JP2008072832A - Controller for ac motor, and method of calculating superimposition current for suppression of iron loss - Google Patents

Controller for ac motor, and method of calculating superimposition current for suppression of iron loss Download PDF

Info

Publication number
JP2008072832A
JP2008072832A JP2006248920A JP2006248920A JP2008072832A JP 2008072832 A JP2008072832 A JP 2008072832A JP 2006248920 A JP2006248920 A JP 2006248920A JP 2006248920 A JP2006248920 A JP 2006248920A JP 2008072832 A JP2008072832 A JP 2008072832A
Authority
JP
Japan
Prior art keywords
current
motor
iron loss
superimposed
calculating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006248920A
Other languages
Japanese (ja)
Other versions
JP4995518B2 (en
Inventor
Yukari Tode
結花利 都出
Akihiro Daikoku
晃裕 大穀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006248920A priority Critical patent/JP4995518B2/en
Publication of JP2008072832A publication Critical patent/JP2008072832A/en
Application granted granted Critical
Publication of JP4995518B2 publication Critical patent/JP4995518B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a controller for AC motor which can surely reduce iron loss by simple control mechanism. <P>SOLUTION: This controller is equipped with a superimposition current computer 9 which calculates superimposition currents id+ and iq+ for suppression of iron loss, based on the current detected values iu, iv, and iw of a three-phase motor 1, and a current controller 7 makes voltage commands vd* and vq* so that the current detected values id and iq of the three-phase motor 1 may follow the sum of current commands id* and iq*, and id+ and iq+, and sends them to a PWM generator 8. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、同期電動機等の交流電動機の制御装置に係り、特に、制御手段によりその鉄損を低減する技術に関するものである。   The present invention relates to a control device for an AC motor such as a synchronous motor, and more particularly to a technique for reducing the iron loss by a control means.

交流電動機のステータ巻線に流れる相電流の歪みを低減し、トルクリップルや電磁音の発生を低減するモータ制御装置が、例えば、特許文献1に紹介されている。
同モータ制御装置は、電流指令値と電流検出値とに基づきモータに印加する電圧指令値を作成する電圧指令値作成手段と、上記電圧指令値に基づきモータに電圧を印加する駆動手段とを備え、上記電圧指令値作成手段は、上記電圧指令値の補正に使用する学習値を作成する学習値作成手段を有している。
For example, Patent Document 1 discloses a motor control device that reduces distortion of a phase current flowing in a stator winding of an AC motor and reduces generation of torque ripple and electromagnetic noise.
The motor control device includes a voltage command value creating unit that creates a voltage command value to be applied to the motor based on the current command value and the current detection value, and a drive unit that applies a voltage to the motor based on the voltage command value. The voltage command value creating means has learning value creating means for creating a learning value used for correcting the voltage command value.

特開2000−324879号公報(請求項1、図1参照)JP 2000-324879 A (refer to claim 1 and FIG. 1)

上記のように、特許文献1のモータ制御装置は、学習値を使用して電圧指令値を補正することでトルクリップルを抑制するものである。
ところで、トルクリップルは、電流、従って磁束に対して2次関数で、モータの1周各部が受けるトルクを空隙部1周で空間的に積分した値の時間関数(あるいはロータ位置の関数)となるが、鉄損は、電流、従って磁束の1次関数であるヒステリシス損と、磁束の2次関数となる渦電流損を、モータ鉄心および磁石で空間的に積分した値を、1回転における時間平均として求めた量で代表させるため、電流に対する効果がトルクと鉄損では異なる。
As described above, the motor control device of Patent Literature 1 suppresses torque ripple by correcting the voltage command value using the learning value.
By the way, the torque ripple is a quadratic function with respect to the current, and hence the magnetic flux, and is a time function (or a function of the rotor position) obtained by spatially integrating the torque received by each part of the motor around the gap part. However, the iron loss is the time average of one rotation of a value obtained by spatially integrating the hysteresis loss, which is a linear function of current, and hence magnetic flux, and the eddy current loss, which is a quadratic function of magnetic flux, with the motor core and magnet. Therefore, the effect on current differs between torque and iron loss.

以上のように、従来のモータ制御装置は、学習値を使用して電圧指令値を補正する複雑な制御機構を必要とし、更に、鉄損発生の現象はトルクリップル発生の現象に比べて複雑であり、鉄損を低減する目的に適用することは、その制御機構を一層複雑とし、効果についても期待できない。
この発明は、以上の問題点を解消するためになされたもので、簡便な制御機構で鉄損を確実に低減することが出来る交流電動機の制御装置を得ることを目的とする。
As described above, the conventional motor control device requires a complicated control mechanism that corrects the voltage command value using the learning value, and the phenomenon of iron loss generation is more complicated than the phenomenon of torque ripple generation. Yes, applying it for the purpose of reducing iron loss makes the control mechanism more complicated and the effect cannot be expected.
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a control device for an AC motor that can reliably reduce iron loss with a simple control mechanism.

直流電圧を交流電圧に変換して交流電動機に供給する電力変換器、および電流指令値に交流電動機の電流検出値が追従するように電力変換器を制御する電流制御器を備えた交流電動機の制御装置であって、
電流指令値に重畳することにより交流電動機に発生する鉄損が低減するように、交流電動機の電流検出値に基づき鉄損抑制用重畳電流を演算する重畳電流演算手段を備え、電流制御器は、電流指令値と重畳電流演算手段からの重畳電流との和に交流電動機の電流検出値が追従するように電力変換器を制御するものである。
Control of an AC motor provided with a power converter that converts a DC voltage into an AC voltage and supplies the AC motor, and a current controller that controls the power converter so that the detected current value of the AC motor follows the current command value A device,
In order to reduce the iron loss generated in the AC motor by superimposing it on the current command value, the current controller includes a superimposed current calculation means for calculating the iron loss suppression superimposed current based on the detected current value of the AC motor, The power converter is controlled so that the detected current value of the AC motor follows the sum of the current command value and the superimposed current from the superimposed current calculation means.

この発明に係る交流電動機の制御装置は、電力変換器を制御する通例の制御機構において、その電流指令値に上述の鉄損抑制用重畳電流を重畳させるだけで、交流電動機に発生する鉄損を確実に低減することが出来る。   The control apparatus for an AC motor according to the present invention is a conventional control mechanism that controls a power converter, and only superimposes the above-described iron loss suppression superimposed current on the current command value, thereby reducing the iron loss generated in the AC motor. It can be surely reduced.

実施の形態1.
図1は、本発明の実施の形態1による同期電動機の制御装置を示す図である。図1において、同期電動機である三相モータ1は、電力変換器であるPWMインバータ2に接続されている。PWMインバータ2は、制御装置であるアンプ3で生成された制御信号により可変電圧可変周波数の電力を生成して三相モータ1に送り出す。アンプ3は、三相モータ1に接続されている負荷に従ってトルク指令値Te*4を受け、トルク指令器5で電流指令値id*、iq*を生成する。加算器12、13により、これら電流指令値id*、iq*に、後述する鉄損抑制用重畳電流id+、iq+が加算され電流制御器7に送られる。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a synchronous motor control apparatus according to Embodiment 1 of the present invention. In FIG. 1, a three-phase motor 1 that is a synchronous motor is connected to a PWM inverter 2 that is a power converter. The PWM inverter 2 generates electric power of variable voltage and variable frequency by a control signal generated by an amplifier 3 that is a control device, and sends it to the three-phase motor 1. The amplifier 3 receives the torque command value Te * 4 according to the load connected to the three-phase motor 1, and generates the current command values id * and iq * in the torque command device 5. The adders 12 and 13 add the iron loss suppression superimposed currents id + and iq + described later to the current command values id * and iq *, and send them to the current controller 7.

電流検出器11で検出された三相モータ電流iu、iv、iwは、ロータ位置θに基づきdq変換器6により実電流id,iqに変換され電流制御器7に送られる。
電流制御器7は、実電流id、iqが、電流指令値id*、iq*に重畳電流id+、iq+を加算した電流に追従するよう、例えば、PI制御器により電圧指令値vd*、vq*を作成する。この電圧指令値vd*、vq*に基づき、PWM発生器8は、ゲートドライブ信号を生成し、PWMインバータ2に送り出す。
The three-phase motor currents iu, iv, iw detected by the current detector 11 are converted into actual currents id, iq by the dq converter 6 based on the rotor position θ and sent to the current controller 7.
For example, the PI controller controls the voltage command values vd * and vq * so that the actual currents id and iq follow the current obtained by adding the superimposed currents id + and iq + to the current command values id * and iq *. Create Based on the voltage command values vd * and vq *, the PWM generator 8 generates a gate drive signal and sends it to the PWM inverter 2.

ここで重畳電流id+、iq+は、重畳電流演算器9に設定された波形データから、負荷すなわちモータ電流iu、iv、iwに応じた波形を抽出し、dq変換器10でid+、iq+に変換して使用する。   Here, the superimposed currents id + and iq + are extracted from the waveform data set in the superimposed current calculator 9 according to the load, that is, the motor currents iu, iv and iw, and converted into id + and iq + by the dq converter 10. To use.

図2はある運転条件における三相モータ1の鉄損を示す図であり、正弦波電流で駆動した場合と、インバータ電流で駆動した場合とを比較している。縦軸は正弦波電流で駆動した場合を1として規格化している。インバータ駆動の場合の鉄損は、正弦波駆動の場合の鉄損の約1.2倍となっている。
インバータ駆動の場合は図3に示すように、電流波形が正弦波からずれて5次や7次といった低次高調波の歪み成分が含まれる。またPWM駆動によるキャリア成分も含まれる。この内、歪み成分は主としてヒステリシス損の増加につながり、キャリア成分は主として渦電流損につながる。すなわち図2におけるインバータ駆動時の増加分は、電流波形の5次7次成分に起因するヒステリシス損と、キャリア成分に起因する渦電流損となっている。
FIG. 2 is a diagram showing the iron loss of the three-phase motor 1 under a certain operating condition, comparing the case of driving with a sine wave current and the case of driving with an inverter current. The vertical axis is normalized as 1 when driven by a sine wave current. The iron loss in the inverter drive is about 1.2 times the iron loss in the sine wave drive.
In the case of inverter driving, as shown in FIG. 3, the current waveform deviates from a sine wave and includes distortion components of low-order harmonics such as the fifth and seventh orders. A carrier component by PWM drive is also included. Of these, the distortion component mainly leads to an increase in hysteresis loss, and the carrier component mainly leads to eddy current loss. That is, the increase during the inverter driving in FIG. 2 is a hysteresis loss due to the fifth-order seventh-order component of the current waveform and an eddy current loss due to the carrier component.

図4は、インバータ電流波形の5次、7次成分、およびキャリア成分の一例を示したものである。同図(a)は、5次、7次の電流振幅を、下段から順に積算する形式で棒グラフ表示したものである。同図(b)は、5次、7次電流の位相を同形式で表示するものである。
同図(c)は、PWMのキャリア波次数(キャリア波周波数fcarr/基本周波数fo)をfcnとしたとき、次数がそれぞれfcn−2、fcn+2、fcn×2−1、fcn×2+1の電流振幅を、下段から順に積算する形式で棒グラフ表示したものである。同図(d)は、同次数電流の位相を同形式で表示するものである。
FIG. 4 shows an example of the fifth, seventh and carrier components of the inverter current waveform. FIG. 5A is a bar graph display in which the fifth and seventh current amplitudes are integrated in order from the bottom. FIG. 4B shows the phases of the fifth and seventh currents in the same format.
FIG. 4C shows the current amplitudes of the orders fcn−2, fcn + 2, fcn × 2-1, and fcn × 2 + 1, where fcn is the carrier wave order of PWM (carrier wave frequency fcarr / fundamental frequency fo). The bar graph is displayed in the form of integration in order from the bottom. FIG. 4D shows the phase of the same order current in the same format.

これらの電流成分を相殺することで鉄損が低減できると考え、鉄損抑制用重畳電流波形データとして、図4に示す各高調波電流と同振幅で逆位相の重畳成分を使用したところ、鉄損が図2における正弦波電流駆動時にほぼ近い1.05まで低減できた。
即ち、この発明の実施の形態1における交流電動機の制御装置は、アンプ3のトルク指令器5で作成される電流指令値id*、iq*に重畳電流id+、iq+を加算するというだけの簡単な構成で、鉄損、特にその高調波成分を大幅に低減することが出来る。
It is thought that iron loss can be reduced by canceling these current components, and superposition current waveform data for iron loss suppression using superposition components of the same amplitude and opposite phase as the harmonic currents shown in FIG. The loss could be reduced to 1.05, which is almost the same as that in the sinusoidal current driving in FIG.
That is, the control apparatus for an AC motor according to the first embodiment of the present invention is a simple one in which the superimposed currents id + and iq + are added to the current command values id * and iq * created by the torque commander 5 of the amplifier 3. With the configuration, iron loss, particularly its harmonic components, can be greatly reduced.

実施の形態2.
図5は、本発明の実施の形態2による同期電動機の制御装置を示す図である。先の実施の形態1の図1と異なるのは、鉄損抑制用電流波形データを設定する重畳電流演算器9に加え、トルクリップル抑制用電流波形データを設定する重畳電流演算器9Aを備え、更に、両者のいずれかを選択してdq変換器10に出力するモード選択器14を備えている。
Embodiment 2. FIG.
FIG. 5 is a diagram showing a synchronous motor control apparatus according to Embodiment 2 of the present invention. 1 is different from FIG. 1 of the first embodiment in that it includes a superimposed current calculator 9A for setting current waveform data for torque ripple suppression in addition to the superimposed current calculator 9 for setting current waveform data for suppressing iron loss. Furthermore, a mode selector 14 that selects either of them and outputs it to the dq converter 10 is provided.

ここでは、重畳電流id+、iq+は、ユーザー設定に従ってモード選択器14により選ばれたモード、即ち、トルクリップル抑制制御優先モードか、鉄損抑制制御優先モードかのいずれかに従い、あらかじめアンプ3内メモリに格納されていたトルクリップル抑制用重畳電流波形データ(9)あるいは鉄損抑制用重畳電流波形データ(9A)から、負荷すなわちモータ電流iu、iv、iwに応じた波形を抽出してdq変換器10により重畳電流id+、iq+に変換して使用する。   Here, the superposed currents id + and iq + are preliminarily stored in the amplifier 3 memory according to the mode selected by the mode selector 14 according to the user setting, that is, either the torque ripple suppression control priority mode or the iron loss suppression control priority mode. The waveform corresponding to the load, that is, the motor currents iu, iv, iw is extracted from the torque ripple suppressing superimposed current waveform data (9) or the iron loss suppressing superimposed current waveform data (9A) stored in the dq converter 10 is used after being converted into superimposed currents id + and iq +.

以上のように、この発明の実施の形態2における交流電動機の制御装置においては、トルクリップル抑制用重畳電流波形データと鉄損抑制用重畳電流波形データとの双方をアンプ3内メモリに格納し、トルクリップル抑制と鉄損抑制とのどちらをどの条件で優先させるかを設定できるようにしたので、サーボモータのような運転範囲の広い製品において、用途に応じた性能をもつ同期電動機の駆動システムが同一アンプで実現する。
即ち、用途によって、トルクリップルの低減を優先させる場合にはトルクリップル抑制用の電流波形を、鉄損抑制を優先させる場合には鉄損抑制用の電流波形を重畳させるようにユーザー設定で切り換えることにより、用途に応じた性能をもつ交流電動機の制御装置が得られる。
As described above, in the control apparatus for an AC motor according to Embodiment 2 of the present invention, both the torque ripple suppressing superimposed current waveform data and the iron loss suppressing superimposed current waveform data are stored in the memory in the amplifier 3; Since it is now possible to set which condition to prioritize torque ripple suppression or iron loss suppression, a synchronous motor drive system with performance according to the application can be used for products with a wide operating range such as servo motors. Realized with the same amplifier.
In other words, depending on the application, when the reduction of torque ripple is prioritized, the current waveform for torque ripple suppression is switched by user setting so that the current waveform for iron loss suppression is superimposed when priority is given to iron loss suppression. As a result, an AC motor control device having performance according to the application can be obtained.

また、一般的に、トルクリップルが大きいとサーボ性が悪くなり、このトルクリップルが大きくなる低速域では、速度一定制御や負荷一定制御に支障を及ぼすという問題がクローズアップされることが多い。一方、高速域においては、鉄損、特に渦電流損が大きくなり効率を低下させるという問題がクローズアップされることが多い。こういった場合には、低速域ではトルクリップル低減を優先させ、高速域では鉄損抑制を優先させる設定を行うことにより、広域において適切な性能を有する交流電動機の制御装置が得られる。   Further, generally, when the torque ripple is large, the servo performance is deteriorated, and in the low speed range where the torque ripple is large, the problem of hindering constant speed control and constant load control is often highlighted. On the other hand, in the high-speed range, the problem of iron loss, particularly eddy current loss becoming large and lowering efficiency is often highlighted. In such a case, a control apparatus for an AC motor having appropriate performance in a wide area can be obtained by performing a setting in which priority is given to torque ripple reduction in the low speed range and priority is given to iron loss suppression in the high speed range.

また、トルクリップル抑制と鉄損抑制用の重畳電流波形がほぼ一致する運転条件をあらかじめ各々抑制用データより求めておき、低トルクリップルと低鉄損という2つの性能が得られる運転範囲を、推奨運転条件とすることにより製品価値を上げることも可能である。   In addition, operating conditions where torque ripple suppression and iron loss suppression superimposed current waveforms are almost the same are obtained from the suppression data in advance, and an operating range that provides two performances of low torque ripple and low iron loss is recommended. It is also possible to increase the product value by setting the operating conditions.

実施の形態3.
次に、鉄損抑制用重畳電流波形データ(9)およびトルクリップル抑制用重畳電流波形データ(9A)の作成方法を、実施の形態3として説明する。
先ず、図6は、鉄損抑制用重畳電流波形データの作成フローを示す図である。図6において、まずモータ設計により形状を決定(S1)した後、この形状に基づいて電磁界解析を正弦波電流にて行う。外部駆動、無通電時の解析により無負荷誘起電圧、コギングトルクを求め、運転範囲の負荷条件すなわち電流条件、速度条件、電流位相条件に対してトルク、インダクタンスのロータ位置依存性を求める(S2)。これらの情報を包含したモータモデルを作成し、実際のPWMインバータと同じ制御ループを有する制御(回路)シミュレータにモータモデルを組込む(S3)。再度、各運転範囲内の条件において制御(回路)シミュレーションを実施し電流波形を求める(S4)。
Embodiment 3 FIG.
Next, a method of creating the iron loss suppressing superimposed current waveform data (9) and the torque ripple suppressing superimposed current waveform data (9A) will be described as a third embodiment.
First, FIG. 6 is a diagram showing a creation flow of the superimposed current waveform data for iron loss suppression. In FIG. 6, after first determining the shape by motor design (S1), electromagnetic field analysis is performed with a sine wave current based on this shape. The no-load induced voltage and cogging torque are obtained by analysis at the time of external drive and no energization, and the rotor position dependency of the torque and inductance is obtained with respect to the load condition of the operation range, that is, the current condition, speed condition, and current phase condition (S2) . A motor model including these pieces of information is created, and the motor model is incorporated into a control (circuit) simulator having the same control loop as the actual PWM inverter (S3). Again, a control (circuit) simulation is performed under conditions within each operation range to obtain a current waveform (S4).

先の実施の形態1では、ここで、電流波形を周波数分析し各成分について同相逆相の重畳電流を求めるが、その方式では高調波鉄損の低減が不十分である場合にも、以下の図6で説明する方法によれば、鉄損を十分低減できる電流波形を計算によって求めることが可能である。
即ち、得られた電流波形を用いて再度電磁界解析により鉄損を計算し、そのうちの高調波鉄損分Aを求める(S5)。次に、電流波形に暫定的に定めた低次高調波成分をもつ電流波形を重畳させ、電磁界解析により鉄損分Bを求める(S6)。鉄損分AとBとを比較する条件具備を判定し(S7)、重畳させた波形による高調波鉄損分Bが、もとの高調波鉄損分Aよりも十分小さく0に近づく迄、重畳電流波形を修正し(S8)、S7での条件が具備したところで、重畳電流波形データを決定する(S9)。
In the first embodiment, the current waveform is frequency-analyzed to obtain the in-phase and out-of-phase superimposed current for each component. However, even when the reduction of the harmonic iron loss is insufficient with this method, the following According to the method described in FIG. 6, it is possible to obtain a current waveform that can sufficiently reduce the iron loss by calculation.
That is, the iron loss is calculated again by electromagnetic field analysis using the obtained current waveform, and the harmonic iron loss portion A is obtained (S5). Next, a current waveform having a provisionally determined low-order harmonic component is superimposed on the current waveform, and an iron loss B is obtained by electromagnetic field analysis (S6). The condition for comparing the iron loss A and B is determined (S7), and until the harmonic iron loss B due to the superimposed waveform is sufficiently smaller than the original harmonic iron loss A and approaches 0, The superimposed current waveform is corrected (S8), and when the conditions in S7 are satisfied, the superimposed current waveform data is determined (S9).

図6のS2、S3で使用しているモータ特性は、モータの磁石磁束による誘起電圧のロータ位置依存性を包含し、かつインダクタンスのロータ位置依存性や電流依存性も包含しているため、磁気飽和による影響も考慮されており、実機に近い特性となっている。更に、このモータ特性を用いて実際のPWMインバータでフィードバック制御しながらモータを回転した場合の電流波形を計算しているので、電流波形はほぼ実測と同じになっている。このように、実測と同じ電流波形を用いて鉄損を計算しているので、PWM制御の影響や起磁力高調波、スロット高調波の影響も考慮された状態の鉄損値となり、的確に鉄損抑制用の重畳電流波形を求めることができる。   The motor characteristics used in S2 and S3 in FIG. 6 include the rotor position dependency of the induced voltage due to the magnet magnetic flux of the motor, and also include the rotor position dependency and current dependency of the inductance. The effect of saturation is also taken into consideration, and the characteristics are close to those of the actual machine. Furthermore, since the current waveform when the motor is rotated while feedback control is performed by an actual PWM inverter is calculated using this motor characteristic, the current waveform is almost the same as the actual measurement. In this way, since the iron loss is calculated using the same current waveform as the actual measurement, the iron loss value takes into account the effects of PWM control, magnetomotive force harmonics, and slot harmonics. A superimposed current waveform for loss suppression can be obtained.

次に、トルクリップル抑制用重畳電流波形データの作成方法を、図7を参照して説明する。
従来、トルクリップル抑制制御を行う場合には、電流基本波成分すなわち正弦波電流を用いて一定速回転時のトルクリップルを電磁界解析で計算したデータを用いたり、実機を作製してトルクリップルを測定したデータを用いたりしていた。しかしながら、実際のモータでは、インバータで駆動しフィードバック制御を行うので、速度変動を伴う状態でのトルクリップルとなり、電磁界解析で求めたトルクリップルのデータでは十分に抑制効果が得られなかった。
また、実機を試作して各運転条件について細かくトルクリップルや鉄損を測定し、これらをデータベース化してトルクリップル抑制制御や、効率最大制御を行うという方法では、試作機を製作して多くの条件において測定を実施しなければならず、開発コストや期間がかかるという問題があった。
そこで、トルクリップルの計算による予測精度を上げるため、図7に示すフローに基づく計算方法を用いた。
図7では、先ず、モータ設計により形状を決定(S10)した後、この形状に基づいて電磁界解析を正弦波電流にて行う。外部駆動、無通電時の解析により無負荷誘起電圧、コギングトルクを求め、運転範囲の負荷条件すなわち電流条件、速度条件、電流位相条件に対してトルク、インダクタンスのロータ位置依存性を求める(S11)。これらの情報を包含したモータモデルを作成し、実際のPWMインバータと同じ制御ループを有する制御(回路)シミュレータにモータモデルを組込む(S12)。再度、各運転範囲内の条件において制御(回路)シミュレーションを実施しトルクリップルを求め(S13)、トルクリップルデータよりトルクリップル抑制用の重畳電流波形を計算する。
Next, a method of creating torque ripple suppressing superimposed current waveform data will be described with reference to FIG.
Conventionally, when torque ripple suppression control is performed, the torque ripple at constant speed rotation using the current fundamental wave component, that is, the sine wave current, is used, or the torque ripple is generated by creating an actual machine. The measured data was used. However, since an actual motor is driven by an inverter and performs feedback control, torque ripple occurs in a state accompanied by speed fluctuation, and the torque ripple data obtained by electromagnetic field analysis cannot sufficiently suppress the effect.
In addition, a prototype is manufactured and the torque ripple and iron loss are measured in detail for each operating condition, and the database is used to perform torque ripple suppression control and maximum efficiency control. In this case, there is a problem that the measurement has to be carried out and the development cost and time are required.
Therefore, in order to improve the prediction accuracy by calculating the torque ripple, a calculation method based on the flow shown in FIG. 7 was used.
In FIG. 7, first, after determining the shape by motor design (S10), electromagnetic field analysis is performed with a sine wave current based on this shape. The no-load induced voltage and cogging torque are obtained by analysis at the time of external drive and no energization, and the rotor position dependency of the torque and inductance is obtained with respect to the load condition of the operation range, that is, the current condition, speed condition, and current phase condition (S11). . A motor model including these pieces of information is created, and the motor model is incorporated into a control (circuit) simulator having the same control loop as the actual PWM inverter (S12). Again, a control (circuit) simulation is performed under conditions within each operating range to obtain torque ripple (S13), and a superimposed current waveform for torque ripple suppression is calculated from torque ripple data.

図7のS11、S12で使用しているモータ特性は、モータの磁石磁束による誘起電圧のロータ位置依存性を包含し、かつインダクタンスのロータ位置依存性や電流依存性も包含しているため、磁気飽和による影響も考慮されており、実機に近い特性となっている。更に、このモータ特性を用いて実際の制御フローでモータを回転した場合のトルクリップルを、制御(回路)シミュレータで計算しているため、フィードバックループによる制御応答性を反映し、速度変動も再現された状態下でのトルクリップルが計算され、位相情報も実際の運転時と一致するデータとなっている。   The motor characteristics used in S11 and S12 in FIG. 7 include the rotor position dependency of the induced voltage due to the magnet magnetic flux of the motor, and also include the rotor position dependency and current dependency of the inductance. The effect of saturation is also taken into consideration, and the characteristics are close to those of the actual machine. Furthermore, since the torque ripple when the motor is rotated with the actual control flow using this motor characteristic is calculated by the control (circuit) simulator, the control response by the feedback loop is reflected and the speed fluctuation is also reproduced. The torque ripple under the condition is calculated, and the phase information is also the same data as in actual operation.

以上のように、この実施の形態3では、試作機を製作せずに、計算にて実機と同等のトルクリップルあるいは鉄損を予測し、これらより抑制用重畳電流波形を求めるので、開発コストや期間を短縮できるという効果も得られる。
更に、本フローをモータ設計時に用いて、トルクリップル抑制と鉄損抑制用の重畳電流波形がほぼ一致する運転領域ができるだけ広くなるように、モータ形状を工夫することにより、トルクリップルと鉄損の双方が低減可能なモータを得ることが可能となる。
As described above, in this third embodiment, torque ripple or iron loss equivalent to that of the actual machine is predicted by calculation without producing a prototype, and the superimposed current waveform for suppression is obtained from these, so that development cost and The effect that a period can be shortened is also acquired.
Furthermore, by using this flow when designing the motor, the torque ripple and iron loss can be reduced by devising the motor shape so that the operating range where the superimposed current waveforms for torque ripple suppression and iron loss suppression are almost the same is as wide as possible. It becomes possible to obtain a motor in which both can be reduced.

なお、以上の各実施の形態例では、同期電動機を制御する場合について説明したが、この発明は、誘導電動機等交流電動機に広く適用でき同等の効果を奏する。   In each of the embodiments described above, the case of controlling a synchronous motor has been described. However, the present invention can be widely applied to AC motors such as induction motors, and has the same effects.

また、この発明の各変形例において、電力変換器がPWMインバータで構成される場合、重畳電流演算手段は、交流電動機に発生する鉄損の高調波成分を低減するよう、鉄損抑制用重畳電流を、交流電動機の電流検出値の高調波成分に基づいて演算するので、PWMインバータの動作に起因して発生する高調波に基づく鉄損が有効に低減される。   Moreover, in each modification of this invention, when a power converter is comprised with a PWM inverter, a superimposition current calculating means is a superposition current for iron loss suppression so that the harmonic component of the iron loss which generate | occur | produces in an AC motor may be reduced. Is calculated based on the harmonic component of the detected current value of the AC motor, so that the iron loss based on the harmonic generated due to the operation of the PWM inverter is effectively reduced.

重畳電流演算手段は、鉄損抑制用重畳電流と、電流指令値に重畳することにより交流電動機に発生するトルクリップルが低減するようにトルクリップル抑制用重畳電流とを演算し、交流電動機の運転条件に応じて鉄損抑制用重畳電流とトルクリップル抑制用重畳電流とのいずれかを選択して出力するようにし、電流制御器は、電流指令値と重畳電流演算手段で選択された重畳電流との和に交流電動機の電流検出値が追従するように電力変換器を制御するので、運転範囲の広い交流電動機においても、同じ制御装置で、当該交流電動機の特性に応じた最適の運転特性が得られる。   The superimposed current calculating means calculates the superimposed current for iron loss suppression and the superimposed current for torque ripple suppression so as to reduce the torque ripple generated in the AC motor by superimposing the current on the current command value. Depending on the output current, either the superposition current for iron loss suppression or the superposition current for torque ripple suppression is selected and output, and the current controller determines whether the current command value and the superposition current selected by the superposition current calculation means Since the power converter is controlled so that the current detection value of the AC motor follows the sum, even with an AC motor having a wide operating range, the same control device can provide optimum operating characteristics according to the characteristics of the AC motor. .

重畳電流演算手段は、交流電動機の定格速度以下の低速域ではトルクリップル抑制用重畳電流を選択して出力し、定格速度を越える高速域では鉄損抑制用重畳電流を選択して出力するので、広域において適切な性能を有する交流電動機の制御装置が得られる。   Since the superimposed current calculation means selects and outputs the torque ripple suppressing superimposed current in the low speed region below the rated speed of the AC motor, and selects and outputs the iron loss suppressing superimposed current in the high speed region exceeding the rated speed. An AC motor control device having suitable performance in a wide area can be obtained.

交流電動機の制御装置の重畳電流演算手段における鉄損抑制用重畳電流の演算方法であって、
電動機の形状を決定する第1の工程、この第1の工程で決定された形状に基づき電磁界解析により誘起電圧のロータ位置依存性およびトルク、インダクタンスのロータ位置依存性と電流依存性とを算出する第2の工程、この第2の工程で算出した電動機の特性を用い、実際の電力変換器と同じ制御による回路シミュレーションを行い運転条件毎の電流波形を算出する第3の工程、この第3の工程で算出された電流波形に基づき電磁界解析により鉄損の高調波成分Aを算出する第4の工程、第3の工程で算出された電流波形に暫定的に定めた高調波電流成分を重畳した電流波形に基づき電磁界解析により鉄損の高調波成分Bを算出する第5の工程、上記鉄損の高調波成分AとBとの比較を行い、上記Aに比較し上記Bが十分小となる条件を満たすまで上記重畳する電流波形を修正して第5の工程を繰り返し、上記条件が満たされたときの重畳した電流波形を鉄損抑制用重畳電流として出力する第6の工程を備えたので、試作機を製作せずに、計算にて鉄損抑制用重畳電流波形を求めるので、開発コストや期間を短縮できるという効果が得られる。
A method of calculating a superposition current for suppressing iron loss in a superposition current calculation means of a control device for an AC motor,
The first step of determining the shape of the motor, and the rotor position dependency and torque of the induced voltage and the rotor position dependency and current dependency of the inductance are calculated by electromagnetic field analysis based on the shape determined in the first step A second step of performing a circuit simulation under the same control as that of an actual power converter using the characteristics of the motor calculated in the second step, and calculating a current waveform for each operating condition. The fourth step of calculating the harmonic component A of the iron loss by electromagnetic field analysis based on the current waveform calculated in the step of step 4, the harmonic current component tentatively defined in the current waveform calculated in the third step The fifth step of calculating the harmonic component B of the iron loss by electromagnetic field analysis based on the superimposed current waveform, and comparing the harmonic components A and B of the iron loss. Meet the condition to be small The fifth step is repeated by correcting the superimposed current waveform until the above condition is satisfied, and the sixth step of outputting the superimposed current waveform as the iron loss suppressing superimposed current when the above condition is satisfied is provided. Since the superposed current waveform for suppressing iron loss is obtained by calculation without manufacturing, the effect of shortening the development cost and period can be obtained.

この発明の実施の形態1における交流電動機の制御装置を示す図である。It is a figure which shows the control apparatus of the alternating current motor in Embodiment 1 of this invention. 本発明の実施の形態1を適用する前の鉄損の測定結果を示す図である。It is a figure which shows the measurement result of the iron loss before applying Embodiment 1 of this invention. 本発明の実施の形態1を適用する前の電流波形を示す図である。It is a figure which shows the current waveform before applying Embodiment 1 of this invention. 本発明の実施の形態1を適用する前の電流波形の歪み成分を示す図である。It is a figure which shows the distortion component of the current waveform before applying Embodiment 1 of this invention. この発明の実施の形態2における交流電動機の制御装置を示す図である。It is a figure which shows the control apparatus of the alternating current motor in Embodiment 2 of this invention. この発明の実施の形態3において、鉄損抑制用重畳電流波形データの作成フローを示す図である。In Embodiment 3 of this invention, it is a figure which shows the preparation flow of the superimposed current waveform data for iron loss suppression. この発明の実施の形態3において、トルクリップル抑制用重畳電流波形データの作成フローを示す図である。In Embodiment 3 of this invention, it is a figure which shows the creation flow of the superimposed current waveform data for torque ripple suppression.

符号の説明Explanation of symbols

1 三相モータ、2 PWMインバータ、3 アンプ、5 トルク指令器、
7 電流制御器、8 PWM発生器、9,9A 重畳電流演算器、11 電流検出器、
12,13 加算器、14 モード選択器。
1 Three-phase motor, 2 PWM inverter, 3 amplifier, 5 torque command device,
7 current controller, 8 PWM generator, 9, 9A superimposed current calculator, 11 current detector,
12, 13 Adder, 14 mode selector.

Claims (5)

直流電圧を交流電圧に変換して交流電動機に供給する電力変換器、および電流指令値に上記交流電動機の電流検出値が追従するように上記電力変換器を制御する電流制御器を備えた交流電動機の制御装置であって、
上記電流指令値に重畳することにより上記交流電動機に発生する鉄損が低減するように、上記交流電動機の電流検出値に基づき鉄損抑制用重畳電流を演算する重畳電流演算手段を備え、上記電流制御器は、上記電流指令値と上記重畳電流演算手段からの重畳電流との和に上記交流電動機の電流検出値が追従するように上記電力変換器を制御することを特徴とする交流電動機の制御装置。
An AC motor comprising a power converter that converts a DC voltage into an AC voltage and supplies the AC motor, and a current controller that controls the power converter so that a current detection value of the AC motor follows a current command value. A control device of
Superimposing current calculating means for calculating a superimposing current for iron loss suppression based on a current detection value of the AC motor so as to reduce iron loss generated in the AC motor by being superimposed on the current command value, The controller controls the power converter so that the current detection value of the AC motor follows the sum of the current command value and the superimposed current from the superimposed current calculation means. apparatus.
上記電力変換器がPWMインバータで構成される場合、上記重畳電流演算手段は、上記交流電動機に発生する鉄損の高調波成分を低減するよう、上記鉄損抑制用重畳電流を、上記交流電動機の電流検出値の高調波成分に基づいて演算することを特徴とする請求項1記載の交流電動機の制御装置。 When the power converter is composed of a PWM inverter, the superimposition current calculation means converts the iron loss suppression superimposition current of the AC motor so as to reduce a harmonic component of iron loss generated in the AC motor. 2. The AC motor control apparatus according to claim 1, wherein the calculation is performed based on a harmonic component of the current detection value. 上記重畳電流演算手段は、上記鉄損抑制用重畳電流と、上記電流指令値に重畳することにより上記交流電動機に発生するトルクリップルが低減するようにトルクリップル抑制用重畳電流とを演算し、上記交流電動機の運転条件に応じて上記鉄損抑制用重畳電流とトルクリップル抑制用重畳電流とのいずれかを選択して出力するようにし、上記電流制御器は、上記電流指令値と上記重畳電流演算手段で選択された重畳電流との和に上記交流電動機の電流検出値が追従するように上記電力変換器を制御することを特徴とする請求項2に記載の交流電動機の制御装置。 The superimposed current calculating means calculates the iron loss suppressing superimposed current and the torque ripple suppressing superimposed current so as to reduce the torque ripple generated in the AC motor by being superimposed on the current command value, According to the operating condition of the AC motor, either the iron loss suppressing superimposed current or the torque ripple suppressing superimposed current is selected and output, and the current controller calculates the current command value and the superimposed current calculation. The control apparatus for an AC motor according to claim 2, wherein the power converter is controlled so that a current detection value of the AC motor follows a sum of the superimposed current selected by the means. 上記重畳電流演算手段は、上記交流電動機の定格速度以下の低速域では上記トルクリップル抑制用重畳電流を選択して出力し、上記定格速度を越える高速域では上記鉄損抑制用重畳電流を選択して出力することを特徴とする請求項3記載の交流電動機の制御装置。 The superimposed current calculation means selects and outputs the torque ripple suppressing superimposed current in a low speed range below the rated speed of the AC motor, and selects the iron loss suppressing superimposed current in a high speed range exceeding the rated speed. 4. The control apparatus for an AC motor according to claim 3, wherein 請求項2ないし4のいずれかに記載された交流電動機の制御装置の重畳電流演算手段における上記鉄損抑制用重畳電流の演算方法であって、
電動機の形状を決定する第1の工程、この第1の工程で決定された形状に基づき電磁界解析により誘起電圧のロータ位置依存性およびトルク、インダクタンスのロータ位置依存性と電流依存性とを算出する第2の工程、この第2の工程で算出した電動機の特性を用い、実際の電力変換器と同じ制御による回路シミュレーションを行い運転条件毎の電流波形を算出する第3の工程、この第3の工程で算出された電流波形に基づき電磁界解析により鉄損の高調波成分Aを算出する第4の工程、上記第3の工程で算出された電流波形に暫定的に定めた高調波電流成分を重畳した電流波形に基づき電磁界解析により鉄損の高調波成分Bを算出する第5の工程、上記鉄損の高調波成分AとBとの比較を行い、上記Aに比較し上記Bが十分小となる条件を満たすまで上記重畳する電流波形を修正して上記第5の工程を繰り返し、上記条件が満たされたときの上記重畳した電流波形を上記鉄損抑制用重畳電流として出力する第6の工程を備えたことを特徴とする鉄損抑制用重畳電流の演算方法。
A calculation method of the iron loss suppressing superimposed current in the superimposed current calculation means of the control device for an AC electric motor according to any one of claims 2 to 4,
The first step of determining the shape of the motor, and the rotor position dependency and torque of the induced voltage and the rotor position dependency and current dependency of the inductance are calculated by electromagnetic field analysis based on the shape determined in the first step A second step of performing a circuit simulation under the same control as that of an actual power converter using the characteristics of the motor calculated in the second step, and calculating a current waveform for each operating condition. A fourth step of calculating the harmonic component A of the iron loss by electromagnetic field analysis based on the current waveform calculated in the step, and a harmonic current component provisionally defined in the current waveform calculated in the third step. The fifth step of calculating the harmonic component B of the iron loss by electromagnetic field analysis based on the current waveform superimposed with the above, the harmonic components A and B of the iron loss are compared, and compared with A, the B The condition to be small enough A sixth step of correcting the superimposed current waveform until it is completed, repeating the fifth step, and outputting the superimposed current waveform as the iron loss suppressing superimposed current when the condition is satisfied. A method for calculating a superimposed current for suppressing iron loss, which is characterized by the above.
JP2006248920A 2006-09-14 2006-09-14 AC motor control device and method for calculating superimposed current for suppressing iron loss Expired - Fee Related JP4995518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006248920A JP4995518B2 (en) 2006-09-14 2006-09-14 AC motor control device and method for calculating superimposed current for suppressing iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006248920A JP4995518B2 (en) 2006-09-14 2006-09-14 AC motor control device and method for calculating superimposed current for suppressing iron loss

Publications (2)

Publication Number Publication Date
JP2008072832A true JP2008072832A (en) 2008-03-27
JP4995518B2 JP4995518B2 (en) 2012-08-08

Family

ID=39293927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006248920A Expired - Fee Related JP4995518B2 (en) 2006-09-14 2006-09-14 AC motor control device and method for calculating superimposed current for suppressing iron loss

Country Status (1)

Country Link
JP (1) JP4995518B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009268183A (en) * 2008-04-22 2009-11-12 Aisin Seiki Co Ltd Drive apparatus for three-phase ac motor
JP2011217526A (en) * 2010-03-31 2011-10-27 Aisin Aw Co Ltd Motor control device
JP2011259648A (en) * 2010-06-11 2011-12-22 Mitsuba Corp Brushless motor control method and brushless motor controller
US20130200830A1 (en) * 2012-02-07 2013-08-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Motor-driving system
JP2014011870A (en) * 2012-06-29 2014-01-20 Denso Corp Controller of rotary machine
JP2014199500A (en) * 2013-03-29 2014-10-23 株式会社富士通ゼネラル Advance simulation method and advance simulation program
CN105281631A (en) * 2014-06-16 2016-01-27 现代自动车株式会社 A sensorless control method for a motor and a system using the same
JP2020048384A (en) * 2018-09-21 2020-03-26 日本製鉄株式会社 Processing system, processing method, and program
WO2020202905A1 (en) * 2019-04-01 2020-10-08 株式会社豊田自動織機 Inverter device
CN112042101A (en) * 2018-04-27 2020-12-04 株式会社丰田自动织机 Pulse pattern generating device
KR20210024115A (en) * 2018-09-21 2021-03-04 닛폰세이테츠 가부시키가이샤 Iron core excitation system in electric equipment, iron core excitation method in electric equipment, program and inverter power supply modulation operation setting device
JP7436778B2 (en) 2019-08-08 2024-02-22 日本製鉄株式会社 Processing systems, processing methods, and programs

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1155986A (en) * 1997-08-05 1999-02-26 Hitachi Ltd Controller for permanent magnet electric rotating machine
JP2002223599A (en) * 2000-11-22 2002-08-09 Isao Takahashi Inverter control method and its device
JP2004032944A (en) * 2002-06-27 2004-01-29 Okuma Corp Controller of synchronous motor and synchronous motor
JP2005168212A (en) * 2003-12-03 2005-06-23 Denso Corp Motor control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1155986A (en) * 1997-08-05 1999-02-26 Hitachi Ltd Controller for permanent magnet electric rotating machine
JP2002223599A (en) * 2000-11-22 2002-08-09 Isao Takahashi Inverter control method and its device
JP2004032944A (en) * 2002-06-27 2004-01-29 Okuma Corp Controller of synchronous motor and synchronous motor
JP2005168212A (en) * 2003-12-03 2005-06-23 Denso Corp Motor control device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009268183A (en) * 2008-04-22 2009-11-12 Aisin Seiki Co Ltd Drive apparatus for three-phase ac motor
JP2011217526A (en) * 2010-03-31 2011-10-27 Aisin Aw Co Ltd Motor control device
JP2011259648A (en) * 2010-06-11 2011-12-22 Mitsuba Corp Brushless motor control method and brushless motor controller
US20130200830A1 (en) * 2012-02-07 2013-08-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Motor-driving system
JP2013162660A (en) * 2012-02-07 2013-08-19 Toyota Central R&D Labs Inc Motor drive system
US9088234B2 (en) 2012-02-07 2015-07-21 Kabushiki Kaisha Toyota Chuo Kenkyusho Motor-driving system
US9413278B2 (en) 2012-06-29 2016-08-09 Denso Corporation Control device for rotating electrical machine
JP2014011870A (en) * 2012-06-29 2014-01-20 Denso Corp Controller of rotary machine
JP2014199500A (en) * 2013-03-29 2014-10-23 株式会社富士通ゼネラル Advance simulation method and advance simulation program
CN105281631B (en) * 2014-06-16 2019-04-23 现代自动车株式会社 The sensorless strategy method of motor and the system for using this method
CN105281631A (en) * 2014-06-16 2016-01-27 现代自动车株式会社 A sensorless control method for a motor and a system using the same
CN112042101A (en) * 2018-04-27 2020-12-04 株式会社丰田自动织机 Pulse pattern generating device
CN112042101B (en) * 2018-04-27 2023-09-08 株式会社丰田自动织机 Pulse pattern generating device
JP2020048384A (en) * 2018-09-21 2020-03-26 日本製鉄株式会社 Processing system, processing method, and program
KR20210024115A (en) * 2018-09-21 2021-03-04 닛폰세이테츠 가부시키가이샤 Iron core excitation system in electric equipment, iron core excitation method in electric equipment, program and inverter power supply modulation operation setting device
CN112514242A (en) * 2018-09-21 2021-03-16 日本制铁株式会社 Excitation system, excitation method, program for iron core in electrical equipment, and modulation operation setting device for converter power supply
TWI728474B (en) * 2018-09-21 2021-05-21 日商日本製鐵股份有限公司 Excitation system for iron core in electrical equipment, excitation method for iron core in electrical equipment, program, and modulation operation setting device of inverter power supply
KR102529816B1 (en) 2018-09-21 2023-05-09 닛폰세이테츠 가부시키가이샤 Iron core excitation system in electric machine, iron core excitation method in electric machine, computer readable recording medium in which program is recorded, and device for setting modulation operation of inverter power supply
CN112514242B (en) * 2018-09-21 2024-02-20 日本制铁株式会社 Excitation system, excitation method, program, and modulation operation setting device for iron core in electric device, and modulation operation setting device for inverter power supply
WO2020202905A1 (en) * 2019-04-01 2020-10-08 株式会社豊田自動織機 Inverter device
JP2020171086A (en) * 2019-04-01 2020-10-15 株式会社豊田自動織機 Inverter device
JP7436778B2 (en) 2019-08-08 2024-02-22 日本製鉄株式会社 Processing systems, processing methods, and programs

Also Published As

Publication number Publication date
JP4995518B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP4995518B2 (en) AC motor control device and method for calculating superimposed current for suppressing iron loss
Rodriguez et al. A novel digital control technique for brushless DC motor drives
JP2005328691A (en) Motor controller
JP6864116B2 (en) Power conversion system
Hasanien Torque ripple minimization of permanent magnet synchronous motor using digital observer controller
EP3258594B1 (en) Controlling a multiple-set electrical machine
JP2015517790A (en) Method and apparatus for controlling an electric machine comprising two or more multiphase stator windings
JP4239886B2 (en) Magnetic sound control method for AC rotating electric machine
JP4269881B2 (en) AC rotating electrical equipment
Kim et al. Improved torque ripple minimization technique with enhanced efficiency for surface-mounted PMSM drives
Zhang et al. Field enhancing model predictive direct torque control of permanent magnet synchronous machine
JP2006352957A (en) Controller for synchronous motor
Chen et al. Band-based multi-step predictive torque control strategy for PMSM drives
JP6351652B2 (en) Power converter control device
Lim et al. Model predictive current control of a five-phase induction motor
JP6113651B2 (en) Multi-phase motor drive
WO2017030055A1 (en) Device and method for controlling rotary machine
JP4155152B2 (en) AC rotating electrical equipment
Bramerdorfer et al. PMSM for high demands on low torque ripple using optimized stator phase currents controlled by an iterative learning control algorithm
JP2009284598A (en) Controller for alternating-current motors
JP2007082325A (en) Multiphase motor
JP6719162B2 (en) Multi-phase motor drive
Yuan et al. Design of a lying sensor for permanent magnet synchronous machine torque ripple reduction using the iterative learning control technique
Uddin et al. Recent advances in direct torque and flux control of IPMSM drives
WO2023067798A1 (en) Motor control device and motor control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4995518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees