tetrahydrofuran (THF) is added to the ZnCl 2 powder with stirring, and dissolved by stirring.
(B) Negi coupling [Negishi coupling]
The following reaction is performed under a N 2 stream. The dehydrated THF is distilled in a four-necked flask, and 5-bromo-2-tert-butylpyrimidine (BrBuPm) is added to the obtained distilled THF and dissolved by stirring. The system is then cooled to −80 ° C. and n-BuLi is added with a syringe. The solution quickly becomes dark red. This system is kept at −80 ° C. for 20 min. Add ZnCl 2 solution in a cannula while maintaining the system to -80 ° C.. The four-necked flask is exposed to a room temperature atmosphere and stirred to warm gently. At the time of 0 ° C., 2-bromopyridine (2-BrPy) and tetrakistriphenylphosphine palladium complex {Pd [PPh 3 ] 4 } are added in this order, and then refluxed for 2 hours. After completion of the reaction, THF is removed with an evaporator. Wash the sample with CHCl 3 and water, transfer the sample to a separatory funnel, shake with EDTA (ethylenediaminetetraacetic acid) aqueous solution, neutralize with NaOH aqueous solution, and adjust to pH 8-9.
The CHCl 3 phase is recovered, while the aqueous phase is extracted twice, dried over MgSO 4 , filtered and concentrated on an evaporator. After purification with a column (CHCl 3 : acetone = 9: 1), the solution is concentrated as much as possible with an evaporator (100 mmHg, 40 ° C.) and dried in vacuum (room temperature, 1 hour) to obtain a white solid. Yield 85%
Figure 2008074831

(2)経路B

Figure 2008074831
(イ)ZnCl:THF溶液の調製
経路Aと同一。
(ロ)ネギシカップリング[Negishi coupling]
気流下に下記の反応を行う。四口フラスコで脱水THFを蒸留し、得られた蒸留THFに2−ブロモピリジン(2−BrPy)を加え、撹拌して均一にする。これを−60℃に冷却し、シリンジでn−BuLiを加え、−60℃で1時間保つ。すると溶液は暗赤色になる。ついで系を−60℃に保ち、ZnCl溶液をキャヌラで加える。つぎに、四口フラスコを室温雰囲気に曝し撹拌して緩やかに昇温する。0℃の時点で5−ブロモ−2−t−ブチルピリミジン(5−bromo−2−tert−butylpyrimidine)(BrBuPm)、テトラキストリフェニルホスフィンパラジウム錯体{Pd[PPh}の順に加え、4時間還流させる。反応終了後エバポレータでTHFを除去する。系をCHCl、水で共洗いして試料を分液ロートに移す。
エチレンジアミン四酢酸(EDTA)水溶液と振り、NaOH水溶液で中和してpH8〜9に調整する。
CHCl相を回収し、一方水相からは抽出を2回行い、MgSOで乾燥、濾過、エバポレータで濃縮する。カラム(CHCl:acetone=9:1)で精製後、エバポレータで極力濃縮(50mmHg、45℃)し、真空乾燥(室温、1時間)して白色の固体を得る。 収率 83%
Figure 2008074831
(2) Path B
Figure 2008074831
(A) Preparation of ZnCl 2 : THF solution Same as route A.
(B) Negi coupling [Negishi coupling]
The following reaction is performed under a N 2 stream. Dehydrated THF is distilled in a four-necked flask, and 2-bromopyridine (2-BrPy) is added to the obtained distilled THF and stirred to make it uniform. This is cooled to −60 ° C., n-BuLi is added with a syringe and kept at −60 ° C. for 1 hour. The solution then turns dark red. The system is then kept at −60 ° C. and ZnCl 2 solution is added by cannula. Next, the four-necked flask is exposed to a room temperature atmosphere and stirred to warm gently. At the time of 0 ° C., 5-bromo-2-tert-butylpyrimidine (BrBuPm) and tetrakistriphenylphosphine palladium complex {Pd [PPh 3 ] 4 } were added in this order for 4 hours. Reflux. After completion of the reaction, THF is removed with an evaporator. Co-wash system with CHCl 3 , water and transfer sample to separatory funnel.
Shake with an aqueous solution of ethylenediaminetetraacetic acid (EDTA), and neutralize with an aqueous NaOH solution to adjust to pH 8-9.
The CHCl 3 phase is recovered, while the aqueous phase is extracted twice, dried over MgSO 4 , filtered and concentrated on an evaporator. After purification with a column (CHCl 3 : acetone = 9: 1), the solution is concentrated as much as possible with an evaporator (50 mmHg, 45 ° C.) and dried in vacuo (room temperature, 1 hour) to obtain a white solid. Yield 83%
Figure 2008074831

(その2)ビス[2−(t−ブチル)−5−(ピリジン−2−イル)ピリミジン−N,C2′](ジピバロイルメタン)イリジウム錯体{[Bppm]Ir[dpm]}の合成

Figure 2008074831
気流下で下記の反応を行う。四口フラスコにIrCl・3HO、2−(t−ブチル)−5−(ピリジン−2−イル)ピリミジン(Bppm)、KHCO、エトキシエタノール(EtOEtOH)を入れ、6〜12時間還流させる。その後dpm、KHCOを加え、再度還流させる(4時間)。反応終了後エバポレータでエトキシエタノール(EtOEtOH)を除去・乾固する。ついで、生成物をカラム(CHCl:AcOEt=1:1)で精製する。精製物をCHCl溶液にして小過剰のNaOH水溶液と振る。
CHCl相を回収し、一方水相からは抽出を2回行い、MgSOで乾燥し、濾過、エバポレータで濃縮・乾固した後、真空乾燥(60℃、10時間)して淡黄色の固体を得る。
収率 36%
ビス[2−(t−ブチル)−5−(ピリジン−2−イル)ピリミジン−N,C2′](ジピバロイルメタン)イリジウム錯体{[Bppm]Ir[dpm]}のPLスペクトルを図1に示す。
Figure 2008074831
得られた化合物の光学特性は下記の方法で測定した。なお、この方法は下記のすべての実施例における場合と同様である。
(1)UV−Vis吸収スペクトル測定
特に記載の無い限りUV−Vis吸収スペクトル測定は10−5[mol/L]のCHCl溶液を用いて室温にて行った。
(2)PLスペクトル測定
特に記載の無い限りPLスペクトル測定は溶液においては10−5[mol/L]のCHCl溶液を用いて室温にて行った。脱気等は行っていない。
PMMA分散膜でのPLスペクトル測定は特に記載の無い限り1wt%ドープ(試料:PMMA=1:100[重量比])のPMMA分散膜を用いて室温にて行った。PMMA分散膜は100mg/mlCHCl溶液を用いて石英基板上にドロップキャスト法で成膜した{真空オーブンのステージに石英基板を置き、その基板上にパスツールで任意の量の溶液を乗せる。真空度を段階的(0.01MPa、20min→0.02MPa、10min→0.04MPa、10min→0.06MPa、10min)に高めていき、最後は50℃で1時間ベークする。}。
膜厚制御は行っていない(数百μmのオーダである)。
(3)PL量子収率測定
試料は「(2)PLスペクトル測定」で作製したポリメチルメタクリル酸(PMMA)分散膜を用いて行った。積分球システム(OPTEL社製)を用い、FIrpic:PMMA(1:100[重量比])分散膜をリファレンス(FIrpicのΦ=1.00)として用いて測定試料の相対PL量子収率を算出した。前記FIrpicは、ビス[2−(4,6−ジフルオロフェニル−2−イル)ピリジル−N,C2′]イリジウム(III)ピコリレート(化5参照)を指す。
測定は各試料について5回行い評価した。
励起光源はXeランプ分光光源150Wを用い、リファレンス・測定試料共に345nmの単色光を励起光として用いた。
UV−Vis吸収スペクトル、PLスペクトル(溶液・PMMA分散膜)、PL量子収率を図1〜12に示す。図中、Φで示されている数値は、前記量子収率であり、FIrpicのPMMAの分散膜中での量子収率を1.00としたときの、各化合物の相対的な量子収率を示している。
発光スペクトルの実線は溶液(10−5[mol/L] CHCl溶液)、破線はPMMA分散膜(1wt%ドープ)を示す。 (Part 2) of bis [2- (t-butyl) -5- (pyridin-2-yl) pyrimidine-N, C2 ′] (dipivaloylmethane) iridium complex {[Bppm] 2 Ir [dpm]} Composition
Figure 2008074831
The following reaction is performed under a N 2 stream. IrCl 3 · 3H 2 O in a four-necked flask, 2-(t-butyl) -5- (pyridin-2-yl) pyrimidine (BPPM), KHCO 3, placed ethoxyethanol (EtOEtOH), is refluxed 6-12 hours . Then dpm and KHCO 3 are added and refluxed again (4 hours). After completion of the reaction, ethoxyethanol (EtOEtOH) is removed with an evaporator and dried. The product is then purified on a column (CHCl 3 : AcOEt = 1: 1). The purified product is made into a CHCl 3 solution and shaken with a small excess of aqueous NaOH.
The CHCl 3 phase was recovered, while the aqueous phase was extracted twice, dried with MgSO 4 , filtered, concentrated to dryness with an evaporator, and then dried in vacuo (60 ° C., 10 hours) to give a pale yellow solid Get.
Yield 36%
The PL spectrum of bis [2- (t-butyl) -5- (pyridin-2-yl) pyrimidine-N, C2 ′] (dipivaloylmethane) iridium complex {[Bppm] 2 Ir [dpm]} It is shown in 1.
Figure 2008074831
The optical properties of the obtained compound were measured by the following method. This method is the same as in all the following examples.
(1) UV-Vis absorption spectrum unless UV-Vis absorption spectra measurement, especially described with reference to CHCl 3 solution of 10 -5 [mol / L] was carried out at room temperature.
(2) PL spectrum measurement Unless otherwise stated, the PL spectrum measurement was carried out at room temperature using a 10-5 [mol / L] CHCl 3 solution. Deaeration is not performed.
The PL spectrum measurement using the PMMA dispersion film was performed at room temperature using a 1 wt% -doped PMMA dispersion film (sample: PMMA = 1: 100 [weight ratio]) unless otherwise specified. The PMMA dispersion film was formed on a quartz substrate by a drop cast method using a 100 mg / ml CHCl 3 solution. {A quartz substrate is placed on a stage of a vacuum oven, and an arbitrary amount of solution is placed on the substrate with a pasteur. The degree of vacuum is gradually increased (0.01 MPa, 20 min → 0.02 MPa, 10 min → 0.04 MPa, 10 min → 0.06 MPa, 10 min), and finally baked at 50 ° C. for 1 hour. }.
The film thickness is not controlled (on the order of several hundred μm).
(3) PL quantum yield measurement The sample was performed using the polymethylmethacrylic acid (PMMA) dispersion film produced by "(2) PL spectrum measurement." Using an integrating sphere system (manufactured by OPTEL), the relative PL quantum yield of the measurement sample was calculated using a FIrpic: PMMA (1: 100 [weight ratio]) dispersion membrane as a reference (FIrpic φ = 1.00). . The FIrpic refers to bis [2- (4,6-difluorophenyl-2-yl) pyridyl-N, C2 ′] iridium (III) picolate (see Chemical Formula 5).
The measurement was performed 5 times for each sample and evaluated.
The excitation light source used was a Xe lamp spectral light source 150W, and monochromatic light of 345 nm was used as excitation light for both the reference and measurement samples.
The UV-Vis absorption spectrum, PL spectrum (solution / PMMA dispersion film), and PL quantum yield are shown in FIGS. In the figure, the numerical value indicated by Φ is the quantum yield, and the relative quantum yield of each compound when the quantum yield in the dispersion film of FIrpic PMMA is 1.00. Show.
The solid line of the emission spectrum indicates the solution (10 −5 [mol / L] CHCl 3 solution), and the broken line indicates the PMMA dispersion film (1 wt% dope).

実施例2
ビス[2−(t−ブチル)−5−(ピリジン−2−イル)ピリミジン−N,C2′](2−ピコリン酸)イリジウム錯体{[Bppm]Ir[pic]}の合成

Figure 2008074831
気流下に下記の反応を行う。四口フラスコにIrCl・3HO、2−(t−ブチル)−5−(ピリジン−2−イル)ピリミジン(Bppm)、KHCO、EtOEtOHを入れ6〜12時間還流させる(表4参照)。
その後ピコリン酸(picolinic acid)、KHCOを入れ1時間還流させる(表4参照)。
反応終了後エバポレータでEtOEtOHを除去・乾固する。ついで、生成物をカラム(CHCl:MeOH=95:5)で精製する。
エバポレータで乾固した後、真空乾燥(60℃、12時間)して淡黄色の固体を得る。
収率 64%、下記表中、picはピコリン酸(picolinic acid)を意味する。
ビス[2−(t−ブチル)−5−(ピリジン−2−イル)ピリミジン−N,C2′](2−ピコリン酸)イリジウム錯体{[Bppm]Ir[pic]}の紫外(UV)−可視(Vis)領域吸収(UV−Vis absorption)とPLスペクトルを図2に示す。
Figure 2008074831
Example 2
Synthesis of bis [2- (t-butyl) -5- (pyridin-2-yl) pyrimidine-N, C2 ′] (2-picolinic acid) iridium complex {[Bppm] 2 Ir [pic]}
Figure 2008074831
The following reaction is performed under a N 2 stream. A four-necked flask is charged with IrCl 3 .3H 2 O, 2- (t-butyl) -5- (pyridin-2-yl) pyrimidine (Bppm), KHCO 3 , EtOEtOH and refluxed for 6 to 12 hours (see Table 4). .
Thereafter, picolinic acid and KHCO 3 are added and refluxed for 1 hour (see Table 4).
After completion of the reaction, EtOEtOH is removed with an evaporator and dried. The product is then purified on a column (CHCl 3 : MeOH = 95: 5).
After drying with an evaporator, vacuum drying (60 ° C., 12 hours) yields a pale yellow solid.
Yield 64%. In the following table, pic means picolinic acid.
Bis [2- (t-butyl) -5- (pyridin-2-yl) pyrimidine-N, C2 ′] (2-picolinic acid) iridium complex {[Bppm] 2 Ir [pic]} UV (UV) − The visible (Vis) region absorption (UV-Vis absorption) and the PL spectrum are shown in FIG.
Figure 2008074831

実施例3
ビス[2−(t−ブチル)−5−(ピリジン−2−イル)ピリミジン−N,C2′]〔2−(ピリジン−2−イル)イミダゾール−N1,N′〕イリジウム錯体{[Bppm]Ir[pyim]}の合成

Figure 2008074831
気流下に下記の反応を行う。四口フラスコにIrCl・3HO、Bppm、KHCO、酢酸(AcOH)を入れ6〜12時間還流させる。その後エバポレータでEtOEtOHを除去した後、1,2−ジクロロエタン(1,2−dichloroethane)、2−(2−ピリジル)イミダゾール(pyim)を入れ6〜12時間還流させる。
反応終了後、エバポレータで1,2−ジクロロエタン(1,2−dichloroethane)を除去・乾固する。ついで、生成物をカラム(CHCl:MeOH=85:15)で精製する。試料をCHCl溶液にして小過剰のNaOH水溶液と振る。
CHCl相を回収し、一方水相からは抽出を2回行い、MgSOで乾燥し、濾過、エバポレータで濃縮・乾固した後、真空乾燥(60℃、12時間)して淡黄色の固体を得る。
収率 55%
ビス[2−(t−ブチル)−5−(ピリジン−2−イル)ピリミジン−N,C2′][2−(ピリジン−2−イル)イミダゾール−N1,N′]イリジウム錯体{[Bppm]Ir[pyim]}のPLスペクトルを図3に示す。
Figure 2008074831
Example 3
Bis [2- (t-butyl) -5- (pyridin-2-yl) pyrimidine-N, C2 ′] [2- (pyridin-2-yl) imidazole-N1, N ′] iridium complex {[Bppm] 2 Synthesis of Ir [pyim]}
Figure 2008074831
The following reaction is performed under a N 2 stream. A four-necked flask is charged with IrCl 3 .3H 2 O, Bppm, KHCO 3 , and acetic acid (AcOH) and refluxed for 6 to 12 hours. Then, after removing EtOEtOH with an evaporator, 1,2-dichloroethane (1,2-dichloroethane) and 2- (2-pyridyl) imidazole (pyim) are added and refluxed for 6 to 12 hours.
After completion of the reaction, 1,2-dichloroethane is removed and dried by an evaporator. The product is then purified on a column (CHCl 3 : MeOH = 85: 15). The sample is made into a CHCl 3 solution and shaken with a small excess of aqueous NaOH.
The CHCl 3 phase was recovered, while the aqueous phase was extracted twice, dried over MgSO 4 , filtered, concentrated to dryness with an evaporator, and then dried in vacuo (60 ° C., 12 hours) to give a pale yellow solid Get.
Yield 55%
Bis [2- (t-butyl) -5- (pyridin-2-yl) pyrimidine-N, C2 ′] [2- (pyridin-2-yl) imidazole-N1, N ′] iridium complex {[Bppm] 2 The PL spectrum of Ir [pyim]} is shown in FIG.
Figure 2008074831

実施例4
ビス[2−(t−ブチル)−5−(ピリジン−2−イル)ピリミジン−N,C2′][3−(ピリジン−2−イル)−5−(t−ブチル)ピラゾール−N1,N′]イリジウム錯体{[Bppm]Ir[Bpypz]}の合成

Figure 2008074831
気流下で下記の反応を行う。四口フラスコにIrCl・3HO、Bppm、KHCO、EtOEtOHを入れ、6〜12時間還流させる。その後Bpypzを入れ1時間還流させる。反応終了後エバポレータでEtOEtOHを除去・乾固する。試料をCHCl溶液にして小過剰のNaOH水溶液と振る。
CHCl相を回収し、一方水相からは抽出を2回行い、MgSOで乾燥し、濾過、エバポレータで濃縮・乾固する。ついで、生成物をカラム(CHCl:MeOH=8:2)で精製する。
エバポレータで乾固した後、真空乾燥(60℃、12時間)して淡黄色の固体を得る。
収率 34%
ビス[2−(t−ブチル)−5−(ピリジン−2−イル)ピリミジン−N,C2′][3−(ピリジン−2−イル)−5−(t−ブチル)ピラゾール−N1,N′]イリジウム錯体{[Bppm]Ir[Bpypz]}の紫外(UV)−可視(Vis)領域吸収(UV−Vis absorption)とPLスペクトルを図4に示す。
Figure 2008074831
Example 4
Bis [2- (t-butyl) -5- (pyridin-2-yl) pyrimidine-N, C2 ′] [3- (pyridin-2-yl) -5- (t-butyl) pyrazole-N1, N ′ ] Synthesis of iridium complex {[Bppm] 2 Ir [Bpypz]}
Figure 2008074831
The following reaction is performed under a N 2 stream. In a four-necked flask, IrCl 3 · 3H 2 O, Bppm, KHCO 3 , EtOEtOH is added and refluxed for 6 to 12 hours. Then, Bpypz is added and refluxed for 1 hour. After completion of the reaction, EtOEtOH is removed with an evaporator and dried. The sample is made into a CHCl 3 solution and shaken with a small excess of aqueous NaOH.
The CHCl 3 phase is recovered, while the aqueous phase is extracted twice, dried over MgSO 4 , filtered and concentrated to dryness on an evaporator. The product is then purified on a column (CHCl 3 : MeOH = 8: 2).
After drying with an evaporator, vacuum drying (60 ° C., 12 hours) yields a pale yellow solid.
Yield 34%
Bis [2- (t-butyl) -5- (pyridin-2-yl) pyrimidine-N, C2 ′] [3- (pyridin-2-yl) -5- (t-butyl) pyrazole-N1, N ′ The ultraviolet (UV) -visible (Vis) region absorption (UV-Vis absorption) and PL spectrum of the iridium complex {[Bppm] 2 Ir [Bpypz]} are shown in FIG.
Figure 2008074831

実施例5
(1)1−メチル−2−[2−(t−ブチル)ピリミジン−5−イル]イミダゾール{1−methyl−2−[2−(tert−butyl)pyrimidine−5−yl]imidazole}{PmIm}の合成

Figure 2008074831
(イ)ZnCl:THF溶液の調製
実施例1(イ)と同一
(ロ)ネギシカップリング[Negishi coupling]
気流下に下記の反応を行う。四口フラスコに脱水THF(Na、PhCO)を蒸留し、得られた蒸留THFにN−メチルイミダゾール(N−methylimidazole)を加え撹拌して均一にする。ついで、系を0℃に冷却しシリンジでtert−BuLiを加え、0℃で1時間保つ。溶液は淡黄色(半透明)になる。これに0℃でZnCl溶液をキャヌラで加え、0℃で30分保つ。つぎに0℃で5−ブロモ−2−t−ブチルピリミジン(5−bromo−2−tert−butylpyrimidine)(BrBuPm)、Pd[PPhの順に加え、その後12時間還流させる。反応終了後エバポレータでTHFを除去する。生成物をCHCl、水で共洗いして試料を分液ロートに移す。EDTA水溶液と振り、NaOH水溶液で中和してpH8〜9に調整する。
CHCl相を回収し、一方水相からは抽出を2回行い、MgSOで乾燥、濾過、エバポレータで濃縮する。カラム(CHCl:acetone=8:2)で精製後、エバポレータで極力濃縮(60mmHg、50℃)し、真空乾燥(室温、2時間)して白色の固体を得る。 収率 66%
Figure 2008074831
Example 5
(1) 1-methyl-2- [2- (t-butyl) pyrimidin-5-yl] imidazole {1-methyl-2- [2- (tert-butyl) pyrimidine-5-yl] imidazole} {PmIm} Synthesis of
Figure 2008074831
(A) Preparation of ZnCl 2 : THF solution Same as Example 1 (a) (b) Negi coupling [Negishi coupling]
The following reaction is performed under a N 2 stream. Dehydrated THF (Na, Ph 2 CO) is distilled in a four-necked flask, and N-methylimidazole (N-methylimidazole) is added to the obtained distilled THF and stirred to make it uniform. The system is then cooled to 0 ° C. and tert-BuLi is added with a syringe and kept at 0 ° C. for 1 hour. The solution becomes light yellow (translucent). To this, ZnCl 2 solution is added by cannula at 0 ° C. and kept at 0 ° C. for 30 minutes. Next, 5-bromo-2-tert-butylpyrimidine (BrBuPm) and Pd [PPh 3 ] 4 are added in this order at 0 ° C., and then refluxed for 12 hours. After completion of the reaction, THF is removed with an evaporator. The product is washed with CHCl 3 , water and the sample is transferred to a separatory funnel. Shake with EDTA aqueous solution and neutralize with NaOH aqueous solution to adjust to pH 8-9.
The CHCl 3 phase is recovered, while the aqueous phase is extracted twice, dried over MgSO 4 , filtered and concentrated on an evaporator. After purification with a column (CHCl 3 : acetone = 8: 2), the solution is concentrated as much as possible with an evaporator (60 mmHg, 50 ° C.) and vacuum dried (room temperature, 2 hours) to obtain a white solid. Yield 66%
Figure 2008074831

(2)ビス{N−メチル−2−[2−(t−ブチル)ピリミジン−5−イル]イミダゾール−N,C2′}(ジピバロイルメタン)イリジウム錯体{[PmIm]Ir[dpm]}の合成

Figure 2008074831
気流下に下記の反応を行う。四口フラスコにIrCl・3HO、N−メチル−2−[2−(t−ブチル)ピリミジン−5−イル]イミダゾール(PmIm)、KHCO、EtOEtOHを入れ6〜12時間還流させる。その後、ジピバロイルメタン(dipivaloylmethane)(dpm)、KHCOを入れ、12時間還流させる。
反応終了後エバポレータでEtOEtOHを除去・乾固する。生成物をカラム(AcOEt)で精製する。精製物をエバポレータで濃縮・乾固した後、真空乾燥(60℃、10時間)して淡黄色の固体を得る。 収率 20%
ビス{N−メチル−2−[2−(t−ブチル)ピリミジン−5−イル]イミダゾール−N,C2′}(ジピバロイルメタン)イリジウム錯体{[PmIm]Ir[dpm]}のPLスペクトルを図5に示す。
Figure 2008074831
(2) Bis {N-methyl-2- [2- (t-butyl) pyrimidin-5-yl] imidazole-N, C2 ′} (dipivaloylmethane) iridium complex {[PmIm] 2 Ir [dpm] } Composition
Figure 2008074831
The following reaction is performed under a N 2 stream. A four-necked flask is charged with IrCl 3 .3H 2 O, N-methyl-2- [2- (t-butyl) pyrimidin-5-yl] imidazole (PmIm), KHCO 3 , and EtOEtOH and refluxed for 6 to 12 hours. Thereafter, dipivaloylmethane (dpm) and KHCO 3 are added and refluxed for 12 hours.
After completion of the reaction, EtOEtOH is removed with an evaporator and dried. The product is purified on a column (AcOEt). The purified product is concentrated and dried with an evaporator, and then dried in vacuo (60 ° C., 10 hours) to obtain a pale yellow solid. Yield 20%
PL of bis {N-methyl-2- [2- (t-butyl) pyrimidin-5-yl] imidazole-N, C2 ′} (dipivaloylmethane) iridium complex {[PmIm] 2 Ir [dpm]} The spectrum is shown in FIG.
Figure 2008074831

実施例6
ビス{N−メチル−2−[2−(t−ブチル)ピリミジン−5−イル]イミダゾール−N,C2′}(2−ピコリン酸)イリジウム錯体{[PmIm]Ir[pic]}の合成

Figure 2008074831
気流下に下記の反応を行う。四口フラスコにIrCl・3HO、PmIm、KHCO、EtOEtOHを入れ6〜12時間還流させる。その後ピコリン酸(picolinic acid)(pic)、KHCOを入れ1時間還流させる。
反応終了後エバポレータでEtOEtOHを除去・乾固する。
生成物をカラム(CHCl:MeOH=92:8)で精製する。精製物をエバポレータで乾固した後、真空乾燥(60℃、4時間)して淡黄色の固体を得る。 収率 79%
ビス{N−メチル−2−[2−(t−ブチル)ピリミジン−5−イル]イミダゾール−N,C2′}(2−ピコリン酸)イリジウム錯体{[PmIm]Ir[pic]}の紫外(UV)−可視(Vis)領域吸収(UV−Vis absorption)とPLスペクトルを図6に示す。
Figure 2008074831
Example 6
Synthesis of bis {N-methyl-2- [2- (t-butyl) pyrimidin-5-yl] imidazole-N, C2 ′} (2-picolinic acid) iridium complex {[PmIm] 2 Ir [pic]}
Figure 2008074831
The following reaction is performed under a N 2 stream. A four-necked flask is charged with IrCl 3 .3H 2 O, PmIm, KHCO 3 , EtOEtOH and refluxed for 6 to 12 hours. Then, picolinic acid (pic) and KHCO 3 are added and refluxed for 1 hour.
After completion of the reaction, EtOEtOH is removed with an evaporator and dried.
The product is purified by column (CHCl 3 : MeOH = 92: 8). The purified product is dried with an evaporator and then vacuum dried (60 ° C., 4 hours) to obtain a pale yellow solid. Yield 79%
UV of bis {N-methyl-2- [2- (t-butyl) pyrimidin-5-yl] imidazole-N, C2 ′} (2-picolinic acid) iridium complex {[PmIm] 2 Ir [pic]} The UV) -visible (Vis) region absorption (UV-Vis absorption) and the PL spectrum are shown in FIG.
Figure 2008074831

実施例7
ビス{N−メチル−2−[2−(t−ブチル)ピリミジン−5−イル]イミダゾール−N,C2′}[2−(ピリジン−2−イル)イミダゾール−N1,N′]イリジウム錯体{[PmIm]Ir[pyim]}の合成

Figure 2008074831
気流下に下記の反応を行う。四口フラスコにIrCl・3HO、PmIm、KHCO、EtOEtOHを入れ6〜12時間還流させる。その後pyimを入れ2時間還流させる。反応終了後エバポレータでEtOEtOHを除去・乾固する。
生成物をカラム(CHCl:MeOH=8:2)で精製する。精製物をCHCl溶液にして小過剰のNaOH水溶液と振る。
CHCl相を回収し、一方水相からは抽出を2回行い、MgSOで乾燥し、濾過、エバポレータで濃縮・乾固した後、真空乾燥(50℃、6時間)して淡黄色の固体を得る。
収率 76%
ビス{N−メチル−2−[2−(t−ブチル)ピリミジン−5−イル]イミダゾール−N,C2′}[2−(ピリジン−2−イル)イミダゾール−N1,N′]イリジウム錯体{[PmIm]Ir[pyim]}のPLスペクトルを図7に示す。
Figure 2008074831
Example 7
Bis {N-methyl-2- [2- (t-butyl) pyrimidin-5-yl] imidazole-N, C2 ′} [2- (pyridin-2-yl) imidazole-N1, N ′] iridium complex {[ PmIm] 2 Ir [pyim]}
Figure 2008074831
The following reaction is performed under a N 2 stream. A four-necked flask is charged with IrCl 3 .3H 2 O, PmIm, KHCO 3 , EtOEtOH and refluxed for 6 to 12 hours. Then put pyim and reflux for 2 hours. After completion of the reaction, EtOEtOH is removed with an evaporator and dried.
The product is purified by column (CHCl 3 : MeOH = 8: 2). The purified product is made into a CHCl 3 solution and shaken with a small excess of aqueous NaOH.
The CHCl 3 phase was recovered, while the aqueous phase was extracted twice, dried with MgSO 4 , filtered, concentrated to dryness with an evaporator, and then dried in vacuo (50 ° C., 6 hours) to give a pale yellow solid Get.
Yield 76%
Bis {N-methyl-2- [2- (t-butyl) pyrimidin-5-yl] imidazole-N, C2 ′} [2- (pyridin-2-yl) imidazole-N1, N ′] iridium complex {[ A PL spectrum of PmIm] 2 Ir [pyim]} is shown in FIG.
Figure 2008074831

実施例8
ビス{N−メチル−2−[2−(t−ブチル)ピリミジン−5−イル]イミダゾール−N,C2′}[3−(ピリジン−2−イル)−5−(t−ブチル)ピリダジン−N1,N′]イリジウム錯体{[PmIm]Ir[Bpypz]の合成}

Figure 2008074831
気流下に下記の反応を行う。四口フラスコにIrCl・3HO、PmIm、KHCO、EtOEtOHを入れ、6〜12時間還流させる。その後3−(ピリジン−2−イル)−5−(t−ブチル)ピリダジン(Bpypz)を入れ、2時間還流させる。
反応終了後エバポレータでEtOEtOHを除去・乾固する。
生成物をカラム(CHCl:MeOH=8:2)で精製する。エバポレータで乾固した後、真空乾燥(60℃、12時間)して淡黄色の固体を得る。 収率 53%
ビス{N−メチル−2−[2−(t−ブチル)ピリミジン−5−イル]イミダゾール−N,C2′}[3−(ピリジン−2−イル)−5−(t−ブチル)ピリダジン−N1,N′]イリジウム錯体{[PmIm]Ir[Bpypz]の紫外(UV)−可視(Vis)領域吸収(UV−Vis absorption)とPLスペクトルを図8に示す。
Figure 2008074831
Example 8
Bis {N-methyl-2- [2- (t-butyl) pyrimidin-5-yl] imidazole-N, C2 '} [3- (pyridin-2-yl) -5- (t-butyl) pyridazine-N1 , N ′] iridium complex {synthesis of [PmIm] 2 Ir [Bpypz]}
Figure 2008074831
The following reaction is performed under a N 2 stream. In a four-necked flask, put IrCl 3 .3H 2 O, PmIm, KHCO 3 , EtOEtOH and reflux for 6 to 12 hours. Then 3- (pyridin-2-yl) -5- (t-butyl) pyridazine (Bpypz) is added and refluxed for 2 hours.
After completion of the reaction, EtOEtOH is removed with an evaporator and dried.
The product is purified by column (CHCl 3 : MeOH = 8: 2). After drying with an evaporator, vacuum drying (60 ° C., 12 hours) yields a pale yellow solid. Yield 53%
Bis {N-methyl-2- [2- (t-butyl) pyrimidin-5-yl] imidazole-N, C2 '} [3- (pyridin-2-yl) -5- (t-butyl) pyridazine-N1 , N ′] iridium complex {[PmIm] 2 Ir [Bpypz] shows ultraviolet (UV) -visible (Vis) region absorption (UV-Vis absorption) and PL spectrum in FIG.
Figure 2008074831

実施例9
(1){N−メチル−2−[2−(t−ブチル)ピリジン−5−イル)]イミダゾール−N,C2′}イリジウム・クロライド{[PmIm]Ir[μ−Cl]Ir[PmIm]}の合成

Figure 2008074831
気流下に下記の反応を行う。四口フラスコにIrCl・3HO、PmIm、KHCO、EtOEtOHを入れ6〜12時間還流させる。
(2)fac−トリス{N−メチル−2−[2−(t−ブチル)ピリミジン−5−イル)]イミダゾール−N,C2′}イリジウム錯体{fac−Ir[PmIm]}の合成
なお、facはfacialの略で、対称型を意味している。
Figure 2008074831
気流下に下記の反応を行う。
四口フラスコに[PmIm]Ir[μ−Cl]Ir[PmIm]、o−ジクロロベンゼン(o−DCB)、PmImを加え撹拌して分散させる。ここにo−キシレンに超音波で分散させたAgBFを加える。その後140℃に加熱し1時間保つ。反応終了後エバポレータとオイルバス(50mmHg、130℃)でo−ジクロロベンゼンを除去・乾固し、これをカラム(CHCl:MeOH=8:2)で精製する。精製物をCHCl溶液にして小過剰のNaOH水溶液と振る。
CHCl相を回収し、一方水相からは抽出を2回行い、MgSOで乾燥し、濾過、エバポレータで濃縮・乾固した後、真空乾燥(60℃、12時間)して淡黄色の固体を得る。これを昇華精製してほぼ白色の固体を得る。収率 4%
fac−トリス{N−メチル−2−[2−(t−ブチル)ピリミジン−5−イル)]イミダゾール−N,C2′}イリジウム錯体{fac−Ir[PmIm]}の紫外(UV)−可視(Vis)領域吸収(UV−Vis absorption)とPLスペクトルを図9に示す。
Figure 2008074831
Example 9
(1) {N-methyl-2- [2- (t-butyl) pyridin-5-yl)] imidazole-N, C2 ′} iridium chloride {[PmIm] 2 Ir [μ-Cl] 2 Ir [PmIm ] 2 }
Figure 2008074831
The following reaction is performed under a N 2 stream. A four-necked flask is charged with IrCl 3 .3H 2 O, PmIm, KHCO 3 , EtOEtOH and refluxed for 6 to 12 hours.
(2) Synthesis of fac-tris {N-methyl-2- [2- (t-butyl) pyrimidin-5-yl)] imidazole-N, C2 '} iridium complex {fac-Ir [PmIm] 3 } fac is an abbreviation for facial and means a symmetric type.
Figure 2008074831
The following reaction is performed under a N 2 stream.
[PmIm] 2 Ir [μ-Cl] 2 Ir [PmIm] 2 , o-dichlorobenzene (o-DCB) and PmIm are added to a four-necked flask and dispersed by stirring. To this is added AgBF 4 dispersed in o-xylene with ultrasonic waves. Thereafter, it is heated to 140 ° C. and kept for 1 hour. After completion of the reaction, o-dichlorobenzene is removed and dried with an evaporator and an oil bath (50 mmHg, 130 ° C.), and this is purified with a column (CHCl 3 : MeOH = 8: 2). The purified product is made into a CHCl 3 solution and shaken with a small excess of aqueous NaOH.
The CHCl 3 phase was recovered, while the aqueous phase was extracted twice, dried over MgSO 4 , filtered, concentrated to dryness with an evaporator, and then dried in vacuo (60 ° C., 12 hours) to give a pale yellow solid Get. This is purified by sublimation to obtain an almost white solid. Yield 4%
fac-Tris {N-methyl-2- [2- (t-butyl) pyrimidin-5-yl)] imidazole-N, C2 '} iridium complex {fac-Ir [PmIm] 3 } in the ultraviolet (UV) -visible FIG. 9 shows (Vis) region absorption (UV-Vis absorption) and PL spectrum.
Figure 2008074831

実施例10
(1)1−[2−(t−ブチル)ピリミジン−5−イル]ピラゾール[1−(2−tert−butylpyrimidine−5−yl)pyrazole]{PmPz}の合成

Figure 2008074831
気流下に下記の反応を行う。四口フラスコに5−ブロモ−2−t−ブチルピリミジン(5−bromo−2−tert−butylpyrimidine)(BrBuPm)、ピラゾール(pyrazole)、KCO、CuIを入れ、三方コックを付け、その他の口は平栓で閉じる。三方コックにロータリーポンプとNラインを接続して四口フラスコ内を2回Nパージする。空気が入らないようにNを吹き出しながら還流用のキットを組む。
空気を断ってブドウ酸のトランス−シクロヘキサジアミン(racemic trans−cyclohexanediamine)(CyHxdiamine)を四口フラスコに加え、ついでシリンジで四口フラスコに脱水1,4−ジオキサン(1,4−dioxane)を加え、48時間還流する。反応終了後室温まで冷却した後、酢酸エチルで溶液を2倍程度に希釈し、酢酸エチルで洗浄しながら吸引濾過で沈澱を除去する。ろ液をエバポレータで濃縮した後、カラム(CHCl:AcOEt=8:2)で精製し、真空乾燥(40℃、3時間)して白色の固体を得る。収率 66%
Figure 2008074831
(2)ビス{N−[2−(t−ブチル)ピリミジン−5−イル]ピラゾール−N,C2′}[3−(ピリミジン−2−イル)−5−(t−ブチル)ピリダジン−N1,N′]イリジウム錯体{[PmPz]Ir[Bpypz]}の合成
Figure 2008074831
気流下に下記の反応を行う。四口フラスコにIrCl・3HO、PmPz、KHCO、EtOEtOHを加え、10時間還流させ、テトラキス[N−{2−(t−ブチル)ピリミジン−5−イル}ピラゾール−N,C2′]ビス(μ−クロロ)イリジウム{[PmPz]Ir[μ−Cl]Ir[PmPz]}を得、その後3−(2−ピリジン−2−イル)−5−(t−ブチル)ピラゾール(Bpypz)を加えて5時間還流させる。反応終了後エバポレータでEtOEtOHを除去し、得られた生成物をカラム(CHCl:MeOH=85:15)で精製する。精製物をCHCl溶液にして過剰のKHCO水溶液と振る。
CHCl相を回収し、一方水相からは抽出を2回行い、MgSOで乾燥し、濾過、エバポレータで濃縮・乾固した後、真空乾燥(50℃、4時間)して淡黄色の固体を得る。
収率 42%
ビス{N−[2−(t−ブチル)ピリミジン−5−イル]ピラゾール−N,C2′}[3−(ピリミジン−2−イル)−5−(t−ブチル)ピリダジン−N1,N′]イリジウム錯体{[PmPz]Ir[Bpypz]}の紫外(UV)−可視(Vis)領域吸収(UV−Vis absorption)とPLスペクトルを図10に示す。
Figure 2008074831
Example 10
(1) Synthesis of 1- [2- (t-butyl) pyrimidin-5-yl] pyrazole [1- (2-tert-butylpyrimidine-5-yl) pyrazole] {PmPz}
Figure 2008074831
The following reaction is performed under a N 2 stream. A 4-necked flask is charged with 5-bromo-2-tert-butylpyrimidine (BrBuPm), pyrazole, K 2 CO 3 , CuI, and a three-way cock. Close the mouth with a flat stopper. Connect a rotary pump and N 2 line to the three-way cock and purge the inside of the four-necked flask twice with N 2 . A reflux kit is assembled while blowing N 2 so that air does not enter.
Turn off the air and add glucose trans-cyclohexadiamine (CyHxdiamin) to the four-necked flask, then add dehydrated 1,4-dioxane to the four-necked flask with a syringe , Reflux for 48 hours. After completion of the reaction, the reaction solution is cooled to room temperature, and the solution is diluted about twice with ethyl acetate, and the precipitate is removed by suction filtration while washing with ethyl acetate. The filtrate is concentrated by an evaporator and then purified by a column (CHCl 3 : AcOEt = 8: 2) and dried in vacuo (40 ° C., 3 hours) to obtain a white solid. Yield 66%
Figure 2008074831
(2) Bis {N- [2- (t-butyl) pyrimidin-5-yl] pyrazole-N, C2 ′} [3- (pyrimidin-2-yl) -5- (t-butyl) pyridazine-N1, Synthesis of N ′] iridium complex {[PmPz] 2 Ir [Bpypz]}
Figure 2008074831
The following reaction is performed under a N 2 stream. IrCl 3 .3H 2 O, PmPz, KHCO 3 , EtOEtOH was added to the four-necked flask, and the mixture was refluxed for 10 hours. Tetrakis [N- {2- (t-butyl) pyrimidin-5-yl} pyrazole-N, C2 ′] Bis (μ-chloro) iridium {[PmPz] 2 Ir [μ-Cl] 2 Ir [PmPz] 2 } is obtained, and then 3- (2-pyridin-2-yl) -5- (t-butyl) pyrazole ( (Bpypz) is added and refluxed for 5 hours. After completion of the reaction, EtOEtOH is removed by an evaporator, and the obtained product is purified by a column (CHCl 3 : MeOH = 85: 15). The purified product is made into CHCl 3 solution and shaken with excess KHCO 3 aqueous solution.
The CHCl 3 phase was recovered, while the aqueous phase was extracted twice, dried over MgSO 4 , filtered, concentrated to dryness with an evaporator, and then dried in vacuo (50 ° C., 4 hours) to give a pale yellow solid Get.
Yield 42%
Bis {N- [2- (t-butyl) pyrimidin-5-yl] pyrazole-N, C2 '} [3- (pyrimidin-2-yl) -5- (t-butyl) pyridazine-N1, N'] FIG. 10 shows the ultraviolet (UV) -visible (Vis) region absorption (UV-Vis absorption) and PL spectrum of the iridium complex {[PmPz] 2 Ir [Bpypz]}.
Figure 2008074831

実施例11
ビス{N−[2−(t−ブチル)ピリミジン−5−イル]ピラゾール−N,C2′}[2−(t−ブチル)−5−(ピリジン−2−イル)−5−(t−ブチル)ピリミジン−N1′,N]イリジウム錯体{[PmPz]Ir[Bppm]}の合成

Figure 2008074831
気流下に下記の反応を行う。四口フラスコに[PmPz]Ir[μ−Cl]Ir[PmPz]、Bppm、KHCO、ブトキシエタノール(BuOEtOH)を加え24時間還流させる。
反応終了後エバポレータとオイルバス(50mmHg、150℃)でBuOEtOHを除去し、生成物をアルミナカラム(展開溶媒:酢酸エチル)で精製する。精製物をCHCl溶液にして過剰のKHCO水溶液と振る。
CHCl相を回収し、一方水相からは抽出を2回行い、MgSOで乾燥し、濾過、エバポレータで濃縮・乾固した後、真空乾燥(50℃、4時間)して淡黄色の固体を得る。
収率 13%
ビス{N−[2−(t−ブチル)ピリミジン−5−イル]ピラゾール−N,C2′}[2−(t−ブチル)−5−(ピリジン−2−イル)−5−(t−ブチル)ピリミジン−N1′,N]イリジウム錯体{[PmPz]Ir[Bppm]}の紫外(UV)−可視(Vis)領域吸収(UV−Vis absorption)とPLスペクトルを図11に示す。
Figure 2008074831
Example 11
Bis {N- [2- (t-butyl) pyrimidin-5-yl] pyrazole-N, C2 '} [2- (t-butyl) -5- (pyridin-2-yl) -5- (t-butyl) ) Synthesis of pyrimidine-N1 ′, N] iridium complex {[PmPz] 2 Ir [Bppm]}
Figure 2008074831
The following reaction is performed under a N 2 stream. A four neck flask [PmPz] 2 Ir [μ- Cl] 2 Ir [PmPz] 2, Bppm, KHCO 3, added butoxyethanol (BuOEtOH) is refluxed for 24 hours.
After completion of the reaction, BuOEtOH is removed with an evaporator and an oil bath (50 mmHg, 150 ° C.), and the product is purified with an alumina column (developing solvent: ethyl acetate). The purified product is made into CHCl 3 solution and shaken with excess KHCO 3 aqueous solution.
The CHCl 3 phase was recovered, while the aqueous phase was extracted twice, dried over MgSO 4 , filtered, concentrated to dryness with an evaporator, and then dried in vacuo (50 ° C., 4 hours) to give a pale yellow solid Get.
Yield 13%
Bis {N- [2- (t-butyl) pyrimidin-5-yl] pyrazole-N, C2 '} [2- (t-butyl) -5- (pyridin-2-yl) -5- (t-butyl) The ultraviolet (UV) -visible (Vis) region absorption (UV-Vis absorption) and PL spectrum of the pyrimidine-N1 ′, N] iridium complex {[PmPz] 2 Ir [Bppm]} are shown in FIG.
Figure 2008074831

実施例12
fac(facial)−トリス{N−[2−(t−ブチル)ピリミジン−5−イル]ピラゾール−N,C2′}イリジウム錯体{fac−Ir[PmPz]}の合成
(1)経路A(Clブリッジダイマー経由)(Run No.1)

Figure 2008074831
気流下に下記の反応を行う。四口フラスコに[PmPz]Ir[μ−Cl]Ir[PmPz]0.25mmol、PmPz2mmol、KHCO1.28mmol、ブトキシエタノール(BuOEtOH)10mlを加え撹拌して分散させ、オイルバスで加熱して24時間還流させる。反応終了後エバポレータとオイルバス(50mmHg、150℃)でBuOEtOHを除去し、分取用TLCプレート(CHCl:MeOH=8:2)で精製する。削り取ったシリカをCHCl:MeOH=8:2の溶媒でカラムに充填して溶出させる。溶出物をエバポレータで乾固した後、生成物をCHCl溶液にして小過剰のKHCO水溶液と振る。CHCl相を回収し、一方水相からは抽出を2回行い、MgSOで乾燥し、濾過、エバポレータで濃縮・乾固した後、真空乾燥(50℃、4時間)して灰白色の固体を得る。収率 37%
Run No.2、3はRun No.1においてBuOETOHの代りにEtOETOHを用い、下記使用量で同様に反応させたものである。
Figure 2008074831
(2)経路B(直接法)
Figure 2008074831
気流下に下記の反応を行う。四口フラスコにIrCl・3HO、PmPz、KHCO、BuOEtOHを加え撹拌して分散させ、オイルバスで加熱して24時間還流させる。反応終了後エバポレータとオイルバス(50mmHg、150℃)でBuOEtOHを除去し、生成物をカラム(CHCl:MeOH=8:2)で精製する。精製物をエバポレータで乾固した後、これをCHCl溶液にして小過剰のKHCO水溶液と振る。CHCl相を回収し、一方水相からは抽出を2回行い、MgSOで乾燥し、濾過、エバポレータで濃縮・乾固した後、真空乾燥(50℃、4時間)して灰白色の固体を得る。 収率 46%
fac(facial)−トリス{N−[2−(t−ブチル)ピリミジン−5−イル]ピラゾール−N,C2′}イリジウム錯体{fac−Ir[PmPz]}の紫外(UV)−可視(Vis)領域吸収(UV−Vis absorption)とPLスペクトルを図12に示す。 Example 12
Synthesis of fac (facial) -tris {N- [2- (t-butyl) pyrimidin-5-yl] pyrazole-N, C2 '} iridium complex {fac-Ir [PmPz] 3 } (1) Route A (Cl (Via bridge dimer) (Run No. 1)
Figure 2008074831
The following reaction is performed under a N 2 stream. [PmPz] 2 Ir [μ-Cl] 2 Ir [PmPz] 2 0.25 mmol, PmPz 2 mmol, KHCO 3 1.28 mmol, butoxyethanol (BuOEtOH) 10 ml were added to a four-necked flask and dispersed, and heated with an oil bath. And reflux for 24 hours. After completion of the reaction, BuOEtOH is removed with an evaporator and an oil bath (50 mmHg, 150 ° C.), and purified with a preparative TLC plate (CHCl 3 : MeOH = 8: 2). The scraped silica is loaded on a column with a solvent of CHCl 3 : MeOH = 8: 2 and eluted. After eluate is evaporated to dryness, the product is made into CHCl 3 solution and shaken with a small excess of KHCO 3 aqueous solution. The CHCl 3 phase was recovered, while the aqueous phase was extracted twice, dried with MgSO 4 , filtered, concentrated to dryness with an evaporator, and then dried in vacuo (50 ° C., 4 hours) to give an off-white solid. obtain. Yield 37%
Run No. 2, 3 are Run No. In Example 1, EtOETOH was used in place of BuOETOH, and the reaction was carried out in the same manner with the following amounts used.
Figure 2008074831
(2) Path B (Direct method)
Figure 2008074831
The following reaction is performed under a N 2 stream. IrCl 3 .3H 2 O, PmPz, KHCO 3 , and BuOEtOH are added to a four-necked flask and dispersed by stirring, heated in an oil bath, and refluxed for 24 hours. After completion of the reaction, BuOEtOH is removed with an evaporator and an oil bath (50 mmHg, 150 ° C.), and the product is purified with a column (CHCl 3 : MeOH = 8: 2). After the purified product is evaporated to dryness, it is converted into a CHCl 3 solution and shaken with a small excess of KHCO 3 aqueous solution. The CHCl 3 phase was recovered, while the aqueous phase was extracted twice, dried with MgSO 4 , filtered, concentrated to dryness with an evaporator, and then dried in vacuo (50 ° C., 4 hours) to give an off-white solid. obtain. Yield 46%
fac (facial) -tris {N- [2- (t-butyl) pyrimidin-5-yl] pyrazole-N, C2 '} iridium complex {fac-Ir [PmPz] 3 } in ultraviolet (UV) -visible (Vis) ) Region absorption (UV-Vis absorption) and PL spectrum are shown in FIG.

実施例13および14
実施例2の化合物ビス[2−(t−ブチル)−5−(ピリジン−2−イル)ピリミジン−N,C2′](2−ピコリン酸)イリジウム錯体{[Bppm]Ir[pic]}と実施例4の化合物ビス[2−(t−ブチル)−5−(ピリジン−2−イル)ピリミジン−N,C2′][3−(ピリジン−2−イル)−5−(t−ブチル)ピラゾール−N1,N′]イリジウム錯体{[Bppm]Ir[Bpypz]}の真空TGAの測定を行った。
真空TGAは、真空条件下で熱重量変化の具合を測定する装置で、本明細書中では素子作成時の蒸着温度を決定する際の参考温度として用いることができる。一般的には5%重量減少時の温度をもって蒸着温度とする。
この結果、実施例2の化合物は蒸着温度は254℃(実施例13)、実施例4の化合物の蒸着温度は198℃(実施例14)であることがわかった。
図13および図14に実施例2および実施例4のそれぞれの化合物の測定結果を示す。
Examples 13 and 14
The compound bis [2- (t-butyl) -5- (pyridin-2-yl) pyrimidine-N, C2 ′] (2-picolinic acid) iridium complex {[Bppm] 2 Ir [pic]} of Example 2 and Compound of Example 4 Bis [2- (t-butyl) -5- (pyridin-2-yl) pyrimidine-N, C2 ′] [3- (pyridin-2-yl) -5- (t-butyl) pyrazole The vacuum TGA of the —N1, N ′] iridium complex {[Bppm] 2 Ir [Bpypz]} was measured.
The vacuum TGA is a device that measures the degree of thermogravimetric change under vacuum conditions. In this specification, the vacuum TGA can be used as a reference temperature when determining the vapor deposition temperature at the time of device fabrication. Generally, the temperature at the time of 5% weight reduction is set as the deposition temperature.
As a result, it was found that the vapor deposition temperature of the compound of Example 2 was 254 ° C. (Example 13) and the vapor deposition temperature of the compound of Example 4 was 198 ° C. (Example 14).
FIG. 13 and FIG. 14 show the measurement results of the compounds of Example 2 and Example 4.

実施例15
実施例4の化合物ビス[2−(t−ブチル)−5−(ピリジン−2−イル)ピリミジン−N,C2′][3−(ピリジン−2−イル)−5−(t−ブチル)ピラゾール−N1,N′]イリジウム錯体{[Bppm]Ir[Bpypz]}の紫外−可視吸収スペクトル、発光スペクトルおよびイオン化ポテンシャル(AC−3)を測定し、電気化学特性を評価した。その結果を表17に示す。

Figure 2008074831
Ip:イオン化ポテンシャル
Ea:エレクトロンアフィニティー(電子親和力)
Eg:エネルギーギャップ
エネルギーギャップ(Eg)については、蒸着機で作成した薄膜を紫外−可視吸光で薄膜の吸収曲線を測定する。その薄膜の短波長側の立ち上がりのところに接線を引き、求まった交点の波長W(nm)を次の式に代入し目的の値を求める。それによって得た値がEaになる。
Eg=1240÷W
例えば接線を引いて求めた値W(nm)が470nmだったとしたらこの時のEgの値は、
Eg=1240÷470=2.63(eV)
と言うことになる。
Ip(イオン化ポテンシャル)は、イオン化ポテンシャル測定装置(例えば理研計器AC−3)を使用して測定し、測定したサンプルがイオン化を開始したところの電圧(eV)の値を読む。
Ea(電子親和力)は、IpからEgを引いた値である。
実施例4の化合物のクロロホルム溶液(1.0×10−5M)での紫外−可視スペクトル、発光スペクトルの測定結果を図15に、薄膜状(50nm)での紫外−可視スペクトル、発光スペクトルの測定結果を図16にそれぞれ示す。図15および図16における点線は紫外線可視吸収スペクトルであり、実線は発光(フォトルミネッセンス)スペクトルである。また、図15と図16の縦軸は、規格化されたスペクトル強度である。 Example 15
Compound of Example 4 Bis [2- (t-butyl) -5- (pyridin-2-yl) pyrimidine-N, C2 ′] [3- (pyridin-2-yl) -5- (t-butyl) pyrazole The ultraviolet-visible absorption spectrum, emission spectrum, and ionization potential (AC-3) of the —N1, N ′] iridium complex {[Bppm] 2 Ir [Bpypz]} were measured to evaluate the electrochemical characteristics. The results are shown in Table 17.
Figure 2008074831
Ip: Ionization potential Ea: Electron affinity (electron affinity)
Eg: Energy gap About the energy gap (Eg), the thin film created with the vapor deposition machine measures the absorption curve of a thin film by ultraviolet-visible absorption. A tangent line is drawn at the short-wavelength rising edge of the thin film, and the target wavelength is obtained by substituting the obtained wavelength W (nm) of the intersection into the following equation. The value obtained thereby becomes Ea.
Eg = 1240 ÷ W
For example, if the value W (nm) obtained by drawing the tangent is 470 nm, the value of Eg at this time is
Eg = 1240 ÷ 470 = 2.63 (eV)
It will be said.
Ip (ionization potential) is measured using an ionization potential measuring device (for example, Riken Keiki AC-3), and the value of the voltage (eV) at which the measured sample starts ionization is read.
Ea (electron affinity) is a value obtained by subtracting Eg from Ip.
The measurement results of the ultraviolet-visible spectrum and emission spectrum of the compound of Example 4 in a chloroform solution (1.0 × 10 −5 M) are shown in FIG. 15, and the UV-visible spectrum and emission spectrum of the thin film (50 nm) are shown. The measurement results are shown in FIG. The dotted line in FIGS. 15 and 16 is an ultraviolet-visible absorption spectrum, and the solid line is an emission (photoluminescence) spectrum. Moreover, the vertical axis | shaft of FIG. 15 and FIG. 16 is the normalized spectrum intensity.

実施例16
実施例4の化合物ビス[2−(t−ブチル)−5−(ピリジン−2−イル)ピリミジン−N,C2′][3−(ピリジン−2−イル)−5−(t−ブチル)ピラゾール−N1,N′]イリジウム錯体{[Bppm]Ir[Bpypz]}を下記式

Figure 2008074831
で示される4CzPBPに5wt%ドープした単層膜での蛍光量子収率を求めた。
真空蒸着法で石英基板に50nmの厚みで製膜した単層膜を、有機EL量子効率測定装置(浜松フォトニクス製C9920−01)を用い、励起波長325nmにて単層膜の絶対発光量子収率の測定を行った。
測定結果は、
(1)ブランクの石英基板の325nmの吸収ピーク(山)の面積を求める。
(2)石英基板上の単層膜の325nmの吸収ピーク(山)の面積を求める。
(3)石英基板上の単層膜測定結果で新たにできた山(発光ピーク)の面積を求める。
(4)(1)から(2)を引いた面積が(3)できた山(発光ピーク)の面積を作製するために費やされたものである。
(1)から(3)の値より、次の式で求めることができる。
蛍光量子収率(%)=[(3)の面積÷(1)の面積−(2)の面積]×100
この計算式で求めた実施例4の化合物の蛍光量子収率は0.65であった。
測定結果は図17に示す。図17の点線は対照の石英基板の蛍光量子収率であり、実線は前記4CzPBPに5wt%の{[Bppm]Ir[Bpypz]}をドープした単層膜の蛍光量子収率である。石英基板のみの場合は、そのものだけの励起光しかないので、励起光がそのまま通りフルスケールのスペクトルが現れる。しかし、[Bppm]Ir[Bpypz]を含有する4CzPBPの場合は、[Bppm]Ir[Bpypz]からの発光が生じるため325nmの励起エネルギーが減少する。このことが図17から読み取れる。減った励起光は450〜500nm付近の発光に費やされている。 Example 16
Compound of Example 4 Bis [2- (t-butyl) -5- (pyridin-2-yl) pyrimidine-N, C2 ′] [3- (pyridin-2-yl) -5- (t-butyl) pyrazole —N1, N ′] iridium complex {[Bppm] 2 Ir [Bpypz]} is represented by the following formula:
Figure 2008074831
The fluorescence quantum yield in the single layer film | membrane which 5 wt% doped 4CzPBP shown by was calculated | required.
Using an organic EL quantum efficiency measurement device (C9920-01 manufactured by Hamamatsu Photonics), a single layer film formed on a quartz substrate by a vacuum deposition method with a thickness of 50 nm is used to obtain an absolute emission quantum yield of the single layer film at an excitation wavelength of 325 nm. Was measured.
The measurement result is
(1) The area of a 325 nm absorption peak (mountain) of a blank quartz substrate is determined.
(2) The area of the absorption peak (mountain) at 325 nm of the single layer film on the quartz substrate is obtained.
(3) The area of a newly formed peak (emission peak) is obtained from the measurement result of the single layer film on the quartz substrate.
(4) The area obtained by subtracting (2) from (1) is spent to produce the area of the mountain (emission peak) where (3) was created.
From the values of (1) to (3), it can be obtained by the following equation.
Fluorescence quantum yield (%) = [area of (3) ÷ area of (1) −area of (2)] × 100
The fluorescence quantum yield of the compound of Example 4 determined by this calculation formula was 0.65.
The measurement results are shown in FIG. The dotted line in FIG. 17 is the fluorescence quantum yield of the control quartz substrate, and the solid line is the fluorescence quantum yield of the single-layer film in which 5 wt% of {[Bppm] 2 Ir [Bypz]} is doped into the 4CzPBP. In the case of only the quartz substrate, since there is only excitation light of itself, the excitation light passes through and a full-scale spectrum appears. However, [BPPM] For 4CzPBP containing 2 Ir [Bpypz] is, [BPPM] excitation energy 325nm for emission from 2 Ir [Bpypz] occurs is reduced. This can be read from FIG. The reduced excitation light is consumed for light emission in the vicinity of 450 to 500 nm.

実施例17および18
発光材料として、実施例4の化合物ビス[2−(t−ブチル)−5−(ピリジン−2−イル)ピリミジン−N,C2′][3−(ピリジン−2−イル)−5−(t−ブチル)ピラゾール−N1,N′]イリジウム錯体{[Bppm]Ir[Bpypz]}を用い、ホスト材料の4CzPBPに2wt%ドープした素子と5wt%ドープした素子を作製し、その性能を評価した。

Figure 2008074831
素子の構成
実施例17の素子(◆):[ITO/TPDPES:10wt%TBPAH(ホール注入材料)(20nm)/3DTAPBP(ホール輸送材料)(20nm)/4CzPBP(ホスト材料):5wt%(Bppm)Ir(Bpypz)(発光材料)(10nm)/BmPyPB(電子輸送材料)(50nm)/LiF(電子注入材料)(0.5nm)/Al(100nm)]
実施例18の素子(□):[ITO/TPDPES:10wt%TBPAH(20nm)/3DTAPBP(20nm)/4CzPBP:2wt%(Bppm)Ir(Bpypz)(10nm)/BmPyPB(50nm)/LiF(0.5nm)/Al(100nm)]
これらの素子の
エレクトロルミネッセンス(EL)スペクトルは図18に
エネルギーダイヤグラムは図19に
電流密度−電圧特性は図20に
輝度−電圧特性は図21に
視感効率−電圧特性は図22に
電流効率−電圧特性は図23に
それぞれ示す。
図20をみると、高電圧領域においても[Bppm]Ir[Bpypz]を5wt%用いた素子の方が、2wt%用いた素子に較べてキャリアバランスが取れており、多くの電流が入っていることがわかる。
図21をみると、5wt%用いた素子の方が、2wt%用いた素子よりも輝度と電圧の関係が良好で、そのぶん、輝度が高電圧側でも高くでている。
図22をみると、5wt%用いた素子の方が、2wt%用いた素子よりも低電圧駆動しているため、そのぶん視感効率も高くなっている。
作製した素子の100cd/mと1000cd/mの視感効率(P.E.)、量子効率(Q.E.)の値を表18に示す。
Figure 2008074831
表18は実施例化合物4の発光材料のドープ濃度を5wt%と2wt%の2種類でテストした結果である。この時の発光についてはELスペクトルで差はあまりないが、100cd/mと1000cd/mの視感効率と量子効率については表18のような差異がある。 Examples 17 and 18
As a luminescent material, the compound bis [2- (t-butyl) -5- (pyridin-2-yl) pyrimidine-N, C2 ′] [3- (pyridin-2-yl) -5- (t -Butyl) pyrazole-N1, N '] iridium complex {[Bppm] 2 Ir [Bpypz]} was used to fabricate 2 wt% and 5 wt% doped elements of 4CzPBP as the host material, and evaluated the performance. .
Figure 2008074831
Element Configuration Element 17 in Example 17 (♦): [ITO / TPDPES: 10 wt% TBPAH (hole injection material) (20 nm) / 3DTAPBP (hole transport material) (20 nm) / 4CzPBP (host material): 5 wt% (Bppm) 2 Ir (Bpypz) (light emitting material) (10 nm) / BmPyPB (electron transport material) (50 nm) / LiF (electron injection material) (0.5 nm) / Al (100 nm)]
Device (□) of Example 18: [ITO / TPDPES: 10 wt% TBPAH (20 nm) / 3DTAPBP (20 nm) / 4 CzPBP: 2 wt% (Bppm) 2 Ir (Bpypz) (10 nm) / BmPyPB (50 nm) / LiF (0 .5 nm) / Al (100 nm)]
Fig. 18 shows the electroluminescence (EL) spectrum of these elements, Fig. 19 shows the energy diagram, Fig. 20 shows the current density-voltage characteristics, Fig. 21 shows the luminance-voltage characteristics, and Fig. 22 shows the luminous efficiency-voltage characteristics. The voltage characteristics are shown in FIG.
In FIG. 20, even in the high voltage region, the element using 5 wt% of [Bppm] 2 Ir [Bpypz] has a better carrier balance than the element using 2 wt%, and more current is contained. I understand that.
In FIG. 21, the element using 5 wt% has a better relationship between luminance and voltage than the element using 2 wt%, and the luminance is higher even on the high voltage side.
In FIG. 22, since the element using 5 wt% is driven at a lower voltage than the element using 2 wt%, the luminous efficiency is probably higher.
Table 18 shows the values of luminous efficiency (PE) and quantum efficiency (QE) of 100 cd / m 2 and 1000 cd / m 2 of the manufactured element.
Figure 2008074831
Table 18 shows the results of testing the doping concentration of the light emitting material of Example Compound 4 with two types of 5 wt% and 2 wt%. The light emission at this time is not so different in the EL spectrum, but the visual efficiency and quantum efficiency of 100 cd / m 2 and 1000 cd / m 2 are different as shown in Table 18.

実施例19および20
発光材料として、実施例4の化合物ビス[2−(t−ブチル)−5−(ピリジン−2−イル)ピリミジン−N,C2′][3−(ピリジン−2−イル)−5−(t−ブチル)ピラゾール−N1,N′]イリジウム錯体{[Bppm]Ir[Bpypz]}を用い、ホール輸送層、発光層、電子輸送層の膜厚を変化させた素子を作製しその性能を評価した。
素子の構成
実施例17の素子(●):[ITO/TPDPES:10wt%TBPAH(ホール注入材料)(20nm)/3DTAPBP(ホール輸送材料)(20nm)/4CzPBP(ホスト材料):5wt%(Bppm)Ir(Bpypz)(発光材料)(10nm)/BmPyPB(電子輸送材料)(50nm)/LiF(電子注入材料)(0.5nm)/Al(100nm)]図中、デバイス(i)と表示
実施例19の素子(黒三角):[ITO/TPDPES:10wt%TBPAH(20nm)/3DTAPBP(20nm)/4CzPBP:5wt%(Bppm)Ir(Bpypz)(10nm)/BmPyPB(30nm)/LiF(0.5nm)/Al(100nm)]図中、デバイス(ii)と表示
実施例20の素子(□):[ITO/TPDPES:10wt%TBPAH(20nm)/3DTAPBP(40nm)/4CzPBP:5wt%(Bppm)Ir(Bpypz)(10nm)/BmPyPB(30nm)/LiF(0.5nm)/Al(100nm)]図中、デバイス(iii)と表示
これらの素子の
概略図を図24に
エレクトロルミネッセンス(EL)スペクトル図は25(点線は実施例17、破線は実施例19、実線は実施例20)に
エネルギーダイヤグラムは図26に
電流密度−電圧特性は図27に
輝度−電圧特性は図28に
視感効率−電圧特性は図29に
電流効率−電圧特性は図30に
それぞれ示す。
作製した素子の100cd/mと1000cd/mの視感効率(P.E.)、量子効率(Q.E.)と色度座標(CIE)の値を表19に示す。なお、色度座標は発光スペクトルの色純度を示しており、例えば、450nmにピークトップをもつ発光材料があるとすると、見かけ上はこのものの発光は青色ということになるが、このものが例えば470nmにセカンドピークをもつとすると、このものは色純度的には純水な青色とは言えず緑がかった青ということになる。

Figure 2008074831
表19は、実施例4の化合物を用いたホール輸送層、発光層、電子輸送層の膜厚を変化させ、その時の特性の変化を調べる結果を示す。この時、素子から出てくる発光に変化があったので、色度座標により、出てきた色の違いを明らかにしたのである。実施例17の素子では青色の光が見られるが、電子輸送層を分厚く蒸着しているための光の干渉が起こり長波長側にも発光が見られ純粋な青にはならなかった。実施例19の素子においては、発光層の膜厚を電子輸送層の膜厚と同じにすることにより、実施例20の素子でホール輸送層を分厚くすることにより、光の干渉効果が抑えられ、長波長側の発光が減少し、そのため色度座標に変化が現れている。 Examples 19 and 20
As a luminescent material, the compound bis [2- (t-butyl) -5- (pyridin-2-yl) pyrimidine-N, C2 ′] [3- (pyridin-2-yl) -5- (t -Butyl) pyrazole-N1, N ′] iridium complex {[Bppm] 2 Ir [Bpypz]} was used to fabricate devices with varying thicknesses of the hole transport layer, light-emitting layer, and electron transport layer, and evaluate their performance. did.
Device Configuration Device of Example 17 (●): [ITO / TPDPES: 10 wt% TBPAH (hole injection material) (20 nm) / 3DTAPBP (hole transport material) (20 nm) / 4CzPBP (host material): 5 wt% (Bppm) 2 Ir (Bpypz) (light emitting material) (10 nm) / BmPyPB (electron transport material) (50 nm) / LiF (electron injection material) (0.5 nm) / Al (100 nm)] In the figure, the device (i) is displayed. Device of Example 19 (black triangle): [ITO / TPDPES: 10 wt% TBPAH (20 nm) / 3DTAPBP (20 nm) / 4 CzPBP: 5 wt% (Bppm) 2 Ir (Bpypz) (10 nm) / BmPyPB (30 nm) / LiF (0 .5 nm) / Al (100 nm)] of the device (ii) and display example 20 Child (□): [ITO / TPDPES : 10wt% TBPAH (20nm) / 3DTAPBP (40nm) / 4CzPBP: 5wt% (Bppm) 2 Ir (Bpypz) (10nm) / BmPyPB (30nm) / LiF (0.5nm) / Al (100 nm)] In the figure, device (iii) is displayed. Schematic diagram of these elements is shown in FIG. 24. The electroluminescence (EL) spectrum diagram is 25 (the dotted line is Example 17, the broken line is Example 19, and the solid line is Example) Fig. 26 shows the energy diagram, Fig. 26 shows the current density-voltage characteristics, Fig. 27 shows the luminance-voltage characteristics, Fig. 28 shows the luminous efficiency-voltage characteristics, and Fig. 29 shows the current efficiency-voltage characteristics.
Table 19 shows the values of luminous efficiency (PE), quantum efficiency (QE), and chromaticity coordinates (CIE) at 100 cd / m 2 and 1000 cd / m 2 of the manufactured element. Note that the chromaticity coordinates indicate the color purity of the emission spectrum. For example, if there is a light emitting material having a peak top at 450 nm, the light emission of this material appears to be blue, but this is, for example, 470 nm. If it has a second peak, it cannot be said that it is pure water blue in terms of color purity, and it is greenish blue.
Figure 2008074831
Table 19 shows the results of examining the change in characteristics at that time by changing the film thickness of the hole transport layer, the light emitting layer, and the electron transport layer using the compound of Example 4. At this time, there was a change in the light emission coming out of the element, so the difference in the color that came out was clarified by the chromaticity coordinates. In the device of Example 17, blue light was seen, but light interference occurred because the electron transport layer was deposited in a thick thickness, and light emission was seen also on the long wavelength side, and it did not become pure blue. In the element of Example 19, by making the film thickness of the light emitting layer the same as the film thickness of the electron transport layer, by thickening the hole transport layer in the element of Example 20, the light interference effect can be suppressed, The light emission on the long wavelength side is reduced, so that a change appears in the chromaticity coordinates.

実施例21、22および23
発光材料として、実施例4の化合物ビス[2−(t−ブチル)−5−(ピリジン−2−イル)ピリミジン−N,C2′][3−(ピリジン−2−イル)−5−(t−ブチル)ピラゾール−N1,N′]イリジウム錯体{[Bppm]Ir[Bpypz]}を用い、電子輸送層に下記式

Figure 2008074831
で示される電子輸送材料に変化させた素子を作製しその性能を評価した。
実施例21の素子(●):[ITO/TPDPES:10wt%TBPAH(20nm)/3DTAPBP(40nm)/4CzPBP:5wt%(Bppm)Ir(Bpypz)(10nm)/BmPyPB(30nm)/LiF(0.5nm)/Al(100nm)]
実施例22の素子(黒三角):[ITO/TPDPES:10wt%TBPAH(20nm)/3DTAPBP(40nm)/4CzPBP:5wt%(Bppm)Ir(Bpypz)(10nm)/BmPyPMB(30nm)/LiF(0.5nm)/Al(100nm)]
実施例23の素子(□):[ITO/TPDPES:10wt%TBPAH(20nm)/3DTAPBP(40nm)/4CzPBP:5wt%(Bppm)Ir(Bpypz)(10nm)/BpPyPMB(30nm)/LiF(0.5nm)/Al(100nm)]
これらの素子の
エレクトロルミネッセンス(EL)スペクトル(図中、点線は実施例21、破線は実施例22、実線は実施例23)は図31に
電流密度−電圧特性は図32に
輝度−電圧特性は図33に
視感効率−電圧特性は図34に
電流効率−電圧特性は図35に
それぞれ示す。
作製した素子の100cd/mと1000cd/mの視感効率(P.E.)、量子効率(Q.E.)と色度座標(CIE)の値を表20に示す。
Figure 2008074831
表20は、電子輸送材料をBmPyPBからBmPyPMB、BpPyPMBに変え、効率の変化を調べている。ここで電子輸送材料を変えることで、さらに光の干渉効果が抑えられており、実施例23では純青に近い発光が得られるようになった。発光色が青色に近づいたことで100cd/mと1000cd/mでの効率は下がっているが、発光色は向上している。
ELの発光スペクトルについて語る場合、発光ピークがどこにあるかは非常に重要であるが、それ以外にも色純度が大きな要因を占めることがあり、色純度について考察も大切である。 Examples 21, 22, and 23
As a luminescent material, the compound bis [2- (t-butyl) -5- (pyridin-2-yl) pyrimidine-N, C2 ′] [3- (pyridin-2-yl) -5- (t -Butyl) pyrazole-N1, N ′] iridium complex {[Bppm] 2 Ir [Bpypz]} and the following formula for the electron transport layer:
Figure 2008074831
The device was changed to the electron transport material shown by and the performance was evaluated.
Device of Example 21 (●): [ITO / TPDPES: 10 wt% TBPAH (20 nm) / 3DTAPBP (40 nm) / 4 CzPBP: 5 wt% (Bppm) 2 Ir (Bpypz) (10 nm) / BmPyPB (30 nm) / LiF (0 .5 nm) / Al (100 nm)]
Device of Example 22 (black triangle): [ITO / TPDPES: 10 wt% TBPAH (20 nm) / 3DTAPBP (40 nm) / 4 CzPBP: 5 wt% (Bppm) 2 Ir (Bpypz) (10 nm) / BmPyPMB (30 nm) / LiF ( 0.5 nm) / Al (100 nm)]
Device (□) of Example 23: [ITO / TPDPES: 10 wt% TBPAH (20 nm) / 3DTAPBP (40 nm) / 4 CzPBP: 5 wt% (Bppm) 2 Ir (Bpypz) (10 nm) / BpPyPMB (30 nm) / LiF (0 .5 nm) / Al (100 nm)]
Electroluminescence (EL) spectra of these elements (in the figure, the dotted line is Example 21, the broken line is Example 22, and the solid line is Example 23) are shown in FIG. 31 and the current density-voltage characteristics are shown in FIG. FIG. 33 shows luminous efficiency-voltage characteristics, and FIG. 35 shows current efficiency-voltage characteristics.
Table 20 shows the values of luminous efficiency (PE), quantum efficiency (QE), and chromaticity coordinates (CIE) at 100 cd / m 2 and 1000 cd / m 2 of the manufactured element.
Figure 2008074831
Table 20 examines changes in efficiency by changing the electron transport material from BmPyPB to BmPyPMB and BpPyPMB. Here, by changing the electron transport material, the light interference effect is further suppressed, and in Example 23, light emission close to pure blue can be obtained. While luminescent color is lowered in efficiency at 100 cd / m 2 and 1000 cd / m 2 by approaching the blue emission color is improved.
When talking about the emission spectrum of EL, it is very important where the emission peak is, but color purity may occupy a large factor other than that, and consideration of color purity is also important.

ビス[2−(t−ブチル)−5−(ピリジン−2−イル)ピリミジン−N,C2′](ジピバロイルメタン)イリジウム錯体{[Bppm]Ir[dpm]}のPLスペクトルを示す。図中Φ=0.78という表示は、FIrpicの量子収率を1.00と見積ったときの本化合物の量子収率を示している。The PL spectrum of bis [2- (t-butyl) -5- (pyridin-2-yl) pyrimidine-N, C2 ′] (dipivaloylmethane) iridium complex {[Bppm] 2 Ir [dpm]} is shown. . The notation Φ = 0.78 in the figure indicates the quantum yield of the present compound when the FIrpic quantum yield is estimated to be 1.00. ビス[2−(t−ブチル)−5−(ピリジン−2−イル)ピリミジン−N,C2′](2−ピコリン酸)イリジウム錯体{[Bppm]Ir[pic]}の紫外(UV)−可視(Vis)領域吸収とPLスペクトルを示す。図中Φ=0.76も図1と同様の相対的量子収率である。図3〜12のΦは以下同様である。 実線:クロロホルム溶液(10−5mol/L) 破線:PMMA分散膜(Ir錯体1.0wt%をポリメチルメタクリレートにドープしたもの)Bis [2- (t-butyl) -5- (pyridin-2-yl) pyrimidine-N, C2 ′] (2-picolinic acid) iridium complex {[Bppm] 2 Ir [pic]} UV (UV) − Visible (Vis) region absorption and PL spectra are shown. In the figure, Φ = 0.76 is a relative quantum yield similar to that in FIG. The same applies to Φ in FIGS. Solid line: Chloroform solution (10 −5 mol / L) Broken line: PMMA dispersion film (Ir complex 1.0 wt% doped with polymethyl methacrylate) ビス[2−(t−ブチル)−5−(ピリジン−2−イル)ピリミジン−N,C2′]〔2−(ピリジン−2−イル)イミダゾール−N1,N′〕イリジウム錯体{[Bppm]Ir[pyim]}の紫外(UV)−可視(Vis)領域吸収とPLスペクトルを示す。 実線:クロロホルム溶液(10−5mol/L) 破線:PMMA分散膜(Ir錯体1.0wt%をポリメチルメタクリレートにドープしたもの)Bis [2- (t-butyl) -5- (pyridin-2-yl) pyrimidine-N, C2 ′] [2- (pyridin-2-yl) imidazole-N1, N ′] iridium complex {[Bppm] 2 Ir [pyim]} shows ultraviolet (UV) -visible (Vis) region absorption and PL spectrum. Solid line: Chloroform solution (10 −5 mol / L) Broken line: PMMA dispersion film (Ir complex 1.0 wt% doped with polymethyl methacrylate) ビス[2−(t−ブチル)−5−(ピリジン−2−イル)ピリミジン−N,C2′][3−(ピリジン−2−イル)−5−(t−ブチル)ピラゾール−N1−N′]イリジウム錯体{[Bppm]Ir[Bpypz]}の紫外(UV)−可視(Vis)領域吸収とPLスペクトルを示す。 実線:クロロホルム溶液(10−5mol/L) 破線:PMMA分散膜(Ir錯体1.0wt%をポリメチルメタクリレートにドープしたもの)Bis [2- (t-butyl) -5- (pyridin-2-yl) pyrimidine-N, C2 ′] [3- (pyridin-2-yl) -5- (t-butyl) pyrazole-N1-N ′ ] The ultraviolet (UV) -visible (Vis) region absorption and PL spectrum of an iridium complex {[Bppm] 2 Ir [Bpypz]} are shown. Solid line: Chloroform solution (10 −5 mol / L) Broken line: PMMA dispersion film (Ir complex 1.0 wt% doped with polymethyl methacrylate) ビス{N−メチル−2−[2−(t−ブチル)ピリミジン−5−イル]イミダゾール−N,C2′}(ジピバロイルメタン)イリジウム錯体{[PmIm]Ir[dpm]}のPLスペクトルを示す。PL of bis {N-methyl-2- [2- (t-butyl) pyrimidin-5-yl] imidazole-N, C2 ′} (dipivaloylmethane) iridium complex {[PmIm] 2 Ir [dpm]} The spectrum is shown. ビス{N−メチル−2−[2−(t−ブチル)ピリミジン−5−イル]イミダゾール−N,C2′}(2−ピコリン酸)イリジウム錯体{[PmIm]Ir[pic]}の紫外(UV)−可視(Vis)領域吸収とPLスペクトルを示す。 実線:クロロホルム溶液(10−5mol/L) 破線:PMMA分散膜(Ir錯体1.0wt%をポリメチルメタクリレートにドープしたもの)UV of bis {N-methyl-2- [2- (t-butyl) pyrimidin-5-yl] imidazole-N, C2 ′} (2-picolinic acid) iridium complex {[PmIm] 2 Ir [pic]} UV) -visible (Vis) region absorption and PL spectrum. Solid line: Chloroform solution (10 −5 mol / L) Broken line: PMMA dispersion film (Ir complex 1.0 wt% doped with polymethyl methacrylate) ビス{N−メチル−2−[2−(t−ブチル)ピリミジン−5−イル]イミダゾール−N,C2′}[2−(ピリジン−2−イル)イミダゾール−N1,N′]イリジウム錯体{[PmIm]Ir[pyim]}のPLスペクトルを示す。Bis {N-methyl-2- [2- (t-butyl) pyrimidin-5-yl] imidazole-N, C2 ′} [2- (pyridin-2-yl) imidazole-N1, N ′] iridium complex {[ PmIm] 2 Ir [pyim]} shows the PL spectrum. ビス{N−メチル−2−[2−(t−ブチル)ピリミジン−5−イル]イミダゾール−N,C2′}[3−(ピリジン−2−イル)−5−(t−ブチル)ピリダジン−N1,N′]イリジウム錯体{[PmIm]Ir[Bpypz]の紫外(UV)−可視(Vis)領域吸収とPLスペクトルを示す。 実線:クロロホルム溶液(10−5mol/L) 破線:PMMA分散膜(Ir錯体1.0wt%をポリメチルメタクリレートにドープしたもの)Bis {N-methyl-2- [2- (t-butyl) pyrimidin-5-yl] imidazole-N, C2 '} [3- (pyridin-2-yl) -5- (t-butyl) pyridazine-N1 , N ′] iridium complex {[PmIm] 2 Ir [Bpypz] shows ultraviolet (UV) -visible (Vis) region absorption and PL spectrum. Solid line: Chloroform solution (10 −5 mol / L) Broken line: PMMA dispersion film (Ir complex 1.0 wt% doped with polymethyl methacrylate) fac−トリス{N−メチル−2−[2−(t−ブチル)ピリミジン−5−イル)]イミダゾール−N,C2′}イリジウム錯体{fac−Ir[PmIm]}の紫外(UV)−可視(Vis)領域吸収とPLスペクトルを示す。 実線:クロロホルム溶液(10−5mol/L) 破線:PMMA分散膜(Ir錯体1.0wt%をポリメチルメタクリレートにドープしたもの)fac-Tris {N-methyl-2- [2- (t-butyl) pyrimidin-5-yl)] imidazole-N, C2 '} iridium complex {fac-Ir [PmIm] 3 } in the ultraviolet (UV) -visible (Vis) region absorption and PL spectrum are shown. Solid line: Chloroform solution (10 −5 mol / L) Broken line: PMMA dispersion film (Ir complex 1.0 wt% doped with polymethyl methacrylate) ビス{N−[2−(t−ブチル)ピリミジン−5−イル]ピラゾール−N,C2′}[3−(ピリミジン−2−イル)−5−(t−ブチル)ピリダジン−N1,N′]イリジウム錯体{[PmPz]Ir[Bpypz]}の紫外(UV)−可視(Vis)領域吸収とPLスペクトルを示す。 実線:クロロホルム溶液(10−5mol/L) 破線:PMMA分散膜(Ir錯体1.0wt%をポリメチルメタクリレートにドープしたもの)Bis {N- [2- (t-butyl) pyrimidin-5-yl] pyrazole-N, C2 '} [3- (pyrimidin-2-yl) -5- (t-butyl) pyridazine-N1, N'] The ultraviolet (UV) -visible (Vis) area absorption and PL spectrum of an iridium complex {[PmPz] 2 Ir [Bpypz]} are shown. Solid line: Chloroform solution (10 −5 mol / L) Broken line: PMMA dispersion film (Ir complex 1.0 wt% doped with polymethyl methacrylate) ビス{N−[2−(t−ブチル)ピリミジン−5−イル]ピラゾール−N,C2′}[2−(t−ブチル)−5−(ピリジン−2−イル)−5−(t−ブチル)ピリミジン−N1′,N]イリジウム錯体{[PmPz]Ir[Bppm]}の紫外(UV)−可視(Vis)領域吸収とPLスペクトルを示す。 実線:クロロホルム溶液(10−5mol/L) 破線:PMMA分散膜(Ir錯体1.0wt%をポリメチルメタクリレートにドープしたもの)Bis {N- [2- (t-butyl) pyrimidin-5-yl] pyrazole-N, C2 '} [2- (t-butyl) -5- (pyridin-2-yl) -5- (t-butyl) ) Absorption (UV) -visible (Vis) region and PL spectrum of pyrimidine-N1 ′, N] iridium complex {[PmPz] 2 Ir [Bppm]}. Solid line: Chloroform solution (10 −5 mol / L) Broken line: PMMA dispersion film (Ir complex 1.0 wt% doped with polymethyl methacrylate) fac(facial)−トリス{N−[2−(t−ブチル)ピリミジン−5−イル]ピラゾール−N,C2′}イリジウム錯体{fac−Ir[PmPz]}の紫外(UV)−可視(Vis)領域吸収とPLスペクトルを示す。 実線:クロロホルム溶液(10−5mol/L) 破線:PMMA分散膜(Ir錯体1.0wt%をポリメチルメタクリレートにドープしたもの)fac (facial) -tris {N- [2- (t-butyl) pyrimidin-5-yl] pyrazole-N, C2 '} iridium complex {fac-Ir [PmPz] 3 } in ultraviolet (UV) -visible (Vis) ) Region absorption and PL spectrum are shown. Solid line: Chloroform solution (10 −5 mol / L) Broken line: PMMA dispersion film (Ir complex 1.0 wt% doped with polymethyl methacrylate) 実施例2のビス[2−(t−ブチル)−5−(ピリジン−2−イル)ピリミジン−N,C2′](2−ピコリン酸)イリジウム錯体{[Bppm]Ir[pic]}の真空TGAを示す。Vacuum of bis [2- (t-butyl) -5- (pyridin-2-yl) pyrimidine-N, C2 ′] (2-picolinic acid) iridium complex {[Bppm] 2 Ir [pic]} of Example 2 TGA is shown. 実施例4の化合物ビス[2−(t−ブチル)−5−(ピリジン−2−イル)ピリミジン−N,C2′][3−(ピリジン−2−イル)−5−(t−ブチル)ピラゾールN1,N′]イリジウム錯体{[Bppm]Ir[Bpypz]}の真空TGAを示す。Compound of Example 4 Bis [2- (t-butyl) -5- (pyridin-2-yl) pyrimidine-N, C2 ′] [3- (pyridin-2-yl) -5- (t-butyl) pyrazole 2 shows a vacuum TGA of an N1, N ′] iridium complex {[Bppm] 2 Ir [Bpypz]}. 実施例4の化合物ビス[2−(t−ブチル)−5−(ピリジン−2−イル)ピリミジン−N,C2′][3−(ピリジン−2−イル)−5−(t−ブチル)ピラゾールN1,N′]イリジウム錯体{[Bppm]Ir[Bpypz]}のクロロホルム溶液(1.0×10−5M)での紫外−可視スペクトル、発光スペクトルを示す。Compound of Example 4 Bis [2- (t-butyl) -5- (pyridin-2-yl) pyrimidine-N, C2 ′] [3- (pyridin-2-yl) -5- (t-butyl) pyrazole The ultraviolet-visible spectrum and emission spectrum in a chloroform solution (1.0 × 10 −5 M) of N1, N ′] iridium complex {[Bppm] 2 Ir [Bpypz]} are shown. 実施例4の化合物ビス[2−(t−ブチル)−5−(ピリジン−2−イル)ピリミジン−N,C2′][3−(ピリジン−2−イル)−5−(t−ブチル)ピラゾールN1,N′]イリジウム錯体{[Bppm]Ir[Bpypz]}の薄膜状(50nm)での紫外−可視スペクトル、発光スペクトルを示す。Compound of Example 4 Bis [2- (t-butyl) -5- (pyridin-2-yl) pyrimidine-N, C2 ′] [3- (pyridin-2-yl) -5- (t-butyl) pyrazole An ultraviolet-visible spectrum and an emission spectrum of a thin film (50 nm) of an N1, N ′] iridium complex {[Bppm] 2 Ir [Bpypz]} are shown. 実施例4の化合物ビス[2−(t−ブチル)−5−(ピリジン−2−イル)ピリミジン−N,C2′][3−(ピリジン−2−イル)−5−(t−ブチル)ピラゾールN1,N′]イリジウム錯体{[Bppm]Ir[Bpypz]}の蛍光量子収率を示す。蛍光量子収率は、PL強度から求めることができる。Compound of Example 4 Bis [2- (t-butyl) -5- (pyridin-2-yl) pyrimidine-N, C2 ′] [3- (pyridin-2-yl) -5- (t-butyl) pyrazole N1, N '] iridium complex indicating the fluorescence quantum yield of {[Bppm] 2 Ir [Bpypz ]}. The fluorescence quantum yield can be determined from the PL intensity. 実施例17および18のエレクトロルミネッセンス(EL)スペクトルを示す。2 shows the electroluminescence (EL) spectra of Examples 17 and 18. 実施例17および18のエネルギーダイヤグラムを示す。The energy diagram of Example 17 and 18 is shown. 実施例17および18の電流密度−電圧特性を示す。The current density-voltage characteristics of Examples 17 and 18 are shown. 実施例17および18の輝度−電圧特性を示す。The luminance-voltage characteristics of Examples 17 and 18 are shown. 実施例17および18の視感効率−電圧特性を示す。The luminous efficiency-voltage characteristic of Examples 17 and 18 is shown. 実施例17および18の電流効率−電圧特性を示す。The current efficiency-voltage characteristics of Examples 17 and 18 are shown. 実施例17、19および20の概略図を示す。The schematic of Examples 17, 19 and 20 is shown. 実施例17、19および20のエレクトロルミネッセンス(EL)スペクトルを示す。The electroluminescence (EL) spectrum of Examples 17, 19 and 20 is shown. 実施例17、19および20のエネルギーダイヤグラムを示す。The energy diagrams of Examples 17, 19 and 20 are shown. 実施例17、19および20の電流密度−電圧特性を示す。The current density-voltage characteristics of Examples 17, 19 and 20 are shown. 実施例17、19および20の輝度−電圧特性を示す。The luminance-voltage characteristics of Examples 17, 19 and 20 are shown. 実施例17、19および20の視感効率−電圧特性を示す。The luminous efficiency-voltage characteristics of Examples 17, 19 and 20 are shown. 実施例17、19および20の電流効率−電圧特性を示す。The current efficiency-voltage characteristics of Examples 17, 19 and 20 are shown. 実施例21、22および23のエレクトロルミネッセンス(EL)スペクトルを示す。2 shows the electroluminescence (EL) spectra of Examples 21, 22, and 23. 実施例17、19および20の電流密度−電圧特性を示す。The current density-voltage characteristics of Examples 17, 19 and 20 are shown. 実施例17、19および20の輝度−電圧特性を示す。The luminance-voltage characteristics of Examples 17, 19 and 20 are shown. 実施例17、19および20の視感効率−電圧特性を示す。The luminous efficiency-voltage characteristics of Examples 17, 19 and 20 are shown. 実施例17、19および20の電流効率−電圧特性を示す。The current efficiency-voltage characteristics of Examples 17, 19 and 20 are shown. 本発明における有機エレクトロルミネッセンス素子の1例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の1例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の1例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の1例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の1例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の1例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の1例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の1例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の1例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の1例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の1例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の1例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の1例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の1例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の1例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention.

符号の説明Explanation of symbols

1 基板
2 陽極
3 発光層
4 陰極
5 正孔輸送層
6 電子輸送層
7 正孔注入層
8 電子注入層
9 正孔ブロック層
DESCRIPTION OF SYMBOLS 1 Substrate 2 Anode 3 Light emitting layer 4 Cathode 5 Hole transport layer 6 Electron transport layer 7 Hole injection layer 8 Electron injection layer 9 Hole blocking layer

Claims (3)

下記一般式(I)
Figure 2008074831
{式中、Yは、
Figure 2008074831
よりなる群から選ばれた複素環基であり、〔A〕は、
Figure 2008074831
よりなる群から選ばれた配位子であり、R〜R34は、水素およびC1〜4のアルキル基よりなる群から選ばれた基である。}
で示されるピリミジニル基含有イリジウム錯体。
The following general formula (I)
Figure 2008074831
{Where Y is
Figure 2008074831
A heterocyclic group selected from the group consisting of: [A] is
Figure 2008074831
And R 1 to R 34 are groups selected from the group consisting of hydrogen and C 1-4 alkyl groups. }
The pyrimidinyl group containing iridium complex shown by these.
請求項1記載のピリミジニル基含有イリジウム錯体よりなる発光材料。   A light emitting material comprising the pyrimidinyl group-containing iridium complex according to claim 1. 請求項1記載のピリミジニル基含有イリジウム錯体を用いた有機エレクトロルミネッセンス素子(有機EL素子)。   An organic electroluminescence device (organic EL device) using the pyrimidinyl group-containing iridium complex according to claim 1.
JP2007117238A 2006-08-22 2007-04-26 Novel pyrimidinyl group-containing iridium complex, light emitting material comprising the same, and organic EL device using the same Active JP4648922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007117238A JP4648922B2 (en) 2006-08-22 2007-04-26 Novel pyrimidinyl group-containing iridium complex, light emitting material comprising the same, and organic EL device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006225766 2006-08-22
JP2007117238A JP4648922B2 (en) 2006-08-22 2007-04-26 Novel pyrimidinyl group-containing iridium complex, light emitting material comprising the same, and organic EL device using the same

Publications (2)

Publication Number Publication Date
JP2008074831A true JP2008074831A (en) 2008-04-03
JP4648922B2 JP4648922B2 (en) 2011-03-09

Family

ID=39347252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007117238A Active JP4648922B2 (en) 2006-08-22 2007-04-26 Novel pyrimidinyl group-containing iridium complex, light emitting material comprising the same, and organic EL device using the same

Country Status (1)

Country Link
JP (1) JP4648922B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103339137A (en) * 2010-11-22 2013-10-02 索尔维公司 A metal complex comprising a ligand having a combination of donor-acceptor substituents
JP2013237662A (en) * 2012-04-20 2013-11-28 Semiconductor Energy Lab Co Ltd Phosphorescent organometallic iridium complex, light-emitting element, light-emitting device, electronic device, and lighting device
US20140167001A1 (en) * 2012-12-17 2014-06-19 Lg Display Co., Ltd. Blue phosphorescence compound and organic light emitting diode comprising the same
JP2014116633A (en) * 2008-11-17 2014-06-26 Semiconductor Energy Lab Co Ltd Light-emitting element, light-emitting device, lighting device and electronic apparatus
US20150123082A1 (en) * 2013-11-07 2015-05-07 National Tsing Hua University Organometallic compound, organic light-emitting device, and lighting device employing the same
US9373798B2 (en) 2012-09-07 2016-06-21 Samsung Display Co., Ltd. Organometallic compound and organic light-emitting device including the same
US10411199B2 (en) 2012-12-12 2019-09-10 Samsung Electronics Co., Ltd. Organometallic complexes, and organic electroluminescent device and display using the same
US11882759B2 (en) * 2018-04-13 2024-01-23 Universal Display Corporation Organic electroluminescent materials and devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311405A (en) * 2003-03-27 2004-11-04 Konica Minolta Holdings Inc Organic electroluminescent element, display device, and lighting system
JP2005068110A (en) * 2003-08-27 2005-03-17 Mitsubishi Chemicals Corp Organometallic complex, luminescent material and organic electroluminescent element
JP2006182921A (en) * 2004-12-28 2006-07-13 Konica Minolta Holdings Inc Material for organic el element, organic el element, display device and lighting device
JP2006213686A (en) * 2005-02-07 2006-08-17 Idemitsu Kosan Co Ltd Metal complex compound and organic electroluminescent device using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311405A (en) * 2003-03-27 2004-11-04 Konica Minolta Holdings Inc Organic electroluminescent element, display device, and lighting system
JP2005068110A (en) * 2003-08-27 2005-03-17 Mitsubishi Chemicals Corp Organometallic complex, luminescent material and organic electroluminescent element
JP2006182921A (en) * 2004-12-28 2006-07-13 Konica Minolta Holdings Inc Material for organic el element, organic el element, display device and lighting device
JP2006213686A (en) * 2005-02-07 2006-08-17 Idemitsu Kosan Co Ltd Metal complex compound and organic electroluminescent device using the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014116633A (en) * 2008-11-17 2014-06-26 Semiconductor Energy Lab Co Ltd Light-emitting element, light-emitting device, lighting device and electronic apparatus
JP2013545754A (en) * 2010-11-22 2013-12-26 ソルヴェイ(ソシエテ アノニム) Metal complexes containing ligands with a combination of donor and acceptor substituents
CN103339137A (en) * 2010-11-22 2013-10-02 索尔维公司 A metal complex comprising a ligand having a combination of donor-acceptor substituents
JP2013237662A (en) * 2012-04-20 2013-11-28 Semiconductor Energy Lab Co Ltd Phosphorescent organometallic iridium complex, light-emitting element, light-emitting device, electronic device, and lighting device
US9373798B2 (en) 2012-09-07 2016-06-21 Samsung Display Co., Ltd. Organometallic compound and organic light-emitting device including the same
US9997728B2 (en) 2012-09-07 2018-06-12 Samsung Display Co., Ltd. Organometallic compound and organic light-emitting device including the same
US10411199B2 (en) 2012-12-12 2019-09-10 Samsung Electronics Co., Ltd. Organometallic complexes, and organic electroluminescent device and display using the same
US20140167001A1 (en) * 2012-12-17 2014-06-19 Lg Display Co., Ltd. Blue phosphorescence compound and organic light emitting diode comprising the same
US10153440B2 (en) * 2012-12-17 2018-12-11 Lg Display Co., Ltd. Blue phosphorescence compound and organic light emitting diode comprising the same
KR20140078405A (en) * 2012-12-17 2014-06-25 엘지디스플레이 주식회사 Blue phosphorescence composition and organic light emitting diode comprising the same
KR102073138B1 (en) * 2012-12-17 2020-02-04 엘지디스플레이 주식회사 Blue phosphorescence composition and organic light emitting diode comprising the same
US9865824B2 (en) 2013-11-07 2018-01-09 Industrial Technology Research Institute Organometallic compound, organic light-emitting device, and lighting device employing the same
US20150123082A1 (en) * 2013-11-07 2015-05-07 National Tsing Hua University Organometallic compound, organic light-emitting device, and lighting device employing the same
US11882759B2 (en) * 2018-04-13 2024-01-23 Universal Display Corporation Organic electroluminescent materials and devices

Also Published As

Publication number Publication date
JP4648922B2 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
JP5325402B2 (en) Novel bicarbazole derivative, host material and organic electroluminescence device using the same
TWI429650B (en) Organic electroluminescent elements
JP5063992B2 (en) Novel di (pyridylphenyl) derivative, electron transport material comprising the same, and organic electroluminescence device including the same
EP2447335B1 (en) Compound for organic photoelectric device, organic light emitting diode including the same, and display including the organic light emitting diode
JP5207760B2 (en) Novel pyrimidine-based or triazine-based derivative, electron transport material comprising the same, and organic electroluminescence device including the same
TWI635091B (en) Organometallic iridium complex, light-emitting element, light-emitting device, electronic device, and lighting device
JP2020102638A (en) Light-emitting element, light-emitting device, electronic device and lighting device
KR102526587B1 (en) Light-emitting element, light-emitting device, lighting device, and electronic device
JP6407925B2 (en) Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
TWI538274B (en) Organic light field components
JP6386299B2 (en) Organic compounds for light emitting devices
TWI465547B (en) Light-emitting element and light-emitting device
JP4648922B2 (en) Novel pyrimidinyl group-containing iridium complex, light emitting material comprising the same, and organic EL device using the same
CN107501330A (en) Metal complex comprising azabenzimidazoles carbene ligands and its purposes in OLED
JP2008120696A (en) Novel tripyridylphenyl derivative, electron-transporting material comprising the same and organoelectroluminescent element comprising the same
JP2005097301A (en) 4,4&#39;-bis(carbazol-9-yl)-biphenyl silicon compound and organic electroluminescent element utilizing the same
TW201202195A (en) Organic electroluminescent element
JP6341772B2 (en) Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
JP5495578B2 (en) Novel triarylphosphine oxide derivative, host material comprising the same, and organic electroluminescence device containing the same
JP5201956B2 (en) Novel di (pyridylphenyl) derivative, electron transport material comprising the same, and organic electroluminescence device including the same
JP5086608B2 (en) Novel di (phenanthroline) derivative, electron transport material comprising the same, and organic electroluminescence device including the same
JP5220429B2 (en) NOVEL DIPYLENE DERIVATIVE, ELECTRON TRANSPORT MATERIAL, LIGHT EMITTING MATERIAL AND ORGANIC ELECTROLUMINESCENT DEVICE CONTAINING THE SAME
KR20150058080A (en) Novel electroluminescent compound and organic electroluminescent device comprising same
KR20160021424A (en) Novel compound and organic electroluminescent device comprising same
JPWO2005003095A1 (en) Metal complex compound and organic electroluminescence device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4648922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250