JP2008068165A - Method and device for degassing liquid - Google Patents

Method and device for degassing liquid Download PDF

Info

Publication number
JP2008068165A
JP2008068165A JP2006247108A JP2006247108A JP2008068165A JP 2008068165 A JP2008068165 A JP 2008068165A JP 2006247108 A JP2006247108 A JP 2006247108A JP 2006247108 A JP2006247108 A JP 2006247108A JP 2008068165 A JP2008068165 A JP 2008068165A
Authority
JP
Japan
Prior art keywords
liquid
negative pressure
storage container
external gas
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006247108A
Other languages
Japanese (ja)
Other versions
JP4689565B2 (en
Inventor
Teruyuki Nakano
輝幸 中野
Yasuhiro Ozawa
康博 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishii Hyoki Co Ltd
Original Assignee
Ishii Hyoki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishii Hyoki Co Ltd filed Critical Ishii Hyoki Co Ltd
Priority to JP2006247108A priority Critical patent/JP4689565B2/en
Publication of JP2008068165A publication Critical patent/JP2008068165A/en
Application granted granted Critical
Publication of JP4689565B2 publication Critical patent/JP4689565B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for degassing a liquid that is of as the lowest cost as possible, and can smoothly perform processing without being polluted with particles and without an improper limitation. <P>SOLUTION: The liquid 2 is efficiently degassed with a negative pressure in a negative pressure space 3c on the liquid by allowing the liquid 2 to be fluidized with bubbles 11 generated by introducing a gas 10 into the liquid 2 in a storage tank 3 while a space in a vacuum container 4 is in negative pressure state. Because the solubility of the gas 10 in the liquid 2 is low and it is under the negative pressure, the gas 10 is hardly dissolved in the liquid 2. Because the method and the device for degassing a liquid are each of a simple configuration, they are at low costs. In addition, because a member that is a particle generating source is not provided in the container 4, there is no pollution caused by the particles. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、液体の脱気方法及び脱気装置に係り、詳しくは、液体が貯留された貯留容器の液面に接する上方の空間を負圧状態として液体中の溶存気体を脱気する脱気方法及びその装置に関する。   The present invention relates to a liquid degassing method and a degassing apparatus, and more particularly, degassing by degassing dissolved gas in a liquid by setting a space above the liquid surface of a storage container in which the liquid is stored to a negative pressure state. The present invention relates to a method and an apparatus thereof.

周知のように、液体を使用する半導体、FPD(フラットパネルディスプレイ)分野を始めとする化学分野、一般産業機分野においては、その使用に供される液体中に溶け込んだ溶存気体が原因となって様々な不具合を招来するに至っている。   As is well known, in the semiconductor field using liquid, the chemical field including FPD (flat panel display) field, and the general industrial machine field, the dissolved gas dissolved in the liquid used for the use is the cause. It has led to various problems.

その一例として、インクジェットプリンタに使用される液体としてのインク中に空気等の気体が溶け込んでいると、当該プリンタからインクを噴出する場合に、溶け込んだ気体がインク噴出時に泡としてインク中に発生し、その結果、プリンタのインクを噴出するノズルが気体によって詰まり、インクが噴出しなくなるという不具合を招く。   As an example, when a gas such as air is dissolved in ink as a liquid used in an ink jet printer, when the ink is ejected from the printer, the dissolved gas is generated in the ink as bubbles when the ink is ejected. As a result, the nozzle for ejecting the ink of the printer is clogged with gas, causing a problem that the ink is not ejected.

このような不具合を防止するためには、液体中に溶け込んだ溶存気体を除去する所謂脱気を行うことが有効であり、そのための方策としては以下に示すような種々のものが提案され或いは実用化されている。   In order to prevent such a problem, it is effective to perform so-called degassing to remove dissolved gas dissolved in the liquid, and various measures as described below have been proposed or put into practical use as measures for that purpose. It has become.

すなわち、下記の特許文献1によれば、液体の液面上の空間を負圧状態として、2種類の攪拌羽根を液体中に入れ、それらの攪拌羽根をモータで相互に反対方向に回転をさせることにより、液体を流動させると共に乱流化させることが開示されている。この場合、液体中の複数の気泡は、液面上の空間が負圧状態であるためにそれぞれが膨張して液面に浮上すると共に、これらの気泡は液面で結合し合うことにより大型化した後に破裂し、これにより脱気が行われる。   That is, according to the following Patent Document 1, the space on the liquid surface is in a negative pressure state, two kinds of stirring blades are put in the liquid, and the stirring blades are rotated in opposite directions by a motor. Thus, it is disclosed that the liquid flows and is turbulent. In this case, the plurality of bubbles in the liquid expands and floats on the liquid surface because the space on the liquid surface is in a negative pressure state, and these bubbles are increased in size by being combined on the liquid surface. And then rupture, thereby degassing.

また、下記の特許文献2によれば、液体の液面上の空間を負圧状態として、液体中に永久磁石と多孔質材料とから成る攪拌子を入れ、それを液外から磁力により回転させることにより、撹拌子の多孔質部分から気体の泡を発生させると共に、その泡を液面に浮上させて破裂させることにより脱気を行う構成が開示されている。   Further, according to Patent Document 2 below, the space on the liquid surface is set to a negative pressure state, and a stirrer made of a permanent magnet and a porous material is placed in the liquid and rotated by magnetic force from the outside of the liquid. Thus, a configuration is disclosed in which gas bubbles are generated from the porous portion of the stirrer and deaeration is performed by floating the bubbles on the liquid surface and causing the bubbles to burst.

更に、下記の特許文献3によれば、気体を透過させ且つ液体を透過させない特性を有する膜を使用して中空糸膜を作製し、この中空糸膜を数万本束ねた状態で、中空糸膜の内部に液体を流しつつ、中空糸膜の外部を減圧することが開示されている。このような手法によれば、液体中の気体が中空糸膜を透過してその外側に出て行くことにより脱気が行われる構成となっている。   Furthermore, according to the following Patent Document 3, a hollow fiber membrane is produced using a membrane having characteristics of allowing gas to permeate and not liquid to permeate, and in the state where tens of thousands of these hollow fiber membranes are bundled, It is disclosed that the outside of the hollow fiber membrane is decompressed while flowing a liquid inside the membrane. According to such a method, the gas in the liquid is degassed by permeating through the hollow fiber membrane and going outside.

また、下記の特許文献4によれば、上述のような負圧(或いは減圧)を利用せずに、常圧下で送液路中の液体中に窒素を噴出させることにより、窒素の微小気泡を発生させると共に超音速の気液混合状態を生成し、液体中の酸素を窒素気泡中に吸収させて取り除くことにより酸素の脱気を行うことが開示されている。
特開2004−290859号 特開平9−155177号 特開平5−317605号 特開平5−184811号
Moreover, according to the following Patent Document 4, nitrogen is blown into the liquid in the liquid feeding path under normal pressure without using the negative pressure (or reduced pressure) as described above, thereby forming nitrogen microbubbles. It is disclosed that a supersonic gas-liquid mixed state is generated and oxygen is deaerated by absorbing and removing oxygen in the liquid in a nitrogen bubble.
JP 2004-290859 A JP-A-9-155177 JP-A-5-317605 Japanese Patent Laid-Open No. 5-184811

ところで、上記の特許文献1に開示の手法では、攪拌羽根や回転軸等の摺動部分から発生したパーティクル(小さな異物)が液体を汚染する。同様に、上記の特許文献2に開示の手法によるにしても、液体中の撹拌子と液体を入れている容器の底が擦れることから発生するパーティクルが液体を汚染する。   By the way, in the method disclosed in the above-mentioned Patent Document 1, particles (small foreign matters) generated from sliding portions such as a stirring blade and a rotating shaft contaminate the liquid. Similarly, even if the technique disclosed in Patent Document 2 is used, particles generated by rubbing the stirring bar in the liquid and the bottom of the container containing the liquid contaminate the liquid.

一方、上記の特許文献3に開示の手法では、中空糸膜チューブが高価であるという致命的な欠陥に加えて、内径がミクロンオーダの数万本の中空糸膜チューブを束ねて製作するため圧力損失が大きく液体の脱気処理速度が遅いという問題をも有している。更に、上記の特許文献4に開示の手法によるにしても、液体中の酸素を窒素気泡中に吸収させるための長い送液路が必要であることから高価になるという致命的な欠陥が生じることに加えて、常圧下で窒素を液中に吸収させることを骨子としていることから、常圧下であれば窒素が問題を引き起こす液体には使用できず、脱気処理が不当な制約を受けることになる。   On the other hand, in the technique disclosed in the above-mentioned Patent Document 3, in addition to the fatal defect that the hollow fiber membrane tube is expensive, a pressure is required for bundling tens of thousands of hollow fiber membrane tubes having an inner diameter of the order of microns. There is also a problem that the loss is large and the liquid degassing speed is slow. Furthermore, even by the method disclosed in Patent Document 4 described above, a fatal defect that is expensive due to the need for a long liquid supply path for absorbing oxygen in the liquid into the nitrogen bubbles occurs. In addition, since the main idea is to absorb nitrogen into the liquid under normal pressure, it cannot be used for liquids that cause problems under normal pressure, and the deaeration process is unduly restricted. Become.

そこで、本発明は、可能な限り安価で、かつ、パーティクルによる汚染がなく、しかも不当な制約を受けることなく円滑に処理を行い得る液体の脱気方法及び脱気装置を提供することを技術的課題とする。   Accordingly, the present invention is technically to provide a liquid degassing method and a degassing apparatus that are as inexpensive as possible, are free from contamination by particles, and can be processed smoothly without being unduly restricted. Let it be an issue.

上記技術的課題を解決するために創案された本発明に係る方法は、液体が貯留された貯留容器の液面に接する上方の空間を負圧状態として液体中の溶存気体を脱気する脱気方法であって、前記液体中に外部気体を導入することにより、前記液体の内部に上方に向かう液体流動を生じさせて、該液体中の溶存気体を液面を通じて上方の負圧空間に移動させることに特徴づけられる。   The method according to the present invention, which was created to solve the above technical problem, is a degassing method in which a dissolved gas in a liquid is degassed by setting the upper space in contact with the liquid surface of the storage container in which the liquid is stored to a negative pressure state. In this method, by introducing an external gas into the liquid, an upward liquid flow is generated inside the liquid, and the dissolved gas in the liquid is moved to the upper negative pressure space through the liquid surface. It is characterized by that.

このような方法によれば、液体中に導入された外部気体(気泡)の動作によって、液体の内部に上方に向かう液体流動が生じるため、液体中に溶け込んでいる溶存気体(例えば空気)が液面から負圧空間に移動し、これにより液体の脱気処理が行われる。この場合、液体中への外部気体の導入に伴って上方に向かう液体流動が連続して行われることにより、脱気処理が行われ得る液面が常に入れ替わることになり、脱気処理の効率が向上する。そして、この処理は、単に液体中に外部気体を導入して上方に向かう液体流動を生じさせ且つ液体中の溶存気体を負圧空間に移動させるだけで済むことから、大幅なコストダウンを図ることが可能であると共に、液体中に回転部材や移動部材等を含む駆動部品が存在しないことから、パーティクルによる汚染等を抑止することができる。しかも、多数本の中空糸膜を使用する必要もないことから、脱気処理時の圧力損失が極めて少なく且つ処理速度も大幅に迅速化される。   According to such a method, since an upward liquid flow is generated inside the liquid by the operation of the external gas (bubble) introduced into the liquid, the dissolved gas (for example, air) dissolved in the liquid is liquid. The liquid moves from the surface to the negative pressure space, whereby the liquid is deaerated. In this case, the liquid flow upward is continuously performed with the introduction of the external gas into the liquid, so that the liquid level where the degassing process can be performed is always replaced, and the efficiency of the degassing process is improved. improves. This process simply introduces an external gas into the liquid to generate an upward liquid flow and moves the dissolved gas in the liquid to the negative pressure space, thereby greatly reducing the cost. In addition, since there are no driving parts including a rotating member, a moving member, and the like in the liquid, contamination by particles can be suppressed. In addition, since it is not necessary to use a large number of hollow fiber membranes, the pressure loss during the deaeration process is extremely small and the processing speed is greatly increased.

尚、液体中に導入する外部気体としては、パーティクルが存在しないクリーンな窒素を使用することが好適である。すなわち、液面と接する空間が既述のように常圧(大気圧)であると、液体中に導入されて上方空間に移動しようとする窒素が再び液体中に取り込まれるおそれがあるが、この場合のように液面と接する上方空間が負圧状態であると、窒素は液面から円滑に負圧空間に移動し、再び液体中に取り込まれることが抑制される。また、液体中に導入する外部気体(例えば窒素)の量は、過多であると液体が飛散して脱気処理に支障を来たすおそれがあるばかりでなく、液体中の気体が負圧空間側に移動する速度は液体の種類に応じて異なるため、この移動する速度の飽和点を考慮した外部気体の量とすることが好適である。尚、液体と負圧空間との接する面積は、脱気効率を高めるために、広くすることが好ましい。   In addition, it is suitable to use clean nitrogen in which particles do not exist as the external gas introduced into the liquid. That is, if the space in contact with the liquid surface is at normal pressure (atmospheric pressure) as described above, nitrogen introduced into the liquid and moving to the upper space may be taken into the liquid again. When the upper space in contact with the liquid surface is in a negative pressure state as in the case, nitrogen is smoothly moved from the liquid surface to the negative pressure space and is prevented from being taken into the liquid again. In addition, if the amount of external gas (for example, nitrogen) introduced into the liquid is excessive, the liquid may scatter and interfere with the deaeration process, and the gas in the liquid may move to the negative pressure space side. Since the moving speed varies depending on the type of liquid, it is preferable to set the amount of external gas in consideration of the saturation point of the moving speed. In addition, it is preferable to widen the area where the liquid and the negative pressure space come into contact in order to increase the deaeration efficiency.

この場合、前記貯留容器の上端に開口部を形成すると共に、該貯留容器を真空容器の内部空間に収容し、且つ該真空容器に設置した外部気体供給手段を通じて前記貯留容器内の液体中に外部気体を導入することが好ましい。   In this case, an opening is formed at the upper end of the storage container, the storage container is accommodated in the internal space of the vacuum container, and externally supplied to the liquid in the storage container through external gas supply means installed in the vacuum container. It is preferable to introduce a gas.

このようにすれば、貯留容器の液面上方空間を負圧状態とすること、及び貯留容器内の液体中に外部気体を導入すること等を、簡易に且つ確実に行う上で極めて有利となる。   In this way, it is extremely advantageous to simply and surely perform the negative pressure in the space above the liquid level of the storage container and introduce external gas into the liquid in the storage container. .

一方、上記技術的課題を解決するために創案された本発明に係る装置は、液体を貯留する貯留容器と、該貯留容器の液面に接する上方の空間を負圧状態にする負圧吸引手段とを備えた液体の脱気装置であって、前記貯留容器内の液体中に外部気体を供給する外部気体供給手段を備えると共に、前記液体中に導入された外部気体の動作により該液体の内部に上方に向かう液体流動を生じさせて、該液体中の溶存気体を液面を通じて上方の負圧空間に移動させるように構成したことに特徴づけられる。   On the other hand, an apparatus according to the present invention, which was created to solve the above technical problem, includes a storage container that stores liquid and a negative pressure suction unit that places a space above the liquid surface of the storage container in a negative pressure state. A liquid deaeration device comprising external gas supply means for supplying an external gas into the liquid in the storage container, and the operation of the external gas introduced into the liquid. It is characterized in that the liquid flow upward is generated in the liquid, and the dissolved gas in the liquid is moved to the upper negative pressure space through the liquid surface.

このような構成によれば、負圧吸引手段や外部気体供給手段等の動作によって、既に述べた脱気方法と同様の作用効果を享受することができる。   According to such a configuration, it is possible to enjoy the same operational effects as those of the deaeration method described above by the operation of the negative pressure suction unit, the external gas supply unit, and the like.

この場合においても、前記貯留容器の上端に開口部を形成すると共に、該貯留容器を真空容器の内部空間に収容し、且つ該真空容器に前記貯留容器内の液体中に外部気体を供給する外部気体供給手段を設置することが好ましい。   Also in this case, an opening is formed at the upper end of the storage container, the storage container is accommodated in the internal space of the vacuum container, and an external gas is supplied to the vacuum container in the liquid in the storage container It is preferable to install a gas supply means.

このようにすれば、既述の場合と同様に、貯留容器の液面上方空間を負圧状態とすること、及び貯留容器内の液体中に外部気体を導入すること等を、簡易に且つ確実に行う上で極めて有利となる。   In this way, as in the case described above, the space above the liquid surface of the storage container is brought into a negative pressure state, and external gas is introduced into the liquid in the storage container. It is extremely advantageous in carrying out the process.

そして、前記外部気体供給手段は、前記貯留空間内の液体の下部に開口端を有する外部気体供給管を有していることが好ましい。   And it is preferable that the said external gas supply means has an external gas supply pipe | tube which has an open end in the lower part of the liquid in the said storage space.

このようにすれば、外部気体は、外部気体供給管の開口端を通じて貯留容器内の液体中に下部から侵入することになるので、上方への液体流動を含む液体の対流や攪拌が好適に生成され、適切な脱気処理が行われることになる。   In this way, since the external gas enters from the lower part into the liquid in the storage container through the open end of the external gas supply pipe, the convection and stirring of the liquid including the upward liquid flow is preferably generated. Thus, an appropriate deaeration process is performed.

この場合、前記負圧空間の圧力は、50kpa〜10kpaであることが好ましい。   In this case, the pressure in the negative pressure space is preferably 50 kpa to 10 kpa.

すなわち、負圧空間の圧力が過度に低いと、充分な脱気を行うことができず、その一方負圧空間の圧力が過度に高いと、液体が気化するおそれがあるばかりでなく、処理する液体の飽和点を超えた場合には無駄が生じる。したがって、負圧空間の圧力は、上記の数値範囲内にあることが好都合である。   That is, if the pressure in the negative pressure space is excessively low, sufficient deaeration cannot be performed. On the other hand, if the pressure in the negative pressure space is excessively high, the liquid may be vaporized and processed. When the liquid saturation point is exceeded, waste occurs. Therefore, the pressure in the negative pressure space is conveniently within the above numerical range.

以上の構成において、前記液体は、インクジェットプリンタに使用されるインクであることが好適である。   In the above configuration, the liquid is preferably ink used for an ink jet printer.

更に詳述すると、前記液体は、粘度が5〜18cpであることが好ましい。このような粘度の材料としては、基板(例えば液晶表示装置の透明基板)上に膜(例えば配向膜)を形成する際に使用される膜材料(例えば配向膜材料)を一例として挙げることができる。   More specifically, the liquid preferably has a viscosity of 5 to 18 cp. As a material having such a viscosity, a film material (for example, an alignment film material) used when a film (for example, an alignment film) is formed on a substrate (for example, a transparent substrate of a liquid crystal display device) can be exemplified. .

以上のように本発明に係る液体の脱気方法及び脱気装置によれば、単に液体中に外部気体を導入して上方に向かう液体流動を生じさせ且つ液体中の溶存気体を負圧空間に移動させるだけで脱気処理を行うことができるため、大幅なコストダウンを図ることが可能であると共に、液体中に回転部材や移動部材等を含む駆動部品が存在しないことから、パーティクルによる汚染等を抑止することができる。しかも、多数本の中空糸膜を使用する必要もないことから、脱気処理時の圧力損失が極めて少なく且つ処理速度も大幅に迅速化される。更に、外部気体として窒素を使用しても、液面と接する上方空間が負圧状態であることから、窒素は液面から円滑に負圧空間に移動し、再び液体中に取り込まれることが抑制され、良好な脱気処理が行われ得る。   As described above, according to the liquid degassing method and the degassing apparatus according to the present invention, the external gas is simply introduced into the liquid to cause upward liquid flow, and the dissolved gas in the liquid is brought into the negative pressure space. Since deaeration treatment can be performed simply by moving it, it is possible to achieve significant cost reductions, and there are no drive parts including rotating members, moving members, etc. in the liquid. Can be suppressed. In addition, since it is not necessary to use a large number of hollow fiber membranes, the pressure loss during the deaeration process is extremely small and the processing speed is greatly increased. Furthermore, even if nitrogen is used as the external gas, the upper space in contact with the liquid level is in a negative pressure state, so that nitrogen is smoothly transferred from the liquid level to the negative pressure space and is not taken into the liquid again. And good degassing treatment can be performed.

以下、本発明の実施の形態を図面を参照しつつ説明する。図1は、本実施形態に係る液体の脱気装置の縦断正面図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal front view of a liquid degassing apparatus according to the present embodiment.

この脱気装置1は、液体(処理液体)2を貯留する貯留容器3と、この貯留容器3を気密状態の内部空間に完全に収容する真空容器4とを備え、真空容器4は重量計5の上面に載置されている。そして、貯留容器3の上壁3aと真空容器4の蓋壁4aとの間には、隙間が設けられている。また、貯留容器3は、その上壁3a(上端)に開口部3bを有し、高さ方向略中央またはそれ以上の高さまで液体2を貯留している。   The deaeration device 1 includes a storage container 3 for storing a liquid (treatment liquid) 2 and a vacuum container 4 for completely storing the storage container 3 in an airtight internal space. It is mounted on the upper surface of. A gap is provided between the upper wall 3 a of the storage container 3 and the lid wall 4 a of the vacuum container 4. In addition, the storage container 3 has an opening 3b on its upper wall 3a (upper end), and stores the liquid 2 to a height approximately at the center in the height direction or higher.

真空容器4には、貯留容器3に液体2を供給する液体供給手段6と、その液体を取り出す液体取出手段7と、貯留容器3の液面に接する上方空間(負圧空間)3cを負圧状態とする負圧吸引手段8と、貯留容器3の液体2中に外部気体(窒素)10を供給する外部気体供給手段9とが設置されている。   The vacuum container 4 has a liquid supply means 6 for supplying the liquid 2 to the storage container 3, a liquid extraction means 7 for taking out the liquid, and an upper space (negative pressure space) 3 c in contact with the liquid surface of the storage container 3. Negative pressure suction means 8 to be in a state and external gas supply means 9 for supplying external gas (nitrogen) 10 into the liquid 2 of the storage container 3 are installed.

液体供給手段6は、真空容器4の上方から蓋壁4aを気密状態で貫通して貯留容器3の内部空間に達する液体供給管61を有し、この液体供給管61の蓋壁4a上方に液体供給弁62が設置されている。また、液体取出手段7も、真空容器4の上方から蓋壁4aを気密状態で貫通して貯留容器3の内部空間に達する液体取出管71を有し、この液体取出管71の蓋壁4a上方にも液体取出弁72が設置されている。尚、液体供給管61及び液体取出管71の両者の下端開口部は、貯留容器3の底部周辺(液体2の下部)に位置している。   The liquid supply means 6 has a liquid supply pipe 61 that penetrates the lid wall 4 a from above the vacuum container 4 in an airtight state and reaches the internal space of the storage container 3, and the liquid is supplied above the lid wall 4 a of the liquid supply pipe 61. A supply valve 62 is installed. Further, the liquid take-out means 7 also has a liquid take-out pipe 71 that penetrates the lid wall 4a from above the vacuum vessel 4 in an airtight state and reaches the internal space of the storage vessel 3, and above the liquid take-out pipe 71 above the cover wall 4a. Also, a liquid extraction valve 72 is installed. The lower end openings of both the liquid supply pipe 61 and the liquid take-out pipe 71 are located around the bottom of the storage container 3 (lower part of the liquid 2).

負圧吸引手段8は、真空容器4の上方から蓋壁4aを気密状態で貫通して蓋壁4aの内面(蓋壁4aと貯留容器3の上壁3aとの間の隙間)に開口する負圧吸引管81を有し、この負圧吸引管81の蓋壁4a上方に負圧吸引弁82が設置されている。   The negative pressure suction means 8 passes through the lid wall 4a from above the vacuum vessel 4 in an airtight state and opens to the inner surface of the lid wall 4a (the gap between the lid wall 4a and the upper wall 3a of the storage container 3). There is a pressure suction pipe 81, and a negative pressure suction valve 82 is installed above the lid wall 4 a of the negative pressure suction pipe 81.

外部気体供給手段9は、真空容器4の上方から蓋壁4aを気密状態で貫通して貯留容器3の内部空間に達する外部気体供給管91を有し、この外部気体供給管91の蓋壁4a上方に、上側から順に気体絞り弁92と気体流量計93と気体供給弁94とが設置されている。そして、外部気体供給管91の下端開口部(開口端)は、貯留容器3の底部周辺(液体2の下部)に位置している。また、外部気体供給管91の気体絞り弁92よりも上方からは大気圧戻し用外部気体供給管95が分岐されると共に、この大気圧戻し用外部気体供給管95は、蓋壁4aを気密状態で貫通して貯留容器3の上壁3aと蓋壁4aとの間に開口し、この大気圧戻し用外部気体供給管95の蓋壁4a上方に大気圧戻し用外部気体開放弁96が設置されている。   The external gas supply means 9 has an external gas supply pipe 91 that penetrates the lid wall 4a from above the vacuum vessel 4 in an airtight state and reaches the internal space of the storage container 3, and the lid wall 4a of the external gas supply pipe 91 A gas throttle valve 92, a gas flow meter 93, and a gas supply valve 94 are installed on the upper side in order from the upper side. The lower end opening (opening end) of the external gas supply pipe 91 is located around the bottom of the storage container 3 (lower part of the liquid 2). Further, an atmospheric pressure return external gas supply pipe 95 is branched from above the gas throttle valve 92 of the external gas supply pipe 91, and the atmospheric pressure return external gas supply pipe 95 is airtight in the lid wall 4a. Is opened between the upper wall 3a and the cover wall 4a of the storage container 3, and an atmospheric pressure return external gas release valve 96 is installed above the cover wall 4a of the atmospheric pressure return external gas supply pipe 95. ing.

尚、矢印Aは、負圧吸引管81を通じて排気される空気または窒素10の流れの方向を示す。矢印Bは、液体取出管71を通じて回収される液体2の流れの方向を示す。矢印Cは、液体供給管61を通じて供給される液体2の流れの方向を示す。矢印Dは、外部気体供給管91を通じて供給される気体10の流れの方向を示す。   The arrow A indicates the direction of the flow of air or nitrogen 10 exhausted through the negative pressure suction pipe 81. An arrow B indicates the direction of the flow of the liquid 2 collected through the liquid take-out pipe 71. An arrow C indicates the flow direction of the liquid 2 supplied through the liquid supply pipe 61. An arrow D indicates the direction of the flow of the gas 10 supplied through the external gas supply pipe 91.

以上のような構成を備えた液体の脱気装置1によれば、以下に示すような処理が実行される。   According to the liquid degassing apparatus 1 having the above-described configuration, the following processing is executed.

先ず、液体供給弁62を開弁することにより、液体供給管61を通じて貯留容器3に脱気処理を行なう液体2を導入すると共に、重量計5によって液体2の重量を計測し、所定量の液体2が導入された時点で液体供給弁62を閉弁する。この後、負圧吸引弁82を開弁することにより、負圧吸引管81を通じて貯留容器3の液面に接する上方空間を負圧状態にする。   First, by opening the liquid supply valve 62, the liquid 2 to be deaerated is introduced into the storage container 3 through the liquid supply pipe 61, and the weight of the liquid 2 is measured by the weigh scale 5 to obtain a predetermined amount of liquid. When 2 is introduced, the liquid supply valve 62 is closed. Thereafter, by opening the negative pressure suction valve 82, the upper space in contact with the liquid surface of the storage container 3 through the negative pressure suction pipe 81 is brought into a negative pressure state.

更に、外部気体供給弁94を開弁することにより、外部気体供給管91を通じて貯留容器3内の液体2の下部に窒素10を導入していくが、この液体2中に導入される窒素10の流量は、気体流量計93を見ながら、気体絞り弁92で調整すると共に、その調整後においては固定する。   Further, by opening the external gas supply valve 94, nitrogen 10 is introduced into the lower part of the liquid 2 in the storage container 3 through the external gas supply pipe 91, and the nitrogen 10 introduced into the liquid 2 is introduced. The flow rate is adjusted by the gas throttle valve 92 while looking at the gas flow meter 93 and is fixed after the adjustment.

このような状態で、所定時間放置しておくことにより、液体2中に導入される窒素10に起因して発生した気泡11の上昇に伴って、気泡11の周辺の液体2も上昇し、この上昇した液体2が液面で負圧により脱気される。また、気泡11の上昇により、液体2中に矢印で示したような流れが生じて、液体2が全域に亘って順次液面に向かい、その液面で負圧により脱気されることになるため、液体2全体の脱気が効率的に行なわれる。   In such a state, the liquid 2 around the bubbles 11 rises with the rise of the bubbles 11 caused by the nitrogen 10 introduced into the liquid 2 by being left for a predetermined time. The rising liquid 2 is degassed by the negative pressure on the liquid surface. Further, as the bubble 11 rises, a flow as indicated by an arrow is generated in the liquid 2, and the liquid 2 sequentially goes to the liquid surface over the entire area and is degassed by the negative pressure at the liquid surface. For this reason, the entire liquid 2 is efficiently deaerated.

所定時間が経過した後は、外部気体供給弁94を閉弁させ、且つ負圧吸引弁82を閉弁させた後、大気圧戻し用外部気体開放弁96を開弁させることにより、大気圧戻し用外部気体供給管95を通じて負圧空間3cが大気圧になるまで外部気体を導入する。その後、液体取出弁72を開弁させて、貯留容器3内の液体2を液体取出管71を通じて回収する。   After a predetermined time has elapsed, the external gas supply valve 94 is closed, the negative pressure suction valve 82 is closed, and then the atmospheric pressure return external gas release valve 96 is opened to return the atmospheric pressure. External gas is introduced through the external gas supply pipe 95 until the negative pressure space 3c reaches atmospheric pressure. Thereafter, the liquid extraction valve 72 is opened, and the liquid 2 in the storage container 3 is recovered through the liquid extraction pipe 71.

この場合、脱気処理のためには、真空容器4内の気圧は、負圧が不十分だと脱気に時間がかかり、負圧が過度だと液体2が気化してしまうことから、約50kPa〜10kPa程度が好ましい。また、液体2には、負圧による脱気の効果に限度があり(液体の種類により限度は違う)、その限度に達した後の更なる減圧は無駄である。   In this case, for the deaeration process, the atmospheric pressure in the vacuum vessel 4 takes about time for deaeration if the negative pressure is insufficient, and the liquid 2 is vaporized if the negative pressure is excessive. About 50 kPa to 10 kPa is preferable. Further, the liquid 2 has a limit on the effect of degassing due to negative pressure (the limit varies depending on the type of liquid), and further pressure reduction after reaching the limit is useless.

更に、脱気処理のためには、液体2内に導入される窒素10の流量は、不十分だと攪拌の効果がなく、過多だと液体15が飛散することから、約10mL/sec〜100mL/sec程度が好適である。   Furthermore, for the deaeration treatment, if the flow rate of nitrogen 10 introduced into the liquid 2 is insufficient, there is no effect of stirring, and if it is excessive, the liquid 15 scatters, so about 10 mL / sec to 100 mL. / Sec is preferred.

また、液体の脱気は、主として、貯留容器3内の液体2の液面で生じるため、この種の理由からは貯留容器3内の液体2の液面面積は広いほど良く、換言すれば、貯留容器3の内面の水平方向の断面積が広いほど良い。しかし、広くなるにつれて、気泡11による攪拌の効果が薄れるので、そのことを、考慮して貯留容器3の内面の水平方向の断面積を設定するべきである。   Moreover, since the deaeration of the liquid mainly occurs at the liquid level of the liquid 2 in the storage container 3, for this type of reason, the larger the liquid surface area of the liquid 2 in the storage container 3, the better. The wider the cross-sectional area in the horizontal direction of the inner surface of the storage container 3, the better. However, since the effect of stirring by the bubbles 11 is diminished as it becomes wider, the horizontal sectional area of the inner surface of the storage container 3 should be set in consideration of this.

脱気処理時間は、液体2中の溶存空気量の目標値により設定する。液体2中の溶存空気量の目標値は、液体2の用途によっても決まるが、それ以上脱気が不可能となる程度の溶存空気量を目標値としてもよい。   The deaeration processing time is set according to the target value of the dissolved air amount in the liquid 2. The target value of the dissolved air amount in the liquid 2 is determined depending on the use of the liquid 2, but the dissolved air amount that makes it impossible to deaerate any more may be set as the target value.

窒素10は、例えば、液体2への溶解度が少なくて、安価であるという理由から、クリーン窒素が考えられる。しかし、液体2への溶解度が少なければ特にこれに限定されるものではない。   The nitrogen 10 may be clean nitrogen because it has a low solubility in the liquid 2 and is inexpensive, for example. However, it is not particularly limited as long as the solubility in the liquid 2 is small.

実際に、図1の脱気装置1を用いて、脱気処理を行なった。その条件は、液体2としてインクジェットプリンタのインクを使用すると共に、外部気体10としてクリーン窒素を使用し、真空容器4内の気圧を40kPa、気体流量を50mL/secとした。その結果、脱気処理時間20分で、溶存空気量が、それ以上脱気が不可能な溶存空気量4.0ppmとなった。すなわち、本実施形態では、十分な脱気の効果が得られることが判明した。   Actually, the deaeration process was performed using the deaerator 1 of FIG. The conditions were that ink of an ink jet printer was used as the liquid 2, clean nitrogen was used as the external gas 10, the atmospheric pressure in the vacuum vessel 4 was 40 kPa, and the gas flow rate was 50 mL / sec. As a result, after 20 minutes of degassing treatment, the amount of dissolved air became 4.0 ppm, which could not be further degassed. That is, in this embodiment, it has been found that a sufficient deaeration effect can be obtained.

更に、パーティクルの有無の確認の為に、液体2として純水を使用し、図1の脱気装置1を用いて、脱気処理を行なった。回収した純水を液中パーティクルカウンタで測定したが、パーティクルは測定されなかった。すなわち、本実施形態では、パーティクルの発生を阻止できることが判明した。   Furthermore, in order to confirm the presence or absence of particles, pure water was used as the liquid 2 and deaeration treatment was performed using the deaeration device 1 of FIG. The recovered pure water was measured with an in-liquid particle counter, but no particles were measured. That is, in the present embodiment, it has been found that the generation of particles can be prevented.

また、図1の脱気装置1を2台以上設置し、それぞれの処理時間をずらせば、全体として、脱気処理を連続して行なうことが可能である。   Further, if two or more deaeration devices 1 in FIG. 1 are installed and the respective processing times are shifted, it is possible to perform the deaeration process continuously as a whole.

また、図1の脱気装置1台でも、以下に述べる方法で、脱気処理を連続して行なうことが可能である。すなわち、負圧状態にある真空容器4内で、貯留容器3内の液体2に気体10を導入して、液体2を貯留容器3に導入する一方で液体2を貯留容器3から回収することにより、脱気処理を連続して行なうことができる。   Further, even with one degassing apparatus shown in FIG. 1, the degassing process can be continuously performed by the method described below. That is, by introducing the gas 10 into the liquid 2 in the storage container 3 and introducing the liquid 2 into the storage container 3 while collecting the liquid 2 from the storage container 3 in the vacuum container 4 in a negative pressure state. The deaeration process can be performed continuously.

本発明の実施の形態に係る液体の脱気装置の縦断正面図である。It is a vertical front view of the liquid deaeration device concerning an embodiment of the invention.

符号の説明Explanation of symbols

1 脱気装置
2 液体
3 貯留容器
3a 貯留容器の上端(上壁)
3b 開口部
3c 負圧空間
4 真空容器
8 負圧吸引手段
9 外部気体供給手段
DESCRIPTION OF SYMBOLS 1 Deaeration device 2 Liquid 3 Storage container 3a Upper end (upper wall) of storage container
3b Opening 3c Negative pressure space 4 Vacuum container 8 Negative pressure suction means 9 External gas supply means

Claims (7)

液体が貯留された貯留容器の液面に接する上方の空間を負圧状態として液体中の溶存気体を脱気する脱気方法であって、
前記液体中に外部気体を導入することにより、前記液体の内部に上方に向かう液体流動を生じさせて、該液体中の溶存気体を液面を通じて上方の負圧空間に移動させることを特徴とする液体の脱気方法。
A degassing method for degassing dissolved gas in the liquid by setting the upper space in contact with the liquid level of the storage container in which the liquid is stored to a negative pressure state,
By introducing an external gas into the liquid, an upward liquid flow is generated inside the liquid, and the dissolved gas in the liquid is moved to the upper negative pressure space through the liquid surface. Liquid degassing method.
前記貯留容器の上端に開口部を形成すると共に、該貯留容器を真空容器の内部空間に収容し、且つ該真空容器に設置した外部気体供給手段を通じて前記貯留容器内の液体中に外部気体を導入することを特徴とする請求項1に記載の液体の脱気方法。   An opening is formed at the upper end of the storage container, the storage container is accommodated in the internal space of the vacuum container, and an external gas is introduced into the liquid in the storage container through an external gas supply means installed in the vacuum container The liquid degassing method according to claim 1, wherein: 液体を貯留する貯留容器と、該貯留容器の液面に接する上方の空間を負圧状態にする負圧吸引手段とを備えた液体の脱気装置であって、
前記貯留容器内の液体中に外部気体を供給する外部気体供給手段を備えると共に、前記液体中に導入された外部気体の動作により該液体の内部に上方に向かう液体流動を生じさせて、該液体中の溶存気体を液面を通じて上方の負圧空間に移動させるように構成したことを特徴とする液体の脱気装置。
A liquid deaeration device comprising: a storage container for storing liquid; and a negative pressure suction means for bringing a space above the liquid surface of the storage container into a negative pressure state,
An external gas supply means for supplying an external gas into the liquid in the storage container is provided, and an upward liquid flow is generated inside the liquid by the operation of the external gas introduced into the liquid, and the liquid A liquid degassing apparatus characterized in that the dissolved gas therein is moved through the liquid surface to an upper negative pressure space.
前記貯留容器の上端に開口部を形成すると共に、該貯留容器を真空容器の内部空間に収容し、且つ該真空容器に前記貯留容器内の液体中に外部気体を供給する外部気体供給手段を設置したことを特徴とする請求項3に記載の液体の脱気装置。   An opening is formed at the upper end of the storage container, and the storage container is accommodated in the internal space of the vacuum container, and external gas supply means for supplying external gas into the liquid in the storage container is installed in the vacuum container The liquid deaeration device according to claim 3, wherein the liquid deaeration device is provided. 前記外部気体供給手段は、前記貯留空間内の液体の下部に開口端を有する外部気体供給管を有していることを特徴とする請求項3または4に記載の液体の脱気装置。   5. The liquid deaeration device according to claim 3, wherein the external gas supply unit includes an external gas supply pipe having an open end at a lower portion of the liquid in the storage space. 前記負圧空間の圧力は、50kpa〜10kpaであることを特徴とする請求項3〜5の何れかに記載の液体の脱気装置。   The liquid deaeration apparatus according to claim 3, wherein the pressure in the negative pressure space is 50 kpa to 10 kpa. 前記液体は、インクジェットプリンタに使用されるインクであることを特徴とする請求項3〜6の何れかに記載の液体の脱気装置。   The liquid deaeration apparatus according to claim 3, wherein the liquid is ink used for an ink jet printer.
JP2006247108A 2006-09-12 2006-09-12 Liquid degassing method and degassing apparatus Active JP4689565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006247108A JP4689565B2 (en) 2006-09-12 2006-09-12 Liquid degassing method and degassing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006247108A JP4689565B2 (en) 2006-09-12 2006-09-12 Liquid degassing method and degassing apparatus

Publications (2)

Publication Number Publication Date
JP2008068165A true JP2008068165A (en) 2008-03-27
JP4689565B2 JP4689565B2 (en) 2011-05-25

Family

ID=39290235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006247108A Active JP4689565B2 (en) 2006-09-12 2006-09-12 Liquid degassing method and degassing apparatus

Country Status (1)

Country Link
JP (1) JP4689565B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5348970A (en) * 1976-10-15 1978-05-02 Mitsubishi Electric Corp Deodorizing method for odorous liquid
JPS60210678A (en) * 1984-04-04 1985-10-23 Canon Inc Apparatus for removing oxygen dissolved in ink
JPH11511430A (en) * 1995-09-15 1999-10-05 ストーク エンジニアーズ アンド コントラクターズ ベー.ファウ. Method and apparatus for degassing sulfur
JP2001105618A (en) * 1999-10-05 2001-04-17 Nec Niigata Ltd Ink cartridge, production method thereof and ink jet recording apparatus
JP2006248080A (en) * 2005-03-11 2006-09-21 Toshin Kogyo Co Ltd Ink deaerating system and ink deaerating method for inkjet printer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5348970A (en) * 1976-10-15 1978-05-02 Mitsubishi Electric Corp Deodorizing method for odorous liquid
JPS60210678A (en) * 1984-04-04 1985-10-23 Canon Inc Apparatus for removing oxygen dissolved in ink
JPH11511430A (en) * 1995-09-15 1999-10-05 ストーク エンジニアーズ アンド コントラクターズ ベー.ファウ. Method and apparatus for degassing sulfur
JP2001105618A (en) * 1999-10-05 2001-04-17 Nec Niigata Ltd Ink cartridge, production method thereof and ink jet recording apparatus
JP2006248080A (en) * 2005-03-11 2006-09-21 Toshin Kogyo Co Ltd Ink deaerating system and ink deaerating method for inkjet printer

Also Published As

Publication number Publication date
JP4689565B2 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
JP5258560B2 (en) Integrated deaeration and deaerator
JP4646234B2 (en) Chemical supply device and method for manufacturing semiconductor device
JP6104399B2 (en) Contaminated water purification system provided with fine bubble generating device and fine bubble generating device
JP2010264355A (en) Floating oil recovery device
JP2009172580A (en) Air diffuser
JP2013222121A (en) Device for detecting toner density of liquid developer
JP2008006332A (en) Method for manufacturing specific-gas-dissolved water, and apparatus and method for circulating specific-gas-dissolved water
JP5501340B2 (en) Substrate processing apparatus and processing method
KR101544521B1 (en) Systems and methods for conditioning a filter assembly
JP2011245612A (en) Cleaning apparatus
JP2010247086A (en) Flat membrane module and water treatment apparatus using the same
JP2009226230A (en) Device of generating microbubble, and method of generating microbubble
JP4689565B2 (en) Liquid degassing method and degassing apparatus
JP2007038195A (en) Method and device for recovering floating oil from waste liquid
JP2010158672A (en) Bubble generation method, bubble generation apparatus, and ozone water producing method
JP5116628B2 (en) Cleaning method
JP2009293525A (en) Filter device for propellant tank
JP2008093607A (en) Organic waste water treatment device and organic waste water treatment method
JP2008093601A (en) Waste water treatment equipment
JP2013136024A (en) Device and method for generating processing liquid, and apparatus and method for processing substrate
WO2010101152A1 (en) Device for membrane separation type activated-sludge treatment and method therefor
JP5894857B2 (en) Waste water treatment apparatus and waste water treatment method
JP2013094747A (en) Ozone liquid generator and ozone liquid generation method
JPH02267288A (en) Etching liquid regenerator
JP2006179764A (en) Substrate processing apparatus and particle removing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090515

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100901

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110216

R150 Certificate of patent or registration of utility model

Ref document number: 4689565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250