JP2008071447A - High frequency superimposing level setup method, and disk player - Google Patents

High frequency superimposing level setup method, and disk player Download PDF

Info

Publication number
JP2008071447A
JP2008071447A JP2006250630A JP2006250630A JP2008071447A JP 2008071447 A JP2008071447 A JP 2008071447A JP 2006250630 A JP2006250630 A JP 2006250630A JP 2006250630 A JP2006250630 A JP 2006250630A JP 2008071447 A JP2008071447 A JP 2008071447A
Authority
JP
Japan
Prior art keywords
high frequency
laser diode
current
level
ith
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006250630A
Other languages
Japanese (ja)
Inventor
Shinji Kaneko
真二 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2006250630A priority Critical patent/JP2008071447A/en
Publication of JP2008071447A publication Critical patent/JP2008071447A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Head (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a superimpose effect without spoiling its stability by suppressing the superimpose effect variations when making high frequency superimposed driving of a large output and large current drive laser diode close to 400 nm. <P>SOLUTION: By obtaining the current difference between the Ith electric current of the laser diode LD to use and the Ith of a reference laser diode after adjusting the superimposing high frequency current to the setup ΔIop (value where the superimposed light emitting peak power becomes 3.5 times) of a reference laser diode, the controller 8 adjusts the superimposing high frequency level from a high frequency oscillator circuit 4 to the output circuit 1 by subtracting or adding the superimposing high frequency current which is obtained by multiplying this current difference by a correction factor from or to the above adjusted superimposing high frequency current. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ディスクにレーザー光を照射してデータを再生するディスク再生装置に係り、特に再生時にレーザーダイオードを駆動する電流に重畳する高周波電流レベルの設定方法に関する。   The present invention relates to a disk reproducing apparatus for reproducing data by irradiating a disk with laser light, and more particularly to a method for setting a high-frequency current level to be superimposed on a current for driving a laser diode during reproduction.

ディスク記録再生装置はレーザーダイオード(LD)から出射されるレーザー光をディスクに照射してデータの記録再生を行う。通常、書き込み時はレーザーダイオードをDC駆動するが、再生時に高周波重畳駆動して戻り光や、LD温度変化による波長飛びでのノイズの増大を抑制している(例えば特許文献1参照)。   The disk recording / reproducing apparatus records and reproduces data by irradiating the disk with laser light emitted from a laser diode (LD). Normally, the laser diode is DC driven at the time of writing, but high frequency superposition driving is performed at the time of reproduction to suppress an increase in noise due to return light and wavelength jump due to LD temperature change (see, for example, Patent Document 1).

ディスク再生装置の再生時に用いるLDの従来の高周波重畳レベルの設定には、光発信器(OSC)による観測調整ではなく、図10のように高周波重畳オン/オフで変化するIL特性のLD駆動電流の直流分の差分電流による間接調整方法が使われている。この差分電流は、LDの使用動作点ではΔIop、Ith付近ではΔIthと呼ばれる。高周波重畳は発光スペクトラムを拡散して、戻り光や波長飛びを抑制するもので、そのレベルは大きい方が効果は大きい。しかし、400nmのレーザーを用いるブルーレイディスク装置では光のエネルギーが高い為、ピークパワーを大きくすると再生時に記録したデータを劣化させてしまい、安定性(stability)を損なってしまう。ブルーレイディスク(400nm disc)の規格では、前記ピークパワーは再生平均パワーの7倍以下となっている。
特開2000−149302号公報
The setting of the conventional high frequency superposition level of the LD used at the time of reproduction of the disk reproducing device is not the observation adjustment by the optical transmitter (OSC), but the LD drive current of the IL characteristic that changes by high frequency superposition on / off as shown in FIG. The indirect adjustment method using the differential current of the DC component is used. This differential current is called ΔIop at the operating point of the LD and ΔIth near Ith. High frequency superposition diffuses the emission spectrum and suppresses return light and wavelength skipping. The higher the level, the greater the effect. However, since the energy of light is high in a Blu-ray disc apparatus using a 400 nm laser, if the peak power is increased, data recorded at the time of reproduction is deteriorated and stability is deteriorated. In the Blu-ray Disc (400 nm disc) standard, the peak power is 7 times or less of the average reproduction power.
JP 2000-149302 A

ところで、400nm LDの出力が50mW(pulse)と小さいうちは、Ithは小さくそのバラツキも小さいためΔIopの固定調整で設計仕様を満足していた。ここへ来て、2層ディスクの記録が要求され、LDの出力が150mW(pulse)となり、図11の様に150mWのLDでは50mWのLDに比べてIthは大きくなり、そのバラツキも大きくなってきている。その結果、固定調整では重畳効果がバラツキ、ピークパワーの倍数は図12の様に2〜5倍となって重畳の掛らない物が出てきてしまい、新たな調整方法が求められてきている。   By the way, while the output of the 400 nm LD was as small as 50 mW (pulse), Ith was small and its variation was small, so that the design specification was satisfied by the fixed adjustment of ΔIop. Here, recording on a double-layer disc is required, the output of the LD is 150 mW (pulse), and as shown in FIG. 11, the Ith is larger and the variation is larger in the 150 mW LD than in the 50 mW LD. ing. As a result, in the fixed adjustment, the superposition effect varies, and the multiple of the peak power is 2 to 5 times as shown in FIG. .

本発明は前記事情に鑑み案出されたものであって、本発明の目的は、出力が大きい400nm付近の大電流駆動レーザーダイオードの高周波重畳駆動時の重畳効果のバラツキを抑え、安定性を損なうことなく確実に重畳効果を得ることができる高周波重畳レベルの設定方法並びにこの設定方法を用いたディスク再生装置を提供することにある。   The present invention has been devised in view of the above circumstances, and an object of the present invention is to suppress variation in superposition effect during high-frequency superposition drive of a large current drive laser diode having a large output near 400 nm and impair stability. It is an object of the present invention to provide a high frequency superimposition level setting method capable of reliably obtaining a superimposing effect without any problem and a disc reproducing apparatus using this setting method.

本発明は上記目的を達成するため、光ディスク再生装置の再生時に、レーザーダイオードを駆動する電流に高周波重畳する際の高周波重畳レベルの設定方法であって、標準のレーザーダイオードの高周波重畳時の発光ピークパワーが所定倍となるようなΔIopが得られるように高周波重畳電流レベルを調整した後、使用するレーザーダイオードのIthと前記標準のレーザーダイオードのIthを測定して両Ith電流値の差分電流値を求め、この差分電流値に補正係数を掛けた電流を前記調整して得た高周波重畳電流レベルに加減算して前記使用するレーザーダイオードの高周波重畳電流レベルとする。   In order to achieve the above object, the present invention provides a method for setting a high-frequency superposition level when high-frequency superimposition is performed on a current for driving a laser diode during reproduction by an optical disk reproducing apparatus, and a light emission peak at the time of high-frequency superposition of a standard laser diode After adjusting the high-frequency superimposed current level so that ΔIop is obtained such that the power becomes a predetermined multiple, Ith of the laser diode to be used and Ith of the standard laser diode are measured, and a difference current value between the two Ith current values is obtained. The current obtained by multiplying the difference current value by the correction coefficient is added to or subtracted from the high frequency superimposed current level obtained by the adjustment to obtain the high frequency superimposed current level of the laser diode to be used.

これにより、高周波重畳の発光ピークパワー倍率のバラツキを押さえ、戻り光の影響を排除し、且つpeaピークパワーを最小限とする事でリードスタビリティーを確保することができる。   Thereby, read stability can be ensured by suppressing variations in the emission peak power magnification of high frequency superposition, eliminating the influence of return light, and minimizing the pea peak power.

標準レーザーダイオードのΔIop(重畳発光のピークパワーが3.5倍となる値)設定値を得るように高周波重畳レベルを調整した後、使用するレーザーダイオードのIth電流値と標準レーザーダイオードのIthとの差分電流を求め、この差分電流に補正係数を掛けて得た高周波重畳電流を前記調整して得た高周波重畳電流レベルに加減算する事で、高周波重畳レベルの調整を行っているため、出力が大きい400nm付近の大電流駆動レーザーダイオードの高周波重畳駆動時の重畳効果のバラツキを抑え、安定性を損なうことなく確実に重畳効果を得ることができる。   After adjusting the high frequency superimposition level so as to obtain a standard laser diode ΔIop (a value at which the peak power of superimposed light emission is 3.5 times), the difference current between the Ith current value of the laser diode used and the Ith of the standard laser diode Since the high frequency superposition level is adjusted by adding / subtracting the high frequency superposition current obtained by multiplying the difference current by the correction coefficient to the high frequency superposition current level obtained by the adjustment, the output is around 400 nm. Thus, it is possible to suppress the dispersion of the superposition effect during the high-frequency superposition drive of the large current drive laser diode and to obtain the superposition effect reliably without impairing the stability.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。
(実施例1)
図1は、本発明の第1の実施形態に係る高周波重畳レベルの設定方法を説明するためのレーザー駆動回路の構成を示した回路図である。レーザー駆動回路は、レーザーダイオードLDを駆動する出力回路1、出力回路1にドライブ電流を与える電流スイッチ回路2、電流スイッチ回路2のドライブ電流を制御するレーザーパワー制御回路3、高周波電流を電流スイッチ回路2に出力する高周波発振回路4、レーザーダイオードLDの発光パワーを記憶するレーザーパワーメモリ5、レーザーパワーメモリ5から読み出したパワー値をアナログ信号に変換してレーザーパワー制御回路3に与えるD/A変換回路6、制御部8からの指示に従って回路の状態を示す各種値を保持する状態保持回路7、高周波重畳レベル調整時の制御を行う制御部8を有して構成されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(Example 1)
FIG. 1 is a circuit diagram showing a configuration of a laser driving circuit for explaining a method for setting a high-frequency superposition level according to the first embodiment of the present invention. The laser drive circuit includes an output circuit 1 for driving the laser diode LD, a current switch circuit 2 for supplying a drive current to the output circuit 1, a laser power control circuit 3 for controlling the drive current of the current switch circuit 2, and a high-frequency current as a current switch circuit. 2, a high-frequency oscillation circuit 4 that outputs to the laser diode 5, a laser power memory 5 that stores the light emission power of the laser diode LD, and a D / A conversion that converts the power value read from the laser power memory 5 into an analog signal and supplies the analog signal The circuit 6 includes a state holding circuit 7 that holds various values indicating the state of the circuit in accordance with instructions from the control unit 8, and a control unit 8 that performs control during high-frequency superposition level adjustment.

次に本実施形態の高周波重畳レベル調整時の動作について説明する。制御部8により駆動回路が読み出しモードとなると、レーザーパワーメモリ5からリードパワーデータが出力され、それがD/A変換回路6によりアナログ値となってレーザーパワー制御回路3の基準値(REF)として与えられる。レーザーパワー制御回路3は、フロントモニターフォトダイオードFFDからのレーザーダイオードLDの実際の発光出力に対応したモニター信号を入力し、これと前記REFとの誤差信号が0になるようなドライブ信号を電流スイッチ回路2を通して出力回路1に出力する。出力回路1は入力されるドライブ信号を電流増幅してレーザーダイオードLDに出力する。レーザーダイオードLDの発光出力はFFDでモニターされて、前記モニター信号となってレーザーパワー制御回路3にフィードバックされる。このフィードバックループによりモニター信号がREFになるようにレーザーダイオードLDの発光出力が調整される。   Next, the operation at the time of adjusting the high frequency superimposition level of this embodiment will be described. When the drive circuit is set to the read mode by the control unit 8, read power data is output from the laser power memory 5, which is converted into an analog value by the D / A conversion circuit 6 as a reference value (REF) of the laser power control circuit 3. Given. The laser power control circuit 3 inputs a monitor signal corresponding to the actual light emission output of the laser diode LD from the front monitor photodiode FFD, and outputs a drive signal such that an error signal between the monitor signal and the REF becomes 0 as a current switch. Output to the output circuit 1 through the circuit 2. The output circuit 1 amplifies the current of the input drive signal and outputs it to the laser diode LD. The light emission output of the laser diode LD is monitored by the FFD and is fed back to the laser power control circuit 3 as the monitor signal. By this feedback loop, the light emission output of the laser diode LD is adjusted so that the monitor signal becomes REF.

その後、制御部8は高周波発振回路4のレベルを変化させながら高周波電流をオン/オフし、出力回路1の電流をモニターする。制御部8は高周波発振回路4のオンオフ毎の電流値を取り込み、オンオフ時の電流差分(ΔIop)を設定値することによって、レーザーダイオードLDの駆動電流に重畳する高周波電流重畳レベルを最適値に設定する。   Thereafter, the controller 8 turns on / off the high frequency current while changing the level of the high frequency oscillation circuit 4 and monitors the current of the output circuit 1. The control unit 8 takes in a current value every time the high-frequency oscillation circuit 4 is turned on and off, and sets a current difference (ΔIop) at the time of on / off to set a high-frequency current superposition level to be superimposed on the drive current of the laser diode LD to an optimum value. .

ここで、上記高周波重畳レベルの調整法について説明する。本方法は間接調整法の利点を生かし、レーザーダイオードLDのバラツキによるピークパワーレベルを補正しようと
するもので、レーザーダイオードLDのIthとΔIopに相関関係がある事に着目し、Ithに対するΔIopの補正式に乗っ取って重畳レベルの調整を行うものである。補正式は、使用するIthの異なった多数のレーザーダイオードにおいて、ピークパワーレベルの倍数が3.5となるΔIopを測定し、このΔIop に基づいて、レーザーダイオードの重畳レベル補正式を作る。
Here, a method for adjusting the high frequency superimposition level will be described. This method takes advantage of the indirect adjustment method to correct the peak power level due to variations in the laser diode LD. Focusing on the correlation between Ith and ΔIop of the laser diode LD, correction of ΔIop with respect to Ith The superimposition level is adjusted by taking over the equation. In the correction formula, ΔIop at which the multiple of the peak power level is 3.5 is measured in a large number of laser diodes having different Iths to be used, and a laser diode superimposition level correction formula is created based on this ΔIop.

図2は、高周波重畳によるΔIopの発生を説明するもので、本来の高周波重畳波は正弦波であるが矩形波としてある。DC発光では、Iop(mA)を与えRp(read パワー)を得る。発光時はDC点灯の2倍強で発光し、発光停止時にはIthより小さくなる50%の矩形波で駆動すると、発光の平均パワーはDC発光と同じとなり、平均電流はΔIopだけ小さくなる。つまり、Ith以下の電流は発光に対して無効な電流でありIopを低減できる事となる。言い換えれば、ILの非線形部を利用するとΔIopを発生する。   FIG. 2 illustrates the generation of ΔIop due to high frequency superposition. The original high frequency superposition wave is a sine wave but a rectangular wave. In DC light emission, Iop (mA) is given and Rp (read power) is obtained. When light is emitted, the light is emitted at a level slightly more than twice that of DC lighting, and when the light emission is stopped, driving with a 50% rectangular wave smaller than Ith, the average power of light emission is the same as that of DC light emission, and the average current is reduced by ΔIop. That is, a current equal to or less than Ith is an invalid current for light emission, and Iop can be reduced. In other words, ΔIop is generated when the nonlinear part of IL is used.

図3は大出力レーザーの低出力部のIL特性を示した特性図である。図のA,B,Cの比較から判るように、低出力部のILはIthの増加に従って非線形部が大きくなって行く傾向にある。A部、C部のLDの変調特性にILカーブを追加したもので、変調正弦波はこの様なILカーブと乗算したものとなる。C部のLDでは、LD発光領域でも大きなΔIopを発生する。   FIG. 3 is a characteristic diagram showing the IL characteristics of the low output portion of the high output laser. As can be seen from the comparison of A, B, and C in the figure, the non-linear portion of the low output portion IL tends to increase as Ith increases. An IL curve is added to the modulation characteristics of the LD of the A part and the C part, and the modulated sine wave is obtained by multiplying such an IL curve. In the LD of the C part, a large ΔIop is generated even in the LD light emitting region.

図4はΔIopで高周波重畳レベルを設定した時の高周波重畳電流で、ΔIop=0.4mAとしたときのIthの異なるLDの高周波重畳電流を測定した場合の特性図である。同じΔIop:0.4mAを発生する高周波重畳電流はIthの大きなLD程減少する。   FIG. 4 is a characteristic diagram in the case of measuring the high-frequency superimposed current of the LD having a different Ith when ΔIop = 0.4 mA as the high-frequency superimposed current when the high-frequency superimposed level is set by ΔIop. The high-frequency superimposed current that generates the same ΔIop: 0.4 mA decreases as the LD having a larger Ith.

図5は発光のピークパワーが4倍となる時の高周波重畳電流を測定した場合の特性図である。高周波重畳電流で見ると、出力パワーに依存するが、ほぼ一定となるので、定電流でよいことがわかる。   FIG. 5 is a characteristic diagram when the high-frequency superimposed current is measured when the peak power of light emission is quadrupled. From the viewpoint of the high-frequency superimposed current, although it depends on the output power, it can be understood that a constant current is sufficient because it is almost constant.

図6は重畳レベルの設定方法を説明するもので、同一のピークパワーを発生させる重畳レベルの設定は、図に示すごとく、ΔIop=0.4mAの設定電流に補正電流を加減算すればよい事が判る。   FIG. 6 illustrates a method for setting the superimposition level. The superimposition level that generates the same peak power may be set by adding or subtracting the correction current to or from the set current of ΔIop = 0.4 mA as shown in the figure. I understand.

上記検討から、補正を15mV/mA(ΔIth)とした場合、ピークパワーは大体3倍〜4.5倍に収まっていて、Ith=50mAでも緩和振動を十分検知できる波形となっていることが測定の結果判っている。これにより、戻り光の影響も受けず、リード時の安定性(read stability)も確保される。Ith=40mAを原点とした補正なので、Ith=40mAより小さいと、負補正で振幅が小さくなり、大きいと正補正で大きくなる。   From the above examination, when the correction is set to 15 mV / mA (ΔIth), the peak power is approximately 3 to 4.5 times, and the measurement results show that the waveform can sufficiently detect the relaxation oscillation even at Ith = 50 mA. I understand. This ensures read stability without being influenced by the return light. Since the correction is made with Ith = 40 mA as the origin, if it is smaller than Ith = 40 mA, the amplitude is reduced by negative correction, and if it is larger, it is increased by positive correction.

以上の様に、高周波重畳時のピークパワーを管理するには、LDに流れる高周波重畳電流を管理すれば良いが、実際の光ピックアップでは、周波数減衰とバラツキを伴うので現実には不可能である。ΔIopでの調整はこれらの要因を含めた結果での調整方法であり、なんらかの形で補正が出来れば、ピーク パワーを管理できる事となる。図7、8は、15mV(SG補正レベル)/mA(ΔIth)の補正を行った測定データをまとめたもので、ピークパワーはかなり改善されている。特に図8はこの時同時に測定したΔIopで補正した高周波重畳電流は、ΔIopの多項式に整合している。従って、過補正にならないためには、6.5mWのΔIop/Ithを設定目標値とすれば良い。こうすれば、伝送系やLDの周波数特性を含んだ調整となる。   As described above, in order to manage the peak power at the time of high frequency superposition, it is only necessary to manage the high frequency superposition current flowing in the LD. However, in actual optical pickups, frequency attenuation and variation are impossible, and this is impossible in practice. . The adjustment with ΔIop is an adjustment method based on the result including these factors. If correction can be made in some form, the peak power can be managed. FIGS. 7 and 8 summarize the measurement data corrected by 15 mV (SG correction level) / mA (ΔIth), and the peak power is considerably improved. In particular, in FIG. 8, the high-frequency superimposed current corrected by ΔIop measured at the same time matches the polynomial of ΔIop. Therefore, in order not to overcorrect, Δmop / Ith of 6.5 mW may be set as the set target value. In this way, the adjustment includes the frequency characteristics of the transmission system and LD.

ΔIop設定値 = 0.00186X2−0.1217X−2.2813     ΔIop set value = 0.00186X2−0.1217X−2.2813

なお、高周波重畳は深く掛けた方が戻り光にたいする抑制は強いが、400nm LDの場合いRINが-125dBと大きいため、あるレベル以上の重畳はノイズに埋もれて無意味となり、且つリードスタビリティーを損なう原因となっている。以下種々の測定結果3.5倍程度で十分な事が判った。   Note that the high frequency superposition is deeper and the suppression of the return light is stronger. However, in the case of 400 nm LD, since RIN is as large as -125 dB, superimposition above a certain level is buried in noise and meaningless, and lead stability is improved. It is a cause of damage. Below, it was found that various measurement results of about 3.5 times were sufficient.

本実施形態によれば、標準レーザーダイオードのΔIop(重畳発光のピークパワーが3.5倍となる値)設定値を得るように高周波重畳レベルを調整した後、使用するレーザーダイオードのIth電流値と標準レーザーダイオードのIthとの差分電流を求め、この差分電流に補正係数を掛けて得た高周波重畳電流を前記調整して得た高周波重畳電流レベルに加減算する事で、高周波重畳レベルの調整を行っているため、高周波重畳の発光ピークパワー倍率のバラツキを押さえ、戻り光の影響を排除し、且つピークパワーを最小限とする事でリードスタビリティーを確保することができる。
(実施例2)
According to this embodiment, after adjusting the high frequency superimposition level so as to obtain ΔIop (a value at which the peak power of superimposed light emission is 3.5 times) of the standard laser diode, the Ith current value of the laser diode to be used and the standard laser are adjusted. The high-frequency superimposition level is adjusted by obtaining a differential current from the diode Ith and adding / subtracting the high-frequency superimposed current obtained by multiplying the differential current by the correction coefficient to the high-frequency superimposed current level obtained by the adjustment. Therefore, read stability can be ensured by suppressing variations in the light emission peak power magnification of high frequency superposition, eliminating the influence of return light, and minimizing the peak power.
(Example 2)

図9は、本発明の第2の実施形態に係るディスク記録再生装置の構成を示した部分概略ブロック図である。ディスク記録再生装置は、レーザー駆動回路(LDドライバ)11から出力されるレーザーダイオード駆動DC電流に高周波発信器12から出力される高周波電流を重畳し(再生時のみ)、この高周波電流重畳DC電流によりレーザーダイオードLDを駆動する。書き込み時はレーザー駆動回路11により別途与えられる書き込み信号を増幅し、これをレーザーダイオードLDに出力することによりブルーレイディスクに書き込みが行われる。このレーザーダイオードLDより発光されたレーザー光の一部はフォトダイオードPDにより受光され、その受光電流がAPCエラーアンプ13に入力される。APCエラーアンプ13はLDの受光平均パワーが所定の設定値となるようにレーザー駆動回路11の出力を制御する。レーザーダイオードLDから出力されたレーザーダイオードが図示されない光学系を通して図示されないディスクに照射され、データの記録再生が行われるが、データの記録再生系は周知の回路であるため、図示は省略した。   FIG. 9 is a partial schematic block diagram showing the configuration of a disc recording / reproducing apparatus according to the second embodiment of the present invention. The disk recording / reproducing apparatus superimposes the high-frequency current output from the high-frequency oscillator 12 on the laser diode-driven DC current output from the laser drive circuit (LD driver) 11 (only at the time of reproduction). The laser diode LD is driven. At the time of writing, a write signal given separately by the laser drive circuit 11 is amplified and output to the laser diode LD to write on the Blu-ray disc. Part of the laser light emitted from the laser diode LD is received by the photodiode PD, and the received light current is input to the APC error amplifier 13. The APC error amplifier 13 controls the output of the laser drive circuit 11 so that the average received light power of the LD becomes a predetermined set value. The laser diode output from the laser diode LD is irradiated onto a disk (not shown) through an optical system (not shown) to perform data recording / reproducing, but the data recording / reproducing system is a well-known circuit, and is not shown.

本実施形態によれば、レーザーダイオードLDがブルーレイディスク用でその発光パワー大きな場合でも、第1の実施形態の高周波重畳レベルの調整方法を採ることにより、高周波重畳駆動時の重畳効果のバラツキを抑えて安定性を損なうことなく確実な高周波重畳効果を得ることができる。   According to the present embodiment, even when the laser diode LD is for a Blu-ray disc and its light emission power is large, the variation in the superposition effect during the high-frequency superposition drive is suppressed by adopting the high-frequency superposition level adjustment method of the first embodiment. Thus, a reliable high frequency superposition effect can be obtained without impairing stability.

尚、本発明は上記実施形態に限定されることなく、その要旨を逸脱しない範囲において、具体的な構成、機能、作用、効果において、他の種々の形態によっても実施することができる。   In addition, this invention is not limited to the said embodiment, In the range which does not deviate from the summary, it can implement also with another various form in a concrete structure, a function, an effect | action, and an effect.

本発明の第1の実施形態に係る高周波重畳レベルの設定方法を説明するためのレーザー駆動回路の構成を示した回路図である。It is a circuit diagram showing the composition of the laser drive circuit for explaining the setting method of the high frequency superposition level concerning a 1st embodiment of the present invention. 高周波重畳によるΔIopの発生を説明する図である。It is a figure explaining generation | occurrence | production of (DELTA) Iop by high frequency superimposition. 大出力レーザーの低出力部のIL特性を示した特性図である。It is the characteristic view which showed the IL characteristic of the low output part of a high output laser. Ithの異なるLDの重畳電流を測定した場合の特性図である。It is a characteristic view at the time of measuring the superposition current of LD from which Ith differs. 発光のピークが4倍となるLDの重畳電流を測定した場合の特性図である大出力レーザーの低出力部のIL特性を示した特性図である。It is a characteristic view showing the IL characteristic of the low output portion of the high output laser, which is a characteristic view when measuring the superimposed current of the LD in which the emission peak is 4 times. 重畳レベルの設定方法を説明する図である。It is a figure explaining the setting method of a superimposition level. 15mV(SG補正レベル)/mA(ΔIth)の補正を行った測定データをまとめた図である。It is the figure which put together the measurement data which corrected 15mV (SG correction level) / mA ((DELTA) Ith). 15mV(SG補正レベル)/mA(ΔIth)の補正を行った測定データをまとめた図である。It is the figure which put together the measurement data which corrected 15mV (SG correction level) / mA ((DELTA) Ith). 本発明の第2の実施形態に係るディスク記録再生装置の構成を示した部分概略ブロック図である。It is the partial schematic block diagram which showed the structure of the disc recording / reproducing apparatus concerning the 2nd Embodiment of this invention. 高周波重畳とIL特性を示した特性図である。It is a characteristic figure showing high frequency superposition and IL characteristic. レーザーダイオードLDの出力パワーに対するIthとバラツキ傾向例を示した図である。It is the figure which showed Ith and the variation tendency example with respect to the output power of laser diode LD. 高周波重畳発光波形の大小の例(ΔIop=0.4mA時)を示した特性図である。It is the characteristic figure which showed the example (at the time of (DELTA) Iop = 0.4mA) of a high frequency superimposed light emission waveform.

符号の説明Explanation of symbols

1……出力回路、2……電流スイッチ回路、3……レーザーパワー制御回路、4……高周波発振回路、5……レーザーパワーメモリ、6……D/A変換回路、7……状態保持回路、8……制御部。   1 ... Output circuit, 2 ... Current switch circuit, 3 ... Laser power control circuit, 4 ... High frequency oscillation circuit, 5 ... Laser power memory, 6 ... D / A conversion circuit, 7 ... State holding circuit , 8: Control unit.

Claims (4)

光ディスク再生装置の再生時に、レーザーダイオードを駆動する電流に高周波重畳する際の高周波重畳レベルの設定方法であって、
標準のレーザーダイオードの高周波重畳時の発光ピークパワーが所定倍となるようなΔIopが得られるように高周波重畳電流レベルを調整した後、使用するレーザーダイオードのIthと前記標準のレーザーダイオードのIthを測定して両Ith電流値の差分電流値を求め、この差分電流値に補正係数を掛けた電流を前記調整して得た高周波重畳電流レベルに加減算して前記使用するレーザーダイオードの高周波重畳電流レベルとすることを特徴とする高周波重畳レベルの設定方法。
A method of setting a high frequency superposition level when superposing a high frequency on a current for driving a laser diode during reproduction of an optical disk reproducing device,
After adjusting the high-frequency superposition current level so that ΔIop is obtained so that the emission peak power when high-frequency superposition of a standard laser diode is superposed is a predetermined factor, Ith of the laser diode used and Ith of the standard laser diode are measured. Then, a differential current value of both Ith current values is obtained, and a current obtained by multiplying the differential current value by a correction coefficient is added to or subtracted from the high frequency superimposed current level obtained by the adjustment to obtain a high frequency superimposed current level of the laser diode to be used. A method for setting a high frequency superimposition level.
前記所定倍数は3.5倍前後であることを特徴とする請求項1記載の高周波重畳レベルの設定方法。   2. The high frequency superimposition level setting method according to claim 1, wherein the predetermined multiple is about 3.5 times. レーザーダイオードから発光するレーザーをディスクに照射することによってデータの記録再生を行うディスク再生装置であって、
再生時にレーザーダイオードを駆動する電流に高周波重畳する際の高周波重畳レベルの設定は、標準のレーザーダイオードの高周波重畳時の発光のピークパワーが所定倍となるようなΔIopが得られるように高周波重畳電流レベルを調整した後、使用するレーザーダイオードのIthと前記標準のレーザーダイオードのIthを測定して両Ith電流値の差分電流値を求め、この差分電流値に補正係数を掛けた電流を前記調整して得た高周波重畳電流レベルに加減算して前記使用するレーザーダイオードの高周波重畳電流レベルとすることを特徴とするディスク再生装置。
A disk reproducing apparatus for recording and reproducing data by irradiating a disk with a laser emitting light from a laser diode,
The setting of the high frequency superposition level when superposing the high frequency on the current for driving the laser diode during reproduction is performed so that ΔIop is obtained such that the peak power of light emission at the time of high frequency superposition of a standard laser diode is a predetermined multiple. After adjusting the level, Ith of the laser diode to be used and Ith of the standard laser diode are measured to obtain a difference current value of both Ith current values, and the current obtained by multiplying the difference current value by a correction coefficient is adjusted as described above. A disk reproducing apparatus characterized in that the high frequency superimposed current level of the laser diode to be used is added to or subtracted from the high frequency superimposed current level obtained in this way.
前記レーザーダイオードは、ブルーレイディスク記録再生用のレーザーダイオードであることを特徴とする請求項3記載のディスク再生装置。   4. The disk reproducing apparatus according to claim 3, wherein the laser diode is a laser diode for recording / reproducing a Blu-ray disk.
JP2006250630A 2006-09-15 2006-09-15 High frequency superimposing level setup method, and disk player Pending JP2008071447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006250630A JP2008071447A (en) 2006-09-15 2006-09-15 High frequency superimposing level setup method, and disk player

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006250630A JP2008071447A (en) 2006-09-15 2006-09-15 High frequency superimposing level setup method, and disk player

Publications (1)

Publication Number Publication Date
JP2008071447A true JP2008071447A (en) 2008-03-27

Family

ID=39292894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006250630A Pending JP2008071447A (en) 2006-09-15 2006-09-15 High frequency superimposing level setup method, and disk player

Country Status (1)

Country Link
JP (1) JP2008071447A (en)

Similar Documents

Publication Publication Date Title
US8111603B2 (en) Optical disk apparatus and its reproducing method
US6731584B1 (en) Optical information reproducing apparatus and method of setting the quantity of light in optical information reproducing apparatus
JPH03113736A (en) Semiconductor laser drive device
JP2008071447A (en) High frequency superimposing level setup method, and disk player
US7109462B2 (en) Light beam output control apparatus, optical pickup apparatus, light beam emission control method and computer-readable recorded medium in which light beam emission control program is recorded
JP2008071448A (en) High frequency superimposing level setup method, and disk player
JPH0227571Y2 (en)
JP2795483B2 (en) Optical power control circuit for semiconductor light emitting device
JP2007133925A (en) Laser drive circuit, laser drive method and disk recording reproducing device
US20060182158A1 (en) Information recording reproduction apparatus and information reproduction method
JP2003289171A (en) Circuit and method for driving semiconductor laser
JP3825545B2 (en) Semiconductor laser driving device and optical disk device using the same
WO2007034783A1 (en) Semiconductor laser driving device, optical head device and optical information recording/reproducing device
JP5360234B2 (en) Laser power control method and laser power control apparatus
JP2005191264A (en) Light emitting device control unit, and optical information recording/reproducing apparatus
JP2008112578A (en) Optical disk device
JP2004005781A (en) Information-recording apparatus
JP2007272939A (en) Optical pickup
JP2004172388A (en) Drive circuit for semiconductor laser
JP2004199839A (en) Optical disk recording device
JP2007287274A (en) Laser power control system for recording of optical disk
JP2005346874A (en) Superimposing circuit
JP2006120281A (en) Method and apparatus for recording information
JP2005190599A (en) Optical disk recording device
JP2013218763A (en) Laser driving device, high frequency superposition amount control method, program, optical recording medium drive device