JP2008073098A - Bioimplant - Google Patents

Bioimplant Download PDF

Info

Publication number
JP2008073098A
JP2008073098A JP2006252933A JP2006252933A JP2008073098A JP 2008073098 A JP2008073098 A JP 2008073098A JP 2006252933 A JP2006252933 A JP 2006252933A JP 2006252933 A JP2006252933 A JP 2006252933A JP 2008073098 A JP2008073098 A JP 2008073098A
Authority
JP
Japan
Prior art keywords
calcium phosphate
antibacterial agent
coating
coating film
crystallinity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006252933A
Other languages
Japanese (ja)
Other versions
JP5069888B2 (en
Inventor
Takao Hotokebuchi
孝夫 佛淵
Iwao Noda
岩男 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saga University NUC
Kyocera Medical Corp
Original Assignee
Saga University NUC
Kyocera Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saga University NUC, Kyocera Medical Corp filed Critical Saga University NUC
Priority to JP2006252933A priority Critical patent/JP5069888B2/en
Priority to US12/440,430 priority patent/US10004604B2/en
Priority to CN200780033447.7A priority patent/CN101511399B/en
Priority to PCT/JP2007/066119 priority patent/WO2008029612A1/en
Publication of JP2008073098A publication Critical patent/JP2008073098A/en
Application granted granted Critical
Publication of JP5069888B2 publication Critical patent/JP5069888B2/en
Priority to US16/017,309 priority patent/US10610614B2/en
Priority to US16/823,175 priority patent/US11278642B2/en
Priority to US17/673,651 priority patent/US11998659B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30667Features concerning an interaction with the environment or a particular use of the prosthesis
    • A61F2002/30677Means for introducing or releasing pharmaceutical products, e.g. antibiotics, into the body

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bioimplant capable of controlling the rate of release of an antibacterial agent and an antibiotic from a coating layer. <P>SOLUTION: The bioimplant is formed with a disappearing coating film consisting of a calcium phosphate-containing material having a crystallinity of 90% or less at a prescribed area of the implant to make the disappearing coating film contain the antibacterial agent or the antibiotic. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、生体インプラントの消失性コーティング、更に詳細には、抗菌剤又は抗菌薬を含有させた消失性コーティング被覆生体インプラントに関する。   The present invention relates to an evanescent coating for a bioimplant, and more particularly, to an evanescent coating-coated bioimplant containing an antibacterial agent or an antibacterial agent.

骨傷害/疾病双方の治療に生体インプラント装置を使用することは、活動的な人口及び老人人口が増加すると共に絶えず拡大している。骨破砕及び骨除去のための骨代替物の使用又は脆弱化した骨のためのサポートの使用には、人工骨代替物が、生来骨とともに、強い関節又は骨を形成して、構造の完全性を保障することを必要とする。骨は隣接構造中へ、特に隣接構造が、多孔質であり、骨に匹敵する場合に、その中へ成長していくことができるけれども、骨が、多孔質構造中へ成長していけるだけではなく、中に成長した生来の骨と生体インプラント装置との間の強い接着を可能にする形での結合があらねばならないとされる。   The use of bioimplant devices for the treatment of both bone injuries / diseases is constantly expanding as the active and aging populations increase. For the use of bone substitutes for bone crushing and bone removal or the use of supports for weakened bones, artificial bone substitutes, together with native bones, form strong joints or bones to ensure structural integrity. You need to ensure. Bone can enter into adjacent structures, especially if the adjacent structure is porous and comparable to bone, but it can only grow into a porous structure. Rather, there must be a bond in a form that allows strong adhesion between the native bone grown therein and the bioimplant device.

生体インプラントの骨への固着のために重要な要件は、骨がインプラント表面へ及び/又は中へ成長することである。多数の研究により、コバルト−クロム(Co−Cr)及びチタン(Ti)−合金インプラント上のリン酸カルシウムコーティング、例えば生物的アパタイトは、合金だけの裸表面の時より遥かに迅速に骨付着を促進することが示される。生物的アパタイトCa10(PO46(OH)2は、ヒトの骨および歯起源の主要化合物の1つである。この合成形の、ヒドロキシアパタイト(HA)は、天然産アパタイトに非常に類似しており、歯科及び整形外科インプラントでHAを使用する研究へ導かれた。HA又は他の結晶性リン酸カルシウムを用いる被覆により、移植後、周囲の骨及び組織と容易に一体化するインプラントが製造される。 An important requirement for the fixation of the bioimplant to the bone is that the bone grows on and / or into the implant surface. Numerous studies have shown that calcium phosphate coatings, such as biological apatite, on cobalt-chromium (Co-Cr) and titanium (Ti) -alloy implants promote bone attachment much more quickly than when the bare surface is alloy-only. Is shown. Biological apatite Ca 10 (PO 4 ) 6 (OH) 2 is one of the major compounds of human bone and dental origin. This synthetic form, hydroxyapatite (HA), is very similar to naturally occurring apatite and has led to studies using HA in dental and orthopedic implants. Coating with HA or other crystalline calcium phosphate produces an implant that readily integrates with the surrounding bone and tissue after implantation.

しかしながら、人工関節の手術後に細菌が関節内で増殖し、感染症を起こすと、感染した人工関節を手術で抜去して抗生物質による感染治療(数週間乃至数ヶ月)し、人工関節を再置換することになる。また、予後不良の場合は、関節固定や手足の切断に至るなど回復しがたい問題となる。   However, if bacteria grow in the joint after an artificial joint surgery and an infection occurs, the infected artificial joint is removed by surgery and treated with antibiotics (weeks to months), and the artificial joint is replaced again. Will do. In addition, in the case of poor prognosis, it becomes a problem that is difficult to recover, such as joint fixation and limb amputation.

そこで、インプラントの表面にハイドロキシアパタイトを沈殿させ、それを乾燥させることにより抗生物質などの含浸に適した、結晶性が高く比表面積が大きなハイドロキシアパタイト層をコーティングする方法、そのコーティング層に抗生物質などを含浸させる治療剤含浸インプラントが提案されている(特許文献1)。
特表2005−506879号公報
Therefore, a method of coating a hydroxyapatite layer with high crystallinity and a large specific surface area, suitable for impregnation with antibiotics by precipitating hydroxyapatite on the surface of the implant and drying it, antibiotics etc. on the coating layer There has been proposed a therapeutic agent-impregnated implant for impregnating (Patent Document 1).
JP 2005-506879 A

上記結晶性ヒドロキシアパタイトは、抗生物質の含浸には適するものの、被膜の気孔径、気孔率が均一であるため、希望する速度で薬剤を徐放させることが困難であり、薬剤は一定速度で一気に溶出する傾向にある。このように抗生物質が溶出してしまうと抗菌性能が終了して有効期間が制御できないという問題がある。また、水に溶解する天然系、有機系抗菌剤は結晶性ヒドロキシアパタイトのコーティング層の構造によって保持され、そこからの溶出により抗菌性能を発揮できるが、これらの抗菌性能は一般に無機系抗菌剤に比して低く、抗生物質同様に耐性菌が発生しやすいので、生体インプラントの感染症防止には無機系抗菌剤の使用が望まれる。しかしながら、非溶解性であるため、結晶性ヒドロキシアパタイト膜からの溶出現象を利用するのが困難であるという問題がある。   Although the above crystalline hydroxyapatite is suitable for impregnation with antibiotics, since the pore diameter and porosity of the film are uniform, it is difficult to release the drug slowly at a desired rate. It tends to elute. Thus, when antibiotics elute, there exists a problem that an antibacterial performance is complete | finished and an effective period cannot be controlled. In addition, natural and organic antibacterial agents that dissolve in water are retained by the structure of the crystalline hydroxyapatite coating layer, and can exhibit antibacterial performance by elution from the coating layer. Compared with antibiotics, resistant bacteria are likely to be generated as in the case of antibiotics. Therefore, it is desired to use an inorganic antibacterial agent for the prevention of infectious diseases of living implants. However, since it is insoluble, there is a problem that it is difficult to use the elution phenomenon from the crystalline hydroxyapatite film.

本発明者らは、上記結晶性ヒドロキシアパタイトのコーティング層の結晶度を90%以下に調整するとコーティング層の体内での消失性が得られ、その結晶度および組成により消失速度が制御できるだけでなく、膜厚により消失期間を調整できることを見出した。
本発明は、かかる知見に基づいて完成されたものであって、その要旨とするところは、インプラントの所定部位に結晶度が90%以下のリン酸カルシウム系材料からなる消失性コーティング膜を形成し、抗菌剤又は抗菌薬を含有させてなることを特徴とする生体インプラントにある。
The inventors of the present invention can adjust the crystallinity of the coating layer of the crystalline hydroxyapatite to 90% or less to obtain the disappearance in the body of the coating layer, and not only can the disappearance rate be controlled by the crystallinity and composition, It has been found that the disappearance period can be adjusted by the film thickness.
The present invention has been completed based on such knowledge, and the gist of the present invention is that an anti-bacterial coating film made of a calcium phosphate-based material having a crystallinity of 90% or less is formed at a predetermined site of an implant, and is antibacterial. A biological implant characterized by containing an agent or an antibacterial agent.

本発明によれば、インプラントの所定部位に消失性コーティング膜を形成し、抗菌剤又は抗菌薬を含有させるので、膜の消失速度により抗菌剤の放出速度をコントロールすることができる。膜の消失速度は膜の結晶度および膜の組成に依存し、膜の消失期間は消失速度と膜厚に依存するので、これらを調整して最適な抗菌環境を所定の部所に、所定期間形成することができる。しかも膜の消失性を利用して抗菌剤を放出するので、非溶解性の無機系抗菌剤を使用することができるようになる。したがって、術後の感染症を防止する有効な態様を要望に応じて構成することができ、人工関節の抜去、再置換、予後不良時の関節固定や手足の切断という最悪の事態を避けることができる。   According to the present invention, since the vanishing coating film is formed at a predetermined site of the implant and contains the antibacterial agent or the antibacterial agent, the release rate of the antibacterial agent can be controlled by the disappearance rate of the film. The disappearance rate of the film depends on the crystallinity of the film and the composition of the film, and the disappearance period of the film depends on the disappearance rate and the film thickness. Can be formed. In addition, since the antibacterial agent is released utilizing the disappearance of the film, an insoluble inorganic antibacterial agent can be used. Therefore, an effective mode for preventing postoperative infection can be configured on demand, avoiding the worst situation of extraction, replacement, joint fixation or amputation in case of poor prognosis it can.

本発明の要旨とするところは、インプラントの所定部位に結晶度が90%以下のリン酸カルシウム系材料からなる消失性コーティング膜を形成し、抗菌剤又は抗菌薬を含有させてなる生体インプラントにあるが、本発明において使用されるリン酸カルシウム系材料としては、ハイドロキシアパタイト(HA)、第3リン酸カルシウム(TCP)、第4リン酸カルシウム(TeCP)を含むリン酸カルシウム系セラミックス、リン酸カルシウム系ガラス、およびリン酸カルシウム系ガラスセラミックスから1種又は2種以上の混合物が選ばれる。
リン酸カルシウム系材料組成は本発明のコーティング膜の消失速度を制御する1因子であり、難溶解性のリン酸カルシウムである結晶性ハイドロキシアパタイト(HA)、溶解性のリン酸カルシウムである第3リン酸カルシウム(TCP)、第4リン酸カルシウム(TeCP)、リン酸カルシウム系ガラス、およびリン酸カルシウム系ガラスセラミックスを適宜比率で混成することにより消失速度を調整することができる。
例えば、体液中でのハイドロキシアパタイトの消失速度を1とすると、α−TCPの消失速度は10、β−TCPの消失速度は3程度である。したがって、リン酸カルシウム系材料組成を調整することにより消失速度が調整できることが理解できる。
因みに、体液中でのハイドロキシアパタイトの消失速度を1としたときの消失速度を例示すると次の通りである。

消失速度(対HA=1)
α−TCP 10
β−TCP 3
第4リン酸カルシウム(OCP) 2
リン酸カルシウム系ガラス 9
リン酸カルシウム系ガラスセラミックス 5
The gist of the present invention lies in a biological implant formed with an antibacterial agent or an antibacterial agent by forming an extinguishing coating film made of a calcium phosphate material having a crystallinity of 90% or less at a predetermined site of the implant. As the calcium phosphate-based material used in the present invention, one or more kinds of calcium phosphate-based ceramics including calcium apatite (HA), tertiary calcium phosphate (TCP), and fourth calcium phosphate (TeCP), calcium phosphate-based glass, and calcium phosphate-based glass ceramics are used. A mixture of two or more is selected.
The calcium phosphate-based material composition is one factor that controls the disappearance rate of the coating film of the present invention. Crystalline hydroxyapatite (HA), which is a poorly soluble calcium phosphate, tricalcium phosphate (TCP), which is a soluble calcium phosphate, The disappearance rate can be adjusted by mixing calcium phosphate (TeCP), calcium phosphate glass, and calcium phosphate glass ceramics in an appropriate ratio.
For example, assuming that the disappearance rate of hydroxyapatite in body fluid is 1, the disappearance rate of α-TCP is 10, and the disappearance rate of β-TCP is about 3. Therefore, it can be understood that the disappearance rate can be adjusted by adjusting the calcium phosphate material composition.
Incidentally, the disappearance rate when the disappearance rate of hydroxyapatite in the body fluid is assumed to be 1 is as follows.

Vanishing speed (vs HA = 1)
α-TCP 10
β-TCP 3
Tetracalcium phosphate (OCP) 2
Calcium phosphate glass 9
Calcium phosphate glass ceramics 5

膜形成方法が、フレーム溶射、高速フレーム溶射、プラズマ溶射などの溶射法又はスパッタリング、イオンプレーテイング、イオンビーム蒸着、イオンミキシング法などの物理的蒸着法或いはゾルゲル法などの湿式コーティング法が選択されるが、膜生成方法は生成膜の結晶度に関連する。即ち、上記溶射法や物理的蒸着法でリン酸カルシウム系材料をコーティングした場合、通常非晶質層が形成される。これらの非晶質層に対して真空熱処理、レーザ熱処理、水熱処理などで熱的処理を加えることによりHA等の結晶層を析出させることができる。リン酸カルシウム系の非晶質層は体液中で最も溶出しやすい状態であるが、熱処理などで結晶度を調節することによって結晶性のセラミックスの場合よりも広く溶出速度を制御することができる。
例えば、スパッタリングは膜厚が薄い膜形成方法に適し、結晶度100%のHAをスパッタリングすることで、結晶度90%以下の消失性コーティング膜を0.1以上5μmまでの膜厚で形成することができる。かかる膜は1ヶ月以内の短期消失性コーティング膜として有効な性能を備えることになる。
他方、溶射方法は5μm以上100μmまでの厚いコーティング膜を形成するのに適しており、結晶度100%のHAを溶射すると通常結晶度10%程度のコーティング膜が形成される。この場合、20μmで6ヶ月消失、40μmで1カ年消失のコーティング膜を形成できる。一方、熱処理を施すことによって結晶度を上げることができ、消失速度を調整することができる。このコーティング層の場合、650℃、3時間の熱処理で結晶度を60%まで上げることができる。しかしながら熱処理条件を上げても結晶度は90%以上にはならない。
As the film forming method, a thermal spraying method such as flame spraying, high-speed flame spraying, or plasma spraying, or a physical vapor deposition method such as sputtering, ion plating, ion beam deposition, or ion mixing method, or a wet coating method such as a sol-gel method is selected. However, the film generation method is related to the crystallinity of the generated film. That is, when the calcium phosphate material is coated by the above spraying method or physical vapor deposition method, an amorphous layer is usually formed. A crystal layer such as HA can be deposited by applying thermal treatment to these amorphous layers by vacuum heat treatment, laser heat treatment, hydrothermal treatment, or the like. The calcium phosphate-based amorphous layer is most easily eluted in body fluids, but the dissolution rate can be controlled more widely than in the case of crystalline ceramics by adjusting the crystallinity by heat treatment or the like.
For example, sputtering is suitable for a method of forming a thin film. By sputtering HA having a crystallinity of 100%, an extinguishing coating film having a crystallinity of 90% or less can be formed to a thickness of 0.1 to 5 μm. Can do. Such a film has an effective performance as a short-term disappearing coating film within one month.
On the other hand, the thermal spraying method is suitable for forming a thick coating film having a thickness of 5 μm to 100 μm. When HA having a crystallinity of 100% is sprayed, a coating film having a crystallinity of approximately 10% is usually formed. In this case, it is possible to form a coating film that disappears for 6 months at 20 μm and disappears for one year at 40 μm. On the other hand, the crystallinity can be increased by heat treatment, and the disappearance rate can be adjusted. In the case of this coating layer, the crystallinity can be increased to 60% by heat treatment at 650 ° C. for 3 hours. However, even if the heat treatment conditions are increased, the crystallinity does not exceed 90%.

したがって、コーティング膜消失期間をリン酸カルシウム系材料で形成したコーティング膜の結晶度、組成、および膜厚により調整し、1週間から24ヶ月に設定することができる。

消失期間 材料組成 膜形成方法 膜厚(μm) 結晶度
1週間 HA スパッタリング 0.5 10%
3週間 HA スパッタリング 2 10%
6ヶ月 HA 溶射法 20 10%
12ヶ月 HA 溶射法 40 10%
Therefore, the coating film disappearance period can be adjusted by the crystallinity, composition, and film thickness of the coating film formed of the calcium phosphate material, and can be set from 1 week to 24 months.

Disappearance period Material composition Film formation method Film thickness (μm) Crystallinity 1 week HA Sputtering 0.5 10%
3 weeks HA sputtering 2 10%
6 months HA spraying method 20 10%
12 months HA spraying method 40 10%

コーティング膜が単層又は複数層から形成することができる。通常、手術直後は感染率も高いので、2以上の層から形成し、抗菌剤または抗菌薬の単位時間あたりの溶出量を表層に近いほど高くするのが好ましい。その溶出量は通常コーティング膜の消失速度に依存するので、コーティング槽が複数層からなり、各層の抗菌剤または抗菌薬の単位時間あたりの溶出量を各層の抗菌剤または抗生物質の含有量又は各層の消失速度により調整する。   The coating film can be formed from a single layer or a plurality of layers. Usually, since the infection rate is high immediately after the operation, it is preferable to form two or more layers, and to increase the elution amount per unit time of the antibacterial agent or antibacterial agent closer to the surface layer. Since the amount of dissolution usually depends on the disappearance rate of the coating film, the coating tank consists of multiple layers, and the amount of dissolution per unit time of the antibacterial agent or antibacterial agent in each layer is the content of the antibacterial agent or antibiotic in each layer or each layer. Adjust according to the disappearance rate of.

本発明の消失性コーティング膜は生体インプラントのコバルト−クロム(Co−Cr)及びチタン(Ti)−合金インプラント上に直接形成されても良いが、従来通り、合金インプラント上に形成される非消失性のリン酸カルシウムコーティング上に本発明の消失性コーティングを形成するのがよい。   The vanishing coating film of the present invention may be formed directly on the cobalt-chromium (Co-Cr) and titanium (Ti) -alloy implants of biological implants, but is conventionally non-destructible formed on the alloy implants. The vanishing coating of the present invention may be formed on the calcium phosphate coating.

本発明の消失性コーティングは感染症の防止のためであるから、コーティング位置は関節包との接合部およびその周辺であるのが適当である。   Since the disappearing coating of the present invention is for the prevention of infection, it is appropriate that the coating position is at the joint with the joint capsule and its periphery.

本発明のコーティング膜に抗菌剤又は抗生剤を担持させる方法は、薬剤の種類によって異なる。即ち、バンコマイシンなどの抗生剤の場合は、コーティング層を先に形成させた後に溶かした抗生剤を含浸させる方法を採用する。ヒノキチオールなどの天然系抗菌剤やベンザルコニウムなどの有機系抗菌剤など液体系の抗菌剤の場合も同様の方法が有効であるが、シランカップリングなどの結合剤で固定して使用することができる。一方、銀イオン、銅イオン、亜鉛イオンなどの金属イオンの抗菌作用を利用する無機系抗菌剤の場合はこれらを予めリン酸カルシウム系材料に担持させ、上記各種コーティング法を採用して担持させることができる。なお、抗菌剤と抗生剤とを両方担持させることができる。   The method for supporting the antibacterial agent or antibiotic on the coating film of the present invention varies depending on the type of the drug. That is, in the case of an antibiotic such as vancomycin, a method of impregnating the dissolved antibiotic after the coating layer is formed first is employed. The same method is effective in the case of liquid antibacterial agents such as natural antibacterial agents such as hinokitiol and organic antibacterial agents such as benzalkonium, but it may be used by fixing with a binder such as silane coupling. it can. On the other hand, in the case of inorganic antibacterial agents that utilize the antibacterial action of metal ions such as silver ions, copper ions, and zinc ions, these can be supported in advance on a calcium phosphate-based material and can be supported using the various coating methods described above. . In addition, both an antibacterial agent and an antibiotic can be carried.

HA97%、酸化銀3%を混合し、フレーム溶射法にてチタン基板上に平均20μmの溶射被膜を形成させた。その結晶度は10%であった。図1は本発明の機能を示す概念図である。チタン基板上に形成されたコーティング膜は体液中で次第に溶解し、消失する。溶出に伴い、銀イオンを液中に放出する。
1)銀イオン溶出試験
37℃のリン酸緩衝生理食塩水、牛血清で溶出試験を行った所、24時間でそれぞれ520ppb、4000ppbの溶出を示した
2)抗菌性能試験
JIS Z 2801に従って、大腸菌、黄色ブドウ球菌に対する抗菌性能を評価した所、それぞれ抗菌活性値4.1及び5.0という高い値を示した
3)被膜の消失
37℃の生理食塩水に浸漬した所、約6ヶ月で被膜が溶解、消失した
HA97% and silver oxide 3% were mixed, and a sprayed coating with an average of 20 μm was formed on the titanium substrate by flame spraying. Its crystallinity was 10%. FIG. 1 is a conceptual diagram showing functions of the present invention. The coating film formed on the titanium substrate gradually dissolves and disappears in the body fluid. Along with the elution, silver ions are released into the liquid.
1) Silver ion elution test When elution test was performed with 37 ° C phosphate buffered saline and bovine serum, 520 ppb and 4000 ppb elution were observed in 24 hours, respectively. 2) Antibacterial performance test
According to JIS Z 2801, the antibacterial performance against Escherichia coli and Staphylococcus aureus was evaluated, and the antibacterial activity values were 4.1 and 5.0, respectively. 3) Disappearance of the film Placed in 37 ° C physiological saline The film dissolved and disappeared in about 6 months

実施例1で製作した被膜を650℃、3時間熱処理した。結晶度は60%であった。
37℃のリン酸緩衝生理食塩水、牛血清を用いて銀イオン溶出試験を行った所、24時間でそれぞれ19ppb、1800ppbの溶出を示した。結晶度を変化させてやることによって、溶出特性はこのように大きく変化する。
The coating produced in Example 1 was heat treated at 650 ° C. for 3 hours. The crystallinity was 60%.
When silver ion elution test was performed using 37 ° C. phosphate buffered saline and bovine serum, elution of 19 ppb and 1800 ppb were observed in 24 hours, respectively. By changing the crystallinity, the elution characteristics change greatly in this way.

HA97%、酸化銀3%を混合し、スパッタリング法にてチタン基板上に平均2μmの被膜を形成させた。その結晶度は10%であった。
1)銀イオン溶出試験
37℃の牛血清中で溶出試験を行った所、24時間で280ppbの溶出を示した。
2)抗菌性能試験
JIS Z 2801に従って、大腸菌、黄色ブドウ球菌に対する抗菌性能を評価した所、抗菌活性値はそれぞれ2.4と2.8であった。
(注記)JIS Z 2801では抗菌活性値2.0以上を抗菌活性ありと判定する。
3)被膜の消失
37℃の生理食塩水に浸漬した所、約3週間で被膜が溶解、消失した。
HA 97% and silver oxide 3% were mixed, and an average film thickness of 2 μm was formed on the titanium substrate by sputtering. Its crystallinity was 10%.
1) Silver ion elution test When the elution test was performed in 37 ° C bovine serum, elution of 280 ppb was shown in 24 hours.
2) Antibacterial performance test
According to JIS Z 2801, antibacterial activity against Escherichia coli and Staphylococcus aureus was evaluated. The antibacterial activity values were 2.4 and 2.8, respectively.
(Note) In JIS Z 2801, an antibacterial activity value of 2.0 or more is judged to have antibacterial activity.
3) Disappearance of film The film dissolved and disappeared in about 3 weeks when immersed in physiological saline at 37 ° C.

酸化銀3%とα−TCP97%とを混合し、フレーム溶射法にてチタン基板上に平均40μmの被膜を形成させた。その結晶度は100%であった。
1)銀イオン溶出試験
37℃の牛血清中で溶出試験を行った所、24時間で12000ppbの溶出を示した。
2)抗菌性能試験
JIS Z 2801に従って、大腸菌、黄色ブドウ球菌に対する抗菌性能を評価した所、抗菌活性値は6.4と6.2という高い値を示した。
Silver oxide 3% and α-TCP 97% were mixed, and an average film thickness of 40 μm was formed on the titanium substrate by flame spraying. Its crystallinity was 100%.
1) Silver ion elution test When an elution test was performed in 37 ° C bovine serum, 12000 ppb elution was shown in 24 hours.
2) Antibacterial performance test
When antibacterial performance against E. coli and Staphylococcus aureus was evaluated according to JIS Z 2801, the antibacterial activity values were as high as 6.4 and 6.2.

銀1.85%を含有するリン酸カルシウム系ガラス粉末をフレーム法にてチタン基板上に平均40μmの溶射被膜を形成させた。コーティング層は非晶質であった。
1)銀イオン溶出試験
37℃の牛血清中で溶出試験を行った所、24時間で2500ppbの溶出を示した
2)抗菌性能試験
JIS Z 2801に従って、大腸菌、黄色ブドウ球菌に対する抗菌性能を評価した所、抗菌活性値は7.8と4.9という高い値を示した
A sprayed coating with an average of 40 μm was formed on a titanium substrate by a frame method using calcium phosphate glass powder containing 1.85% silver. The coating layer was amorphous.
1) Silver ion dissolution test When dissolution test was performed in 37 ° C bovine serum, it showed 2500ppb dissolution in 24 hours 2) Antibacterial performance test
According to JIS Z 2801, antibacterial activity against Escherichia coli and Staphylococcus aureus was evaluated, and the antibacterial activity value was as high as 7.8 and 4.9.

(人工股関節への適用)
図2Aは正常股関節、図2Bは変形性股関節症を患った股関節および図2Cは人工股関節を適用した股関節の間接部を示す断面図で、人工股関節として図3にシェル(A)とステム(B)との斜視図を示す(出典 図説整形外科診断治療講座(第15巻 人工関節・バイオマテリアル)(室田景久等))。
シェル(A)はTi合金からなり、その上方の半球面部全面には結晶性HAコーティング膜が施されており、そのシェル(A)のコーティング膜の下方辺縁部には実施例1と同様にして消失性コーティング膜が形成されている。他方、ステム(B)のネック下には結晶性HAコーティング膜が形成され、そのコーティング膜の上方辺縁部には実施例1と同様にして消失性コーティング膜が形成されている。
これら消失性コーティング膜は間接包の周囲の細菌の侵入がしやすい部分に形成されているので、間接包からの細菌の感染を防止することができる。したがって、インプラント手術後の感染症の発生を有効に防止することができる。
(Application to artificial hip joints)
2A is a normal hip joint, FIG. 2B is a hip joint suffering from osteoarthritis, and FIG. 2C is a cross-sectional view showing an indirect portion of a hip joint to which an artificial hip joint is applied. FIG. 3 shows a shell (A) and a stem (B ) (Source: Illustrated Orthopedic Diagnosis and Treatment Course (Volume 15 Artificial Joints / Biomaterials) (Keihisa Murota, etc.)).
The shell (A) is made of a Ti alloy, and a crystalline HA coating film is applied to the entire surface of the hemispherical surface above the shell (A), and the lower edge of the coating film of the shell (A) is the same as in the first embodiment. An extinct coating film is formed. On the other hand, a crystalline HA coating film is formed under the neck of the stem (B), and a vanishing coating film is formed on the upper edge of the coating film in the same manner as in the first embodiment.
Since these disappearing coating films are formed on the part around the indirect package where bacteria can easily enter, it is possible to prevent bacterial infection from the indirect package. Therefore, it is possible to effectively prevent the occurrence of infection after implant surgery.

本発明は、生体インプラントである人工骨、内固定具及び人工関節に適用され、消失性コーティング膜の結晶度、組成により抗菌剤、抗生剤の放出速度、それらと膜厚により放出期間を調整することができるので、生体インプラントの感染症予防に最適である。特に、コーティング膜の消失性を利用することができるので、無機系抗菌剤を有効に利用できる利点がある。   The present invention is applied to artificial bones, internal fixation devices, and artificial joints that are biological implants, and the release period is adjusted by the release rate of antibacterial and antibiotic agents according to the crystallinity and composition of the evanescent coating film, and the film thickness. Therefore, it is optimal for the prevention of infectious diseases of biological implants. In particular, since the disappearance of the coating film can be used, there is an advantage that the inorganic antibacterial agent can be used effectively.

本発明の機能を示す概念図である。It is a conceptual diagram which shows the function of this invention. 正常股関節を示す断面図である。It is sectional drawing which shows a normal hip joint. 変形性股関節症を患った股関節を示す断面図である。It is sectional drawing which shows the hip joint which suffered from osteoarthritis of a hip. 人工股関節を適用した股関節の間接部を示す断面図である。It is sectional drawing which shows the indirect part of the hip joint to which the artificial hip joint is applied. 人工股関節のシェル(A)とステム(B)との斜視図を示す。The perspective view of the shell (A) and stem (B) of an artificial hip joint is shown.

符号の説明Explanation of symbols

A:人工股関節シェル部、B:人工股関節ステム部 A: artificial hip joint shell, B: artificial hip stem

Claims (8)

インプラントの所定部位に結晶度が90%以下のリン酸カルシウム系材料からなる消失性コーティング膜を形成し、抗菌剤又は抗菌薬を含有させてなることを特徴とする生体インプラント。   A biological implant characterized by forming an extinguishing coating film made of a calcium phosphate material having a crystallinity of 90% or less at a predetermined site of an implant and containing an antibacterial agent or an antibacterial agent. リン酸カルシウム系材料がハイドロキシアパタイト(HA)、第3リン酸カルシウム(TCP)、第4リン酸カルシウム(TeCP)を含むリン酸カルシウム系セラミックス、リン酸カルシウム系ガラス、およびリン酸カルシウム系ガラスセラミックスから選ばれる1種又は2種以上の混合物からなる請求項1記載の生体インプラント。   From one or a mixture of two or more selected from calcium phosphate ceramics, calcium phosphate glass, and calcium phosphate glass ceramics in which the calcium phosphate material is hydroxyapatite (HA), tertiary calcium phosphate (TCP), and fourth calcium phosphate (TeCP) The biological implant according to claim 1. 膜形成方法が、フレーム溶射、高速フレーム溶射、プラズマ溶射などの溶射法又はスパッタリング、イオンプレーテイング、イオンビーム蒸着、イオンミキシング法などの物理的蒸着法或いはゾルゲル法などの湿式コーティング法が選択される請求項1記載の生体インプラント。   As the film forming method, a thermal spraying method such as flame spraying, high-speed flame spraying, or plasma spraying, or a physical vapor deposition method such as sputtering, ion plating, ion beam deposition, or ion mixing method, or a wet coating method such as a sol-gel method is selected. The biological implant according to claim 1. コーティング膜消失期間をリン酸カルシウム系材料で形成したコーティング膜の結晶度、組成、および膜厚により調整し、1週間から24ヶ月に設定される請求項1記載の生体インプラント。   The biological implant according to claim 1, wherein the disappearance period of the coating film is adjusted by the crystallinity, composition, and film thickness of the coating film formed of the calcium phosphate material, and is set to 1 week to 24 months. コーティング膜の結晶度をコーティング後の熱処理により調節する請求項4記載の生体インプラント。   The biological implant according to claim 4, wherein the crystallinity of the coating film is adjusted by a heat treatment after coating. コーティング膜が単層又は複数層からなり、抗菌剤または抗菌薬の単位時間あたりの溶出量を表層に近いほど高くする請求項1記載の生体インプラント。   The living body implant according to claim 1, wherein the coating film is composed of a single layer or a plurality of layers, and the elution amount per unit time of the antibacterial agent or the antibacterial agent is increased as the surface layer is closer. コーティング槽が複数層からなり、各層の抗菌剤または抗菌薬の単位時間あたりの溶出量を各層の抗菌剤または抗生物質の含有量又は各層の消失速度により調整する請求項1記載の生体インプラント。   The living body implant according to claim 1, wherein the coating tank comprises a plurality of layers, and the amount of the antibacterial agent or antibacterial agent dissolved in each layer per unit time is adjusted by the content of the antibacterial agent or antibiotic in each layer or the disappearance rate of each layer. コーティング位置が関節包との接合部およびその周辺である請求項1記載の生体インプラント。   The living body implant according to claim 1, wherein the coating position is a joint portion with the joint capsule and its periphery.
JP2006252933A 2006-09-08 2006-09-19 Biological implant Active JP5069888B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2006252933A JP5069888B2 (en) 2006-09-19 2006-09-19 Biological implant
CN200780033447.7A CN101511399B (en) 2006-09-08 2007-08-20 Bioimplant
PCT/JP2007/066119 WO2008029612A1 (en) 2006-09-08 2007-08-20 Bioimplant
US12/440,430 US10004604B2 (en) 2006-09-08 2007-08-20 Bioimplant for artifical joint with evanescent coating film
US16/017,309 US10610614B2 (en) 2006-09-08 2018-06-25 Bioimplant with evanescent coating film
US16/823,175 US11278642B2 (en) 2006-09-08 2020-03-18 Bioimplant with evanescent coating film
US17/673,651 US11998659B2 (en) 2006-09-08 2022-02-16 Bioimplant with evanescent coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006252933A JP5069888B2 (en) 2006-09-19 2006-09-19 Biological implant

Publications (2)

Publication Number Publication Date
JP2008073098A true JP2008073098A (en) 2008-04-03
JP5069888B2 JP5069888B2 (en) 2012-11-07

Family

ID=39345794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006252933A Active JP5069888B2 (en) 2006-09-08 2006-09-19 Biological implant

Country Status (1)

Country Link
JP (1) JP5069888B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023510A1 (en) 2010-08-19 2012-02-23 国立大学法人佐賀大学 Biological implant
JP2013518653A (en) * 2010-02-04 2013-05-23 フィンズブリー・(デヴェロップメント)・リミテッド Prosthesis
WO2013114947A1 (en) 2012-02-03 2013-08-08 国立大学法人佐賀大学 Bioimplant
JP2014050610A (en) * 2012-09-07 2014-03-20 Advance Co Ltd Dental implant and method for producing dental implant
JP2014097160A (en) * 2012-11-14 2014-05-29 Univ Of Tokyo A composite manufacturing method, calcium phosphate thin film, composite, and hydroxyapatite thin film
JP2017060889A (en) * 2008-02-29 2017-03-30 スミス アンド ネフュー インコーポレイテッド Gradient coating for biomedical applications
KR101756428B1 (en) * 2015-11-23 2017-07-11 기초과학연구원 Emission control method of pH-responsive nitric oxide using calcium phosphate
US9839720B2 (en) 2008-02-29 2017-12-12 Smith & Nephew, Inc. Coating and coating method
US10814039B2 (en) 2012-02-03 2020-10-27 Kyocera Corporation Bioimplant with antibacterial coating and method of making same
WO2020250911A1 (en) * 2019-06-12 2020-12-17 日本特殊陶業株式会社 Biocompatible member
WO2021153795A1 (en) 2020-01-31 2021-08-05 京セラ株式会社 Spinal implant and method for manufacturing spinal implant
JPWO2021240798A1 (en) * 2020-05-29 2021-12-02
JPWO2021240797A1 (en) * 2020-05-29 2021-12-02
US11576997B2 (en) 2018-03-05 2023-02-14 Chubu University Educational Foundation Iodine-loaded bone repair material and method for producing the same
US11998659B2 (en) 2006-09-08 2024-06-04 Kyocera Corporation Bioimplant with evanescent coating film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6113993A (en) * 1998-10-28 2000-09-05 Battelle Memorial Institute Method of coating a substrate with a calcium phosphate compound
JP2005097052A (en) * 2003-09-25 2005-04-14 Japan Science & Technology Agency Hydroxyapatite with large surface area and its manufacturing method
JP2005297435A (en) * 2004-04-14 2005-10-27 Crystal Coat:Kk Multilayered film, composite material, implant and composite material manufacturing method
JP2006151729A (en) * 2004-11-26 2006-06-15 Shikoku Instrumentation Co Ltd Composite material introduced with calcium phosphate layer and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6113993A (en) * 1998-10-28 2000-09-05 Battelle Memorial Institute Method of coating a substrate with a calcium phosphate compound
JP2005097052A (en) * 2003-09-25 2005-04-14 Japan Science & Technology Agency Hydroxyapatite with large surface area and its manufacturing method
JP2005297435A (en) * 2004-04-14 2005-10-27 Crystal Coat:Kk Multilayered film, composite material, implant and composite material manufacturing method
JP2006151729A (en) * 2004-11-26 2006-06-15 Shikoku Instrumentation Co Ltd Composite material introduced with calcium phosphate layer and its manufacturing method

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11998659B2 (en) 2006-09-08 2024-06-04 Kyocera Corporation Bioimplant with evanescent coating film
JP2017060889A (en) * 2008-02-29 2017-03-30 スミス アンド ネフュー インコーポレイテッド Gradient coating for biomedical applications
JP2019150648A (en) * 2008-02-29 2019-09-12 スミス アンド ネフュー インコーポレイテッド Gradient coating for biomedical applications
US9839720B2 (en) 2008-02-29 2017-12-12 Smith & Nephew, Inc. Coating and coating method
KR101764605B1 (en) * 2010-02-04 2017-08-03 핀즈버리 (디벨롭먼트) 리미티드 Prosthesis
JP2016025884A (en) * 2010-02-04 2016-02-12 フィンズブリー・(デヴェロップメント)・リミテッド Processing for producing prosthesis
KR101819885B1 (en) 2010-02-04 2018-01-19 핀즈버리 (디벨롭먼트) 리미티드 Prosthesis
JP2013518653A (en) * 2010-02-04 2013-05-23 フィンズブリー・(デヴェロップメント)・リミテッド Prosthesis
WO2012023510A1 (en) 2010-08-19 2012-02-23 国立大学法人佐賀大学 Biological implant
JP2017127744A (en) * 2012-02-03 2017-07-27 国立大学法人佐賀大学 Biological implant
US11577006B2 (en) 2012-02-03 2023-02-14 Kyocera Corporation Bioimplant
WO2013114947A1 (en) 2012-02-03 2013-08-08 国立大学法人佐賀大学 Bioimplant
US10814039B2 (en) 2012-02-03 2020-10-27 Kyocera Corporation Bioimplant with antibacterial coating and method of making same
JP2014050610A (en) * 2012-09-07 2014-03-20 Advance Co Ltd Dental implant and method for producing dental implant
JP2014097160A (en) * 2012-11-14 2014-05-29 Univ Of Tokyo A composite manufacturing method, calcium phosphate thin film, composite, and hydroxyapatite thin film
US10301332B2 (en) 2015-11-23 2019-05-28 Institute For Basic Science Method of selectively releasing nitric oxide depending on change in pH using calcium phosphate
KR101756428B1 (en) * 2015-11-23 2017-07-11 기초과학연구원 Emission control method of pH-responsive nitric oxide using calcium phosphate
US11576997B2 (en) 2018-03-05 2023-02-14 Chubu University Educational Foundation Iodine-loaded bone repair material and method for producing the same
WO2020250911A1 (en) * 2019-06-12 2020-12-17 日本特殊陶業株式会社 Biocompatible member
WO2021153795A1 (en) 2020-01-31 2021-08-05 京セラ株式会社 Spinal implant and method for manufacturing spinal implant
JPWO2021240798A1 (en) * 2020-05-29 2021-12-02
WO2021240798A1 (en) * 2020-05-29 2021-12-02 京セラ株式会社 Stem for artificial joint
JPWO2021240797A1 (en) * 2020-05-29 2021-12-02
WO2021240797A1 (en) * 2020-05-29 2021-12-02 京セラ株式会社 Stem for artificial joint
JP7499326B2 (en) 2020-05-29 2024-06-13 京セラ株式会社 Artificial joint stems
JP7499325B2 (en) 2020-05-29 2024-06-13 京セラ株式会社 Artificial joint stems

Also Published As

Publication number Publication date
JP5069888B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
JP5069888B2 (en) Biological implant
Buck et al. Surface modification strategies to improve the osseointegration of poly (etheretherketone) and its composites
JP6596200B2 (en) Gradient coating for biomedical applications
Graziani et al. Ion-substituted calcium phosphate coatings deposited by plasma-assisted techniques: A review
Duan et al. Surface modifications of bone implants through wet chemistry
US7132015B2 (en) Materials for dental and biomedical application
Lin et al. Suppl 1-M4: A review paper on biomimetic calcium phosphate coatings
WO2008029612A1 (en) Bioimplant
US20100286790A1 (en) Implant and method for coating an implant
JP2004358249A (en) Strontium-substituted apatite coating
JP6289708B2 (en) Biological implant
CN110234365A (en) The method of medical implant and coating medical implant
Shimizu et al. Bioactive effects of strontium loading on micro/nano surface Ti6Al4V components fabricated by selective laser melting
US11998659B2 (en) Bioimplant with evanescent coating film
Mohapatra et al. Ceramic coatings for wound healing applications
CN105749345B (en) For be easy to remove implant from separating layer
Navarro et al. Biomimetic mineralization of ceramics and glasses
Victoria Cabanas Bioceramic coatings for medical implants
JP3166352B2 (en) Implant components
Bernstein et al. Thin Degradable Coatings for Optimization of Osseointegration Associated with Simultaneous Infection Prophylaxis
Jirofti et al. Review on Hydroxyapatite-Based Coatings as Antibiotic Delivery System on Bone Graft Substitution for Controlling Infection in Orthopedic Surgery
Tran et al. Aaqil Rifai2 and Kate Fox2, 3 1Interface Science and Materials Engineering Group, Queensland University of Technology, Kelvin Grove, QLD, Australia, 2School of Engineering, RMIT University, Melbourne, Vic, Australia, 3Centre for Additive Manufacturing, RMIT University
Rafik Rafik Optimization of a thermochemical process and antibacterial properties for 3D printed prostheses of titanium
DeYoung et al. Implant Materials and Surface Coating
Epinette et al. Histology and Fate of Bioactive Coatings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090709

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5069888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250