JP2008066600A - Conductive paste, laminate ceramic electronic component, and its manufacturing method - Google Patents

Conductive paste, laminate ceramic electronic component, and its manufacturing method Download PDF

Info

Publication number
JP2008066600A
JP2008066600A JP2006244727A JP2006244727A JP2008066600A JP 2008066600 A JP2008066600 A JP 2008066600A JP 2006244727 A JP2006244727 A JP 2006244727A JP 2006244727 A JP2006244727 A JP 2006244727A JP 2008066600 A JP2008066600 A JP 2008066600A
Authority
JP
Japan
Prior art keywords
conductive paste
ceramic green
green sheet
solvent
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006244727A
Other languages
Japanese (ja)
Other versions
JP4442596B2 (en
Inventor
Shuichi Miura
秀一 三浦
Kazuhiko Oda
和彦 小田
Tetsuji Maruno
哲司 丸野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2006244727A priority Critical patent/JP4442596B2/en
Priority to KR1020070090637A priority patent/KR20080023173A/en
Priority to CN2007101944405A priority patent/CN101165825B/en
Publication of JP2008066600A publication Critical patent/JP2008066600A/en
Application granted granted Critical
Publication of JP4442596B2 publication Critical patent/JP4442596B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide conductive paste used to form an internal electrode of a laminate ceramic electronic component and capable of effectively preventing a sheet attack when a ceramic green sheet is thinned. <P>SOLUTION: The conductive paste to be used to form the internal electrode of the laminate ceramic electronic component includes conductive powder and an organic vehicle. An organic binder in the organic vehicle mainly contains one or more selected among ethyl cellulose resin, alkyd resin and acrylate resin. A solvent in the organic vehicle mainly contains propylene glycol diacetate. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、積層セラミック電子部品の内部電極を形成するために用いる導電性ペーストと、該ペーストを用いて製造される積層セラミック電子部品と、該電子部品の製造方法とに、関する。   The present invention relates to a conductive paste used for forming internal electrodes of a multilayer ceramic electronic component, a multilayer ceramic electronic component manufactured using the paste, and a method for manufacturing the electronic component.

近年、電子機器の軽薄短小化が進んできている。これに伴い、その電子機器に使用される積層セラミック電子部品においても、より一層の小型化・高容量化が進められている。   In recent years, electronic devices are becoming lighter, thinner, and smaller. Along with this, further miniaturization and higher capacity have been promoted in the multilayer ceramic electronic parts used in the electronic devices.

積層セラミック電子部品の一例としての積層セラミックコンデンサを小型化・高容量化するために最も効果的な方法は、内部電極と誘電体層を双方ともに可能な限り薄くし(薄層化)、かつそれらを可能な限り多く積層する(多層化)ことである。   The most effective method for reducing the size and increasing the capacity of a multilayer ceramic capacitor as an example of a multilayer ceramic electronic component is to make both the internal electrode and the dielectric layer as thin as possible (thinning), and to Is laminated as much as possible (multilayering).

積層セラミックコンデンサは、チタン酸バリウムなどに代表されるセラミック粉末とバインダを主成分とするセラミックグリーンシートに、内部電極形成用の導電性ペーストを所定パターンで印刷して積層した後、同時焼成して一体焼結させ、最後に外部電極を形成して製造される。   A multilayer ceramic capacitor is a ceramic green sheet mainly composed of a ceramic powder represented by barium titanate and a binder, and a conductive paste for forming internal electrodes is printed in a predetermined pattern and laminated, and then fired simultaneously. It is manufactured by integrally sintering and finally forming external electrodes.

内部電極形成用の導電性ペーストとしては、有機バインダを溶剤に溶解させた有機ビヒクル中に導電性粉末を分散させたものが用いられる。有機ビヒクル中の有機バインダとしては、たとえばエチルセルロースなどが使用され、有機ビヒクル中の溶剤としては、ターピネオールなどが使用されてきた。   As the conductive paste for forming the internal electrode, a paste obtained by dispersing conductive powder in an organic vehicle in which an organic binder is dissolved in a solvent is used. As the organic binder in the organic vehicle, for example, ethyl cellulose or the like has been used, and as the solvent in the organic vehicle, terpineol or the like has been used.

しかしながら、ターピネオールを溶剤に使用した導電性ペーストをセラミックグリーンシート上に印刷すると、にじみ等の問題を発生することがあり、きちんとした所定膜厚の薄層化された電極パターンを形成することができなかった。   However, if a conductive paste using terpineol as a solvent is printed on a ceramic green sheet, it may cause problems such as blurring, and a thin electrode pattern with a predetermined thickness can be formed. There wasn't.

また、ターピネオールを溶剤に使用した導電性ペーストを、ブチラール樹脂を有機バインダとしたセラミックグリーンシートと組み合わせて使用した場合に、導電性ペースト中の溶剤がセラミックグリーンシート中の有機バインダを膨潤または溶解させる、いわゆる「シートアタック」現象が生じる。   In addition, when a conductive paste using terpineol as a solvent is used in combination with a ceramic green sheet using butyral resin as an organic binder, the solvent in the conductive paste causes the organic binder in the ceramic green sheet to swell or dissolve. The so-called “sheet attack” phenomenon occurs.

こうしたシートアタック現象は、セラミックグリーンシートの厚みが比較的厚いうちは実用上問題とならない。しかしながら、セラミックグリーンシートの厚みが、たとえば5μm以下と薄い場合にシートアタック現象が生じると、導電性ペーストを印刷後にセラミックグリーンシートをPETフィルムなどのキャリアシートから剥離する際に、セラミックグリーンシートが剥がれにくくなる。セラミックグリーンシートが剥がれにくくなると、この影響を受けてセラミックグリーンシートにしわや穴、亀裂などが発生し、積層工程で正常な積層体が得られない。正常な積層体が得られないと、最終物たる積層セラミック電子部品に、ショート不良、耐電圧不良(IR劣化)や、誘電体層と内部電極層との間に層間剥離現象(デラミネーション)が発生し、歩留まりの低下を招いていた。   Such a sheet attack phenomenon is not a practical problem as long as the ceramic green sheet is relatively thick. However, when the thickness of the ceramic green sheet is as thin as 5 μm or less, for example, if a sheet attack phenomenon occurs, the ceramic green sheet peels off when the ceramic green sheet is peeled off from a carrier sheet such as a PET film after printing the conductive paste. It becomes difficult. When the ceramic green sheet is difficult to peel off, wrinkles, holes, cracks, etc. occur in the ceramic green sheet due to this influence, and a normal laminate cannot be obtained in the lamination process. If a normal laminated body cannot be obtained, the final multilayer ceramic electronic component may have short-circuit failure, breakdown voltage failure (IR degradation), or delamination phenomenon (delamination) between the dielectric layer and the internal electrode layer. Occurred, leading to a decrease in yield.

そこで近年、このシートアタック現象を改善するための方策がいくつか提案されている。たとえば、特許文献1,2では、内部電極を形成するための導電性ペースト用の溶剤として、ブチラールとの相溶性が比較的に低い溶剤を使用することが提案されている。具体的には、特許文献1ではジヒドロターピネオールを用いた導電性ペーストが、特許文献2ではジヒドロターピニルアセテートを用いた導電性ペーストがそれぞれ提案されている。   Therefore, in recent years, several measures for improving the seat attack phenomenon have been proposed. For example, Patent Documents 1 and 2 propose that a solvent having a relatively low compatibility with butyral is used as a solvent for a conductive paste for forming an internal electrode. Specifically, Patent Document 1 proposes a conductive paste using dihydroterpineol, and Patent Document 2 proposes a conductive paste using dihydroterpinyl acetate.

しかしながら、これらジヒドロターピネオールやジヒドロターピニルアセテートを溶剤に用いても、少なからずシートアタック現象が起こってしまい、結果として、セラミックグリーンシートの厚みバラツキが発生していた。そして、この厚みバラツキに起因して、ショート不良、耐電圧不良(IR劣化)が悪化し、さらには、デラミネーションが発生してしまうという問題があった。そのため、こうした従来の導電性ペーストでは、積層セラミックコンデンサの更なる小型化・高容量化に限界があった。また、これらジヒドロターピネオールやジヒドロターピニルアセテートは、有機バインダとして用いられるエチルセルロースに対する溶解性が低く、そのため、これらの溶剤を使用して得られるペーストは、たとえば、印刷厚みがばらついてしまう等の問題があった。   However, even when these dihydroterpineols and dihydroterpinyl acetates are used as a solvent, not a few sheet attack phenomena occur, resulting in variations in the thickness of the ceramic green sheets. Due to this thickness variation, there has been a problem that short-circuit failure and withstand voltage failure (IR deterioration) are worsened, and delamination occurs. For this reason, the conventional conductive paste has a limit in further reducing the size and capacity of the multilayer ceramic capacitor. In addition, these dihydroterpineol and dihydroterpinyl acetate have low solubility in ethyl cellulose used as an organic binder, and therefore, pastes obtained using these solvents have problems such as variations in printing thickness. was there.

特開平9−17687号公報Japanese Patent Laid-Open No. 9-17687 特許2976268号公報Japanese Patent No. 2976268

本発明の目的は、積層セラミック電子部品の内部電極を形成するために用いられ、セラミックグリーンシートの厚みを薄層化した場合においても、シートアタックを有効に防止することができる導電性ペーストを提供することである。また、本発明は、このような導電性ペーストを用いて製造され、ショート不良率が低く、高い耐電圧を有し、しかも層間剥離現象(デラミネーション)が有効に防止された積層セラミック電子部品と、該電子部品の製造方法と、を提供することも目的とする。   An object of the present invention is to provide a conductive paste that can be used to form an internal electrode of a multilayer ceramic electronic component and can effectively prevent sheet attack even when the thickness of the ceramic green sheet is reduced. It is to be. The present invention also provides a multilayer ceramic electronic component manufactured using such a conductive paste, having a low short-circuit defect rate, a high withstand voltage, and effectively preventing delamination (delamination). Another object of the present invention is to provide a method for manufacturing the electronic component.

本発明者等は、導電性ペースト中に含有させる溶剤として、プロピレングリコールジアセテートを使用することで、導電性ペースト中にバインダとして含有される樹脂(たとえば、エチルセルロース樹脂、アルキド樹脂、アクリル樹脂)を良好に溶解しつつ、しかも、セラミックグリーンシートの厚みを薄層化した場合においても、室温においてはもちろんのこと、溶剤の乾燥温度(たとえば、40〜90℃)においても、シートアタックを有効に防止することができることを見出し、本発明を完成させるに至った。   The present inventors use propylene glycol diacetate as a solvent to be included in the conductive paste, thereby allowing a resin (for example, ethyl cellulose resin, alkyd resin, acrylic resin) contained as a binder in the conductive paste. Even when the ceramic green sheet is thinned while being well dissolved, sheet attack is effectively prevented not only at room temperature but also at the solvent drying temperature (for example, 40 to 90 ° C.). As a result, the present invention has been completed.

すなわち、本発明によれば、積層セラミック電子部品の内部電極を形成するために用いる導電性ペーストであって、
導電性粉末と、有機ビヒクルとを含み、
前記有機ビヒクル中の有機バインダが、エチルセルロース樹脂、アルキド樹脂およびアクリル樹脂から選択される1種以上を主成分とし、
前記有機ビヒクル中の溶剤が、プロピレングリコールジアセテート(CHCOOCHCHCHCOOCCH)を主成分とすることを特徴とする導電性ペーストが提供される。
That is, according to the present invention, a conductive paste used to form an internal electrode of a multilayer ceramic electronic component,
Including conductive powder and organic vehicle;
The organic binder in the organic vehicle is mainly composed of one or more selected from ethyl cellulose resin, alkyd resin and acrylic resin,
Solvent in the organic vehicle, a conductive paste, characterized in that a main component of propylene glycol diacetate (CH 3 COOCH 2 CHCH 3 COOCCH 3) is provided.

好ましくは、前記有機ビヒクル中の溶剤は、前記導電性粉末100重量部に対して50〜200重量部含有されている。   Preferably, the solvent in the organic vehicle is contained in an amount of 50 to 200 parts by weight with respect to 100 parts by weight of the conductive powder.

好ましくは、前記導電性ペーストは、ブチラール樹脂を含む厚さ5μm以下のセラミックグリーンシートと組み合わせて使用される。   Preferably, the conductive paste is used in combination with a ceramic green sheet having a thickness of 5 μm or less containing butyral resin.

好ましくは、前記有機ビヒクル中の有機バインダが、前記導電性粉末100重量部に対して1〜10重量部含有される。   Preferably, the organic binder in the organic vehicle is contained in an amount of 1 to 10 parts by weight with respect to 100 parts by weight of the conductive powder.

本発明の導電性ペーストにおいて、前記導電性粉末としては、セラミックグリーンシートと共に同時焼成する際の焼成温度や雰囲気に耐え得るものであればよい。例えば積層セラミック電子部品が積層セラミックコンデンサである場合、Ag、Pd、Ni等の単体あるいはこれらの混合物、合金の粉末を用いることができ、特にNiまたはNi合金を主成分とすることが好ましい。積層セラミック電子部品が多層セラミック基板である場合、Ag,Pd,Cu等の単体あるいはこれらの混合物、合金の粉末を用いることができる。   In the conductive paste of the present invention, the conductive powder may be any powder that can withstand the firing temperature and atmosphere when fired simultaneously with the ceramic green sheet. For example, when the multilayer ceramic electronic component is a multilayer ceramic capacitor, a simple substance such as Ag, Pd, or Ni, a mixture thereof, or an alloy powder can be used, and it is particularly preferable that Ni or Ni alloy is the main component. When the multilayer ceramic electronic component is a multilayer ceramic substrate, a single substance such as Ag, Pd, or Cu, a mixture thereof, or an alloy powder can be used.

本発明に係る導電性ペーストには、必要に応じて可塑剤や分散剤等の添加剤を含有していてもよい。   The conductive paste according to the present invention may contain additives such as a plasticizer and a dispersant as necessary.

また、本発明によれば、ブチラール樹脂を含む厚さ5μm以下のセラミックグリーンシートと、上記いずれかの導電性ペーストを用いて所定パターンで形成される電極層とを、交互に複数重ねたグリーンセラミック積層体を用いて製造され、
内部電極層と、厚さ3μm以下の誘電体層と、を有する積層セラミック電子部品が提供される。
According to the present invention, a green ceramic in which a plurality of ceramic green sheets having a thickness of 5 μm or less containing a butyral resin and electrode layers formed in a predetermined pattern using any one of the above conductive pastes are alternately stacked. Manufactured using laminates,
A multilayer ceramic electronic component having an internal electrode layer and a dielectric layer having a thickness of 3 μm or less is provided.

さらに、本発明によれば、ブチラール樹脂を含む厚さ5μm以下のセラミックグリーンシートと、上記いずれかの導電性ペーストを用いて所定パターンで形成される電極層とを、交互に複数重ねたグリーンセラミック積層体を焼成する積層セラミック電子部品の製造方法が提供される。   Furthermore, according to the present invention, a green ceramic in which a plurality of ceramic green sheets having a thickness of 5 μm or less containing a butyral resin and electrode layers formed in a predetermined pattern using any one of the conductive pastes are alternately stacked. A method for manufacturing a multilayer ceramic electronic component for firing a multilayer body is provided.

本発明において、導電性ペーストの溶剤に用いるプロピレングリコールジアセテートは、セラミックグリーンシートに有機バインダとして含まれるブチラール樹脂を溶解または膨潤させない。このため、これらの溶剤を用いた導電性ペーストを使用することにより、シートアタックを有効に防止することができる。このため、セラミックグリーンシートの厚みを、たとえば5μm以下と薄層化した場合でも、導電性ペーストを印刷後にセラミックグリーンシートをPETフィルムなどのキャリアシートから剥離するに際して、セラミックグリーンシートの剥離性が向上し、セラミックグリーンシートにしわや穴、亀裂などが発生することを効果的に抑制できる。すなわち、セラミックグリーンシートを今まで以上に薄層化しても、シートアタック現象が発生することはない。その結果、厚みが5μm以下と極めて薄いセラミックグリーンシートを適用しても正常な積層体が得られ、最終物たる積層セラミック電子部品に、ショート不良、耐電圧不良(IR劣化)や、誘電体層と内部電極層との間に層間剥離現象(デラミネーション)を発生させるおそれが少なくなる。   In the present invention, propylene glycol diacetate used as a solvent for the conductive paste does not dissolve or swell the butyral resin contained as an organic binder in the ceramic green sheet. For this reason, sheet attack can be effectively prevented by using the conductive paste using these solvents. For this reason, even when the thickness of the ceramic green sheet is reduced to, for example, 5 μm or less, the peelability of the ceramic green sheet is improved when the ceramic green sheet is peeled off from the carrier sheet such as a PET film after printing the conductive paste. In addition, the generation of wrinkles, holes, cracks, etc. in the ceramic green sheet can be effectively suppressed. That is, even if the ceramic green sheet is made thinner than before, the sheet attack phenomenon does not occur. As a result, even when a very thin ceramic green sheet having a thickness of 5 μm or less is applied, a normal laminate can be obtained. In the final multilayer ceramic electronic component, short circuit failure, withstand voltage failure (IR degradation), dielectric layer The possibility of causing delamination between the electrode layer and the internal electrode layer is reduced.

さらに、プロピレングリコールジアセテートは、室温においてはもちろんのこと、溶剤の乾燥温度(たとえば、40〜90℃)においても、シートアタックを生じないという性質を有している。すなわち、本発明によれば、溶剤の乾燥時におけるシートアタックの発生を防止することもできる。特に、従来の溶剤(たとえば、ジヒドロターピネオールやジヒドロターピニルアセテート)を使用した場合においては、室温下においてはシートアタックがあまり発生しない場合でも、たとえば、40〜90℃と温度を高くした場合に、シートアタックが顕著に発生してしまうという問題があった。これに対して、本発明によれば、このような比較的に高い温度においても、シートアタックが発生しないため、溶剤の乾燥工程におけるシートアタックの発生を防止することができ、これにより、最終物たる積層セラミック電子部品の信頼性をより高くすることができる。さらには、溶剤の乾燥温度を比較的に高くすることができるため、製造効率の向上も図ることができる。   Furthermore, propylene glycol diacetate has the property of not causing sheet attack not only at room temperature but also at the drying temperature of the solvent (for example, 40 to 90 ° C.). That is, according to the present invention, it is possible to prevent the occurrence of sheet attack when the solvent is dried. In particular, when a conventional solvent (for example, dihydroterpineol or dihydroterpinyl acetate) is used, even when sheet attack does not occur much at room temperature, for example, when the temperature is increased to 40 to 90 ° C. There is a problem that sheet attack occurs remarkably. On the other hand, according to the present invention, since no sheet attack occurs even at such a relatively high temperature, it is possible to prevent the occurrence of sheet attack in the solvent drying process. The reliability of the multilayer ceramic electronic component can be further increased. Furthermore, since the drying temperature of the solvent can be made relatively high, the production efficiency can be improved.

上記に加えて、プロピレングリコールジアセテートは、導電性ペーストの有機バインダとして一般的に用いられるエチルセルロース樹脂や、アルキド樹脂、アクリル樹脂を十分に溶解する(レオロジーが良好)。すなわち、これらの樹脂に対する溶解性が高い。
一般に、溶解性の高低は、たとえばtanδなどで判断することができる。tanδとは、動的粘弾性を判断する指標であり、tanδ値が低いほど弾性的でありレベリングしにくく、その一方で、tanδ値が高いほど非弾性的でありレベリングしやすいというものである。tanδが大きいほど動的粘弾性に優れ、すなわちレベリング性に優れ、ひいては溶解性が高いものと考えられる。そして、本発明で用いるプロピレングリコールジアセテートは、ターピネオール、ジヒドロターピネオールやジヒドロターピニルアセテート、さらには、ターピニルアセテートと比較して、tanδが高く、優れているという性質を有し、このため、上記した樹脂に対して十分な溶解性を示すものである。
In addition to the above, propylene glycol diacetate sufficiently dissolves ethyl cellulose resin, alkyd resin, and acrylic resin that are generally used as an organic binder for conductive paste (good rheology). That is, the solubility with respect to these resin is high.
In general, the level of solubility can be determined by, for example, tan δ. Tan δ is an index for determining dynamic viscoelasticity, and the lower the tan δ value, the more elastic and less leveling, while the higher the tan δ value, the more inelastic and easier to level. It is considered that the larger tan δ, the better the dynamic viscoelasticity, that is, the better the leveling property and the higher the solubility. The propylene glycol diacetate used in the present invention has a property that tan δ is higher and superior compared to terpineol, dihydroterpineol, dihydroterpinel acetate, and terpinyl acetate. It exhibits sufficient solubility for the above-mentioned resin.

以上のことから、本発明の導電性ペーストは、最終物たる積層セラミック電子部品の小型化・高容量化に極めて有益である。
すなわち、本発明によれば、積層セラミック電子部品の内部電極を形成するために用いられ、シートアタックを生じない導電性ペーストと、この導電性ペーストを用いて製造され、ショート不良率が低く、高い耐電圧を有し、しかもデラミネーションが有効に防止された積層セラミック電子部品と、該積層セラミック電子部の製造方法と、を提供することができる。
From the above, the conductive paste of the present invention is extremely useful for reducing the size and increasing the capacity of the final multilayer ceramic electronic component.
That is, according to the present invention, a conductive paste that is used to form an internal electrode of a multilayer ceramic electronic component and does not cause a sheet attack, and manufactured using this conductive paste, has a low short-circuit defect rate and high A multilayer ceramic electronic component having a withstand voltage and effectively preventing delamination, and a method for manufacturing the multilayer ceramic electronic part can be provided.

本発明に係る積層セラミック電子部品としては、特に限定されないが、積層セラミックコンデンサ、積層セラミックインダクタ、積層セラミックLC部品、多層セラミック基板等が例示される。   The multilayer ceramic electronic component according to the present invention is not particularly limited, and examples thereof include a multilayer ceramic capacitor, a multilayer ceramic inductor, a multilayer ceramic LC component, and a multilayer ceramic substrate.

以下、本発明を、図面に示す実施形態に基づき説明する。
図1は本発明の一実施形態に係る積層セラミックコンデンサの断面図、
図2(A)〜図2(D)は本発明の実施例および比較例に係る導電性ペーストに含有される溶剤の室温におけるセラミックグリーンシートに対する相溶性を示す顕微鏡写真、
図3(A)〜図3(C)は本発明の実施例および比較例に係る導電性ペーストに含有される溶剤の温度50℃の条件におけるセラミックグリーンシートに対する相溶性を示す写真である。
Hereinafter, the present invention will be described based on embodiments shown in the drawings.
FIG. 1 is a cross-sectional view of a multilayer ceramic capacitor according to an embodiment of the present invention.
FIG. 2 (A) to FIG. 2 (D) are photomicrographs showing the compatibility of the solvent contained in the conductive pastes according to Examples and Comparative Examples of the present invention with respect to ceramic green sheets at room temperature,
FIGS. 3A to 3C are photographs showing the compatibility of the solvent contained in the conductive pastes according to Examples and Comparative Examples of the present invention with respect to the ceramic green sheet under the condition of a temperature of 50 ° C.

本実施形態では、積層セラミック電子部品として、積層セラミックコンデンサを例示して説明する。   In the present embodiment, a multilayer ceramic capacitor will be described as an example of a multilayer ceramic electronic component.

積層セラミックコンデンサ
図1に示すように、本発明の一実施形態に係る積層セラミックコンデンサ1は、誘電体層2と内部電極層3とが交互に積層された構成のコンデンサ素体10を有する。このコンデンサ素体10の両側端部には、素体10の内部で交互に配置された内部電極層3と各々導通する一対の外部電極4,4が形成してある。内部電極層3は、各側端面がコンデンサ素体10の対向する2端部の表面に交互に露出するように積層してある。一対の外部電極4,4は、コンデンサ素体10の両端部に形成され、交互に配置された内部電極層3の露出端面に接続されて、コンデンサ回路を構成する。
Multilayer Ceramic Capacitor As shown in FIG. 1, a multilayer ceramic capacitor 1 according to an embodiment of the present invention includes a capacitor body 10 having a configuration in which dielectric layers 2 and internal electrode layers 3 are alternately stacked. A pair of external electrodes 4, 4 are formed at both ends of the capacitor body 10 and are electrically connected to the internal electrode layers 3 arranged alternately in the body 10. The internal electrode layers 3 are laminated so that the side end faces are alternately exposed on the surfaces of the two opposite ends of the capacitor body 10. The pair of external electrodes 4, 4 are formed at both ends of the capacitor body 10 and are connected to the exposed end surfaces of the alternately arranged internal electrode layers 3 to constitute a capacitor circuit.

コンデンサ素体10の外形や寸法には特に制限はなく、用途に応じて適宜設定することができ、通常、外形はほぼ直方体形状とし、寸法は通常、縦(0.4〜5.6mm)×横(0.2〜5.0mm)×高さ(0.2〜1.9mm)程度とすることができる。   The outer shape and dimensions of the capacitor body 10 are not particularly limited and can be appropriately set depending on the application. Usually, the outer shape is substantially a rectangular parallelepiped shape, and the dimensions are usually vertical (0.4 to 5.6 mm) × It can be about horizontal (0.2-5.0 mm) × height (0.2-1.9 mm).

誘電体層2は、後述するセラミックグリーンシートを焼成して形成され、その材質は、特に限定されず、たとえばチタン酸カルシウム、チタン酸ストロンチウムおよび/またはチタン酸バリウムなどの誘電体材料で構成される。誘電体層2の厚みは、本実施形態では、好ましくは3μm以下、より好ましくは2μm以下に薄層化されている。   The dielectric layer 2 is formed by firing a ceramic green sheet, which will be described later, and the material thereof is not particularly limited. For example, the dielectric layer 2 is made of a dielectric material such as calcium titanate, strontium titanate and / or barium titanate. . In this embodiment, the thickness of the dielectric layer 2 is preferably 3 μm or less, more preferably 2 μm or less.

内部電極層3は、後述する所定パターンの導電性ペーストを焼成して形成される。内部電極層3の厚さは、好ましくは2μm以下、より好ましくは1μm以下に薄層化されている。   The internal electrode layer 3 is formed by firing a conductive paste having a predetermined pattern which will be described later. The thickness of the internal electrode layer 3 is preferably reduced to 2 μm or less, more preferably 1 μm or less.

外部電極4の材質は、通常、銅や銅合金、ニッケルやニッケル合金などが用いられるが、銀や銀とパラジウムの合金なども使用することができる。外部電極4の厚みも特に限定されないが、通常10〜50μm程度である。   As the material of the external electrode 4, copper, a copper alloy, nickel, a nickel alloy, or the like is usually used, but silver, a silver-palladium alloy, or the like can also be used. The thickness of the external electrode 4 is not particularly limited, but is usually about 10 to 50 μm.

積層セラミックコンデンサの製造方法
次に、本実施形態に係る積層セラミックコンデンサ1の製造方法の一例を説明する。
Method for Manufacturing Multilayer Ceramic Capacitor Next, an example of a method for manufacturing the multilayer ceramic capacitor 1 according to this embodiment will be described.

誘電体ペーストの準備
(1)まず、焼成後に図1に示す誘電体層2を構成することになるセラミックグリーンシートを製造するために、誘電体ペーストを準備する。
本実施形態では、誘電体ペーストは、セラミック粉体(誘電体原料)と有機ビヒクルとを混練して得られる有機溶剤系ペーストで構成される。
Preparation of Dielectric Paste (1) First, a dielectric paste is prepared in order to manufacture a ceramic green sheet that will constitute the dielectric layer 2 shown in FIG. 1 after firing.
In this embodiment, the dielectric paste is composed of an organic solvent-based paste obtained by kneading ceramic powder (dielectric material) and an organic vehicle.

セラミック粉体としては、複合酸化物や酸化物となる各種化合物、たとえば炭酸塩、硝酸塩、水酸化物、有機金属化合物などから適宜選択され、混合して用いることができる。セラミック粉体は、通常、平均粒子径が0.4μm以下、好ましくは0.1〜3.0μm程度の粉体として用いられる。なお、きわめて薄いセラミックグリーンシートを形成するためには、セラミックグリーンシート厚みよりも細かい粉体を使用することが望ましい。   The ceramic powder can be appropriately selected from various compounds to be complex oxides or oxides, such as carbonates, nitrates, hydroxides, organometallic compounds, and the like, and can be used as a mixture. The ceramic powder is usually used as a powder having an average particle size of 0.4 μm or less, preferably about 0.1 to 3.0 μm. In order to form a very thin ceramic green sheet, it is desirable to use a powder finer than the thickness of the ceramic green sheet.

有機ビヒクルに用いられる有機バインダは、本実施形態ではポリビニルブチラールが用いられる。そのポリビニルブチラールの重合度は、好ましくは300〜2400、より好ましくは500〜2000である。また、樹脂のブチラール化度は、好ましくは50〜81.6%、より好ましくは63〜80%であり、その残留アセチル基量は、好ましくは6%未満、より好ましくは3%以下である。また、本実施形態では、有機バインダは、一部がアセトアルデヒドによりアセタール化されたものであってもよい。   In this embodiment, polyvinyl butyral is used as the organic binder used in the organic vehicle. The degree of polymerization of the polyvinyl butyral is preferably 300 to 2400, more preferably 500 to 2000. The degree of butyralization of the resin is preferably 50 to 81.6%, more preferably 63 to 80%, and the amount of residual acetyl groups is preferably less than 6%, more preferably 3% or less. In the present embodiment, the organic binder may be partly acetalized with acetaldehyde.

有機ビヒクルに用いられる有機溶剤も、特に限定されるものではなく、ターピネオール、ブチルカルビトール、アセトン、トルエンなどが用いられる。   The organic solvent used in the organic vehicle is not particularly limited, and terpineol, butyl carbitol, acetone, toluene and the like are used.

誘電体ペースト中の各成分の含有量は、特に限定されるものではなく、たとえば、約1〜約50重量%の溶剤を含むように、誘電体ペーストを調製することができる。   Content of each component in a dielectric paste is not specifically limited, For example, a dielectric paste can be prepared so that about 1 to about 50 weight% of solvent may be included.

誘電体ペースト中には、必要に応じて、各種分散剤、可塑剤、誘電体、副成分化合物、ガラスフリット、絶縁体などから選択される添加物が含有されていてもよい。誘電体ペースト中に、これらの添加物を添加する場合には、総含有量を、約10重量%以下にすることが望ましい。   The dielectric paste may contain additives selected from various dispersants, plasticizers, dielectrics, subcomponent compounds, glass frit, insulators, and the like, if necessary. When these additives are added to the dielectric paste, the total content is desirably about 10% by weight or less.

本実施形態では、有機ビヒクル中の有機バインダにポリビニルブチラールを用いるので、この場合の可塑剤の含有量は、バインダ100重量部に対して、約25〜約100重量部であることが好ましい。   In this embodiment, since polyvinyl butyral is used for the organic binder in the organic vehicle, the plasticizer content in this case is preferably about 25 to about 100 parts by weight with respect to 100 parts by weight of the binder.

セラミックグリーンシートの形成
(2)次に、この誘電体ペーストを用いて、ドクターブレード法などにより、キャリアシート上に、好ましくは0.5〜30μm、より好ましくは0.5〜10μm、さらに好ましくは0.5〜5μm程度の厚みで、セラミックグリーンシートを形成する。セラミックグリーンシートは、焼成後に図1に示す誘電体層2となる。
Formation of ceramic green sheet (2) Next, using this dielectric paste, it is preferably 0.5 to 30 μm, more preferably 0.5 to 10 μm, still more preferably on the carrier sheet by a doctor blade method or the like. A ceramic green sheet is formed with a thickness of about 0.5 to 5 μm. The ceramic green sheet becomes the dielectric layer 2 shown in FIG. 1 after firing.

キャリアシートとしては、たとえばPETフィルムなどが用いられ、剥離性を改善するために、シリコーンなどがコーティングしてあるものが好ましい。キャリアシートの厚みは、特に限定されないが、好ましくは5〜100μmである。   As the carrier sheet, for example, a PET film or the like is used, and a film coated with silicone or the like is preferable in order to improve peelability. Although the thickness of a carrier sheet is not specifically limited, Preferably it is 5-100 micrometers.

セラミックグリーンシートは、キャリアシートに形成された後に乾燥される。セラミックグリーンシートの乾燥温度は、好ましくは50〜100℃であり、乾燥時間は、好ましくは1〜20分である。   The ceramic green sheet is dried after being formed on the carrier sheet. The drying temperature of the ceramic green sheet is preferably 50 to 100 ° C., and the drying time is preferably 1 to 20 minutes.

乾燥後のセラミックグリーンシートの厚みは、乾燥前に比較して、5〜25%の厚みに収縮する。本実施形態では、乾燥後のセラミックグリーンシートの厚みが、5μm以下、好ましくは3μm以下、より好ましくは1.5μm以下となるように形成する。近年望まれている薄層化の要求に応えるためである。   The thickness of the ceramic green sheet after drying shrinks to a thickness of 5 to 25% compared with that before drying. In this embodiment, the thickness of the ceramic green sheet after drying is 5 μm or less, preferably 3 μm or less, and more preferably 1.5 μm or less. This is in order to meet the demand for thinner layers in recent years.

導電性ペーストの準備
(3)次に、焼成後に図1に示す内部電極層3を構成することになる所定パターンの電極層(内部電極パターン)を製造するために、導電性ペーストを準備する。
本実施形態で用いる導電性ペーストは、導電性粉末と有機ビヒクルとを含有する。
Preparation of Conductive Paste (3) Next, a conductive paste is prepared in order to manufacture an electrode layer (internal electrode pattern) having a predetermined pattern that will form the internal electrode layer 3 shown in FIG. 1 after firing.
The conductive paste used in the present embodiment contains a conductive powder and an organic vehicle.

導電性粉末としては、特に限定されないが、Cu、Niおよびこれらの合金から選ばれる少なくとも1種で構成してあることが好ましく、より好ましくはNiまたはNi合金、さらにはこれらの混合物で構成される。   Although it does not specifically limit as electroconductive powder, It is preferable to comprise by at least 1 sort (s) chosen from Cu, Ni, and these alloys, More preferably, it comprises Ni or Ni alloy, and also these mixtures. .

NiまたはNi合金としては、Mn、Cr、Co、Al、Pt、Au、Ru、Rh、Re、IrおよびOsから選択される少なくとも1種の元素とNiとの合金が好ましい。また、合金中のNi含有量は、好ましくは95重量%以上である。なお、NiまたはNi合金中には、P、Fe、Mgなどの各種微量成分が0.1重量%程度以下含まれていてもよい。   Ni or an Ni alloy is preferably an alloy of Ni and at least one element selected from Mn, Cr, Co, Al, Pt, Au, Ru, Rh, Re, Ir, and Os. Further, the Ni content in the alloy is preferably 95% by weight or more. In addition, in Ni or Ni alloy, various trace components, such as P, Fe, and Mg, may be contained about 0.1 wt% or less.

このような導電性粉末は、球状、リン片状等、その形状に特に制限はなく、また、これらの形状のものが混合したものであってもよい。導電性粉末の粒子径は、通常、球状の場合、平均粒子径が0.5μm以下、好ましくは0.01〜0.4μm程度のものを用いる。より一層確実に薄層化を実現するためである。   Such a conductive powder is not particularly limited in shape, such as spherical or flake shaped, and may be a mixture of these shapes. As for the particle diameter of the conductive powder, in the case of a spherical shape, an average particle diameter of 0.5 μm or less, preferably about 0.01 to 0.4 μm is used. This is to realize the thinning more surely.

導電性粉末は、導電性ペースト中に、好ましくは30〜60重量%、より好ましくは40〜50重量%含まれる。   The conductive powder is preferably contained in the conductive paste at 30 to 60% by weight, more preferably 40 to 50% by weight.

有機ビヒクルは、有機バインダと溶剤とを主成分として含有するものである。   The organic vehicle contains an organic binder and a solvent as main components.

有機バインダは、本実施形態ではエチルセルロース樹脂、アルキド樹脂またはアクリル樹脂を主成分とする。また、これらは組み合わせて用いても良い。有機バインダ中における、エチルセルロース樹脂、アルキド樹脂およびアクリル樹脂の含有量は、95重量%以上であることが好ましく、より好ましくは100重量%である。   In this embodiment, the organic binder is mainly composed of ethyl cellulose resin, alkyd resin, or acrylic resin. These may be used in combination. The content of ethyl cellulose resin, alkyd resin and acrylic resin in the organic binder is preferably 95% by weight or more, more preferably 100% by weight.

有機バインダは、導電性ペースト中に、導電性粉末100重量部に対して、好ましくは1〜10重量部で含まれる。バインダ量が少なすぎると、印刷後の皮膜強度が低下する傾向にあり、多すぎると、焼成前の電極パターンの金属充填密度が低下し、焼成後に形成される内部電極の平滑性を維持することができない。   The organic binder is preferably contained in the conductive paste in an amount of 1 to 10 parts by weight with respect to 100 parts by weight of the conductive powder. If the amount of the binder is too small, the film strength after printing tends to decrease. If the amount is too large, the metal filling density of the electrode pattern before firing decreases, and the smoothness of the internal electrode formed after firing is maintained. I can't.

溶剤は、プロピレングリコールジアセテート(CHCOOCHCHCHCOOCCH)を主成分とする。溶剤中における、プロピレングリコールジアセテートの含有量は、溶剤全体100重量%に対して、95重量%以上であることが好ましく、より好ましくは100重量%である。微量であるが、プロピレングリコールジアセテートと組み合わせて用いることが可能な溶剤としては、ターピネオール、ジヒドロターピネオールなどがある。 Solvent, as a main component propylene glycol diacetate (CH 3 COOCH 2 CHCH 3 COOCCH 3). The content of propylene glycol diacetate in the solvent is preferably 95% by weight or more, more preferably 100% by weight, based on 100% by weight of the whole solvent. Examples of the solvent that can be used in combination with propylene glycol diacetate in a trace amount include terpineol and dihydroterpineol.

本実施形態で溶剤として用いられるプロピレングリコールジアセテートは、有機バインダとしてのエチルセルロース樹脂や、アルキド樹脂、アクリル樹脂を十分に溶解する(動的粘弾性を判断する指標であるtanδを大きいものとすることができる。)。すなわち、これらの樹脂に対する溶解性が高く、得られる導電性ペーストを安定なものとすることができる。   The propylene glycol diacetate used as a solvent in this embodiment sufficiently dissolves ethyl cellulose resin, alkyd resin, and acrylic resin as an organic binder (the tan δ, which is an index for judging dynamic viscoelasticity, is large). Can do that.) That is, the solubility with respect to these resin is high, and the obtained electrically conductive paste can be made stable.

溶剤は、導電性ペースト中に、導電性粉末100重量部に対して、好ましくは50〜200重量部、より好ましくは80〜100重量部で含まれる。溶剤量が少なすぎるとペースト粘度が高くなりすぎ、多すぎるとペースト粘度が低くなりすぎる不都合がある。   The solvent is preferably contained in the conductive paste in an amount of 50 to 200 parts by weight, more preferably 80 to 100 parts by weight with respect to 100 parts by weight of the conductive powder. If the amount of the solvent is too small, the paste viscosity becomes too high, and if it is too much, the paste viscosity becomes too low.

有機ビヒクル中の上記有機バインダ及び溶剤の合計含有量は、95重量%以上であることが好ましく、より好ましくは100重量%である。ごく微量ではあるが、有機バインダ及び溶剤とともに有機ビヒクル中に含有させることが可能なものとしては、可塑剤、レベリング剤などがある。   The total content of the organic binder and the solvent in the organic vehicle is preferably 95% by weight or more, and more preferably 100% by weight. There are plasticizers, leveling agents and the like that can be contained in an organic vehicle together with an organic binder and a solvent, although only in a very small amount.

導電性ペースト中には、上記誘電体ペーストに含まれるセラミック粉体と同じセラミック粉体が共材として含まれていても良い。共材は、焼成過程において導電性粉末の焼結を抑制する作用を奏する。セラミック粉体(共材)は、導電性ペースト中に、導電性粉末100重量部に対して、好ましくは5〜30重量部で含まれる。共材量が少なすぎると、導電性粉末の焼結抑制効果が低下し、内部電極のライン性(連続性)が悪化し、見かけの誘電率が低下する。一方で、共材量が多すぎると、内部電極のライン性が悪化しやすくなり、見かけの誘電率も低下する傾向にある。   The conductive paste may contain the same ceramic powder as the ceramic powder contained in the dielectric paste as a co-material. The common material has an effect of suppressing the sintering of the conductive powder in the firing process. The ceramic powder (co-material) is preferably contained in the conductive paste in an amount of 5 to 30 parts by weight with respect to 100 parts by weight of the conductive powder. If the amount of the co-material is too small, the sintering suppressing effect of the conductive powder is lowered, the lineability (continuity) of the internal electrode is deteriorated, and the apparent dielectric constant is lowered. On the other hand, if the amount of the co-material is too large, the lineability of the internal electrode tends to deteriorate and the apparent dielectric constant tends to decrease.

接着性の改善のために、導電性ペーストには、可塑剤が含まれてもよい。可塑剤としては、フタル酸ベンジルブチル(BBP)などのフタル酸エステル、アジピン酸、燐酸エステル、グリコール類などが例示される。本実施形態では、好ましくは、アジピン酸ジオクチル(DOA)、フタル酸ブチルブチレングリコール(BPBG)、フタル酸ジドデシル(DDP)、フタル酸ジブチル(DBP)、フタル酸ベンジルブチル(BBP)、フタル酸ジオクチル(DOP)、セバシン酸ジブチルなどが用いられる。中でも、フタル酸ジオクチル(DOP)が特に好ましい。可塑剤は、有機ビヒクル中の有機バインダ100重量部に対して、好ましくは25〜150重量部、より好ましくは25〜100重量部で含有される。可塑剤の添加により、そのペーストを用いて形成される電極層の接着力は高まり、電極層とセラミックグリーンシートとの接着力が向上する。このような効果を得るためには、可塑剤の添加量は、25重量部以上が好ましい。ただし添加量が150重量部を越えると、そのペーストを用いて形成される電極層から過剰な可塑剤が滲み出すため好ましくない。   In order to improve adhesion, the conductive paste may contain a plasticizer. Examples of the plasticizer include phthalic acid esters such as benzylbutyl phthalate (BBP), adipic acid, phosphoric acid esters, glycols, and the like. In the present embodiment, preferably, dioctyl adipate (DOA), butyl butylene glycol phthalate (BPBG), didodecyl phthalate (DDP), dibutyl phthalate (DBP), benzyl butyl phthalate (BBP), dioctyl phthalate ( DOP), dibutyl sebacate and the like are used. Of these, dioctyl phthalate (DOP) is particularly preferable. The plasticizer is contained in an amount of preferably 25 to 150 parts by weight, more preferably 25 to 100 parts by weight with respect to 100 parts by weight of the organic binder in the organic vehicle. By adding the plasticizer, the adhesive force of the electrode layer formed using the paste is increased, and the adhesive force between the electrode layer and the ceramic green sheet is improved. In order to obtain such an effect, the amount of the plasticizer added is preferably 25 parts by weight or more. However, if the addition amount exceeds 150 parts by weight, it is not preferable because excess plasticizer oozes out from the electrode layer formed using the paste.

導電性ペーストは、上記各成分を、ボールミルなどで混練し、スラリー化することにより得ることができる。   The conductive paste can be obtained by kneading the above components with a ball mill or the like to form a slurry.

電極層の形成
(4)次に、この導電性ペーストを用いて、キャリアシート上に形成されたセラミックグリーンシートの表面に、焼成後に図1に示す内部電極層3となる所定パターンの電極層(内部電極パターン)を形成する。
Formation of Electrode Layer (4) Next, using this conductive paste, an electrode layer (in a predetermined pattern) that becomes the internal electrode layer 3 shown in FIG. 1 is formed on the surface of the ceramic green sheet formed on the carrier sheet after firing. Internal electrode pattern) is formed.

電極層の厚さは、2μm以下、好ましくは0.5〜1.5μmである。電極層の厚さが厚すぎると、積層数を減少せざるをえなくなり取得容量が少なくなり、高容量化しにくくなる。一方、厚みが薄すぎると均一に形成することが困難であり、電極途切れが発生しやすくなる。   The thickness of the electrode layer is 2 μm or less, preferably 0.5 to 1.5 μm. If the thickness of the electrode layer is too thick, the number of stacked layers must be reduced, the acquired capacity is reduced, and it is difficult to increase the capacity. On the other hand, if the thickness is too thin, it is difficult to form uniformly, and electrode breakage is likely to occur.

電極層の厚さは、現状の技術では前記範囲の程度であるが、電極の途切れが生じない範囲で薄い方がより望ましい。   The thickness of the electrode layer is in the above range in the current technology, but it is more desirable that the thickness of the electrode layer is as thin as possible without causing electrode breaks.

導電性ペーストを用いて電極層を形成する方法としては、層を均一に形成できる方法であれば特に限定されないが、本実施形態では、スクリーン印刷法が用いられる。
具体的には、まず、スクリーン印刷により、上記にて作製したセラミックグリーンシート表面に、導電性ペーストを所定パターンで印刷し、乾燥前の電極ペースト膜を形成する。そして、この電極ペースト膜に含まれている溶媒を除去するために、温度40〜90℃の条件にて乾燥を行い、焼成前電極層(内部電極パターン)とする。
The method for forming the electrode layer using the conductive paste is not particularly limited as long as the layer can be formed uniformly. In this embodiment, a screen printing method is used.
Specifically, first, a conductive paste is printed in a predetermined pattern on the surface of the ceramic green sheet produced as described above by screen printing to form an electrode paste film before drying. And in order to remove the solvent contained in this electrode paste film | membrane, it drys on the conditions of temperature 40-90 degreeC, and is set as the electrode layer (internal electrode pattern) before baking.

本実施形態では、溶剤として、プロピレングリコールジアセテートを含有させた導電性ペーストを使用するため、スクリーン印刷による、電極ペースト膜形成時におけるセラミックグリーンシートへのシートアタック(すなわち、室温におけるシートアタック)を防止できることに加え、電極ペースト膜乾燥時におけるシートアタック(すなわち、高温条件におけるシートアタック)についても、有効に防止することができる。そのため、セラミックグリーンシートの厚みを、5μm以下、好ましくは3μm以下、より好ましくは1.5μm以下とした場合でも、正常な積層体が得られ、最終物たる積層セラミックコンデンサ1に、ショート不良、耐電圧不良(IR劣化)や、誘電体層2と内部電極層3との間に層間剥離現象(デラミネーション)を発生させるおそれが少なくなる。
しかも、高温条件におけるシートアタックを防止できるため、溶剤の乾燥温度を比較的に高くすることができ、製造効率の向上も図ることもできる。
In this embodiment, since a conductive paste containing propylene glycol diacetate is used as a solvent, a sheet attack (that is, a sheet attack at room temperature) to a ceramic green sheet during electrode paste film formation by screen printing is performed. In addition to being able to prevent, it is also possible to effectively prevent sheet attack when the electrode paste film is dried (that is, sheet attack under high temperature conditions). Therefore, even when the thickness of the ceramic green sheet is 5 μm or less, preferably 3 μm or less, and more preferably 1.5 μm or less, a normal laminate can be obtained, and the final multilayer ceramic capacitor 1 has a short circuit resistance and resistance. There is less risk of voltage failure (IR degradation) and delamination between the dielectric layer 2 and the internal electrode layer 3 (delamination).
In addition, since the sheet attack under high temperature conditions can be prevented, the drying temperature of the solvent can be made relatively high, and the production efficiency can be improved.

グリーンチップの作製、焼成など
(4)次に、以上のような、所定パターンの電極用ペースト層が表面に形成されたセラミックグリーンシートを複数積層して、グリーンチップを作製し、脱バインダ工程、焼成工程、必要に応じて行われるアニール工程を経て形成された、焼結体で構成されるコンデンサ素体10に、外部電極用ペーストを印刷または転写して焼成し、外部電極4,4を形成して、積層セラミックコンデンサ1が製造される。
Preparation of Green Chip, baking, etc. (4) Next, above that, by stacking a plurality of ceramic green sheets on which the electrode paste layer is formed on the surface of the predetermined pattern, to produce a green chip and subjected to binder removal step, The external electrodes 4 and 4 are formed by printing or transferring the external electrode paste onto the capacitor body 10 composed of a sintered body, which is formed through a firing process and an annealing process performed as necessary, and firing. Thus, the multilayer ceramic capacitor 1 is manufactured.

その他の実施形態
以上、本発明の実施形態について説明してきたが、本発明は、上述した実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々に改変することができる。
Other Embodiments The embodiment of the present invention has been described above. However, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention. it can.

たとえば、上述した実施形態では、本発明に係る積層セラミック電子部品として積層セラミックコンデンサを例示したが、本発明に係る積層セラミック電子部品としては、積層セラミックコンデンサに限定されず、多層セラミック基板などにも適用できることは勿論である。   For example, in the above-described embodiment, the multilayer ceramic capacitor is exemplified as the multilayer ceramic electronic component according to the present invention. However, the multilayer ceramic electronic component according to the present invention is not limited to the multilayer ceramic capacitor, and may be applied to a multilayer ceramic substrate or the like. Of course, it can be applied.

以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。   Hereinafter, although this invention is demonstrated based on a more detailed Example, this invention is not limited to these Examples.

実施例1
まず、セラミックグリーンシートを形成するための誘電体ペーストを作製した。
Example 1
First, a dielectric paste for forming a ceramic green sheet was produced.

誘電体ペーストの作製
BaTiO系セラミック粉末と、有機バインダとしてのポリビニルブチラール(PVB)と、溶媒としてのメタノールを準備した。次に、セラミック粉末100重量部に対して、10重量部の有機バインダと、150重量部の溶媒とをそれぞれ秤量し、ボールミルで混練し、スラリー化して誘電体ペーストを得た。
Preparation of Dielectric Paste BaTiO 3 -based ceramic powder, polyvinyl butyral (PVB) as an organic binder, and methanol as a solvent were prepared. Next, 10 parts by weight of an organic binder and 150 parts by weight of a solvent were weighed with respect to 100 parts by weight of the ceramic powder, kneaded with a ball mill, and slurried to obtain a dielectric paste.

セラミックグリーンシートの作製
PETフィルム上に上記誘電体ペーストをドクターブレード法により、所定厚みで塗布し、乾燥することで、乾燥後の厚みが1.5μmのセラミックグリーンシートを形成した。
Preparation of Ceramic Green Sheet The dielectric paste was applied to a predetermined thickness on a PET film by a doctor blade method and dried to form a ceramic green sheet having a dried thickness of 1.5 μm.

溶剤とセラミックグリーンシートとの相溶性試験(室温、滴下)
上記にて作製したセラミックグリーンシートをPETフィルムから剥離し、次いで、両面テープによりスライドガラス上に貼り付けた。次いで、スライドガラス上に貼り付けたセラミックグリーンシートに、表1に示す各溶剤を室温(25℃)条件下にて滴下して、その後、室温で溶剤を自然乾燥させ、乾燥後のセラミックグリーンシート表面を顕微鏡により観察することにより、室温における相溶性を評価した。なお、各溶剤の滴下は、まず、針金の先端を溶剤にディップさせ、次いで、ディップした溶剤をシート上に滴下することにより行った。
溶剤としては、以下の表1に示す各溶剤を使用し、各溶剤を滴下した後のセラミックグリーンシートの表面の顕微鏡写真を、それぞれ、表1に記載された各図に示した。
Compatibility test between solvent and ceramic green sheet (room temperature, dripping)
The ceramic green sheet produced above was peeled off from the PET film, and then stuck on the slide glass with a double-sided tape. Next, each solvent shown in Table 1 is dropped on the ceramic green sheet attached on the slide glass under room temperature (25 ° C.) conditions, and then the solvent is naturally dried at room temperature. The compatibility at room temperature was evaluated by observing the surface with a microscope. Each solvent was dropped by first dipping the tip of the wire into the solvent and then dropping the dipped solvent onto the sheet.
As the solvent, each of the solvents shown in Table 1 below was used, and micrographs of the surface of the ceramic green sheet after each solvent was dropped are shown in the respective drawings described in Table 1.

Figure 2008066600
Figure 2008066600

図2(B)〜図2(D)より、セラミックグリーンシート上に、ターピネオール(図2(B))、ジヒドロターピネオール(図2(C))、ジヒドロターピニルアセテート(図2(D))を滴下した場合には、セラミックグリーンシートが膨潤してしまい、セラミックグリーンシート表面の広範囲に渡り、しわが発生する結果となった。   From FIG. 2 (B) to FIG. 2 (D), on the ceramic green sheet, terpineol (FIG. 2 (B)), dihydroterpineol (FIG. 2 (C)), dihydroterpinyl acetate (FIG. 2 (D)). In the case of dripping, the ceramic green sheet swelled and wrinkles occurred over a wide area of the ceramic green sheet surface.

これに対して、図2(A)より、溶剤としてプロピレングリコールジアセテートを使用した場合には、セラミックグリーンシートの膨潤が発生しないことが確認できる。   On the other hand, from FIG. 2A, it can be confirmed that when propylene glycol diacetate is used as the solvent, the ceramic green sheet does not swell.

溶剤とセラミックグリーンシートとの相溶性試験(50℃、浸漬)
上記にて作製したセラミックグリーンシートを、PETフィルム上に形成されたままの状態で、表2に示す各溶剤中に浸漬させ(各溶剤は、所定のサンプル瓶に予め入れておいた。)、次いで、浸漬させたシートを温度50℃とした恒温槽中に入れ、4時間放置した。その後、恒温槽中から、各シートサンプルの入ったサンプル瓶を取り出し、50℃、4時間放置後の各シートサンプルの状態を観察した。
溶剤としては、以下の表2に示す各溶剤を使用し、各溶剤に浸漬した後のセラミックグリーンシートの写真を、それぞれ、表2に記載された各図に示した。
Compatibility test between solvent and ceramic green sheet (50 ℃, immersion)
The ceramic green sheet produced above was immersed in each solvent shown in Table 2 in a state where it was formed on the PET film (each solvent was put in a predetermined sample bottle in advance). Next, the soaked sheet was placed in a constant temperature bath at a temperature of 50 ° C. and left for 4 hours. Then, the sample bottle containing each sheet sample was taken out from the thermostat, and the state of each sheet sample after being left at 50 ° C. for 4 hours was observed.
As the solvents, the respective solvents shown in Table 2 below were used, and photographs of the ceramic green sheets after being immersed in the respective solvents are shown in the respective drawings described in Table 2.

Figure 2008066600
Figure 2008066600

図3(B)、図3(C)より、セラミックグリーンシートを50℃の条件でターピネオール中(図3(B))およびジヒドロターピネオール中(図3(C))に浸漬させた場合には、セラミックグリーンシートが膨潤してしまい、PETフィルムから剥離する結果となった。   From FIG. 3 (B) and FIG. 3 (C), when the ceramic green sheet was immersed in terpineol (FIG. 3 (B)) and dihydroterpineol (FIG. 3 (C)) at 50 ° C., The ceramic green sheet swelled and peeled off from the PET film.

これに対して、図3(A)より、プロピレングリコールジアセテートを用いた場合には、50℃の条件でセラミックグリーンシートを浸漬させた場合でも、膨潤が全く発生しないことが確認できる。   On the other hand, from FIG. 3 (A), when propylene glycol diacetate is used, it can be confirmed that no swelling occurs even when the ceramic green sheet is immersed at 50 ° C.

以上の結果より、プロピレングリコールジアセテートは、セラミックグリーンシートに使用される有機バインダとしてのブチラール樹脂に対する相溶性が極めて低く、特に、室温条件だけでなく、高温条件(本実施例では、50℃)においても、シートアタックを有効に防止できることが確認できる。   From the above results, propylene glycol diacetate has extremely low compatibility with the butyral resin as an organic binder used for the ceramic green sheet. In particular, not only room temperature conditions but also high temperature conditions (50 ° C. in this example). It can also be confirmed that the sheet attack can be effectively prevented.

実施例2
有機ビヒクルの作製
有機バインダとしてのエチルセルロースと、表3に示す溶剤を準備した。
次に、溶剤100重量部に対して10重量部の有機バインダを溶解させて、有機ビヒクルを作製した。
Example 2
Preparation of organic vehicle Ethyl cellulose as an organic binder and the solvents shown in Table 3 were prepared.
Next, 10 parts by weight of an organic binder was dissolved with respect to 100 parts by weight of the solvent to produce an organic vehicle.

tanδの評価
tanδ(動的粘弾性)は、得られた有機ビヒクルに10Paの応力を与えたときのtanδ値を、周波数0.628rad/sの条件で、粘度・粘弾性測定装置(レオストレスRS1、英弘精機社製)にて測定した。結果を表3に示す。tanδ値が低いほど弾性的でありレベリングしにくく、その一方で、tanδ値が高いほど非弾性的でありレベリングしやすいというものである。そのため、tanδ値が大きいほど動的粘弾性に優れ、すなわちレベリング性に優れ、溶解性が高いものと考えられる。
Evaluation of tan δ Tan δ (dynamic viscoelasticity) is a tan δ value obtained when a stress of 10 Pa is applied to the obtained organic vehicle under the condition of a frequency of 0.628 rad / s. , Manufactured by Eihiro Seiki Co., Ltd.). The results are shown in Table 3. The lower the tan δ value, the more elastic and less leveling, while the higher the tan δ value, the more inelastic and easy to level. Therefore, it is considered that the larger the tan δ value, the better the dynamic viscoelasticity, that is, the better the leveling property and the higher the solubility.

Figure 2008066600
Figure 2008066600

表3に示すように、プロピレングリコールジアセテートを用いた試料は、ターピネオール、ジヒドロターピネオール、ジヒドロターピニルアセテートおよびターピニルアセテートを用いたいずれの試料と比較しても、tanδが高くなることが確認できる。すなわち、プロピレングリコールジアセテートは、エチルセルロースに対して高い溶解性を示すことが確認できる。   As shown in Table 3, the sample using propylene glycol diacetate has a higher tan δ than any sample using terpineol, dihydroterpineol, dihydroterpinyl acetate and terpinyl acetate. I can confirm. That is, it can be confirmed that propylene glycol diacetate exhibits high solubility in ethyl cellulose.

実施例3
導電性ペーストの作製
導電性ペーストを作製するための有機ビヒクルを、次の方法により調製した。
Example 3
Production of Conductive Paste An organic vehicle for producing a conductive paste was prepared by the following method.

すなわち、まず、有機バインダとしてのエチルセルロースと、表4に示す各溶剤を準備した。次に、溶剤100重量部に対して10重量部のエチルセルロースを溶解させて、有機ビヒクルを調製した。   That is, first, ethyl cellulose as an organic binder and each solvent shown in Table 4 were prepared. Next, 10 parts by weight of ethylcellulose was dissolved in 100 parts by weight of the solvent to prepare an organic vehicle.

次いで、導電性粉末としての平均粒径が0.2μmのNi粒子を準備し、この導電性粉末100重量部に対して、上記にて準備した有機ビヒクルを30〜70重量部添加して、ボールミルで混練することにより、スラリー化して導電性ペーストを得た。   Next, Ni particles having an average particle diameter of 0.2 μm as a conductive powder were prepared, and 30 to 70 parts by weight of the organic vehicle prepared above was added to 100 parts by weight of the conductive powder. The mixture was kneaded to form a slurry to obtain a conductive paste.

試験用試料の作製
PETフィルム上に実施例1で作製した誘電体ペーストをドクターブレード法によって、所定厚みで塗布し、乾燥することで、厚みが1μmのセラミックグリーンシートを形成した。
Preparation of Test Sample A ceramic green sheet having a thickness of 1 μm was formed by applying the dielectric paste prepared in Example 1 to a predetermined thickness on a PET film by a doctor blade method and drying it.

次に、得られたセラミックグリーンシートの上に、上記にて作製した導電性ペーストのうち、本発明の実施例である、プロピレングリコールジアセテートを使用した導電性ペースト(表4の試料番号1)を用いて、スクリーン印刷法によって所定パターンで形成し、厚さ約1.0μmの電極パターンを持つセラミックグリーンシート(試験用試料)を得た。   Next, on the obtained ceramic green sheet, among the conductive pastes produced above, a conductive paste using propylene glycol diacetate, which is an example of the present invention (sample number 1 in Table 4). Was used to form a ceramic green sheet (test sample) having an electrode pattern having a thickness of about 1.0 μm.

試験用試料の評価
得られた試験用試料を用い、「シートアタックの有無」と、「セラミックグリーンシートからのPETフィルムの剥離性」を評価した。
Evaluation of Test Sample Using the obtained test sample, “presence / absence of sheet attack” and “peelability of PET film from ceramic green sheet” were evaluated.

「シートアタックの有無」は、セラミックグリーンシートの電極パターン側とは反対面(PETフィルムに接する面)より目視により観察し、変形度合いと色合いによりセラミックグリーンシートの溶解度合いを確認することにより行った。その結果、セラミックグリーンシートの溶解を観察できなかった。   “Presence / absence of sheet attack” was performed by visually observing the surface of the ceramic green sheet opposite to the electrode pattern side (the surface in contact with the PET film), and confirming the degree of dissolution of the ceramic green sheet by the degree of deformation and hue. . As a result, dissolution of the ceramic green sheet could not be observed.

「セラミックグリーンシートからのPETフィルムの剥離性」については、試験用試料からPETフィルムを剥がす際の剥離強度を測定することにより行った。剥離強度の測定は、9cm×20cmのPET付セラミックグリーンシートの端(剥離のきっかけを作るのりしろ部分)にロードセルを粘着テープでつけて、上に移動させながら荷重(負荷)を計るようにして行った。その結果、剥離強度が5.0gf以下と適正な値を示した。これにより、セラミックグリーンシートに対する必要な保持力を維持できるとともに、剥離作業の効率性が期待できる。   The “peelability of the PET film from the ceramic green sheet” was measured by measuring the peel strength when peeling the PET film from the test sample. The peel strength is measured by attaching a load cell to the end of the 9cm x 20cm ceramic green sheet with PET (the margin that creates the trigger for peeling) with adhesive tape and measuring the load (load) while moving it upward. It was. As a result, the peel strength was an appropriate value of 5.0 gf or less. Thereby, while maintaining the required holding force with respect to a ceramic green sheet, the efficiency of peeling work can be expected.

積層セラミックチップコンデンサ試料の作製
次いで、実施例1で作製した誘電体ペーストと、上記にて作製した導電性ペーストを用い、以下のようにして、図1に示す積層セラミックチップコンデンサ1を製造した。
Production of Multilayer Ceramic Chip Capacitor Sample Next, using the dielectric paste produced in Example 1 and the conductive paste produced above, a multilayer ceramic chip capacitor 1 shown in FIG. 1 was produced as follows.

まず、PETフィルム上に誘電体ペーストをドクターブレード法によって、所定厚みで塗布し、乾燥することで、乾燥後の厚みが1μmのセラミックグリーンシートを形成した。本実施例では、このセラミックグリーンシートを第1グリーンシートとし、これを複数枚、準備した。   First, a dielectric paste was applied to a PET film with a predetermined thickness by a doctor blade method and dried to form a ceramic green sheet having a thickness of 1 μm after drying. In this example, this ceramic green sheet was used as the first green sheet, and a plurality of these were prepared.

次に、得られた第1グリーンシートの上に、導電性ペーストをスクリーン印刷法によって所定パターンで形成し、厚さ約1μmの電極パターンを持つセラミックグリーンシートを得た。本実施例では、このセラミックグリーンシートを第2グリーンシートとし、これを複数枚、準備した。   Next, a conductive paste was formed in a predetermined pattern on the obtained first green sheet by a screen printing method to obtain a ceramic green sheet having an electrode pattern with a thickness of about 1 μm. In this example, this ceramic green sheet was used as the second green sheet, and a plurality of these were prepared.

次に、第1グリーンシートを厚さが150μmになるまで積層してセラミックグリーンシート群を形成した。このセラミックグリーンシート群の上に、第2グリーンシートを250枚積層した。そして、この上にさらに、前記同様の複数の第1グリーンシートからなるセラミックグリーンシート群を積層、形成し、温度70℃及び圧力1.5トン/cmの条件で加熱・加圧してグリーンセラミック積層体を得た。 Next, the first green sheets were laminated to a thickness of 150 μm to form a ceramic green sheet group. On this ceramic green sheet group, 250 second green sheets were laminated. Further, a ceramic green sheet group composed of a plurality of first green sheets similar to the above is laminated and formed thereon, and heated and pressurized under the conditions of a temperature of 70 ° C. and a pressure of 1.5 ton / cm 2 to produce a green ceramic. A laminate was obtained.

次に、得られた積層体を所定サイズに切断した後、脱バインダ処理、焼成及びアニールを行い、焼結体を得た。   Next, after cutting the obtained laminated body into a predetermined size, binder removal treatment, firing and annealing were performed to obtain a sintered body.

次に、得られた焼結体の端面をサンドブラストにて研磨した後、In−Ga合金を塗布して、試験用電極を形成し、積層セラミックチップコンデンサ試料を得た。   Next, after polishing the end face of the obtained sintered body by sand blasting, an In—Ga alloy was applied to form a test electrode to obtain a multilayer ceramic chip capacitor sample.

コンデンサ試料のサイズは、縦1.6mm×横0.8mm×高さ0.8mmであり、一対の内部電極層間に挟まれる誘電体層2の厚みは約1μm、内部電極層3の厚みは1μmであった。   The size of the capacitor sample is 1.6 mm long × 0.8 mm wide × 0.8 mm high. The thickness of the dielectric layer 2 sandwiched between the pair of internal electrode layers is about 1 μm, and the thickness of the internal electrode layer 3 is 1 μm. Met.

コンデンサ試料の評価
得られたコンデンサ試料のショート不良特性、耐電圧特性(IR特性)及びデラミネーションの有無を評価した。
Evaluation of Capacitor Sample The capacitor sample obtained was evaluated for short-circuit failure characteristics, withstand voltage characteristics (IR characteristics), and the presence or absence of delamination.

ショート不良特性については、テスターで1.5V印加、1MΩ以下品を不良と判断し、不良率が5%未満を良好とした。   As for short-circuit failure characteristics, a tester applied 1.5 V and judged that a product of 1 MΩ or less was a failure, and a failure rate of less than 5% was considered good.

耐電圧特性(IR特性)については、定格電圧(6.3V)の12倍の直流電圧を3秒印加し、抵抗が10Ω未満のコンデンサ試料を故障と判断し、平均故障率が1.9%未満を良好とした。 With respect to the withstand voltage characteristics (IR characteristics), a DC voltage 12 times the rated voltage (6.3 V) was applied for 3 seconds, and a capacitor sample having a resistance of less than 10 4 Ω was determined to have a failure, and the average failure rate was 1. Less than 9% was considered good.

デラミネーションの有無については、焼上げ素地を研磨して積層状態を目視にて不具合を観察した。   About the presence or absence of delamination, the baking base was grind | polished and the lamination state was observed visually.

結果を表4に示す。   The results are shown in Table 4.

Figure 2008066600
Figure 2008066600

表4に示すように、溶剤として、プロピレングリコールジアセテートを含有する導電性ペーストを用いて作製されたコンデンサ試料(試料番号1)は、ターピネオールやジヒドロターピネオールを含む導電性ペーストを用いて作製されたコンデンサ試料と比較して、ショート不良、故障率、デラミネーションのいずれを見ても飛躍的に向上していることが確認できる。ジヒドロターピニルアセテートを含む導電性ペーストを用いて作製されたコンデンサ試料と比較した場合についても、上記性能の向上が認められる。すなわち、本発明の実施例試料については、比較例試料と比較して、信頼性の向上が確認できた。   As shown in Table 4, a capacitor sample (sample number 1) produced using a conductive paste containing propylene glycol diacetate as a solvent was produced using a conductive paste containing terpineol or dihydroterpineol. Compared to the capacitor sample, it can be confirmed that any improvement in the short-circuit defect, failure rate, and delamination is dramatically improved. The above improvement in performance is also observed when compared with a capacitor sample made using a conductive paste containing dihydroterpinyl acetate. That is, about the Example sample of this invention, the reliability improvement was confirmed compared with the comparative example sample.

図1は本発明の一実施形態に係る積層セラミックコンデンサの断面図である。FIG. 1 is a cross-sectional view of a multilayer ceramic capacitor according to an embodiment of the present invention. 図2(A)〜図2(D)は本発明の実施例および比較例に係る導電性ペーストに含有される溶剤の室温におけるセラミックグリーンシートに対する相溶性を示す顕微鏡写真。2 (A) to 2 (D) are photomicrographs showing the compatibility of the solvent contained in the conductive pastes according to Examples and Comparative Examples of the present invention with respect to a ceramic green sheet at room temperature. 図3(A)〜図3(C)は本発明の実施例および比較例に係る導電性ペーストに含有される溶剤の温度50℃の条件におけるセラミックグリーンシートに対する相溶性を示す写真である。FIGS. 3A to 3C are photographs showing the compatibility of the solvent contained in the conductive pastes according to Examples and Comparative Examples of the present invention with respect to the ceramic green sheet under the condition of a temperature of 50 ° C.

符号の説明Explanation of symbols

1… 積層セラミックコンデンサ
10… コンデンサ素体
2… 誘電体層
3… 内部電極層
4… 外部電極
DESCRIPTION OF SYMBOLS 1 ... Multilayer ceramic capacitor 10 ... Capacitor body 2 ... Dielectric layer 3 ... Internal electrode layer 4 ... External electrode

Claims (7)

積層セラミック電子部品の内部電極を形成するために用いる導電性ペーストであって、
導電性粉末と、有機ビヒクルとを含み、
前記有機ビヒクル中の有機バインダが、エチルセルロース樹脂、アルキド樹脂およびアクリル樹脂から選択される1種以上を主成分とし、
前記有機ビヒクル中の溶剤が、プロピレングリコールジアセテートを主成分とすることを特徴とする導電性ペースト。
A conductive paste used to form internal electrodes of a multilayer ceramic electronic component,
Including conductive powder and organic vehicle;
The organic binder in the organic vehicle is mainly composed of one or more selected from ethyl cellulose resin, alkyd resin and acrylic resin,
A conductive paste characterized in that the solvent in the organic vehicle contains propylene glycol diacetate as a main component.
前記有機ビヒクル中の溶剤が、前記導電性粉末100重量部に対して50〜200重量部含有されている請求項1に記載の導電性ペースト。   The conductive paste according to claim 1, wherein the solvent in the organic vehicle is contained in an amount of 50 to 200 parts by weight with respect to 100 parts by weight of the conductive powder. 前記導電性ペーストは、ブチラール樹脂を含む厚さ5μm以下のセラミックグリーンシートと組み合わせて使用される請求項1または2に記載の導電性ペースト。   The conductive paste according to claim 1, wherein the conductive paste is used in combination with a ceramic green sheet having a thickness of 5 μm or less containing a butyral resin. 前記有機ビヒクル中の有機バインダが、前記導電性粉末100重量部に対して1〜10重量部含有されている請求項1〜3のいずれかに記載の導電性ペースト。   4. The conductive paste according to claim 1, wherein the organic binder in the organic vehicle is contained in an amount of 1 to 10 parts by weight with respect to 100 parts by weight of the conductive powder. 前記導電性粉末が、NiまたはNi合金を主成分とする請求項1〜4のいずれかに記載の導電性ペースト。   The conductive paste according to claim 1, wherein the conductive powder contains Ni or a Ni alloy as a main component. ブチラール樹脂を含む厚さ5μm以下のセラミックグリーンシートと、請求項1〜5のいずれかに記載の導電性ペーストを用いて所定パターンで形成される電極層とを、交互に複数重ねたグリーンセラミック積層体を用いて製造され、
内部電極層と、厚さ3μm以下の誘電体層と、を有する積層セラミック電子部品。
A green ceramic laminate in which a plurality of ceramic green sheets containing butyral resin and having a thickness of 5 μm or less and electrode layers formed in a predetermined pattern using the conductive paste according to claim 1 are alternately stacked. Manufactured using the body,
A multilayer ceramic electronic component having an internal electrode layer and a dielectric layer having a thickness of 3 μm or less.
ブチラール樹脂を含む厚さ5μm以下のセラミックグリーンシートと、請求項1〜5のいずれかに記載の導電性ペーストを用いて所定パターンで形成される電極層とを、交互に複数重ねたグリーンセラミック積層体を焼成する積層セラミック電子部品の製造方法。   A green ceramic laminate in which a plurality of ceramic green sheets containing butyral resin and having a thickness of 5 μm or less and electrode layers formed in a predetermined pattern using the conductive paste according to claim 1 are alternately stacked. A method of manufacturing a multilayer ceramic electronic component for firing a body.
JP2006244727A 2006-09-08 2006-09-08 Conductive paste, multilayer ceramic electronic component and manufacturing method thereof Expired - Fee Related JP4442596B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006244727A JP4442596B2 (en) 2006-09-08 2006-09-08 Conductive paste, multilayer ceramic electronic component and manufacturing method thereof
KR1020070090637A KR20080023173A (en) 2006-09-08 2007-09-06 A conductive paste, a multilayer ceramic electronic device and the method of production thereof
CN2007101944405A CN101165825B (en) 2006-09-08 2007-09-07 A conductive paste, a multilayer ceramic electronic device and the method of production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006244727A JP4442596B2 (en) 2006-09-08 2006-09-08 Conductive paste, multilayer ceramic electronic component and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008066600A true JP2008066600A (en) 2008-03-21
JP4442596B2 JP4442596B2 (en) 2010-03-31

Family

ID=39289017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006244727A Expired - Fee Related JP4442596B2 (en) 2006-09-08 2006-09-08 Conductive paste, multilayer ceramic electronic component and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP4442596B2 (en)
KR (1) KR20080023173A (en)
CN (1) CN101165825B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8009408B2 (en) 2008-07-29 2011-08-30 Murata Manufacturing Co., Ltd. Laminated ceramic capacitor
CN105428035A (en) * 2015-12-23 2016-03-23 深圳顺络电子股份有限公司 Electronic element and production method thereof
CN114835490A (en) * 2021-02-01 2022-08-02 深圳麦克韦尔科技有限公司 Conductive ceramic material and preparation method thereof, and conductive ceramic body and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016115448A (en) * 2014-12-11 2016-06-23 株式会社村田製作所 Conductive paste and ceramic electronic component
JP7192743B2 (en) * 2019-11-07 2022-12-20 株式会社村田製作所 External electrode paste

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4650794B2 (en) * 2005-07-01 2011-03-16 昭栄化学工業株式会社 Conductive paste for multilayer electronic component and multilayer electronic component using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8009408B2 (en) 2008-07-29 2011-08-30 Murata Manufacturing Co., Ltd. Laminated ceramic capacitor
CN105428035A (en) * 2015-12-23 2016-03-23 深圳顺络电子股份有限公司 Electronic element and production method thereof
CN114835490A (en) * 2021-02-01 2022-08-02 深圳麦克韦尔科技有限公司 Conductive ceramic material and preparation method thereof, and conductive ceramic body and preparation method thereof
CN114835490B (en) * 2021-02-01 2023-11-17 深圳麦克韦尔科技有限公司 Conductive ceramic material and preparation method thereof, and conductive ceramic body and preparation method thereof

Also Published As

Publication number Publication date
JP4442596B2 (en) 2010-03-31
KR20080023173A (en) 2008-03-12
CN101165825A (en) 2008-04-23
CN101165825B (en) 2013-09-04

Similar Documents

Publication Publication Date Title
US7632427B2 (en) Conductive paste and multilayer ceramic electronic device and its method of production
JP2006310760A (en) Multilayer ceramic electronic component and its manufacturing method
JP5221059B2 (en) Electrode step absorbing printing paste and method for producing multilayer ceramic electronic component
JP5423977B2 (en) Manufacturing method of multilayer ceramic electronic component
JP4442596B2 (en) Conductive paste, multilayer ceramic electronic component and manufacturing method thereof
JP4340674B2 (en) Conductive paste, multilayer ceramic electronic component and manufacturing method thereof
JP4359607B2 (en) Electrode step absorbing printing paste and method for producing multilayer ceramic electronic component
JP4905569B2 (en) Conductive paste, multilayer ceramic electronic component and manufacturing method thereof
JP4357460B2 (en) Electrode step absorbing printing paste and method of manufacturing laminated electronic component
JP2007081339A (en) Conductive paste, laminated ceramic electronic component and method of manufacturing the same
JP4622974B2 (en) Conductive paste, multilayer ceramic electronic component and manufacturing method thereof
JP2008153309A (en) Method for manufacturing laminated ceramic electronic part
JP4760641B2 (en) Electrode step absorbing printing paste and method for producing multilayer ceramic electronic component
JP2022083832A (en) Multilayer electronic component
JP4432895B2 (en) Conductive paste, multilayer ceramic electronic component and manufacturing method thereof
JP4276589B2 (en) Electrode step absorbing printing paste and method for producing multilayer ceramic electronic component
JP4340675B2 (en) Electrode step absorbing printing paste and method for producing multilayer ceramic electronic component
JP2006344669A (en) Manufacturing method of laminated electronic component
JP2010086867A (en) Conductive paste and manufacturing method for electronic component
JP4073424B2 (en) Manufacturing method of electronic parts
JP4268965B2 (en) Electrode step absorbing printing paste and method for producing multilayer ceramic electronic component
JP2013093462A (en) Manufacturing method of lamination electronic component and manufacturing method of lamination unit used in the same
JP4268962B2 (en) Electrode step absorbing printing paste and method for producing multilayer ceramic electronic component
JP4073423B2 (en) Manufacturing method of electronic parts
JP2012138398A (en) Lamination unit, method of manufacturing the same, and method of manufacturing laminated electronic component

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080922

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091111

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees