JP2005346874A - Superimposing circuit - Google Patents

Superimposing circuit Download PDF

Info

Publication number
JP2005346874A
JP2005346874A JP2004167775A JP2004167775A JP2005346874A JP 2005346874 A JP2005346874 A JP 2005346874A JP 2004167775 A JP2004167775 A JP 2004167775A JP 2004167775 A JP2004167775 A JP 2004167775A JP 2005346874 A JP2005346874 A JP 2005346874A
Authority
JP
Japan
Prior art keywords
frequency
circuit
signal
modulation
setting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004167775A
Other languages
Japanese (ja)
Other versions
JP4376131B2 (en
Inventor
Koji Tomioka
幸治 富岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Microsystems Co Ltd
Asahi Kasei Microdevices Corp
Original Assignee
Asahi Kasei Microsystems Co Ltd
Asahi Kasei Microdevices Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Microsystems Co Ltd, Asahi Kasei Microdevices Corp filed Critical Asahi Kasei Microsystems Co Ltd
Priority to JP2004167775A priority Critical patent/JP4376131B2/en
Publication of JP2005346874A publication Critical patent/JP2005346874A/en
Application granted granted Critical
Publication of JP4376131B2 publication Critical patent/JP4376131B2/en
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Images

Landscapes

  • Optical Head (AREA)
  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To restrain the undesirable radiation of a superimposed frequency and its harmonic component. <P>SOLUTION: The component of a modulation frequency (modulation signal) is added to the reference voltage (current) of a superimposing circuit 2, and consequently a frequency control signal, which corresponds to a setting frequency + a modulation signal frequency, is generated in the output of a frequency setting circuit 2a. In an oscillation circuit 2b in which, the frequency control signal is inputted, an oscillation frequency becomes a signal whose frequency periodically changes at a speed corresponding to a modulation frequency in a range represented by an equation "f*VM/VREF", wherein f is a setting frequency, VREF is a reference voltage, and VM is the amplitude of a modulation signal. The frequency-modulated frequency thus generated is applied to a laser diode 5 by an output circuit 4. The frequency modulation changes in frequency with time, and therefore its frequency spectrum has broadness. The whole energy is the same, and accordingly power at each frequency decreases, and a level of undesirable radiation is consequently reduced. A level of undesirable radiation at a high frequency wave is also reduced due to the similar effect. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、重畳回路に関し、より詳細には、高周波重畳法によりレーザー素子を駆動する重畳回路に関する。   The present invention relates to a superposition circuit, and more particularly to a superposition circuit that drives a laser element by a high frequency superposition method.

近年、光ディスク技術が著しい発展を遂げている。光ディスクは、レーザー光により光ディスクと非接触で再生することが可能である。光ディスクとしてCDがあったが、小型であることや高速アクセス性により、現在広く市場に受け入れられている。このような状況の中、DVD(デジタル・ビデオ・ディスク)が登場した。DVD技術もCD技術と同様、レーザー光を光ディスクに照射してその反射光の明暗でデータを得ており、市場に広く受け入れられている。   In recent years, optical disk technology has undergone significant development. The optical disk can be reproduced in a non-contact manner with the optical disk by laser light. Although there was a CD as an optical disk, it is now widely accepted by the market due to its small size and high-speed accessibility. Under such circumstances, DVD (Digital Video Disc) has appeared. The DVD technology, like the CD technology, irradiates an optical disk with laser light and obtains data by the brightness of the reflected light, and is widely accepted in the market.

図8は、従来のレーザー素子を駆動するオートパワーコントロール(APC)回路の構成図で、図中符号11は重畳回路、11aは発振器、11bは出力回路、12はフィルタ、13はAPC回路、14はレーザーダイオード(LD),15はフォトダイオード(PD)を示している。   FIG. 8 is a configuration diagram of a conventional auto power control (APC) circuit for driving a laser element, in which reference numeral 11 is a superposition circuit, 11a is an oscillator, 11b is an output circuit, 12 is a filter, 13 is an APC circuit, 14 Indicates a laser diode (LD), and 15 indicates a photodiode (PD).

レーザーダイオード14から出力されるレーザー光は、DVD(デジタル・ビデオ・ディスク)上に照射されるだけでなく、フォトダイオード15によって受光される。このフォトダイオード15で光が電気信号に変換されるが、このときレーザー光の光量に応じた電気信号が得られる。この電気信号に応じてAPC回路13は、発光するレーザー光の光量が一定になるように制御される。   Laser light output from the laser diode 14 is not only irradiated onto a DVD (digital video disk) but also received by the photodiode 15. Light is converted into an electrical signal by the photodiode 15, and at this time, an electrical signal corresponding to the amount of laser light is obtained. In response to this electrical signal, the APC circuit 13 is controlled so that the amount of emitted laser light is constant.

レーザーダイオード14には、シングルモードレーザーとマルチモードレーザーがあるが、シングルモードレーザーでは、レーザー自体の温度特性や戻り光ノイズによって、発振周波数が変動しやすく、また、モードジャンプを起こしやすいなどで、光出力が変動し、ノイズが発生しやすいという欠点がある。一方、マルチモードで発光するレーザーダイオードは開発されているが、信頼性が低く高価であるなどの欠点がある。   The laser diode 14 includes a single mode laser and a multimode laser. In the single mode laser, the oscillation frequency is likely to fluctuate due to the temperature characteristics of the laser itself and the return light noise, and a mode jump is likely to occur. There is a drawback that the light output fluctuates and noise is likely to occur. On the other hand, laser diodes that emit light in multimode have been developed, but have disadvantages such as low reliability and high cost.

そこで、一般には高周波重畳法を使って、シングルモードのレーザーダイオードを駆動させて、マルチモードのレーザー光を得る方法が取られていた。高周波重畳法では、(シングルモード)レーザーダイオードが動作立ち上がり時にマルチモードで発光することを利用する。特に、レーザーダイオードが自励発振型であると、立ち上がり時にマルチモードになりやすい。高調波重畳法を達成する回路として、図8に示した重畳回路により外部からレーザーダイオードに高周波信号を印加することで立ち上がり状態を継続させ、複数の波長を含むレーザー光を発光させている。   Therefore, in general, a method of obtaining a multi-mode laser beam by driving a single-mode laser diode using a high-frequency superposition method has been adopted. The high-frequency superposition method utilizes the fact that a (single mode) laser diode emits light in multimode at the start of operation. In particular, if the laser diode is a self-excited oscillation type, it tends to be multimode at the time of startup. As a circuit for achieving the harmonic superposition method, a rising state is continued by applying a high frequency signal from the outside to the laser diode by the superposition circuit shown in FIG. 8, and laser light including a plurality of wavelengths is emitted.

したがって、高調波重畳法により、シングルモードのレーザーダイオードを使って、あたかもマルチモードのレーザーダイオードを使用しているように見せることができる。シングルモードでレーザー光を発光するレーザーダイオードは、汎用品として広く市場に出ているため、現在高調波重畳法が有効な手段の一つとなっている。   Therefore, by using the harmonic superposition method, it is possible to use a single mode laser diode as if a multimode laser diode is used. Since laser diodes that emit laser light in a single mode are widely available on the market as general-purpose products, the harmonic superposition method is now an effective means.

また、フィルタ12は、重畳回路11で発生する高周波の基本波及び高調波が電源を経由しておこす不要輻射を抑制する目的で挿入されている。   The filter 12 is inserted for the purpose of suppressing unnecessary radiation generated by the high-frequency fundamental wave and harmonics generated by the superposition circuit 11 via the power source.

図9は、従来の重畳回路を示す構成図で、図中符号21は重畳回路、22は発振器、22aは周波数設定回路、22bは発振回路、22cは周波数設定素子、23は出力回路、24はレーサーダイオードを示している。   FIG. 9 is a block diagram showing a conventional superposition circuit. In the figure, reference numeral 21 is a superposition circuit, 22 is an oscillator, 22a is a frequency setting circuit, 22b is an oscillation circuit, 22c is a frequency setting element, 23 is an output circuit, and 24 is A racer diode is shown.

重畳回路22の重畳周波数は、再生のデータに影響を与えない程度に高く、安定してマルチモード発振となり、ノイズ特性等が改善される周波数に設定されている。このため重畳回路22は、周波数を設定する周波数設定回路22aと発振回路22bとから構成されている。   The superposition frequency of the superposition circuit 22 is high enough not to affect the reproduction data, and is set to a frequency at which stable multimode oscillation is achieved and noise characteristics and the like are improved. For this reason, the superimposing circuit 22 includes a frequency setting circuit 22a for setting a frequency and an oscillation circuit 22b.

周波数設定回路22aは、設定周波数を可変できるように、通常、抵抗素子22cにより、所定の発振周波数を設定できるようになっている。この出力信号(=周波数制御信号)を入力とする発振回路22bで、周波数制御信号に応じた周波数の発振信号が生成される。この生成された周波数の発振信号が、出力回路23によりレーザーダイオード24に印加される。また、DA等により周波数制御信号(電圧、電流)を直接与える方法も用いられている。   The frequency setting circuit 22a can normally set a predetermined oscillation frequency by the resistance element 22c so that the set frequency can be varied. An oscillation circuit 22b that receives this output signal (= frequency control signal) generates an oscillation signal having a frequency corresponding to the frequency control signal. The generated oscillation signal having the frequency is applied to the laser diode 24 by the output circuit 23. Further, a method of directly giving a frequency control signal (voltage, current) by DA or the like is also used.

特開2000−216484号公報JP 2000-216484 A

しかしながら、高周波の重畳周波数は、通常数百MHz以上であり、またこれに加えて基本波のn倍(N>=2の整数)の高調波が発生する。数百MHz以上の高周波は、例えば、光りピックアップなどのシステム外へ放射しやすいために、不要輻射を抑制する必要がある。そのため、重畳回路の出力部または電源にフィルタを接続するなどの対策を取ると、高周波重畳法に関する回路が大型化し高価になるという課題があった。   However, the high frequency superposition frequency is usually several hundred MHz or more, and in addition to this, harmonics of n times the fundamental wave (an integer of N> = 2) are generated. A high frequency of several hundred MHz or more is likely to be radiated out of a system such as a light pickup, for example, and therefore it is necessary to suppress unnecessary radiation. Therefore, if measures such as connecting a filter to the output section or power supply of the superimposing circuit are taken, there is a problem that the circuit related to the high frequency superimposing method becomes large and expensive.

また、特許文献1では、出力回路の周波数特性を制限することで、n倍の高調波を抑制しているが、高調波成分は抑制できても基本波成分は抑制することができないという問題があった。   Further, in Patent Document 1, the harmonic characteristic of n times is suppressed by limiting the frequency characteristic of the output circuit, but there is a problem that even if the harmonic component can be suppressed, the fundamental wave component cannot be suppressed. there were.

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、重畳周波数及びその高調波成分の不要輻射を抑制できる重畳回路を提供することにある。   The present invention has been made in view of such a problem, and an object of the present invention is to provide a superposition circuit capable of suppressing unnecessary radiation of a superposition frequency and its harmonic components.

本発明は、このような目的を達成するためになされたもので、請求項1に記載の発明は、高周波重畳法によりレーザー素子を駆動するための重畳回路において、基準信号と設定周波数とに応じた周波数制御信号を発生する周波数設定回路と、該周波数設定回路からの前記周波数制御信号に基づいて重畳信号を発生する発振回路と、変調信号が入力され、前記重畳信号を変調信号周波数に応じた速さで、時間的に周波数変調する変調信号入力手段とを備え、前記発振回路からの周波数変調された周波数を前記レーザー素子に印加するようにしたことを特徴とする。(図1に対応)   The present invention has been made to achieve such an object, and the invention according to claim 1 is a superposition circuit for driving a laser element by a high frequency superposition method in accordance with a reference signal and a set frequency. A frequency setting circuit that generates a frequency control signal, an oscillation circuit that generates a superimposed signal based on the frequency control signal from the frequency setting circuit, a modulation signal is input, and the superimposed signal corresponds to the modulation signal frequency And a modulation signal input means for frequency-modulating the frequency at a high speed, and the frequency-modulated frequency from the oscillation circuit is applied to the laser element. (Corresponding to Fig. 1)

また、請求項2に記載の発明は、請求項1に記載の発明において、前記周波数設定回路の前記設定周波数を可変にする周波数設定素子を設け、前記周波数設定回路における周波数を設定するための基準信号を変化させるようにしたことを特徴とする。(図1に対応)
また、請求項3に記載の発明は、請求項1又は2に記載の発明において、前記変調信号入力手段は、前記基準信号に前記変調信号を加算する加算手段を有することを特徴とする。(図1に対応)
According to a second aspect of the present invention, in the first aspect of the present invention, a frequency setting element for changing the setting frequency of the frequency setting circuit is provided, and a reference for setting a frequency in the frequency setting circuit is provided. It is characterized in that the signal is changed. (Corresponding to Fig. 1)
According to a third aspect of the present invention, in the first or second aspect of the invention, the modulation signal input means includes addition means for adding the modulation signal to the reference signal. (Corresponding to Fig. 1)

また、請求項4に記載の発明は、請求項1又は2に記載の発明において、前記変調信号入力手段は、前記周波数設定素子に直列に可変抵抗素子を接続し、該可変抵抗素子の抵抗値を前記変調信号により可変することを特徴とする。(図2に対応)   According to a fourth aspect of the present invention, in the invention according to the first or second aspect, the modulation signal input means connects a variable resistance element in series to the frequency setting element, and the resistance value of the variable resistance element Is varied by the modulation signal. (Corresponding to Fig. 2)

また、請求項5に記載の発明は、請求項1に記載の発明において、前記変調信号入力手段は、前記周波数設定回路と前記発振回路との間に加算器を設け、前記周波数制御信号に直接変調周波数信号を加算するようにしたことを特徴とする。(図3に対応)   According to a fifth aspect of the present invention, in the first aspect of the present invention, the modulation signal input means includes an adder between the frequency setting circuit and the oscillation circuit, so that the frequency control signal directly The modulation frequency signal is added. (Corresponding to Fig. 3)

また、請求項6に記載の発明は、請求項1乃至5のいずれかに記載の発明において、前記変調周波数信号に三角波を用いたことを特徴とする。   The invention according to claim 6 is the invention according to any one of claims 1 to 5, wherein a triangular wave is used for the modulation frequency signal.

また、請求項7に記載の発明は、請求項1乃至6のいずれかに記載の発明において、前記基準信号の電圧を分圧する分圧回路と、該分圧回路に接続された変調信号発生回路とを備え、前記基準信号と変調を掛けるための電圧又は電流との比を一定に保つことを特徴とする。(図4に対応)   According to a seventh aspect of the invention, there is provided the voltage dividing circuit according to any one of the first to sixth aspects, wherein the voltage of the reference signal is divided, and a modulation signal generating circuit connected to the voltage dividing circuit. The ratio between the reference signal and the voltage or current for applying the modulation is kept constant. (Corresponding to Fig. 4)

また、請求項8に記載の発明は、請求項3に記載の発明において、前記加算手段と前記発振器との間に分周回路とレベル変換回路を設け、発振周波数を制御したことを特徴とする。(図5に対応)   The invention according to claim 8 is the invention according to claim 3, wherein a frequency dividing circuit and a level conversion circuit are provided between the adding means and the oscillator to control an oscillation frequency. . (Corresponding to Fig. 5)

本発明によれば、基準信号と設定周波数とに応じた周波数制御信号を発生する周波数設定回路と、この周波数設定回路からの周波数制御信号に基づいて重畳信号を発生する発振回路と、変調信号が入力され、重畳信号を変調信号周波数に応じた速さで、時間的に周波数変調する変調信号入力手段とを備え、発振回路からの周波数変調された周波数をレーザー素子に印加するようにしたので、重畳周波数を変調することにより、その基本波及び高調波成分の不要輻射を著しく抑制でき、不要輻射対策が容易になる。   According to the present invention, a frequency setting circuit that generates a frequency control signal according to a reference signal and a set frequency, an oscillation circuit that generates a superimposed signal based on the frequency control signal from the frequency setting circuit, and a modulation signal Since it is provided with modulation signal input means for temporally frequency-modulating the input superimposed signal at a speed corresponding to the modulation signal frequency, the frequency-modulated frequency from the oscillation circuit is applied to the laser element. By modulating the superposition frequency, unnecessary radiation of the fundamental wave and harmonic components can be remarkably suppressed, and countermeasures against unnecessary radiation are facilitated.

以下、図面を参照して本発明の実施の形態について説明する。
図1は、本発明の重畳回路の実施例1を説明するための構成図で、図中符号1は重畳回路、2は発振器、2aは周波数設定回路、2bは発振回路、2cは周波数設定素子(抵抗)、3は加算器、4は出力回路、5はレーザーダイオードを示している。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a block diagram for explaining a first embodiment of a superposition circuit according to the present invention, in which reference numeral 1 is a superposition circuit, 2 is an oscillator, 2a is a frequency setting circuit, 2b is an oscillation circuit, and 2c is a frequency setting element. (Resistance), 3 is an adder, 4 is an output circuit, and 5 is a laser diode.

本発明の重畳回路2は、高周波重畳法によりレーザー素子を駆動するためのもので、この重畳回路2の基準電圧(電流)に加算器3を介して変調周波数成分(変調信号)を加え、重畳周波数に変調を掛けるものである。ここで、重畳周波数とは、重畳回路2によりレーザーダイオード5に印加する高周波信号の周波数を意味している。   The superimposing circuit 2 of the present invention is for driving a laser element by a high frequency superimposing method. A modulation frequency component (modulated signal) is added to the reference voltage (current) of the superimposing circuit 2 via an adder 3 to superimpose the superposed circuit 2. The frequency is modulated. Here, the superposition frequency means the frequency of the high frequency signal applied to the laser diode 5 by the superposition circuit 2.

そして、この重畳回路2は、基準信号と変調信号とを加える加算器3と、この加算器3の出力信号を入力信号とし、設定周波数と変調信号周波数に応じた周波数制御信号を発生する周波数設定回路2aと、この周波数設定回路2aからの前記周波数制御信号を入力し、変調信号周波数に応じた速さで、時間的に周波数変調された信号を発生する発振回路2bとからなる発振器2とを備え、この発振器2からの周波数変調された周波数をレーザーダイオード5に印加するように構成されている。また、周波数設定回路2aの設定周波数を可変にする周波数設定素子2cを設け、周波数設定回路2aにおける周波数を設定するための基準信号を変化させるように構成されている。   The superposition circuit 2 has an adder 3 for adding a reference signal and a modulation signal, and an output signal of the adder 3 as an input signal, and a frequency setting for generating a frequency control signal corresponding to the set frequency and the modulation signal frequency. An oscillator 2 comprising a circuit 2a and an oscillation circuit 2b that inputs the frequency control signal from the frequency setting circuit 2a and generates a temporally frequency-modulated signal at a speed corresponding to the modulation signal frequency. The frequency-modulated frequency from the oscillator 2 is applied to the laser diode 5. Further, a frequency setting element 2c for changing the setting frequency of the frequency setting circuit 2a is provided, and the reference signal for setting the frequency in the frequency setting circuit 2a is changed.

つまり、重畳回路2の基準電圧(電流)に変調周波数の成分(変調信号)を加えることにより、周波数設定回路2aの出力には、設定周波数+変調信号周波数に応じた周波数制御信号が発生する。これを入力とする発振回路2bでは、発振周波数が、設定周波数f、基準電圧VREF、変調信号の振幅をVMとすると、f*VM/VREFの範囲で変調周波数に応じた速さで、時間的に周波数が変化する信号、つまり、周波数変調された信号となる。この生成された周波数変調された周波数が、出力回路4によりレーザーダイオード5に印加される。   That is, by adding a modulation frequency component (modulation signal) to the reference voltage (current) of the superposition circuit 2, a frequency control signal corresponding to the set frequency + modulation signal frequency is generated at the output of the frequency setting circuit 2a. In the oscillation circuit 2b having this as an input, assuming that the oscillation frequency is the set frequency f, the reference voltage VREF, and the amplitude of the modulation signal is VM, the time is temporally at a speed corresponding to the modulation frequency in the range of f * VM / VREF. The signal changes in frequency, that is, a frequency-modulated signal. The generated frequency-modulated frequency is applied to the laser diode 5 by the output circuit 4.

周波数変調は、時間と共に周波数が変化するため、その周波数スペクトルは広がりを有している。しかし、全体のエネルギーは同一なため、各々の周波数でのパワーが下がり結果として不要輻射のレベルが低減する。高調波についても同様な効果により不要輻射レベルが低減する。   Since the frequency of frequency modulation changes with time, the frequency spectrum has a spread. However, since the overall energy is the same, the power at each frequency decreases and as a result the level of unwanted radiation decreases. For the harmonics, the unnecessary radiation level is reduced by the same effect.

図2は、本発明の重畳回路の実施例2を説明するための構成図で、図中符号2dは可変抵抗素子で、その他、図1と同じ機能を有する構成要素には同一の符号を付してある。この実施例2は、実施例1において、加算器3を除き、周波数設定素子(抵抗)2cに直列に可変抵抗素子2dを入れ、その抵抗値を変調周波数に応じて可変したものである。設定周波数f、設定抵抗RSET、直列抵抗の変動を0〜RMとすると、REST時の周波数と、RSET+RM時の周波数の範囲で変調周波数に応じた速さで、時間的に周波数が変化する信号が得られ、上述した場合と同様に周波数変調信号となり、同様の効果が得られる。   2 is a block diagram for explaining a second embodiment of the superposition circuit of the present invention. In the figure, reference numeral 2d denotes a variable resistance element, and other components having the same functions as those in FIG. It is. In the second embodiment, the variable resistance element 2d is inserted in series with the frequency setting element (resistor) 2c except for the adder 3 in the first embodiment, and the resistance value is varied according to the modulation frequency. If the set frequency f, the set resistance RSET, and the series resistance change from 0 to RM, a signal whose frequency changes with time at a speed corresponding to the modulation frequency in the range of the frequency at the time of REST and the frequency at the time of RSET + RM. As a result, a frequency modulation signal is obtained in the same manner as described above, and the same effect is obtained.

重畳回路2は集積化される場合、通常、周波数設定用素子(抵抗)2cは外付けされるので、この端子の電圧、電流、抵抗値を測定することで、変調が正常の行われているかを判定することができる。これは集積化した場合、重畳周波数を直接測定せずに、集積回路の合否を判定できる。上述したように、重畳周波数は数100MHzと非常に高周波なため、この方法は検査にかかる設備の削減や、検査時間を大幅に短縮できる。   When the superimposing circuit 2 is integrated, the frequency setting element (resistor) 2c is usually externally attached. Therefore, whether the modulation is normally performed by measuring the voltage, current, and resistance value of this terminal. Can be determined. In the case of integration, whether the integrated circuit is acceptable or not can be determined without directly measuring the superimposed frequency. As described above, since the superposition frequency is as high as several hundred MHz, this method can greatly reduce the equipment required for inspection and the inspection time.

図3は、本発明の重畳回路の実施例3を説明するための構成図で、図中符号2eは加算器で、その他、図1と同じ機能を有する構成要素には同一の符号を付してある。この実施例3は、実施例1における発振器2の前段に設けられていた加算器3を除き、発振器2の周波数設定回路2aと発振回路2bとの間に、加算器2eを新たに設けたものである。   FIG. 3 is a block diagram for explaining Embodiment 3 of the superposition circuit according to the present invention. In the figure, reference numeral 2e denotes an adder, and other components having the same functions as those in FIG. It is. In the third embodiment, an adder 2e is newly provided between the frequency setting circuit 2a and the oscillation circuit 2b of the oscillator 2 except for the adder 3 provided in the preceding stage of the oscillator 2 in the first embodiment. It is.

周波数設定回路2aと発振回路2bとの間に加算器2eを設けることにより、周波数制御信号に直接変調周波数信号を加算するようにしたもので、これも上述した実施例1と同様の動作で同様の効果を得ることができる。また、この場合は、周波数設定回路にはDAなどを用いてもよい。   By providing an adder 2e between the frequency setting circuit 2a and the oscillation circuit 2b, the modulation frequency signal is added directly to the frequency control signal. This is also the same operation as in the first embodiment. The effect of can be obtained. In this case, DA or the like may be used for the frequency setting circuit.

変調周波数信号に三角波を用いるなどで、重畳周波数の変化を時間的に三角波となるようおこなうと、時間的に変化する重畳周波数が、時間的に均一になるため、広がった周波数スペクトラムは均一となり、結果として不要輻射レベルも均一に低減する。不要輻射で問題となるのは、通常はその最も高いレベルであるため、均一に減衰させるのが最も効果が大きい。   If you change the superposition frequency so that it becomes a triangular wave in time, such as by using a triangular wave for the modulation frequency signal, the superposition frequency that changes in time becomes uniform in time, so the spread frequency spectrum becomes uniform, As a result, the unnecessary radiation level is also reduced uniformly. The problem with unwanted radiation is usually at its highest level, so uniform attenuation is most effective.

重畳周波数は、上述したように、データ、レーザーなどの条件により決定されるため、それを周波数変調により周波数を変化させる場合は、周波数変化を制御して安定させなくてはならない。   As described above, since the superposed frequency is determined by conditions such as data and laser, when changing the frequency by frequency modulation, the frequency change must be controlled and stabilized.

図4は、本発明の重畳回路の実施例4を説明するための構成図で、図中符号6は分圧回路、7は変調信号発生回路で、その他、図1と同じ機能を有する構成要素には同一の符号を付してある。この実施例4は、実施例1において、基準電圧を分圧する分圧回路6と、この分圧回路6からの信号を入力し、変調信号を加算器3に出力する変調信号発生回路7を設けたものである。   FIG. 4 is a block diagram for explaining a fourth embodiment of the superposition circuit of the present invention. In FIG. 4, reference numeral 6 denotes a voltage dividing circuit, 7 denotes a modulation signal generating circuit, and other components having the same functions as in FIG. Are denoted by the same reference numerals. The fourth embodiment includes a voltage dividing circuit 6 that divides a reference voltage in the first embodiment, and a modulation signal generating circuit 7 that inputs a signal from the voltage dividing circuit 6 and outputs a modulation signal to the adder 3. It is a thing.

このように、基準電圧を分圧回路6により分圧して、変調信号発生回路7により変調周波数の振幅をきめることにより、基準電圧に変動等があっても、周波数変調の幅と重畳周波数の比を常に一定に保つことができるように構成したものである。   In this way, by dividing the reference voltage by the voltage dividing circuit 6 and determining the amplitude of the modulation frequency by the modulation signal generating circuit 7, even if the reference voltage varies, the ratio of the frequency modulation width to the superimposed frequency Is configured so that it can always be kept constant.

図5は、本発明の重畳回路の実施例5を説明するための構成図で、図中符号8は分周回路、9はレベル変換回路で、その他、図1と同じ機能を有する構成要素には同一の符号を付してある。この実施例5は、実施例1において、加算器3と発振器2の間に、分周回路8とレベル変換回路9を設けたものである。   FIG. 5 is a block diagram for explaining a fifth embodiment of the superposition circuit of the present invention. In FIG. 5, reference numeral 8 denotes a frequency dividing circuit, 9 denotes a level conversion circuit, and other components having the same functions as those in FIG. Are given the same reference numerals. In the fifth embodiment, a frequency dividing circuit 8 and a level converting circuit 9 are provided between the adder 3 and the oscillator 2 in the first embodiment.

つまり、この実施例5のものは、分周回路8とレベル変換回路9からなる変調周波数を生成する構成を備えており、発振周波数は制御されているために安定した周波数が得られる。これを利用して分周回路8を用いて変調周波数を生成することで安定した変調周波数を、小規模な回路で作ることができる。   That is, the fifth embodiment has a configuration for generating a modulation frequency composed of the frequency dividing circuit 8 and the level converting circuit 9, and since the oscillation frequency is controlled, a stable frequency can be obtained. By using this to generate a modulation frequency using the frequency dividing circuit 8, a stable modulation frequency can be produced with a small circuit.

分周回路8により発振周波数を分周し、それをレベル変換回路9で所定のレベルとして、これを変調信号として用いる。ここで、発振周波数fは、変調信号が+の場合は上がり、−の場合は下がり、その周波数幅をΔfとする。すると、図6に示すように、変調信号が+の場合は、発振周波数が上がるため(f+Δf)、分周回路8の出力の周期は短くなり、所定の分周数で、反転し変調信号は−となる。この場合は、発振周波数が下がる(f−Δf)ため、分周回路8の出力の周期は長くなる。この差をΔtとする。この結果として、変調信号のdutyがΔtずれることとなる。このずれ量は、発振周波数と変化させる周波数との比できまる。発振周波数を変化させる割合が小さい場合は、Δtも無視できる程度に小さくなるため特に問題とならない。   The frequency dividing circuit 8 divides the oscillation frequency, and the level conversion circuit 9 sets it to a predetermined level, which is used as a modulation signal. Here, the oscillation frequency f increases when the modulation signal is +, decreases when the modulation signal is −, and its frequency width is Δf. Then, as shown in FIG. 6, when the modulation signal is +, the oscillation frequency increases (f + Δf), so the output cycle of the frequency dividing circuit 8 is shortened, and the modulation signal is inverted at a predetermined frequency. -. In this case, since the oscillation frequency decreases (f−Δf), the cycle of the output of the frequency dividing circuit 8 becomes long. Let this difference be Δt. As a result, the duty of the modulation signal is shifted by Δt. This deviation amount is determined by the ratio between the oscillation frequency and the frequency to be changed. When the rate of changing the oscillation frequency is small, Δt is small enough to be ignored, so that there is no particular problem.

また、レベル変換回路9の出力を三角波とすると、図7に示すように、分周回路8の出力が、Hi、Lo期間での変調信号の平均値AvhとAvlが等しくなるため(図7ではゼロ)、発振周波数の平均周波数も同一(図では=f)となり、分周回路8の出力が、Dutyのずれるという問題はなくなる。   Further, if the output of the level conversion circuit 9 is a triangular wave, the output of the frequency dividing circuit 8 is equal to the average value Avh and Avl of the modulation signal in the Hi and Lo periods as shown in FIG. 7 (in FIG. 7, Zero) and the average frequency of the oscillation frequency is also the same (= f in the figure), and the problem that the output of the frequency dividing circuit 8 is shifted in duty is eliminated.

本発明の重畳回路の実施例1を説明するための構成図である。It is a block diagram for demonstrating Example 1 of the superposition circuit of this invention. 本発明の重畳回路の実施例2を説明するための構成図である。It is a block diagram for demonstrating Example 2 of the superposition circuit of this invention. 本発明の重畳回路の実施例3を説明するための構成図である。It is a block diagram for demonstrating Example 3 of the superposition circuit of this invention. 本発明の重畳回路の実施例4を説明するための構成図である。It is a block diagram for demonstrating Example 4 of the superposition circuit of this invention. 本発明の重畳回路の実施例5を説明するための構成図である。It is a block diagram for demonstrating Example 5 of the superposition circuit of this invention. 図5に示した実施例5における発振器信号と分周信号と変調信号を示した図(その1)である。FIG. 10 is a diagram (part 1) illustrating an oscillator signal, a divided signal, and a modulation signal in the fifth embodiment illustrated in FIG. 5; 図5に示した実施例5における発振器信号と分周信号と変調信号を示した図(その2)である。FIG. 7 is a diagram (part 2) illustrating an oscillator signal, a divided signal, and a modulation signal in the fifth embodiment illustrated in FIG. 5; 従来のレーザー素子を駆動するオートパワーコントロール(APC)回路の構成図である。It is a block diagram of the auto power control (APC) circuit which drives the conventional laser element. 従来の重畳回路を示す構成図である。It is a block diagram which shows the conventional superposition circuit.

符号の説明Explanation of symbols

1 重畳回路
2 発振器
2a 周波数設定回路
2b 発振回路
2c 周波数設定素子
2d 可変抵抗素子
2e 加算器
3 加算器
4 出力回路
5 レーザーダイオード
6 分圧回路
7 変調信号発生回路
8 分周回路
9 レベル変換回路
11 重畳回路
11a 発振器
11b 出力回路
12 フィルタ
13 APC回路
14 レーザーダイオード(LD)
15 フォトダイオード(PD)
21 重畳回路
22 発振器
22a 周波数設定回路
22b 発振回路
22c 周波数設定素子
23 出力回路
24 レーサーダイオード

DESCRIPTION OF SYMBOLS 1 Superimposition circuit 2 Oscillator 2a Frequency setting circuit 2b Oscillation circuit 2c Frequency setting element 2d Variable resistance element 2e Adder 3 Adder 4 Output circuit 5 Laser diode 6 Voltage dividing circuit 7 Modulation signal generating circuit 8 Frequency dividing circuit 9 Level converting circuit 11 Superimposing circuit 11a Oscillator 11b Output circuit 12 Filter 13 APC circuit 14 Laser diode (LD)
15 Photodiode (PD)
21 Superposition circuit 22 Oscillator 22a Frequency setting circuit 22b Oscillation circuit 22c Frequency setting element 23 Output circuit 24 Racer diode

Claims (8)

高周波重畳法によりレーザー素子を駆動するための重畳回路において、
基準信号と設定周波数とに応じた周波数制御信号を発生する周波数設定回路と、該周波数設定回路からの前記周波数制御信号に基づいて重畳信号を発生する発振回路と、変調信号が入力され、前記重畳信号を変調信号周波数に応じた速さで、時間的に周波数変調する変調信号入力手段とを備え、
前記発振回路からの周波数変調された周波数を前記レーザー素子に印加するようにしたことを特徴とする重畳回路。
In the superposition circuit for driving the laser element by the high frequency superposition method,
A frequency setting circuit that generates a frequency control signal according to a reference signal and a set frequency, an oscillation circuit that generates a superimposed signal based on the frequency control signal from the frequency setting circuit, and a modulation signal that is input, A modulation signal input means for frequency-modulating the signal temporally at a speed corresponding to the modulation signal frequency;
A superposition circuit, wherein a frequency-modulated frequency from the oscillation circuit is applied to the laser element.
前記周波数設定回路の前記設定周波数を可変にする周波数設定素子を設け、前記周波数設定回路における周波数を設定するための基準信号を変化させるようにしたことを特徴とする請求項1に記載の重畳回路。   2. The superimposing circuit according to claim 1, wherein a frequency setting element for changing the setting frequency of the frequency setting circuit is provided, and a reference signal for setting a frequency in the frequency setting circuit is changed. . 前記変調信号入力手段は、前記基準信号に前記変調信号を加算する加算手段を有することを特徴とする請求項1又は2に記載の重畳回路。   The superimposing circuit according to claim 1, wherein the modulation signal input means includes addition means for adding the modulation signal to the reference signal. 前記変調信号入力手段は、前記周波数設定素子に直列に可変抵抗素子を接続し、該可変抵抗素子の抵抗値を前記変調信号により可変することを特徴とする請求項1又は2に記載の重畳回路。   3. The superimposing circuit according to claim 1, wherein the modulation signal input unit connects a variable resistance element in series to the frequency setting element, and varies a resistance value of the variable resistance element according to the modulation signal. . 前記変調信号入力手段は、前記周波数設定回路と前記発振回路との間に加算器を設け、前記周波数制御信号に直接変調周波数信号を加算するようにしたことを特徴とする請求項1に記載の重畳回路。   2. The modulation signal input means according to claim 1, wherein an adder is provided between the frequency setting circuit and the oscillation circuit, and the modulation frequency signal is directly added to the frequency control signal. Superposition circuit. 前記変調周波数信号に三角波を用いたことを特徴とする請求項1乃至5のいずれかに記載の重畳回路。   6. The superimposing circuit according to claim 1, wherein a triangular wave is used for the modulation frequency signal. 前記基準信号の電圧を分圧する分圧回路と、該分圧回路に接続された変調信号発生回路とを備え、前記基準信号と変調を掛けるための電圧又は電流との比を一定に保つことを特徴とする請求項1乃至6のいずれかに記載の重畳回路。   A voltage dividing circuit for dividing the voltage of the reference signal; and a modulation signal generating circuit connected to the voltage dividing circuit, and maintaining a constant ratio between the reference signal and a voltage or current for applying the modulation. The superposition circuit according to any one of claims 1 to 6, 前記加算手段と前記発振器との間に分周回路とレベル変換回路を設け、発振周波数を制御したことを特徴とする請求項3に記載の重畳回路。
4. The superimposing circuit according to claim 3, wherein a frequency dividing circuit and a level converting circuit are provided between the adding means and the oscillator to control an oscillation frequency.
JP2004167775A 2004-06-04 2004-06-04 Superposition circuit Active JP4376131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004167775A JP4376131B2 (en) 2004-06-04 2004-06-04 Superposition circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004167775A JP4376131B2 (en) 2004-06-04 2004-06-04 Superposition circuit

Publications (2)

Publication Number Publication Date
JP2005346874A true JP2005346874A (en) 2005-12-15
JP4376131B2 JP4376131B2 (en) 2009-12-02

Family

ID=35499086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004167775A Active JP4376131B2 (en) 2004-06-04 2004-06-04 Superposition circuit

Country Status (1)

Country Link
JP (1) JP4376131B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013149305A (en) * 2012-01-17 2013-08-01 Asahi Kasei Electronics Co Ltd Detecting circuit, superimposed current generation circuit, and optical disk device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013149305A (en) * 2012-01-17 2013-08-01 Asahi Kasei Electronics Co Ltd Detecting circuit, superimposed current generation circuit, and optical disk device

Also Published As

Publication number Publication date
JP4376131B2 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
JP2012209380A (en) Semiconductor laser drive apparatus
JPS59171037A (en) Driving method of semiconductor laser
JPH06132587A (en) Semiconductor laser driving circuit for optical memory reading-out device
JPH077213A (en) Optical modulation amplifier
JP4376131B2 (en) Superposition circuit
US20070133629A1 (en) Method and device for performing DBR laser wavelength modulation free of thermal effect
US20080158640A1 (en) Optical apparatus utilizing modulation based on a tertiary drive signal, optical transmitter, and optical transmission system
JP2002335041A (en) Laser driver and laser driving method
JP2007049051A (en) Semiconductor laser light source
JP4324941B2 (en) LASER DRIVE DEVICE, OPTICAL HEAD, AND OPTICAL DISK DRIVE DEVICE
JP2007194416A (en) Light wavelength conversion light source
US20210203124A1 (en) High power and high quality laser system and method
TW201140973A (en) Pulse mode modulation in frequency converted laser sources
JP2014103319A (en) Light source driving circuit, optical scanner, and image forming apparatus
JP2006221765A (en) Information recording and reproducing apparatus, and information reproducing method
US7266309B2 (en) Apparatus and method for stabilizing bias voltage for pulse generating modulator
JPH0227571Y2 (en)
JP2006222807A (en) Laser control unit
JP2007088538A (en) Rubidium atomic oscillator
JP3605953B2 (en) Laser drive circuit
JP2001185804A (en) Semiconductor laser device
JP2005057216A (en) Laser diode driving circuit and optical transmitting device
KR970067153A (en) How to control laser diodes in compact disk drives
JPH09189930A (en) Wavelength converting device
JP2009009649A (en) Optical disk device and control method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070309

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090908

R150 Certificate of patent or registration of utility model

Ref document number: 4376131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350