JP2008069663A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine Download PDF

Info

Publication number
JP2008069663A
JP2008069663A JP2006247136A JP2006247136A JP2008069663A JP 2008069663 A JP2008069663 A JP 2008069663A JP 2006247136 A JP2006247136 A JP 2006247136A JP 2006247136 A JP2006247136 A JP 2006247136A JP 2008069663 A JP2008069663 A JP 2008069663A
Authority
JP
Japan
Prior art keywords
fuel
exhaust gas
internal combustion
combustion engine
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006247136A
Other languages
Japanese (ja)
Inventor
Yasushi Kitano
康司 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006247136A priority Critical patent/JP2008069663A/en
Publication of JP2008069663A publication Critical patent/JP2008069663A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

<P>PROBLEM TO BE SOLVED: To easily control exhaust gas in the desired temperature and the air-fuel ratio, even when using fuel different in an oxygen including quantity. <P>SOLUTION: This exhaust emission control device of an internal combustion engine has a storage-reduction type NOx catalyst 41 arranged in an exhaust system 40 of an engine 1 and a reducing agent adding valve 17 injecting and adding a part of using fuel into the exhaust gas, and purifies the exhaust gas by controlling a fuel adding quantity of the reducing agent adding valve 17, and also has a fuel oxygen concentration sensor 19 detecting the oxygen concentration of the using fuel and an injection rate calculating means for calculating an injection rate of the using fuel becoming an equal calorific value when using predetermined standard fuel (gas oil) as a reference or an injection rate of the using fuel required to be set as the stoichiometric air-fuel ratio, in response to the oxygen concentration of the using fuel. A fuel adding quantity of the reducing agent adding valve 17 is corrected based on the injection rate calculated by this injection rate calculating means. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、希薄燃焼可能な内燃機関の排気系内であって当該排気系内に設けられたNOx触媒上流に還元剤を供給し、排気中の有害成分の浄化を促す内燃機関の排気浄化装置に関し、更に詳しくは、含酸素量の異なる燃料を使用する場合であっても、排気ガスを所望する温度および空燃比に容易に制御できる内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust gas purification apparatus for an internal combustion engine that supplies a reducing agent upstream of a NOx catalyst provided in the exhaust system of the lean combustion internal combustion engine and promotes purification of harmful components in the exhaust gas. More particularly, the present invention relates to an exhaust gas purification apparatus for an internal combustion engine that can easily control exhaust gas to a desired temperature and air-fuel ratio even when fuels having different oxygen contents are used.

近年、自動車等に搭載される内燃機関では、排気エミッションを向上させることが要求されている。すなわち、内燃機関から排気ガスを大気中に放出する前に、排気ガス中に含まれる一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NOx)等のガス成分を浄化もしくは除去することを要求されている。   In recent years, internal combustion engines mounted on automobiles and the like have been required to improve exhaust emission. That is, before releasing the exhaust gas from the internal combustion engine to the atmosphere, gas components such as carbon monoxide (CO), hydrocarbon (HC), nitrogen oxide (NOx) contained in the exhaust gas are purified or removed. It is requested that.

ディーゼルエンジンや、希薄燃焼可能なガソリンエンジンでは、高い空燃比(リーン雰囲気)の混合気を燃焼に供して機関運転を行う運転領域が、全運転領域の大部分を占める。この種のエンジンでは一般に、リーン雰囲気でNOxを吸収することのできるNOx触媒が排気系に備えられている。   In a diesel engine or a gasoline engine capable of lean combustion, an operation region in which an engine operation is performed by using a high air-fuel ratio (lean atmosphere) mixture for combustion occupies most of the entire operation region. In this type of engine, the exhaust system is generally provided with a NOx catalyst that can absorb NOx in a lean atmosphere.

NOx触媒は、排気中の還元成分濃度が低い状態ではNOxを吸収し、排気中の還元成分濃度が高い状態ではNOxを放出する特性を有している。排気中に放出されたNOxは、排気中にHCやCO等の還元成分が存在していれば、それらと速やかに反応して窒素に還元される。   The NOx catalyst has a characteristic of absorbing NOx when the reducing component concentration in the exhaust gas is low and releasing NOx when the reducing component concentration in the exhaust gas is high. The NOx released into the exhaust reacts quickly with the reducing components such as HC and CO in the exhaust and is reduced to nitrogen.

また、NOx触媒が吸蔵できるNOxの量には限界量(飽和量)が存在し、当該触媒がその飽和量を上回るNOxを吸蔵している場合には、排気中の還元成分濃度が低い状態にあってもそれ以上NOxを吸収しなくなる。   Further, there is a limit amount (saturation amount) in the amount of NOx that can be stored by the NOx catalyst, and when the catalyst stores NOx exceeding the saturation amount, the concentration of the reducing component in the exhaust gas becomes low. Even if it exists, it no longer absorbs NOx.

そこで、従来の内燃機関の排気浄化装置にあっては、内燃機関の排気系に還元剤を供給するための添加弁を備え、当該NOx触媒のNOx吸蔵量が所定量に達する前に、当該NOx触媒に流入する排気に還元剤を所定インターバルで繰り返し添加する制御が行われている。   Therefore, the conventional exhaust gas purification apparatus for an internal combustion engine includes an addition valve for supplying a reducing agent to the exhaust system of the internal combustion engine, and before the NOx occlusion amount of the NOx catalyst reaches a predetermined amount, the NOx Control is performed in which the reducing agent is repeatedly added to the exhaust gas flowing into the catalyst at predetermined intervals.

このように添加弁を通じて排気系に還元剤が供給されると、その還元剤は排気中の還元成分濃度を高め、NOx触媒に吸蔵されているNOxを放出および還元浄化するとともに、NOx触媒のNOx吸収能力を回復させる。   Thus, when the reducing agent is supplied to the exhaust system through the addition valve, the reducing agent increases the concentration of the reducing component in the exhaust, releases and reduces the NOx stored in the NOx catalyst, and reduces the NOx of the NOx catalyst. Restores absorption capacity.

したがって、NOx触媒に流入する排気中の還元成分を所望の時期に増量することができ、NOx触媒の排気浄化効率を常に高く維持することが可能となる。   Therefore, the amount of reducing components in the exhaust gas flowing into the NOx catalyst can be increased at a desired time, and the exhaust gas purification efficiency of the NOx catalyst can always be kept high.

なお、軽油を燃料とする圧縮着火式のディーゼルエンジンでは、上記CO、HC、NOx等に加え、排気ガス中に含まれる煤や,SOF(Solbule Organic Fraction)等の粒子状物質(PM:Particulate Matter)を浄化もしくは除去することを要求されている。   In addition, in a compression ignition type diesel engine using light oil as fuel, soot contained in exhaust gas, particulate matter such as SOF (Solbule Organic Fraction), etc. (PM) in addition to CO, HC, NOx, etc. ) Is required to be purified or removed.

このように、排気エミッションを向上させるために種々の従来技術が提供されているが、その他の例として、たとえばつぎの従来技術が公知である。すなわち、還元剤として与える燃料の性状によらずに高いNOx 転化率を得るために、内燃機関の排気通路に排気ガスを浄化する触媒を有し、この触媒に還元剤を供給する還元剤供給手段を有する排気ガス処理装置において、内燃機関の運転状態を検出する運転状態検出手段と、触媒に供給する還元剤の性状を検出する性状検出手段とを有し、検出された運転状態と還元剤の性状とに応じて、触媒に供給する還元剤の量を制御する技術が提案されている(たとえば、特許文献1参照)。   As described above, various conventional techniques are provided to improve exhaust emission. As another example, for example, the following conventional technique is known. In other words, in order to obtain a high NOx conversion rate regardless of the nature of the fuel given as the reducing agent, a reducing agent supply means has a catalyst for purifying exhaust gas in the exhaust passage of the internal combustion engine and supplies the reducing agent to this catalyst. In the exhaust gas processing apparatus, the operation state detection means for detecting the operation state of the internal combustion engine and the property detection means for detecting the property of the reducing agent supplied to the catalyst, the detected operation state and the reducing agent A technique for controlling the amount of reducing agent supplied to the catalyst according to the properties has been proposed (see, for example, Patent Document 1).

また、燃料中に含まれる酸素成分量にかかわらず常にサルフェートの生成量を抑制して、排気ガス浄化とサルフェート生成量低減の両立を図るべく、つぎの従来技術が公知である。すなわち、内燃機関の排気管内に酸化能を有する触媒と、排気ガスがその触媒側に流入することを防止するバイパス通路および切換弁とを備えた内燃機関の排気浄化装置において、燃料中に酸素が含まれるか否かを検出する含酸素検出手段と、その含酸素検出手段によって燃料中に含まれる酸素量が多いと判断した時には上記切換弁によって上記バイパス通路のみに排気ガスを流入させる切換弁制御手段とを備えた技術が提案されている(たとえば、特許文献2参照)。   Further, the following prior art is known in order to always suppress the amount of sulfate produced regardless of the amount of oxygen component contained in the fuel, and to achieve both exhaust gas purification and reduction of the amount of sulfate produced. That is, in an exhaust gas purification apparatus for an internal combustion engine including a catalyst having an oxidizing ability in an exhaust pipe of the internal combustion engine, and a bypass passage and a switching valve for preventing exhaust gas from flowing into the catalyst side, oxygen is contained in the fuel. Oxygen detection means for detecting whether or not it is included, and switching valve control for causing exhaust gas to flow only into the bypass passage by the switching valve when it is determined by the oxygen content detection means that the amount of oxygen contained in the fuel is large A technique provided with a means has been proposed (for example, see Patent Document 2).

特開2000−179335号公報JP 2000-179335 A 特開平11−350943号公報Japanese Patent Laid-Open No. 11-350943

上記CO、HC、NOx等を含む排気ガスを浄化する場合、触媒の温度や空燃比を所定値に制御することが重要である。しかしながら、従来の内燃機関の排気浄化装置は、燃料中に酸素が存在すると、噴射量に対する発熱量や理論空燃比が標準燃料(たとえば、ガソリンや軽油)の場合と異なるため、また触媒温度センサや空燃比センサによるフィードバック制御を全ての運転状態(たとえば、NOx還元、PM再生、S再生等)では実施していないため、排気ガスを所望する温度および空燃比に制御できないという課題があった。   When purifying exhaust gas containing CO, HC, NOx, etc., it is important to control the temperature and air-fuel ratio of the catalyst to predetermined values. However, in the conventional exhaust gas purification apparatus for an internal combustion engine, if oxygen is present in the fuel, the calorific value and the theoretical air-fuel ratio with respect to the injection amount are different from those of a standard fuel (for example, gasoline or light oil). Since feedback control by the air-fuel ratio sensor is not performed in all operating states (for example, NOx reduction, PM regeneration, S regeneration, etc.), there is a problem that the exhaust gas cannot be controlled to a desired temperature and air-fuel ratio.

また、近年では、エネルギー対策や環境対策等の観点から、ガソリンや軽油等の標準燃料に対する代替燃料としてアルコールや、いわゆるバイオ燃料等の含酸素燃料も注目されており、これらの燃料を使用可能な内燃機関の開発も要請されている。この場合にも、燃料中の酸素の存在により、上記と同様の理由で、排気ガスを所望する温度および空燃比に制御できないという課題が生じ得る。   In recent years, alcohol and oxygen-containing fuels such as so-called biofuels have attracted attention as alternative fuels to standard fuels such as gasoline and light oil from the viewpoint of energy and environmental measures, and these fuels can be used. Development of an internal combustion engine is also required. Even in this case, the presence of oxygen in the fuel may cause a problem that the exhaust gas cannot be controlled to a desired temperature and air-fuel ratio for the same reason as described above.

したがって、含酸素量の異なる燃料を使用する場合であっても、排気ガスを所望する温度および空燃比に容易に制御できる手段の提供が望まれていた。   Therefore, it has been desired to provide a means for easily controlling the exhaust gas to a desired temperature and air-fuel ratio even when fuels having different oxygen contents are used.

この発明は、上記に鑑みてなされたものであって、含酸素量の異なる燃料を使用する場合であっても、排気ガスを所望する温度および空燃比に容易に制御できる内燃機関の排気浄化装置を提供することを目的とする。   The present invention has been made in view of the above, and is an exhaust purification device for an internal combustion engine that can easily control exhaust gas to a desired temperature and air-fuel ratio even when fuels having different oxygen contents are used. The purpose is to provide.

上述した課題を解決し、目的を達成するために、この発明に係る内燃機関の排気浄化装置は、内燃機関の排気系に設けられ、排気ガス中の還元成分濃度が高くなるとNOxの還元反応を促す特性を備えたNOx触媒と、前記排気系を通じて前記NOx触媒に流入する前記排気ガス中に使用燃料の一部を還元剤として噴射添加する燃料添加手段と、を備え、前記燃料添加手段の燃料添加量を制御することにより前記排気ガスを浄化する内燃機関の排気浄化装置において、前記使用燃料の酸素濃度を検出する燃料酸素濃度検出手段と、所定の標準燃料を基準としたときに等発熱量となる前記使用燃料の噴射割合または理論空燃比とするのに必要な前記使用燃料の噴射割合を前記使用燃料の酸素濃度に応じて算出する噴射割合算出手段と、を更に備え、前記噴射割合算出手段によって算出された前記噴射割合に基づいて前記燃料添加手段の燃料添加量を補正することを特徴とするものである。   In order to solve the above-described problems and achieve the object, an exhaust gas purification apparatus for an internal combustion engine according to the present invention is provided in an exhaust system of an internal combustion engine, and performs a NOx reduction reaction when the concentration of reducing components in the exhaust gas increases. And a fuel addition means for injecting and adding a part of the used fuel as a reducing agent into the exhaust gas flowing into the NOx catalyst through the exhaust system, and a fuel for the fuel addition means In an exhaust gas purification apparatus for an internal combustion engine that purifies the exhaust gas by controlling the amount of addition, a fuel oxygen concentration detecting means for detecting the oxygen concentration of the fuel used, and an equal calorific value when a predetermined standard fuel is used as a reference And an injection ratio calculation means for calculating an injection ratio of the used fuel necessary for setting the used fuel injection ratio or the stoichiometric air-fuel ratio according to the oxygen concentration of the used fuel. And it is characterized in that for correcting the fuel amount of the fuel addition means on the basis of the fuel injection ratio calculated by the injection ratio calculation unit.

この発明に係る内燃機関の排気浄化装置によれば、含酸素量の異なる燃料を使用する場合であっても、標準燃料の場合と同様に、排気ガスを所望する温度および空燃比に容易に制御することができる。   According to the exhaust gas purification apparatus for an internal combustion engine according to the present invention, even when fuels having different oxygen contents are used, the exhaust gas is easily controlled to a desired temperature and air-fuel ratio as in the case of standard fuel. can do.

以下に、この発明に係る内燃機関の排気浄化装置の実施例をディーゼルエンジンシステムに適用した例について図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。   An example in which an embodiment of an exhaust gas purification apparatus for an internal combustion engine according to the present invention is applied to a diesel engine system will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

図1は、この発明の実施例に係る内燃機関の排気浄化装置を適用したディーゼルエンジンシステムを示す概略構成図である。図1に示すように、内燃機関(以下、エンジンと記す。)1は、燃料供給系10、燃焼室20、吸気系30および排気系40等を主要部として構成される直列4気筒のディーゼルエンジンシステムである。   FIG. 1 is a schematic configuration diagram showing a diesel engine system to which an exhaust gas purification apparatus for an internal combustion engine according to an embodiment of the present invention is applied. As shown in FIG. 1, an internal combustion engine (hereinafter referred to as an engine) 1 is an in-line four-cylinder diesel engine having a fuel supply system 10, a combustion chamber 20, an intake system 30, an exhaust system 40, and the like as main parts. System.

燃料供給系10は、燃料タンク18、メイン燃料通路P0、サプライポンプ11、コモンレール12、燃料噴射弁13、遮断弁14、還元剤添加弁(燃料添加手段)17、機関燃料通路P1および添加燃料通路(燃料添加手段)P2等を備えて構成されている。また、燃料タンク18には、燃料の酸素濃度を検出する燃料酸素濃度センサ(燃料酸素濃度検出手段)19が設けられている。   The fuel supply system 10 includes a fuel tank 18, a main fuel passage P0, a supply pump 11, a common rail 12, a fuel injection valve 13, a cutoff valve 14, a reducing agent addition valve (fuel addition means) 17, an engine fuel passage P1, and an addition fuel passage. (Fuel adding means) P2 and the like are provided. The fuel tank 18 is provided with a fuel oxygen concentration sensor (fuel oxygen concentration detecting means) 19 for detecting the oxygen concentration of the fuel.

サプライポンプ11は、燃料タンク18からメイン燃料通路P0を介して汲み上げた燃料を高圧にし、機関燃料通路P1を経てコモンレール12に供給する。コモンレール12は、サプライポンプ11から供給された高圧燃料を所定圧力に蓄圧し、各燃料噴射弁13に分配する。電磁弁である燃料噴射弁13は、燃焼室20内に燃料を噴射供給する。   The supply pump 11 increases the pressure of the fuel pumped from the fuel tank 18 via the main fuel passage P0 and supplies it to the common rail 12 via the engine fuel passage P1. The common rail 12 accumulates the high-pressure fuel supplied from the supply pump 11 at a predetermined pressure and distributes it to each fuel injection valve 13. A fuel injection valve 13 that is an electromagnetic valve injects and supplies fuel into the combustion chamber 20.

また、サプライポンプ11は、燃料タンク18から汲み上げた燃料の一部を添加燃料通路P2を介して還元剤添加弁17に供給する。遮断弁14は、必要時に添加燃料通路P2を遮断し、燃料供給を停止する。   Further, the supply pump 11 supplies a part of the fuel pumped from the fuel tank 18 to the reducing agent addition valve 17 through the addition fuel passage P2. The shut-off valve 14 shuts off the fuel supply P2 when necessary and stops the fuel supply.

なお、添加燃料通路P2には調量弁(図示せず)も設けられている。この調量弁は、還元剤添加弁17に供給する燃料の圧力(燃圧)を制御する。電磁弁である還元剤添加弁17は、還元剤として機能する燃料を、適宜量、適宜タイミングで排気系40の吸蔵還元型NOx触媒(NOx触媒)41上流に添加供給する。   A metering valve (not shown) is also provided in the added fuel passage P2. This metering valve controls the pressure (fuel pressure) of the fuel supplied to the reducing agent addition valve 17. The reducing agent addition valve 17 which is an electromagnetic valve adds and supplies the fuel functioning as a reducing agent to the upstream of the NOx storage reduction catalyst (NOx catalyst) 41 in the exhaust system 40 at an appropriate amount and at an appropriate timing.

また、吸気系30は、各燃焼室20内に供給される吸入空気の通路(吸気通路)を形成するものである。排気系40は、各燃焼室20から排出される排気ガスの通路(排気通路)を形成するものである。   Further, the intake system 30 forms a passage (intake passage) for intake air supplied into each combustion chamber 20. The exhaust system 40 forms a passage (exhaust passage) for exhaust gas discharged from each combustion chamber 20.

また、エンジン1には、その排気により吸気を過給するターボチャージャ50を備えている。ターボチャージャ50に設けられたインタークーラ31は、過給によって昇温した吸入空気を強制冷却する。このインタークーラ31よりも下流に設けられたスロットル弁32は、いわゆる電子スロットルであり、吸入空気の供給量を調整する。   Further, the engine 1 includes a turbocharger 50 that supercharges intake air by the exhaust gas. The intercooler 31 provided in the turbocharger 50 forcibly cools the intake air whose temperature has been increased by supercharging. The throttle valve 32 provided downstream of the intercooler 31 is a so-called electronic throttle, and adjusts the amount of intake air supplied.

また、エンジン1には、吸気系30と排気系40をバイパスし、排気の一部を吸気系30に戻すEGR通路60が設けられている。EGR通路60には、排気流量を調整するEGR弁61と、排気を冷却するためのEGRクーラ62が設けられている。   Further, the engine 1 is provided with an EGR passage 60 that bypasses the intake system 30 and the exhaust system 40 and returns a part of the exhaust to the intake system 30. The EGR passage 60 is provided with an EGR valve 61 that adjusts the exhaust gas flow rate and an EGR cooler 62 that cools the exhaust gas.

また、排気系40は、吸蔵還元型NOx触媒41と、その下流側に設けられた酸化触媒42とを備えている。吸蔵還元型NOx触媒41は、排気ガスの空燃比がリーンのときにNOxを吸蔵し、排気ガス中の酸素濃度が低下するとともに還元雰囲気で吸蔵したNOxを放出し還元するためのものである。   Further, the exhaust system 40 includes an NOx storage reduction catalyst 41 and an oxidation catalyst 42 provided downstream thereof. The NOx storage reduction catalyst 41 stores NOx when the air-fuel ratio of the exhaust gas is lean, and lowers the oxygen concentration in the exhaust gas and releases and reduces NOx stored in the reducing atmosphere.

また、吸蔵還元型NOx触媒41の温度が比較的低い場合等においては、還元剤添加弁17による添加燃料が吸蔵還元型NOx触媒41をすり抜けてしまう場合があるが、酸化触媒42によりこれを確実に酸化することができる。   In addition, when the temperature of the NOx storage reduction catalyst 41 is relatively low, the fuel added by the reducing agent addition valve 17 may slip through the NOx storage reduction catalyst 41. The oxidation catalyst 42 ensures this. Can be oxidized to.

また、エンジン1の各部位には、吸気量を検出するエアフロメータ72、排気中の酸素濃度を検出する空燃比センサ73、吸蔵還元型NOx触媒41の上流側と下流側の排気温度を検出する排気温センサ74a,74b、吸蔵還元型NOx触媒41の上流側と下流側との圧力差を検出する圧力センサ75が設けられている。   An air flow meter 72 that detects the intake air amount, an air-fuel ratio sensor 73 that detects the oxygen concentration in the exhaust, and exhaust temperatures on the upstream and downstream sides of the NOx storage reduction catalyst 41 are detected in each part of the engine 1. Exhaust temperature sensors 74a and 74b and a pressure sensor 75 for detecting a pressure difference between the upstream side and the downstream side of the NOx storage reduction catalyst 41 are provided.

また、図示を省略するが、エンジン1の各部位には、コモンレール12内の燃料の温度と圧力を検出する温度センサおよび圧力センサ、エンジン1のクランク軸回転を検出するクランクポジションセンサ、吸気温度を検出する吸気温センサ、吸気圧力を検出する吸気圧センサ、アクセルペダルの踏込み量(アクセル開度)を検出するアクセル開度センサ、スロットル弁32の開度を検出するスロットルポジションセンサ、エンジン1の冷却水温を検出する水温センサ等が設けられている。   Although not shown, each part of the engine 1 includes a temperature sensor and a pressure sensor for detecting the temperature and pressure of the fuel in the common rail 12, a crank position sensor for detecting the crankshaft rotation of the engine 1, and an intake air temperature. Intake temperature sensor for detecting, intake pressure sensor for detecting intake pressure, accelerator position sensor for detecting accelerator pedal depression amount (accelerator position), throttle position sensor for detecting position of throttle valve 32, and cooling of engine 1 A water temperature sensor or the like for detecting the water temperature is provided.

図示しない電子制御装置であるECUは、上記各種センサの検出信号を外部入力回路を介して入力し、これらの信号に基づき燃料噴射弁13や還元剤添加弁17の開閉制御等、エンジン1の運転状態に関する各種制御を実施する。このECUは、後述する噴射割合の算出手段として機能するとともに、その噴射割合に基づいて還元剤添加弁17の燃料添加量を補正する手段としても機能するものである。   The ECU, which is an electronic control unit (not shown), inputs detection signals from the various sensors via an external input circuit, and controls the operation of the engine 1 such as opening / closing control of the fuel injection valve 13 and the reducing agent addition valve 17 based on these signals. Implement various controls related to the state. The ECU functions as a means for calculating an injection ratio, which will be described later, and also functions as a means for correcting the fuel addition amount of the reducing agent addition valve 17 based on the injection ratio.

つぎに、本実施例に係る制御方法について図4に基づいて図1〜図3を参照しつつ説明する。ここで、図4は、制御方法を示すフローチャートである。なお、排気浄化のための基本制御は、公知技術とほぼ同様であるので重複説明を省略し、相違点を説明する。   Next, a control method according to the present embodiment will be described based on FIG. 4 with reference to FIGS. Here, FIG. 4 is a flowchart showing a control method. Since the basic control for exhaust gas purification is almost the same as that of the known technology, the duplicated explanation is omitted and the differences will be explained.

また、図2は、燃料の酸素濃度と発熱量比率の関係を示すグラフであり、軽油(所定の標準燃料)を基準としたときに等発熱量となる使用燃料の噴射割合を当該使用燃料の含酸素量(酸素濃度)に応じて算出したマップである。なお、グラフ中には、標準燃料である軽油の他、バイオ燃料、有機系燃料、アルコール類の燃料も示してある。   FIG. 2 is a graph showing the relationship between the oxygen concentration of the fuel and the ratio of the calorific value. The injection ratio of the used fuel that has an equal calorific value when using light oil (predetermined standard fuel) as a reference is shown in FIG. It is the map computed according to oxygen content (oxygen concentration). The graph also shows biofuels, organic fuels, and alcohol fuels in addition to the standard fuel gas oil.

また、図3は、燃料の酸素濃度と理論空燃比の関係を示すグラフであり、軽油を基準としたときに理論空燃比とするのに必要な使用燃料の噴射割合を当該使用燃料の含酸素量(酸素濃度)に応じて算出したマップである。なお、グラフ中には、標準燃料である軽油の他にアルコール類の燃料を示してある。   FIG. 3 is a graph showing the relationship between the oxygen concentration of the fuel and the stoichiometric air-fuel ratio. The injection ratio of the used fuel necessary to obtain the stoichiometric air-fuel ratio based on light oil is used as the oxygen content of the used fuel. It is the map computed according to quantity (oxygen concentration). In the graph, alcohol fuel is shown in addition to light oil, which is a standard fuel.

これら図2および図3の縦軸のa,b,c,d,eは、軽油を1(基準値)とした場合の所定の数値(比率)を示している。また、横軸のwt1,wt2,wt3は、含酸素量(重量パーセント)を示す所定の数値である。図2および図3を比較して分かるように、等発熱量の差による噴射割合の変化のグラフ(図2)と、理論空燃比の差による噴射割合の変化のグラフ(図3)は、ほぼ同一となっている。   2 and 3, a, b, c, d, and e on the vertical axis indicate predetermined numerical values (ratio) when light oil is 1 (reference value). Moreover, wt1, wt2, and wt3 on the horizontal axis are predetermined numerical values indicating the oxygen content (weight percent). As can be seen by comparing FIG. 2 and FIG. 3, the graph of the change in the injection ratio due to the difference in the equal calorific value (FIG. 2) and the graph of the change in the injection ratio due to the difference in the theoretical air-fuel ratio (FIG. 3) are almost It is the same.

すなわち、図2および図3から分かるように、使用燃料の含酸素量が増加すると、軽油と等発熱量となる使用燃料の噴射割合も増加し、また理論空燃比とするのに必要な使用燃料の噴射割合もほぼ同一の曲線に沿って増加している。   That is, as can be seen from FIG. 2 and FIG. 3, when the oxygen content of the fuel used increases, the injection ratio of the fuel used equal to calorific value with the light oil also increases, and the fuel used necessary to achieve the stoichiometric air-fuel ratio. The injection ratio of the gas also increases along almost the same curve.

したがって、使用燃料の含酸素量が分かれば、これらのうちのいずれかのマップ(図2または図3)を用いることにより、当該含酸素量に対応する噴射割合に基づいて、還元剤添加弁17からの燃料添加量を容易に補正(噴射割合を増加させる)することができる。   Therefore, if the oxygen content of the fuel used is known, the reducing agent addition valve 17 is based on the injection ratio corresponding to the oxygen content by using one of these maps (FIG. 2 or FIG. 3). The amount of fuel added from can be easily corrected (injection rate increased).

すなわち、本実施例に係る制御方法は、上記ECUによって実行され、図4に示すように、燃料タンク18の燃料酸素濃度センサ19によって使用燃料の含酸素量を検出する(ステップS10)。   That is, the control method according to the present embodiment is executed by the ECU, and as shown in FIG. 4, the oxygen content of the used fuel is detected by the fuel oxygen concentration sensor 19 of the fuel tank 18 (step S10).

つぎに、この含酸素量に対応する噴射割合を、たとえば図2に示したマップから求め、この噴射割合を、基準となる軽油の場合の燃料添加量に乗じることにより、還元剤添加弁17からの燃料添加量を補正することができる(ステップS20)。   Next, the injection ratio corresponding to this oxygen content is obtained from, for example, the map shown in FIG. 2, and this injection ratio is multiplied by the fuel addition amount in the case of the light oil as a reference. The amount of fuel added can be corrected (step S20).

そして、この補正された燃料添加量を還元剤添加弁17から噴射する(ステップS30)。これにより、含酸素量の異なる燃料を使用する場合、あるいは燃料の含酸素量が変化した場合であっても、軽油の場合と同等の発熱量(触媒温度)を得ることができ、リッチガスを吸蔵還元型NOx触媒41に供給することができる。   Then, the corrected fuel addition amount is injected from the reducing agent addition valve 17 (step S30). As a result, even when fuels with different oxygen contents are used, or even when the oxygen content of the fuel has changed, a calorific value (catalyst temperature) equivalent to that of light oil can be obtained, and rich gas is occluded. The reduced NOx catalyst 41 can be supplied.

以上のように、この実施例に係る内燃機関の排気浄化装置によれば、含酸素量の異なる燃料を使用する場合であっても、軽油の場合と同様に、排気ガスを所望する温度および空燃比に容易に制御することができる。   As described above, according to the exhaust gas purification apparatus for an internal combustion engine according to this embodiment, even when fuels having different oxygen contents are used, the exhaust gas is desired to have a desired temperature and air temperature as in the case of light oil. The fuel ratio can be easily controlled.

なお、上記実施例においては、本発明をディーゼルエンジンシステムに適用し、標準燃料を軽油とするものとして説明したが、これに限定されず、たとえば、ガソリンエンジンに適用し、標準燃料をガソリンとしてもよい。この場合、ガソリンの含酸素量を検出すれば、排気ガスを所望する温度および空燃比に容易に制御することができるので、触媒温度センサや空燃比センサによる複雑なフィードバック制御を不要とすることができる。   In the above embodiment, the present invention is applied to a diesel engine system and the standard fuel is assumed to be light oil. However, the present invention is not limited to this. For example, the invention may be applied to a gasoline engine and the standard fuel may be gasoline. Good. In this case, if the oxygen content of gasoline is detected, the exhaust gas can be easily controlled to a desired temperature and air-fuel ratio, so that complicated feedback control by a catalyst temperature sensor or an air-fuel ratio sensor is not required. it can.

以上のように、この発明に係る内燃機関の排気浄化装置は、希薄燃焼可能な内燃機関の排気系内であって当該排気系内に設けられたNOx触媒上流に還元剤を供給し、排気中の有害成分の浄化を促すのに有用であり、特に、含酸素量の異なる燃料を使用する場合であっても、排気ガスを所望する温度および空燃比に容易に制御することを目指す内燃機関に適している。   As described above, the exhaust gas purification apparatus for an internal combustion engine according to the present invention supplies the reducing agent to the upstream side of the NOx catalyst provided in the exhaust system of the lean combustion internal combustion engine and provided in the exhaust system. It is useful for promoting the purification of harmful components, particularly in an internal combustion engine that aims to easily control the exhaust gas to a desired temperature and air-fuel ratio even when using fuels having different oxygen contents. Is suitable.

この発明の実施例に係る内燃機関の排気浄化装置を適用したディーゼルエンジンシステムを示す概略構成図である。1 is a schematic configuration diagram showing a diesel engine system to which an exhaust gas purification apparatus for an internal combustion engine according to an embodiment of the present invention is applied. 燃料の酸素濃度と発熱量比率の関係を示すグラフである。It is a graph which shows the relationship between the oxygen concentration of a fuel, and the emitted-heat amount ratio. 燃料の酸素濃度と理論空燃比の関係を示すグラフである。It is a graph which shows the relationship between the oxygen concentration of a fuel, and a theoretical air fuel ratio. 制御方法を示すフローチャートである。It is a flowchart which shows a control method.

符号の説明Explanation of symbols

1 エンジン(内燃機関)
10 燃料供給系
17 還元剤添加弁(燃料添加手段)
18 燃料タンク
19 燃料酸素濃度センサ(燃料酸素濃度検出手段)
20 燃焼室
30 吸気系
40 排気系
41 吸蔵還元型NOx触媒(NOx触媒)
73 空燃比センサ
74a、74b 排気温センサ
P0 メイン燃料通路
P1 機関燃料通路
P2 添加燃料通路(燃料添加手段)
1 engine (internal combustion engine)
10 Fuel supply system 17 Reducing agent addition valve (fuel addition means)
18 Fuel tank 19 Fuel oxygen concentration sensor (fuel oxygen concentration detection means)
20 Combustion chamber 30 Intake system 40 Exhaust system 41 NOx storage reduction catalyst (NOx catalyst)
73 Air-fuel ratio sensor 74a, 74b Exhaust temperature sensor P0 Main fuel passage P1 Engine fuel passage P2 Addition fuel passage (fuel addition means)

Claims (1)

内燃機関の排気系に設けられ、排気ガス中の還元成分濃度が高くなるとNOxの還元反応を促す特性を備えたNOx触媒と、
前記排気系を通じて前記NOx触媒に流入する前記排気ガス中に使用燃料の一部を還元剤として噴射添加する燃料添加手段と、
を備え、前記燃料添加手段の燃料添加量を制御することにより前記排気ガスを浄化する内燃機関の排気浄化装置において、
前記使用燃料の酸素濃度を検出する燃料酸素濃度検出手段と、
所定の標準燃料を基準としたときに等発熱量となる前記使用燃料の噴射割合または理論空燃比とするのに必要な前記使用燃料の噴射割合を前記使用燃料の酸素濃度に応じて算出する噴射割合算出手段と、
を更に備え、
前記噴射割合算出手段によって算出された前記噴射割合に基づいて前記燃料添加手段の燃料添加量を補正することを特徴とする内燃機関の排気浄化装置。
A NOx catalyst that is provided in an exhaust system of an internal combustion engine and has a characteristic that promotes a reduction reaction of NOx when the concentration of a reducing component in the exhaust gas increases;
Fuel addition means for injecting and adding a part of the used fuel as a reducing agent into the exhaust gas flowing into the NOx catalyst through the exhaust system;
An exhaust gas purification apparatus for an internal combustion engine that purifies the exhaust gas by controlling a fuel addition amount of the fuel addition means,
Fuel oxygen concentration detection means for detecting the oxygen concentration of the fuel used;
Injection that calculates an injection ratio of the used fuel that is equal in calorific value when a predetermined standard fuel is used as a reference or an injection ratio of the used fuel that is necessary to obtain a stoichiometric air-fuel ratio according to the oxygen concentration of the used fuel A ratio calculation means;
Further comprising
An exhaust emission control device for an internal combustion engine, wherein the fuel addition amount of the fuel addition means is corrected based on the injection ratio calculated by the injection ratio calculation means.
JP2006247136A 2006-09-12 2006-09-12 Exhaust emission control device of internal combustion engine Pending JP2008069663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006247136A JP2008069663A (en) 2006-09-12 2006-09-12 Exhaust emission control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006247136A JP2008069663A (en) 2006-09-12 2006-09-12 Exhaust emission control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2008069663A true JP2008069663A (en) 2008-03-27

Family

ID=39291473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006247136A Pending JP2008069663A (en) 2006-09-12 2006-09-12 Exhaust emission control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2008069663A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009257248A (en) * 2008-04-18 2009-11-05 Toyota Motor Corp Control device of internal combustion engine
JP2010090781A (en) * 2008-10-07 2010-04-22 Toyota Motor Corp Detector for metal component in bio mixed fuel
CN104819038A (en) * 2014-01-30 2015-08-05 株式会社电装 Reducing agent supplying device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000179335A (en) * 1998-12-11 2000-06-27 Nissan Motor Co Ltd Exhaust-gas processing apparatus
JP2004108231A (en) * 2002-09-18 2004-04-08 Toyota Motor Corp Fuel injection control device of internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000179335A (en) * 1998-12-11 2000-06-27 Nissan Motor Co Ltd Exhaust-gas processing apparatus
JP2004108231A (en) * 2002-09-18 2004-04-08 Toyota Motor Corp Fuel injection control device of internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009257248A (en) * 2008-04-18 2009-11-05 Toyota Motor Corp Control device of internal combustion engine
JP2010090781A (en) * 2008-10-07 2010-04-22 Toyota Motor Corp Detector for metal component in bio mixed fuel
CN104819038A (en) * 2014-01-30 2015-08-05 株式会社电装 Reducing agent supplying device

Similar Documents

Publication Publication Date Title
US8096110B2 (en) Ammonia (NH3) storage control system and method at low nitrogen oxide (NOx) mass flow rates
JP3613676B2 (en) Exhaust gas purification device for internal combustion engine
US7320214B2 (en) Exhaust gas purifier for internal combustion engine
US9212585B2 (en) Exhaust gas purifying apparatus for internal combustion engine
JP2008215118A (en) Exhaust emission control system of internal combustion engine
JP5045339B2 (en) Exhaust gas purification system for internal combustion engine
JP6278344B2 (en) Engine exhaust purification system
JP2008069663A (en) Exhaust emission control device of internal combustion engine
JP2008231926A (en) Exhaust emission control device of internal combustion engine
JP4941079B2 (en) Exhaust gas recirculation control device for internal combustion engine
JP2009013847A (en) Exhaust fuel addition control device for internal combustion engine
US20130247546A1 (en) Exhaust gas purification system for an internal combustion engine
JP4893493B2 (en) Exhaust gas purification device for internal combustion engine
JP2004176632A (en) Exhaust emission control device for internal combustion engine
JP5774300B2 (en) Exhaust purification equipment
JP2006037857A (en) Exhaust emission control device
JP2009174340A (en) Exhaust emission control device for internal combustion engine
JP2009127486A (en) Exhaust fuel addition control device of internal combustion engine
JP2009068470A (en) Exhaust emission control device of internal combustion engine
JP2007291975A (en) Exhaust recirculation device of internal combustion engine
JP2009019553A (en) Exhaust emission purifier of internal combustion engine
JP2007255308A (en) Exhaust emission control device of internal combustion engine
JP2008051009A (en) Exhaust emission control device
JP2008002398A (en) Exhaust emission control device for internal combustion engine
JP2010048101A (en) Exhaust emission control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110809