JP2008066307A - Fuel cell-gas turbine power generating equipment - Google Patents

Fuel cell-gas turbine power generating equipment Download PDF

Info

Publication number
JP2008066307A
JP2008066307A JP2007257047A JP2007257047A JP2008066307A JP 2008066307 A JP2008066307 A JP 2008066307A JP 2007257047 A JP2007257047 A JP 2007257047A JP 2007257047 A JP2007257047 A JP 2007257047A JP 2008066307 A JP2008066307 A JP 2008066307A
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
air
compressed air
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007257047A
Other languages
Japanese (ja)
Other versions
JP4461166B2 (en
Inventor
Shigenori Koga
重徳 古賀
Katsumi Nagata
勝巳 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2007257047A priority Critical patent/JP4461166B2/en
Publication of JP2008066307A publication Critical patent/JP2008066307A/en
Application granted granted Critical
Publication of JP4461166B2 publication Critical patent/JP4461166B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide fuel cell-gas turbine power generating equipment which can appropriately control the air flow rate supplied to the fuel cell. <P>SOLUTION: The equipment comprises a compressor 3 which compresses the air, a heat exchanging device which heats the air compressed at the compressor 3; a fuel cell which generates electric power with the cell reaction of supplied oxygen in the compressed air and the fuel via an electrolyte, when the compressed air heated by the heat exchanging device is supplied to an air pole and the fuel is supplied to a fuel pole; a combustor 8 to which exhaust air and exhanst fuel gas from the fuel cell is sent; a gas turbine 4 which is equipped coaxially with the compressor 3 and driven, when the combustion gas from the combustor 8 expands; a flow rate adjusting device which adjusts flow rate of the compressed air in the upstream of the heat exchanging device; and a cooling device which cools the exhaust fuel gas from the fuel cell. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、燃料電池(固体電解質形燃料電池)とガスタービンを組み合わせた燃料電池−ガスタービン発電設備に関する。   The present invention relates to a fuel cell-gas turbine power generation facility in which a fuel cell (solid oxide fuel cell) and a gas turbine are combined.

燃料電池は、空気と燃料とを電解質を介して電気電池反応させて発電を行う装置であり、高い発電効率で電気エネルギーを発生させることができる。この燃料電池から排出される排出ガスの温度は高く、排出ガスの熱エネルギーをガスタービン及び蒸気タービン等のボトミングサイクルにより回収して発電に利用することにより、システム損失を小さくすることができ、高い発電効率を得ることができる。   A fuel cell is a device that generates electricity by causing an electric cell reaction between air and fuel via an electrolyte, and can generate electric energy with high power generation efficiency. The temperature of the exhaust gas discharged from this fuel cell is high, and the system loss can be reduced by recovering the thermal energy of the exhaust gas by a bottoming cycle such as a gas turbine and a steam turbine and using it for power generation. Power generation efficiency can be obtained.

特に、高温型燃料電池{運転温度が約1000℃の固体電解質形燃料電池(SOFC)や運転温度が約650℃の溶融炭酸塩形燃料電池(MCFC)}では排出ガスの温度が高いので、このような高温型燃料電池とガスタービンとを組み合わせた燃料電池−ガスタービン発電設備では、高効率で発電を実施することができる。   In particular, high temperature fuel cells {solid electrolyte fuel cells (SOFC) with an operating temperature of about 1000 ° C and molten carbonate fuel cells (MCFC) with an operating temperature of about 650 ° C} have a high exhaust gas temperature. In the fuel cell-gas turbine power generation facility in which such a high-temperature fuel cell and a gas turbine are combined, power generation can be performed with high efficiency.

燃料電池とガスタービンとを組み合わせた燃料電池−ガスタービン発電設備としては、例えば、特許文献1等に開示されている。   As a fuel cell-gas turbine power generation facility that combines a fuel cell and a gas turbine, for example, it is disclosed in Patent Document 1 and the like.

特開2001−15134号公報JP 2001-15134 A

燃料電池(例えば、SOFC)とガスタービンとを組み合わせた燃料電池−ガスタービン発電設備では、設備の停止時には、電池材料である金属(例えば、Ni)の酸化防止のため、高温状態では燃料側に還元ガスを供給する必要がある。このため、還元ガス節約として設備の停止時に燃料電池を積極的に冷却することが検討されている。   In a fuel cell-gas turbine power generation facility that combines a fuel cell (for example, SOFC) and a gas turbine, when the facility is stopped, the metal (for example, Ni) that is a cell material is prevented from being oxidized, so that the fuel side is at a high temperature state. It is necessary to supply reducing gas. For this reason, it has been studied to actively cool the fuel cell when the equipment is stopped to save reducing gas.

また、運転時には、燃料電池に供給される空気の流量を適正に制御することが種々検討されている。   Further, various studies have been made to appropriately control the flow rate of air supplied to the fuel cell during operation.

本発明は上記状況に鑑みてなされたもので、燃料電池とガスタービンとを組み合わせたタービン発電設備において、設備の停止時に燃料電池の電池材料の高温酸化を防止することができる燃料電池−ガスタービン発電設備を提供することを目的とする。   The present invention has been made in view of the above situation, and in a turbine power generation facility in which a fuel cell and a gas turbine are combined, a fuel cell-gas turbine capable of preventing high-temperature oxidation of the cell material of the fuel cell when the facility is stopped. The purpose is to provide power generation facilities.

また、本発明は上記状況に鑑みてなされたもので、燃料電池とガスタービンとを組み合わせたタービン発電設備において、コストを最小限に抑えて設備の停止時に燃料電池を短時間で冷却することができる燃料電池−ガスタービン発電設備を提供することを目的とする。   Further, the present invention has been made in view of the above situation, and in a turbine power generation facility that combines a fuel cell and a gas turbine, the fuel cell can be cooled in a short time when the facility is stopped while minimizing the cost. An object of the present invention is to provide a fuel cell-gas turbine power generation facility.

また、本発明は上記状況に鑑みてなされたもので、燃料電池に供給される空気の流量を適正に制御することができる燃料電池−ガスタービン発電設備を提供することを目的とする。   Another object of the present invention is to provide a fuel cell-gas turbine power generation facility capable of appropriately controlling the flow rate of air supplied to the fuel cell.

上記目的を達成するための本発明の第1の発明に係る燃料電池−ガスタービン発電設備は、空気を圧縮する圧縮機と、圧縮機で圧縮された圧縮空気が加熱される熱交換手段と、熱交換手段で加熱された圧縮空気が空気極側に供給されると共に燃料が燃料極側に供給され供給された圧縮空気中の酸素と燃料とを電解質を介して電池反応させて発電する燃料電池と、燃料電池からの排空気及び排ガスが送られる燃焼器と、燃焼器からの燃焼ガスが膨張されることで駆動され圧縮機と同軸状態に設けられるガスタービンと、熱交換手段の上流側における圧縮空気の流量を調整する流量調整手段と、燃料電池からの排ガスを冷却する冷却手段とを備えたことを特徴とする。   In order to achieve the above object, a fuel cell-gas turbine power generation facility according to the first aspect of the present invention includes a compressor for compressing air, heat exchange means for heating the compressed air compressed by the compressor, Compressed air heated by the heat exchange means is supplied to the air electrode side, and fuel is supplied to the fuel electrode side. The fuel cell generates electric power by causing a cell reaction between oxygen and fuel in the supplied compressed air via the electrolyte. A combustor to which exhaust air and exhaust gas from the fuel cell are sent, a gas turbine that is driven by expansion of combustion gas from the combustor and provided coaxially with the compressor, and upstream of the heat exchange means A flow rate adjusting means for adjusting the flow rate of the compressed air and a cooling means for cooling the exhaust gas from the fuel cell are provided.

上記目的を達成するための本発明の第2の発明に係る燃料電池−ガスタービン発電設備は、空気を圧縮する圧縮機と、圧縮機で圧縮された圧縮空気が加熱される熱交換手段と、熱交換手段で加熱された圧縮空気が空気極側に供給されると共に燃料が燃料極側に供給され供給された圧縮空気中の酸素と燃料とを電解質を介して電池反応させて発電する燃料電池と、燃料電池からの排空気及び排ガスが送られる燃焼器と、燃焼器からの燃焼ガスが膨張されることで駆動され圧縮機と同軸状態に設けられるガスタービンと、ガスタービンの駆動力を電力に変換する発電機と、設備の停止時に燃料電池の燃料極側にパージガスを供給するパージガス供給手段と、設備の停止時に発電機をモータ駆動させて圧縮機からの圧縮空気を燃料電池の空気極側に冷却空気として供給するモータ駆動手段と、熱交換手段の上流側における圧縮空気の流量を調整する流量調整手段と、燃料電池からの排ガスを冷却する冷却手段と、流量調整手段の上流側における圧縮空気を冷却手段の冷媒とするためのバイパス流路と、冷却手段の後流側の排ガスを燃料電池の燃料極側に供給される燃料に合流させる循環系とを備えたことを特徴とする。   In order to achieve the above object, a fuel cell-gas turbine power generation facility according to a second aspect of the present invention includes a compressor that compresses air, heat exchange means that heats compressed air compressed by the compressor, Compressed air heated by the heat exchange means is supplied to the air electrode side, and fuel is supplied to the fuel electrode side. The fuel cell generates electric power by causing a cell reaction between oxygen and fuel in the supplied compressed air via the electrolyte. A combustor to which exhaust air and exhaust gas from the fuel cell are sent, a gas turbine that is driven by expansion of the combustion gas from the combustor and provided coaxially with the compressor, and a driving force of the gas turbine A generator for converting the gas into the fuel electrode, purge gas supply means for supplying purge gas to the fuel electrode side of the fuel cell when the facility is stopped, and a motor driven by the generator when the facility is stopped so that the compressed air from the compressor is supplied to the air electrode of the fuel cell. On the side Motor driving means to be supplied as reject air, flow rate adjusting means for adjusting the flow rate of compressed air upstream of the heat exchanging means, cooling means for cooling exhaust gas from the fuel cell, and compressed air upstream of the flow rate adjusting means And a circulation path for joining the exhaust gas on the downstream side of the cooling means to the fuel supplied to the fuel electrode side of the fuel cell.

そして、第1の発明又は第2の発明に記載の燃料電池−ガスタービン発電設備において、燃料電池は固体電解質形燃料電池であることを特徴とする。   In the fuel cell-gas turbine power generation facility according to the first invention or the second invention, the fuel cell is a solid oxide fuel cell.

本発明の第1の発明に係る燃料電池−ガスタービン発電設備は、空気を圧縮する圧縮機と、圧縮機で圧縮された圧縮空気が加熱される熱交換手段と、熱交換手段で加熱された圧縮空気が空気極側に供給されると共に燃料が燃料極側に供給され供給された圧縮空気中の酸素と燃料とを電解質を介して電池反応させて発電する燃料電池と、燃料電池からの排空気及び排ガスが送られる燃焼器と、燃焼器からの燃焼ガスが膨張されることで駆動され圧縮機と同軸状態に設けられるガスタービンと、熱交換手段の上流側における圧縮空気の流量を調整する流量調整手段と、燃料電池からの排ガスを冷却する冷却手段とを備えたので、温度が高くない圧縮空気の流量を制御することができ、燃料電池に供給される空気の流量を適正に制御することが可能になる。   A fuel cell-gas turbine power generation facility according to a first aspect of the present invention includes a compressor that compresses air, heat exchange means that heats compressed air compressed by the compressor, and heat that is heated by the heat exchange means. Compressed air is supplied to the air electrode side, fuel is supplied to the fuel electrode side, and oxygen and fuel in the supplied compressed air are subjected to a cell reaction via an electrolyte to generate power, and a fuel cell A combustor to which air and exhaust gas are sent, a gas turbine that is driven by expansion of combustion gas from the combustor and provided coaxially with the compressor, and a flow rate of compressed air upstream of the heat exchange means is adjusted. Since the flow rate adjusting means and the cooling means for cooling the exhaust gas from the fuel cell are provided, the flow rate of the compressed air whose temperature is not high can be controlled, and the flow rate of the air supplied to the fuel cell is appropriately controlled. Possible It made.

本発明の第2の発明に係る燃料電池−ガスタービン発電設備は、空気を圧縮する圧縮機と、圧縮機で圧縮された圧縮空気が加熱される熱交換手段と、熱交換手段で加熱された圧縮空気が空気極側に供給されると共に燃料が燃料極側に供給され供給された圧縮空気中の酸素と燃料とを電解質を介して電池反応させて発電する燃料電池と、燃料電池からの排空気及び排ガスが送られる燃焼器と、燃焼器からの燃焼ガスが膨張されることで駆動され圧縮機と同軸状態に設けられるガスタービンと、ガスタービンの駆動力を電力に変換する発電機と、設備の停止時に燃料電池の燃料極側にパージガスを供給するパージガス供給手段と、設備の停止時に発電機をモータ駆動させて圧縮機からの圧縮空気を燃料電池の空気極側に冷却空気として供給するモータ駆動手段と、熱交換手段の上流側における圧縮空気の流量を調整する流量調整手段と、燃料電池からの排ガスを冷却する冷却手段と、流量調整手段の上流側における圧縮空気を冷却手段の冷媒とするためのバイパス流路と、冷却手段の後流側の排ガスを燃料電池の燃料極側に供給される燃料に合流させる循環系とを備えたので、設備の停止時に燃料電池の燃料極側にパージガスを供給することにより電池材料の高温酸化を防止することが可能になると共に、設備の停止時にモータ駆動手段により発電機をモータ駆動させて圧縮機からの圧縮空気を燃料電池の空気極側に冷却空気として供給することにより、コストを最小限に抑えて設備の停止時に燃料電池を短時間で冷却することが可能になり、温度が高くない圧縮空気の流量を制御すると共に圧縮空気を冷却手段の冷媒として燃料電池からの排ガスを冷却することにより、エネルギーを有効に活用して燃料電池に供給される空気の流量を適正に制御することが可能になる。   A fuel cell-gas turbine power generation facility according to a second aspect of the present invention is a compressor that compresses air, a heat exchange means that heats compressed air compressed by the compressor, and is heated by the heat exchange means. Compressed air is supplied to the air electrode side, fuel is supplied to the fuel electrode side, and oxygen and fuel in the supplied compressed air are subjected to a cell reaction via an electrolyte to generate power, and a fuel cell A combustor to which air and exhaust gas are sent, a gas turbine that is driven by expansion of combustion gas from the combustor and provided coaxially with the compressor, and a generator that converts the driving force of the gas turbine into electric power, A purge gas supply means for supplying purge gas to the fuel electrode side of the fuel cell when the facility is stopped, and a generator is driven by the motor when the facility is stopped to supply compressed air from the compressor as cooling air to the air electrode side of the fuel cell Mo A flow rate adjusting means for adjusting the flow rate of the compressed air upstream of the heat exchanging means, a cooling means for cooling the exhaust gas from the fuel cell, and a refrigerant for cooling the compressed air upstream of the flow rate adjusting means. And a circulation system for merging the exhaust gas on the downstream side of the cooling means with the fuel supplied to the fuel electrode side of the fuel cell, so that the fuel cell side of the fuel cell when the equipment is stopped By supplying purge gas to the battery, it is possible to prevent high-temperature oxidation of the battery material, and when the equipment is stopped, the motor is driven by the motor driving means so that the compressed air from the compressor is supplied to the air electrode side of the fuel cell. By supplying the air as cooling air, it is possible to cool the fuel cell in a short time when the equipment is shut down while minimizing the cost, and to control the flow rate of compressed air at a low temperature By cooling the exhaust gas from the fuel cell together with compressed air as a refrigerant cooling means, it is possible to properly control the flow rate of air supplied to enable the fuel cell by utilizing energy.

そして、第1の発明又は第2の発明に係る燃料電池−ガスタービン発電設備において、燃料電池は固体電解質形燃料電池であるので、固体電解質形燃料電池とガスタービンを組み合わせた効率のよい設備とすることが可能になる。   In the fuel cell-gas turbine power generation facility according to the first or second invention, since the fuel cell is a solid oxide fuel cell, an efficient facility combining the solid oxide fuel cell and the gas turbine, It becomes possible to do.

図1には本発明の一実施形態例に係る燃料電池−ガスタービン発電設備の概略系統を示してある。   FIG. 1 shows a schematic system of a fuel cell-gas turbine power generation facility according to an embodiment of the present invention.

図に示すように、燃料電池−ガスタービン発電設備は、燃料電池としての固体電解質形燃料電池(SOFC)1とタービン設備2とで構成されている。タービン設備2は圧縮機3及びガスタービン4及び起動用のモータ機能を備えた発電機5で構成され、ガスタービン4の排ガスは、例えば、図示しない排熱回収ボイラで熱回収される。SOFC1は、空気(酸素)と燃料とを電解質を介して電池反応させて発電するものである。   As shown in the figure, the fuel cell-gas turbine power generation facility includes a solid oxide fuel cell (SOFC) 1 as a fuel cell and a turbine facility 2. The turbine equipment 2 includes a compressor 3, a gas turbine 4, and a generator 5 having a motor function for starting. The exhaust gas from the gas turbine 4 is recovered by, for example, an exhaust heat recovery boiler (not shown). The SOFC 1 generates electricity by causing a cell reaction between air (oxygen) and fuel via an electrolyte.

SOFC1へ供給される空気は、圧縮機3で圧縮された圧縮空気が送られる。圧縮機3で圧縮された圧縮空気は熱交換手段としての第1空気予熱器6に送られ、第1空気予熱器6では圧縮空気がガスタービン4の排ガスとの間で熱交換されて加熱される。第1空気予熱器5で加熱された圧縮空気が内部空気予熱器11で予熱されてSOFC1の空気極側に供給される。燃料は脱硫等の処理が施された後SOFC1の燃料極側に供給される。   The air supplied to the SOFC 1 is compressed air compressed by the compressor 3. The compressed air compressed by the compressor 3 is sent to a first air preheater 6 as heat exchange means, and the first air preheater 6 heats the compressed air by exchanging heat with the exhaust gas of the gas turbine 4. The The compressed air heated by the first air preheater 5 is preheated by the internal air preheater 11 and supplied to the air electrode side of the SOFC 1. The fuel is supplied to the fuel electrode side of the SOFC 1 after being subjected to treatment such as desulfurization.

SOFC1の未反応分を含有する燃料側の排ガスは冷却手段としての燃料冷却器7に送られ、燃料冷却器7で冷却された排ガスは燃焼器8に送られる。また、SOFC1の排空気は内部空気予熱器11で熱回収されて燃焼器8に送られる。更に、SOFC1に送られる燃料の一部が燃焼器8に送られる。   The fuel-side exhaust gas containing unreacted components of SOFC 1 is sent to a fuel cooler 7 as a cooling means, and the exhaust gas cooled by the fuel cooler 7 is sent to a combustor 8. Further, the exhaust air of the SOFC 1 is recovered by the internal air preheater 11 and sent to the combustor 8. Further, a part of the fuel sent to the SOFC 1 is sent to the combustor 8.

燃料冷却器7の後流側の排ガスの一部は循環系としての循環路9から再循環ブロワ10を介してSOFC1の燃料極側に送られる燃料に合流される。   A part of the exhaust gas on the downstream side of the fuel cooler 7 is joined to the fuel sent from the circulation path 9 as a circulation system to the fuel electrode side of the SOFC 1 via the recirculation blower 10.

燃焼器8では、内部空気予熱器11で熱回収された排空気、燃料冷却器6で冷却された排ガス及び燃料の一部が燃焼され、燃焼ガスがガスタービン4で膨張されて発電機5の発電出力に変換される。ガスタービン4で膨張されて排出される排ガスは第1空気予熱器6で熱回収されて後流側に送られる。第1空気予熱器6と並列に第2空気予熱器12が設けられ、ガスタービン4で膨張されて排出される排ガスの一部が第2空気予熱器12で熱回収されて後流側に送られる。   In the combustor 8, the exhaust air recovered by the internal air preheater 11, the exhaust gas cooled by the fuel cooler 6, and a part of the fuel are combusted, and the combustion gas is expanded by the gas turbine 4. Converted to power generation output. The exhaust gas expanded and discharged by the gas turbine 4 is recovered by the first air preheater 6 and sent to the downstream side. A second air preheater 12 is provided in parallel with the first air preheater 6, and a part of the exhaust gas expanded and discharged by the gas turbine 4 is recovered by the second air preheater 12 and sent to the downstream side. It is done.

一方、第1空気予熱器6の上流側における圧縮空気の流量を調整する流量調整手段としての流量調整弁13が設けられ、流量調整弁13によりSOFC1に送られる圧縮空気の量が制御される。   On the other hand, a flow rate adjusting valve 13 is provided as a flow rate adjusting means for adjusting the flow rate of the compressed air on the upstream side of the first air preheater 6, and the amount of compressed air sent to the SOFC 1 is controlled by the flow rate adjusting valve 13.

流量調整弁13は第1空気予熱器6の上流側に設けられているので、第1空気予熱器6で加熱される前の比較的低温(例えば、200℃)の圧縮空気の流量を制御することになる。このため、耐高温材料の機器を使用する必要がなく高価な機器が不要でコストの増加を抑制することができる。そして、比較的低温の圧縮空気を制御するために、機器構成部材の体積変化が少なく、流量を精度よく制御することが可能になる。因みに、高温の圧縮空気を制御する場合、機器構成部材の体積が大きく変化し、精密な耐高温材料の機器を使用しなければならず、さらに、流量を精度よく制御することが困難である。高温の圧縮空気(例えば、400℃以上)の圧縮空気の流量を流量調整弁で制御すると、流量調整弁の構成部材の温度変化にともなう体積変化が大きくなり、流量調整弁の締切性が低下してしまう。   Since the flow rate adjusting valve 13 is provided on the upstream side of the first air preheater 6, the flow rate of the relatively low temperature (for example, 200 ° C.) compressed air before being heated by the first air preheater 6 is controlled. It will be. For this reason, it is not necessary to use a high-temperature resistant material device, and an expensive device is unnecessary, and an increase in cost can be suppressed. And in order to control comparatively low temperature compressed air, there is little volume change of an apparatus structural member, and it becomes possible to control a flow volume accurately. By the way, when controlling high-temperature compressed air, the volume of the equipment constituent member changes greatly, equipment of precise high temperature resistant material must be used, and it is difficult to control the flow rate with high accuracy. When the flow rate of compressed air of high-temperature compressed air (for example, 400 ° C. or higher) is controlled by the flow rate adjustment valve, the volume change accompanying the temperature change of the flow rate adjustment valve component increases, and the shutoff property of the flow rate adjustment valve decreases. End up.

流量調整弁13の上流側における圧縮空気の一部を分岐するバイパス流路14が設けられ、バイパス流路14は燃料冷却器7につながれている。バイパス流路14から送られる圧縮空気により燃料冷却器7では燃料が冷却され、熱交換された圧縮空気は第2空気予熱器12で予熱されて燃焼器8に送られる。このため、燃料冷却器7の冷却媒体として外部の冷媒を供給する必要がなくなり、エネルギーを有効に利用することでシステム効率の向上が可能になる。   A bypass passage 14 that branches a part of the compressed air on the upstream side of the flow regulating valve 13 is provided, and the bypass passage 14 is connected to the fuel cooler 7. The fuel is cooled in the fuel cooler 7 by the compressed air sent from the bypass passage 14, and the compressed air subjected to heat exchange is preheated by the second air preheater 12 and sent to the combustor 8. For this reason, it is not necessary to supply an external refrigerant as a cooling medium of the fuel cooler 7, and the system efficiency can be improved by effectively using energy.

尚、第2空気予熱器12を設けずに燃料冷却器7で熱交換された圧縮空気を燃焼器8に直接供給することも可能である。また、燃料冷却器7の冷却媒体として外部の冷媒(専用の冷却水等)を適用することも可能である。   It is also possible to directly supply the combustor 8 with the compressed air heat-exchanged by the fuel cooler 7 without providing the second air preheater 12. It is also possible to apply an external refrigerant (exclusive cooling water or the like) as a cooling medium for the fuel cooler 7.

上記構成の燃料電池−ガスタービン発電設備では、燃料がSOFC1の燃料極に供給されると共に、圧縮機3で圧縮されて流量調整弁13で流量が所定状態に調整された圧縮空気が第1空気予熱器6及び内部空気予熱器11で所定温度に加熱されてSOFC1に供給される。SOFC1では圧縮空気中の酸素及び燃料の電池反応により発電が行われる。   In the fuel cell-gas turbine power generation facility having the above-described configuration, the fuel is supplied to the fuel electrode of the SOFC 1, and the compressed air that is compressed by the compressor 3 and the flow rate is adjusted to a predetermined state by the flow rate adjusting valve 13 is the first air. The preheater 6 and the internal air preheater 11 are heated to a predetermined temperature and supplied to the SOFC 1. In SOFC1, power generation is performed by a cell reaction of oxygen and fuel in compressed air.

未反応分を含有する排ガスは、燃料冷却器7で冷却されて燃焼器8に送られ、燃料冷却器7で冷却された排ガスの一部は循環路9から再循環ブロワ10を介してSOFC1の燃料極側に送られる燃料に合流される。未反応酸素を含有する排空気は、内部空気予熱器11で熱回収されて燃焼器8に送られる。また、燃料の一部が燃焼器8に送られる。   The exhaust gas containing unreacted components is cooled by the fuel cooler 7 and sent to the combustor 8, and a part of the exhaust gas cooled by the fuel cooler 7 passes through the recirculation blower 10 through the recirculation blower 10. Combined with the fuel sent to the fuel electrode side. Exhaust air containing unreacted oxygen is recovered by the internal air preheater 11 and sent to the combustor 8. A part of the fuel is sent to the combustor 8.

燃焼器8で生成された燃焼ガスはガスタービン4で膨張されてガスタービン4が作動し、ガスタービン4の排ガスが図示しない排熱回収ボイラ等で熱回収されて放出される。   The combustion gas generated by the combustor 8 is expanded by the gas turbine 4 to operate the gas turbine 4, and the exhaust gas from the gas turbine 4 is recovered by heat with an exhaust heat recovery boiler (not shown) and released.

上述した燃料電池−ガスタービン発電設備では、第1空気予熱器6の上流側における圧縮空気の流量が流量調整弁13により制御されてSOFC1に送られるので、第1空気予熱器6で加熱される前の比較的低温(例えば、200℃)の圧縮空気の流量を制御することになり、流量調整弁13の構成部材の体積変化が少なく、流量を精度よく制御することが可能になる。また、高温の圧縮空気の流量を制御する必要がないため、安価な流量調整弁13を適用することが可能になる。   In the fuel cell-gas turbine power generation facility described above, the flow rate of the compressed air on the upstream side of the first air preheater 6 is controlled by the flow rate adjusting valve 13 and sent to the SOFC 1, so that it is heated by the first air preheater 6. The flow rate of the previous relatively low temperature (for example, 200 ° C.) compressed air is controlled, so that the volume change of the constituent members of the flow rate adjusting valve 13 is small, and the flow rate can be controlled with high accuracy. In addition, since it is not necessary to control the flow rate of the high-temperature compressed air, an inexpensive flow rate adjustment valve 13 can be applied.

ところで、高温型燃料電池であるSOFC1は運転温度が約1000℃の固体電解質形燃料電池でるため、設備の停止時には約1000℃の高温の状態となっている。SOFC1は保温性がよく冷却されにくく、高温の状態ではSOFC1の電池材料(例えば、Ni)が高温に晒されて酸化が生じる虞がある。従って、設備の停止時にはSOFC1に対して酸化防止及び短時間での冷却を行なう必要がある。   By the way, the SOFC1, which is a high-temperature fuel cell, is a solid electrolyte fuel cell having an operating temperature of about 1000 ° C., and therefore is at a high temperature of about 1000 ° C. when the facility is stopped. SOFC1 has good heat retention and is not easily cooled, and in a high temperature state, SOFC1 battery material (for example, Ni) may be exposed to high temperature to cause oxidation. Therefore, it is necessary to prevent oxidation and cool the SOFC 1 in a short time when the equipment is stopped.

このため、本実施形態例の燃料電池−ガスタービン発電設備には、設備の停止時にSOFC1の燃料極側に還元ガス(例えば、H,N)を供給する還元ガス供給手段が設けられている。また、短時間で冷却を行なうために圧縮機3からの圧縮空気をSOFC1の空気極側に冷却空気として供給するモータ駆動手段が設けられている。   For this reason, the fuel cell-gas turbine power generation facility of this embodiment is provided with a reducing gas supply means for supplying a reducing gas (for example, H, N) to the fuel electrode side of the SOFC 1 when the facility is stopped. Further, in order to perform cooling in a short time, motor driving means is provided for supplying compressed air from the compressor 3 to the air electrode side of the SOFC 1 as cooling air.

還元ガス供給手段を説明する。   The reducing gas supply means will be described.

図に示すように、SOFC1の燃料極側には還元ガス流路21が接続され、設備の停止時に還元ガス流路21から還元ガス(例えば、H,N)がSOFC1の燃料極に供給される。   As shown in the figure, a reducing gas passage 21 is connected to the fuel electrode side of the SOFC 1, and reducing gas (for example, H, N) is supplied from the reducing gas passage 21 to the fuel electrode of the SOFC 1 when the facility is stopped. .

このため、設備の停止時にSOFC1の電池材料(例えば、Ni)が高温に晒される状況になっていても、還元ガスにより高温酸化を防止することが可能になる。また、還元ガス自体によりSOFC1を冷却することもできる。   For this reason, even if the battery material (for example, Ni) of SOFC1 is exposed to a high temperature when the facility is stopped, the high temperature oxidation can be prevented by the reducing gas. Further, the SOFC 1 can be cooled by the reducing gas itself.

モータ駆動手段を説明する。   The motor driving means will be described.

図に示すように、起動用のモータ機能を備えた発電機5には通常の制御機能とは別に、発電機5を起動時とは異なる状態でモータ駆動(長時間でのモータ駆動)させるモータ制御手段23が備えられている。設備の停止時には、モータ制御手段23により発電機5がモータ駆動され、圧縮機3からの圧縮空気がSOFC1の空気極側に冷却用の空気として供給される。   As shown in the figure, the generator 5 having the motor function for starting is a motor that drives the generator 5 in a state different from the time of starting (motor driving for a long time) separately from the normal control function. Control means 23 is provided. When the facility is stopped, the generator 5 is motor-driven by the motor control means 23, and the compressed air from the compressor 3 is supplied to the air electrode side of the SOFC 1 as cooling air.

このため、設備の停止時にSOFC1に冷却用の空気が送られることになり、短時間にSOFC1の冷却を行なうことができる。そして、専用の冷却空気供給手段を設けずに発電機5を起動時とは異なる状態でモータ駆動させているので、冷却のための機器(ボンベや送風機)を別途設置することなく、最小限の設備の追加(発電機5の制御系)を行なうだけでSOFC1への冷却空気の供給を行なうことができる。このため、高温状態で還元ガスを供給し続ける必要がなくなり、還元ガス量を削減することができる。   For this reason, the cooling air is sent to the SOFC 1 when the facility is stopped, and the SOFC 1 can be cooled in a short time. And since the generator 5 is driven by the motor in a state different from the start-up state without providing a dedicated cooling air supply means, a minimum amount of cooling equipment (cylinder and blower) is installed without any additional installation. Cooling air can be supplied to the SOFC 1 simply by adding equipment (control system for the generator 5). For this reason, it is not necessary to continue supplying the reducing gas in a high temperature state, and the amount of reducing gas can be reduced.

上述した燃料電池−ガスタービン発電設備では、還元ガス供給手段及びモータ駆動手段を備えたので、設備の停止時にSOFC1の電池材料(例えば、Ni)の高温酸化を防止することができると共に設備コストや機器構成を増加させることなく短時間でSOFC1を冷却することが可能になる。   Since the fuel cell-gas turbine power generation facility described above includes the reducing gas supply means and the motor drive means, it is possible to prevent high-temperature oxidation of the SOFC1 battery material (for example, Ni) when the facility is stopped, The SOFC 1 can be cooled in a short time without increasing the device configuration.

尚、モータ制御手段23により発電機5をモータ駆動して、圧縮機3からの圧縮空気をSOFC1の空気極側に冷却用の空気として供給する場合、配管の圧損関係により冷却用の空気はSOFC1の空気極側に送られる。図に示したように、バイパス流路14に、例えば、遮断弁25を設け、モータ制御手段23により発電機5をモータ駆動する際にバイパス流路14を遮断し、冷却用の空気がSOFC1を経由せずに燃焼器8側に送られることを積極的に防止することも可能である。   In addition, when the generator 5 is driven by the motor by the motor control means 23 and the compressed air from the compressor 3 is supplied to the air electrode side of the SOFC 1 as cooling air, the cooling air is SOFC 1 due to the pressure loss relationship of the piping. Sent to the air electrode side. As shown in the figure, for example, a shutoff valve 25 is provided in the bypass passage 14, and the bypass passage 14 is shut off when the motor 5 is driven by the motor control means 23, so that the cooling air supplies the SOFC 1. It is also possible to positively prevent sending to the combustor 8 side without going through.

また、図2に示したように、第1空気予熱器6と第2空気予熱器12とを直列に配設することも可能である。また、還元ガス供給手段及びモータ駆動手段のいずれかを設けた設備とすることも可能である。更に、還元ガス供給手段及びモータ駆動手段を設けずに、第1空気予熱器6の上流側に流量調整弁13を設け、バイパス流路14を通して圧縮機3からの圧縮空気を燃料冷却器7の冷媒として適用する構成の設備とすることも可能である。   Further, as shown in FIG. 2, the first air preheater 6 and the second air preheater 12 can be arranged in series. Moreover, it is also possible to set it as the installation which provided either the reducing gas supply means and the motor drive means. Further, without providing the reducing gas supply means and the motor driving means, the flow rate adjusting valve 13 is provided upstream of the first air preheater 6, and the compressed air from the compressor 3 is supplied to the fuel cooler 7 through the bypass passage 14. It is also possible to set it as the installation of the structure applied as a refrigerant | coolant.

本発明の一実施形態例に係る燃料電池−ガスタービン発電設備の概略系統図。1 is a schematic system diagram of a fuel cell-gas turbine power generation facility according to an embodiment of the present invention. 本発明の他の実施形態例に係る燃料電池−ガスタービン発電設備の概略系統図。FIG. 3 is a schematic system diagram of a fuel cell-gas turbine power generation facility according to another embodiment of the present invention.

符号の説明Explanation of symbols

1 固体電解質形燃料電池(SOFC)
2 タービン設備
3 圧縮機
4 ガスタービン
5 発電機
6 第1空気予熱器
7 燃料冷却器
8 燃焼器
9 循環路
10 再循環ブロワ
11 内部空気予熱器
12 第2空気予熱器
13 流量調整弁
14 バイパス流路
21 還元ガス流路
23 モータ制御手段
25 遮断弁
1 Solid electrolyte fuel cell (SOFC)
DESCRIPTION OF SYMBOLS 2 Turbine equipment 3 Compressor 4 Gas turbine 5 Generator 6 1st air preheater 7 Fuel cooler 8 Combustor 9 Circulation path 10 Recirculation blower 11 Internal air preheater 12 2nd air preheater 13 Flow control valve 14 Bypass flow Path 21 reducing gas path 23 motor control means 25 shut-off valve

Claims (3)

空気を圧縮する圧縮機と、
圧縮機で圧縮された圧縮空気が加熱される熱交換手段と、
熱交換手段で加熱された圧縮空気が空気極側に供給されると共に燃料が燃料極側に供給され供給された圧縮空気中の酸素と燃料とを電解質を介して電池反応させて発電する燃料電池と、
燃料電池からの排空気及び排燃料ガスが送られる燃焼器と、
燃焼器からの燃焼ガスが膨張されることで駆動され圧縮機と同軸状態に設けられるガスタービンと、
熱交換手段の上流側における圧縮空気の流量を調整する流量調整手段と、
燃料電池からの排燃料ガスを冷却する冷却手段と
を備えた
ことを特徴とする燃料電池−ガスタービン発電設備。
A compressor for compressing air;
Heat exchange means for heating the compressed air compressed by the compressor;
Compressed air heated by the heat exchange means is supplied to the air electrode side, and fuel is supplied to the fuel electrode side. The fuel cell generates electric power by causing a cell reaction between oxygen and fuel in the supplied compressed air via the electrolyte. When,
A combustor to which exhaust air and exhaust gas from the fuel cell are sent;
A gas turbine driven by expansion of combustion gas from the combustor and provided coaxially with the compressor;
A flow rate adjusting means for adjusting the flow rate of the compressed air on the upstream side of the heat exchange means;
A fuel cell-gas turbine power generation facility comprising cooling means for cooling exhaust fuel gas from the fuel cell.
空気を圧縮する圧縮機と、
圧縮機で圧縮された圧縮空気が加熱される熱交換手段と、
熱交換手段で加熱された圧縮空気が空気極側に供給されると共に燃料が燃料極側に供給され供給された圧縮空気中の酸素と燃料とを電解質を介して電池反応させて発電する燃料電池と、
燃料電池からの排空気及び排燃料ガスが送られる燃焼器と、
燃焼器からの燃焼ガスが膨張されることで駆動され圧縮機と同軸状態に設けられるガスタービンと、
ガスタービンの駆動力を電力に変換する発電機と、
設備の停止時に燃料電池の燃料極側にパージガスを供給するパージガス供給手段と、
設備の停止時に発電機をモータ駆動させて圧縮機からの圧縮空気を燃料電池の空気極側に冷却空気として供給するモータ駆動手段と、
熱交換手段の上流側における圧縮空気の流量を調整する流量調整手段と、
燃料電池からの排燃料ガスを冷却する冷却手段と、
流量調整手段の上流側における圧縮空気を冷却手段の冷媒とするためのバイパス流路と、
冷却手段の後流側の排燃料ガスを燃料電池の燃料極側に供給される燃料に合流させる循環系と
を備えた
ことを特徴とする燃料電池−ガスタービン発電設備。
A compressor for compressing air;
Heat exchange means for heating the compressed air compressed by the compressor;
Compressed air heated by the heat exchange means is supplied to the air electrode side, and fuel is supplied to the fuel electrode side. The fuel cell generates electric power by causing a cell reaction between oxygen and fuel in the supplied compressed air via the electrolyte. When,
A combustor to which exhaust air and exhaust gas from the fuel cell are sent;
A gas turbine driven by expansion of combustion gas from the combustor and provided coaxially with the compressor;
A generator that converts the driving force of the gas turbine into electric power;
Purge gas supply means for supplying purge gas to the fuel electrode side of the fuel cell when the facility is stopped;
Motor driving means for driving the generator when the equipment is stopped and supplying compressed air from the compressor as cooling air to the air electrode side of the fuel cell;
A flow rate adjusting means for adjusting the flow rate of the compressed air on the upstream side of the heat exchange means;
A cooling means for cooling the exhaust fuel gas from the fuel cell;
A bypass flow path for the compressed air on the upstream side of the flow rate adjusting means as a refrigerant of the cooling means;
A fuel cell-gas turbine power generation facility comprising: a circulation system for joining exhaust fuel gas on the downstream side of the cooling means to fuel supplied to the fuel electrode side of the fuel cell.
請求項1又は請求項2に記載の燃料電池−ガスタービン発電設備において、
燃料電池は固体電解質形燃料電池である
ことを特徴とする燃料電池−ガスタービン発電設備。
The fuel cell-gas turbine power generation facility according to claim 1 or 2,
A fuel cell-gas turbine power generation facility, wherein the fuel cell is a solid oxide fuel cell.
JP2007257047A 2007-10-01 2007-10-01 Fuel cell-gas turbine power generation facility Expired - Fee Related JP4461166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007257047A JP4461166B2 (en) 2007-10-01 2007-10-01 Fuel cell-gas turbine power generation facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007257047A JP4461166B2 (en) 2007-10-01 2007-10-01 Fuel cell-gas turbine power generation facility

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002371337A Division JP4295500B2 (en) 2002-12-24 2002-12-24 Fuel cell-gas turbine power generation facility

Publications (2)

Publication Number Publication Date
JP2008066307A true JP2008066307A (en) 2008-03-21
JP4461166B2 JP4461166B2 (en) 2010-05-12

Family

ID=39288784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007257047A Expired - Fee Related JP4461166B2 (en) 2007-10-01 2007-10-01 Fuel cell-gas turbine power generation facility

Country Status (1)

Country Link
JP (1) JP4461166B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012195173A (en) * 2011-03-16 2012-10-11 Mitsubishi Heavy Ind Ltd Fuel cell and gas turbine combined power generation system and start method of fuel cell thereof
WO2013069632A1 (en) * 2011-11-09 2013-05-16 Jx日鉱日石エネルギー株式会社 Method and device for stopping solid-oxide fuel cell system
JP2013182720A (en) * 2012-02-29 2013-09-12 Mitsubishi Heavy Ind Ltd Sofc combined power generation system and operation method of the same
JP6304430B1 (en) * 2017-04-26 2018-04-04 富士電機株式会社 Fuel cell system and operation method thereof
CN110071309A (en) * 2018-01-19 2019-07-30 哈尔滨工业大学 A kind of novel whirlpool paddle-high-temperature fuel cell hybrid propulsion and energy integral system for aircraft

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012195173A (en) * 2011-03-16 2012-10-11 Mitsubishi Heavy Ind Ltd Fuel cell and gas turbine combined power generation system and start method of fuel cell thereof
WO2013069632A1 (en) * 2011-11-09 2013-05-16 Jx日鉱日石エネルギー株式会社 Method and device for stopping solid-oxide fuel cell system
CN103988353A (en) * 2011-11-09 2014-08-13 吉坤日矿日石能源株式会社 Method and device for stopping solid-oxide fuel cell system
JP2013182720A (en) * 2012-02-29 2013-09-12 Mitsubishi Heavy Ind Ltd Sofc combined power generation system and operation method of the same
JP6304430B1 (en) * 2017-04-26 2018-04-04 富士電機株式会社 Fuel cell system and operation method thereof
JP2018186004A (en) * 2017-04-26 2018-11-22 富士電機株式会社 Fuel cell system and operation method thereof
CN110071309A (en) * 2018-01-19 2019-07-30 哈尔滨工业大学 A kind of novel whirlpool paddle-high-temperature fuel cell hybrid propulsion and energy integral system for aircraft
CN110071309B (en) * 2018-01-19 2021-09-24 哈尔滨工业大学 Turboprop-high-temperature fuel cell hybrid propulsion and energy source integrated system for aircraft

Also Published As

Publication number Publication date
JP4461166B2 (en) 2010-05-12

Similar Documents

Publication Publication Date Title
JP5004156B2 (en) Power generation equipment
JP4579560B2 (en) Fuel cell, normal pressure turbine, hybrid system
JP5185657B2 (en) Combined system
KR101352198B1 (en) Fuel cell hybrid system
JP5522646B2 (en) Combined power generation facility
JP6228752B2 (en) Power generation system and method for starting power generation system
WO2006043494A1 (en) Combined power generation equipment
JP2009205932A (en) Combined system
JP5185658B2 (en) Combined system
JP4461166B2 (en) Fuel cell-gas turbine power generation facility
JP4295500B2 (en) Fuel cell-gas turbine power generation facility
JP6458026B2 (en) Power generation system using exhaust heat from fuel cells
WO2010089883A1 (en) Hybrid power generation system
WO2014112210A1 (en) Power generation system
JP6049421B2 (en) Power generation system and method for operating power generation system
JP4508660B2 (en) Combined power generation system using high-temperature fuel cell
JP5787791B2 (en) SOFC combined power generation apparatus and operation method thereof
JP4192023B2 (en) Thermoelectric supply system
JP4209150B2 (en) Combined power generation facility
JP2013157218A (en) Starting method of solid oxide fuel cell
JP4212322B2 (en) Combined power generation facilities for fuel cells and micro gas turbines and their startup methods
JP2001351641A (en) Combined generating element
JP2006097638A (en) Combined power generation system using solid oxide type fuel cell
JP5645375B2 (en) Combined power generation system
JP6049439B2 (en) Power generation system and method for operating power generation system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091125

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

R151 Written notification of patent or utility model registration

Ref document number: 4461166

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees