JP5522646B2 - Combined power generation facility - Google Patents

Combined power generation facility Download PDF

Info

Publication number
JP5522646B2
JP5522646B2 JP2006116080A JP2006116080A JP5522646B2 JP 5522646 B2 JP5522646 B2 JP 5522646B2 JP 2006116080 A JP2006116080 A JP 2006116080A JP 2006116080 A JP2006116080 A JP 2006116080A JP 5522646 B2 JP5522646 B2 JP 5522646B2
Authority
JP
Japan
Prior art keywords
gas
reforming
power generation
fuel cell
reformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006116080A
Other languages
Japanese (ja)
Other versions
JP2007287579A (en
Inventor
史彦 吉葉
栄一 幸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2006116080A priority Critical patent/JP5522646B2/en
Publication of JP2007287579A publication Critical patent/JP2007287579A/en
Application granted granted Critical
Publication of JP5522646B2 publication Critical patent/JP5522646B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、水素と酸素との電気化学反応により電力を得る燃料電池装置とガスタービンを組み合わせた複合発電設備に関する。   The present invention relates to a combined power generation facility in which a fuel cell device that obtains electric power by an electrochemical reaction between hydrogen and oxygen and a gas turbine are combined.

水素と酸素との電気化学反応により電力を得る燃料電池、例えば、溶融炭酸塩形燃料電池(MCFC)は、例えば、ニッケル多孔質体の燃料極(アノード)と、例えば、酸化ニッケル多孔質体の空気極(カソード)との間に、電解質(炭酸塩)が挟まれて構成されている。そして、天然ガス等の燃料から得られた水素(H)をアノードに供給すると共に、空気(O)と二酸化炭素(CO)をカソードに供給することで、HとOの電気化学反応により発電が行われる。MCFCは高温で作動するため高効率で、COを回収分離できるため環境への影響が少ない等の特徴を有している。このため、近年は、水力、火力、原子力に続く発電システムとして注目されてきている。 A fuel cell that obtains electric power by an electrochemical reaction between hydrogen and oxygen, for example, a molten carbonate fuel cell (MCFC), for example, has a nickel porous fuel electrode (anode) and a nickel oxide porous material, for example. An electrolyte (carbonate) is sandwiched between the air electrode (cathode). Then, hydrogen (H 2 ) obtained from a fuel such as natural gas is supplied to the anode, and air (O 2 ) and carbon dioxide (CO 2 ) are supplied to the cathode, whereby the electricity of H 2 and O 2 is supplied. Electricity is generated by chemical reaction. MCFC operates at a high temperature, has high efficiency, and can recover and separate CO 2 , so that it has a less environmental impact. For this reason, in recent years, it has attracted attention as a power generation system following hydropower, thermal power, and nuclear power.

また、MCFCは高温で作動するため、排気ガスをガスタービンの燃焼器に供給するように構成して、MCFCとガスタービンとを組み合わせた複合発電設備も従来から提案されてきている(例えば、特許文献1参照)。MCFCとガスタービンとを組み合わせた複合発電設備とすることにより、MCFCとガスタービンとで発電を行うことができる。   In addition, since the MCFC operates at a high temperature, a combined power generation facility in which the exhaust gas is supplied to the combustor of the gas turbine and the MCFC and the gas turbine are combined has been proposed (for example, patents). Reference 1). By using a combined power generation facility that combines an MCFC and a gas turbine, it is possible to generate power with the MCFC and the gas turbine.

MCFCをはじめとして水素と酸素との電気化学反応により電力を得る燃料電池装置では、燃料としての水素を得るために、天然ガス等の燃料ガスを改質手段に送り、改質手段に燃料ガスの2倍から3倍程度の蒸気を投入し、燃料ガスを改質して水素ガスを得ている。   In fuel cell devices that obtain electric power through an electrochemical reaction between hydrogen and oxygen, such as MCFC, in order to obtain hydrogen as fuel, a fuel gas such as natural gas is sent to the reforming means, and the fuel gas is supplied to the reforming means. Hydrogen is obtained by reforming the fuel gas by introducing about two to three times the steam.

そして、例えば、MCFCでは、炭酸塩が溶融している領域の温度領域で運転を行うため、カソード側の排気ガスを循環させて温度制御を行っている。MCFCに限らず、燃料電池は運転温度が規制されており、温度制御を行うことは避けられないのが現状である。カソード側の排気ガスを循環させて温度制御を行う場合、特に、純酸素(例えば、95%以上の酸素)を用いて水素との割合を量論比で運転する燃料電池の場合、供給酸素を高レベルに制御しても循環するカソードガスの組成が影響してしまい、燃料電池の性能を高く維持するのは限界があった。   For example, in the MCFC, the temperature is controlled by circulating the exhaust gas on the cathode side in order to operate in the temperature range where the carbonate is melted. The operating temperature of fuel cells is not limited to MCFC, and the current situation is that temperature control is inevitable. In the case of controlling the temperature by circulating the exhaust gas on the cathode side, particularly in the case of a fuel cell that uses pure oxygen (for example, oxygen of 95% or more) and operates at a stoichiometric ratio with hydrogen, supply oxygen is reduced. Even if it is controlled to a high level, the composition of the circulating cathode gas has an effect, and there is a limit to maintaining high performance of the fuel cell.

このため、燃料電池は、高効率で発電が行え、環境に対しても影響が少ない発電システムとして注目されてきているが、反面、温度制御に対する動力等、発電に対して損失が少なからず存在し、また、性能を高次元で維持するのは限界があり、更なる高効率化・高性能化の可能性を有しているのが実情である。このことは、出力の大きさに拘わらず効率化が求められており、特に、少ない出力の設備であっても、高効率化・高性能化が求められている。また、溶融炭酸塩形燃料電池(MCFC)に限らず、固体酸化物形燃料電池(SOFC)を適用した発電設備においても同様に高効率化・高性能化が求められている。   For this reason, fuel cells have been attracting attention as power generation systems that can generate power with high efficiency and have little impact on the environment. However, there are considerable losses to power generation, such as power for temperature control. In addition, there is a limit to maintaining the performance at a high level, and there is a possibility of further improvement in efficiency and performance. This means that efficiency is required regardless of the size of the output. In particular, even if the equipment has a small output, high efficiency and high performance are required. Further, not only in molten carbonate fuel cells (MCFC) but also in power generation facilities to which solid oxide fuel cells (SOFC) are applied, high efficiency and high performance are also demanded.

特開平11−135139号公報JP-A-11-135139

本発明は上記状況に鑑みてなされたもので、発電に対する損失を極力抑えて高次元での効率化・高性能化を図ることができる燃料電池設備とガスタービンとを組み合わせた複合発電設備を提供することを目的とする。   The present invention has been made in view of the above situation, and provides a combined power generation facility that combines a fuel cell facility and a gas turbine capable of achieving high efficiency and high performance while minimizing losses to power generation. The purpose is to do.

上記目的を達成するための複合発電設備に適用される燃料電池設備は、水素を含むアノードガスが供給されると共に酸素を含むカソードガスが供給され、アノードガス及びカソードガスの電気化学反応により発電を行う燃料電池と、アノードガスの供給系に備えられ燃料を改質する改質器と、燃料電池のアノード極側に備えられアノードガスを吸熱反応させる吸熱反応手段と、吸熱反応手段におけるカソードガスの吸熱反応の状況を調整して燃料電池の運転温度を規制する吸熱調整手段とを備えることが好ましい。 A fuel cell facility applied to a combined power generation facility for achieving the above object is supplied with an anode gas containing hydrogen and a cathode gas containing oxygen, and generates electricity by an electrochemical reaction between the anode gas and the cathode gas. A fuel cell to be performed, a reformer provided in the anode gas supply system for reforming the fuel, an endothermic reaction means provided on the anode electrode side of the fuel cell for endothermic reaction of the anode gas, and a cathode gas in the endothermic reaction means adjust the status of the endothermic reaction preferably Rukoto a heat absorbing adjusting means for regulating the operating temperature of the fuel cell.

これにより、吸熱調整手段によりアノードガスを吸熱反応させることで運転温度を所定温度に維持し、温度制御に対する動力を用いることなく燃料電池の運転温度を所定の状態に制御する。 Thus , the operating temperature is maintained at a predetermined temperature by causing the endothermic reaction of the anode gas by the endothermic adjusting means, and the operating temperature of the fuel cell is controlled to a predetermined state without using power for temperature control.

また、複合発電設備に適用される燃料電池設備は、水素を含むアノードガスが供給されると共に酸素を含むカソードガスが供給され、アノードガス及びカソードガスの電気化学反応により発電を行う燃料電池と、アノードガスの供給系に備えられ燃料を改質する改質器と、燃料電池のアノード極側に備えられアノードガスを吸熱反応させる吸熱反応手段と、改質器の改質熱源の状況を調整して燃料の改質状態を調整することで吸熱反応手段の状況を調整し燃料電池の運転温度を規制する改質状況調整手段とを備えることが好ましい。 The fuel cell facility applied to the combined power generation facility is supplied with an anode gas containing hydrogen and a cathode gas containing oxygen, and a fuel cell that generates electricity by an electrochemical reaction between the anode gas and the cathode gas; The reformer for reforming the fuel provided in the anode gas supply system, the endothermic reaction means for the endothermic reaction of the anode gas provided on the anode side of the fuel cell, and the reforming heat source of the reformer are adjusted. Rukoto a reforming conditions adjusting means for adjusting the status of the endothermic reaction means by adjusting the reforming conditions of the fuel regulating the operating temperature of the fuel cell Te is preferred.

これにより、改質状況調整手段により改質器の改質熱源の状況を調整して燃料の改質状態を調整し、調整された燃料をアノードガスとして吸熱反応させることで運転温度を所定温度に維持し、温度制御に対する動力を用いることなく燃料電池の運転温度を所定の状態に制御する。 As a result, the reforming condition adjusting means adjusts the condition of the reforming heat source of the reformer to adjust the reforming state of the fuel, and the operating temperature is set to a predetermined temperature by causing the adjusted fuel to undergo an endothermic reaction as the anode gas. The operation temperature of the fuel cell is controlled to a predetermined state without using power for temperature control.

また、複合発電設備に適用される燃料電池設備は、水素を含むアノードガスが供給されると共に酸素を含むカソードガスが供給され、アノードガス及びカソードガスの電気化学反応により発電を行う燃料電池と、アノードガスの供給系に備えられ燃料を改質すると共に燃料電池の排気ガスの熱を改質熱源とする改質器と、燃料電池のアノード極側に備えられアノードガスを吸熱反応させる吸熱反応手段と、改質器の改質熱源である燃料電池の排気ガスの流通を調整して燃料の改質状態を調整することで吸熱反応手段の状況を調整し燃料電池の運転温度を規制する改質状況調整手段とを備えることが好ましい。 The fuel cell facility applied to the combined power generation facility is supplied with an anode gas containing hydrogen and a cathode gas containing oxygen, and a fuel cell that generates electricity by an electrochemical reaction between the anode gas and the cathode gas; A reformer that is provided in the anode gas supply system and reforms the fuel and uses the heat of the exhaust gas of the fuel cell as a reforming heat source, and an endothermic reaction means that is provided on the anode electrode side of the fuel cell and performs an endothermic reaction of the anode gas And reforming to regulate the temperature of the endothermic reaction means and regulate the operating temperature of the fuel cell by adjusting the flow of exhaust gas of the fuel cell, which is the reforming heat source of the reformer, and adjusting the reforming state of the fuel preferably Rukoto a status adjustment unit.

これにより、改質状況調整手段により排気ガスの流通を調整し、改質器の改質熱源の状況を調整して燃料の改質状態を調整し、調整された燃料をアノードガスとして吸熱反応させることで運転温度を所定温度に維持し、温度制御に対する動力を用いることなく燃料電池の運転温度を所定の状態に制御する。 Thereby, the flow of the exhaust gas is adjusted by the reforming condition adjusting means, the reforming heat source condition of the reformer is adjusted to adjust the reforming state of the fuel, and the adjusted fuel is subjected to an endothermic reaction as the anode gas. Thus, the operating temperature is maintained at a predetermined temperature, and the operating temperature of the fuel cell is controlled to a predetermined state without using power for temperature control.

また、複合発電設備に適用される燃料電池設備は、水素を含むアノードガスが供給されると共に酸素を含むカソードガスが供給され、アノードガス及びカソードガスの電気化学反応により発電を行う燃料電池と、アノードガスの供給系に備えられ燃料を改質すると共に燃料電池の排気ガスの熱を改質熱源とする改質器と、燃料電池のアノード極側に備えられアノードガスを改質することにより吸熱反応させる内部改質手段と、改質器の改質熱源である燃料電池の排気ガスの流通を調整して燃料の改質状態を調整することで内部改質手段の改質状況を調整し燃料電池の運転温度を規制する改質状況調整手段とを備えることが好ましい。 The fuel cell facility applied to the combined power generation facility is supplied with an anode gas containing hydrogen and a cathode gas containing oxygen, and a fuel cell that generates electricity by an electrochemical reaction between the anode gas and the cathode gas; A reformer that is provided in the anode gas supply system and reforms the fuel and uses the heat of the exhaust gas of the fuel cell as a reforming heat source, and an endothermic device by reforming the anode gas that is provided on the anode electrode side of the fuel cell. Adjusting the reforming status of the internal reforming means by adjusting the reforming state of the fuel by adjusting the flow of the exhaust gas of the internal reforming means to be reacted and the fuel cell that is the reforming heat source of the reformer, and the fuel Rukoto a reforming conditions regulating means for regulating the operating temperature of the battery is preferred.

これにより、改質状況調整手段により排気ガスの流通を調整し、改質器の改質熱源の状況を調整して燃料の改質状態を調整し、調整された燃料をアノードガスとして内部改質手段で改質させ、吸熱反応させることで運転温度を所定温度に維持し、温度制御に対する動力を用いることなく燃料電池の運転温度を所定の状態に制御する。 As a result, the flow of exhaust gas is adjusted by the reforming condition adjusting means, the condition of the reforming heat source of the reformer is adjusted to adjust the reforming state of the fuel, and the reformed fuel is internally reformed using the adjusted fuel as the anode gas. The operation temperature is maintained at a predetermined temperature by reforming by means and causing an endothermic reaction, and the operation temperature of the fuel cell is controlled to a predetermined state without using power for temperature control.

また、複合発電設備に適用される燃料電池設備は、改質器への燃料の流通を調整して燃料の改質状態を調整することで内部改質手段の改質状況を調整する第2改質状況調整手段を備えることが好ましい。 The fuel cell facility applied to the combined power generation facility is a second modification that adjusts the reforming status of the internal reforming means by adjusting the fuel reforming state by adjusting the flow of fuel to the reformer. Rukoto with the quality status adjusting means are preferred.

これにより、第2改質状況調整手段により燃料の改質器への流通を更に調整し、流通量を含めた改質状態の調整を行う。 As a result, the flow of the fuel to the reformer is further adjusted by the second reforming state adjusting means, and the reformed state including the flow rate is adjusted.

また、複合発電設備に適用される燃料電池設備は、燃料電池のカソードガスとして所定圧力の純酸素が供給され、水素と酸素の比が所定の量論比率で供給されて燃料電池が運転されることが好ましい。 The fuel cell facility applied to the combined power generation facility is supplied with pure oxygen at a predetermined pressure as the cathode gas of the fuel cell, and the fuel cell is operated with a ratio of hydrogen and oxygen supplied at a predetermined stoichiometric ratio. It is preferable.

これにより、燃料と当量比の酸素を供給して、水素と酸素の比が所定の量論比率となる量論比運転が行われる。 As a result, oxygen in an equivalent ratio to the fuel is supplied, and a stoichiometric operation in which the ratio of hydrogen to oxygen becomes a predetermined stoichiometric ratio is performed.

また、複合発電設備に適用される燃料電池設備は、所定圧力の純酸素は、圧力スウィング吸着により窒素ガスが濃縮されて空気から除去されて製造された加圧状態の酸素であることが好ましい。 Further, in the fuel cell facility applied to the combined power generation facility, it is preferable that pure oxygen at a predetermined pressure is oxygen in a pressurized state produced by concentrating nitrogen gas by pressure swing adsorption and removing it from the air .

これにより、加圧状態の酸素を容易に得ることができ、酸素を加圧する設備を備える必要がない。 Thereby, the oxygen of a pressurization state can be obtained easily and it is not necessary to provide the equipment which pressurizes oxygen.

また、複合発電設備に適用される燃料電池設備は、燃料電池は、水素を含むアノードガス及び酸素を含むカソードガスの電気化学反応により発電を行う溶融炭酸塩形燃料電池であることが好ましい。 Further, the fuel cell equipment applied to the combined power generation equipment is preferably a molten carbonate fuel cell that generates power by an electrochemical reaction of an anode gas containing hydrogen and a cathode gas containing oxygen .

これにより、溶融炭酸塩形燃料電池を備えた燃料電池設備とすることができる。 Thereby, it can be set as the fuel cell equipment provided with the molten carbonate fuel cell.

上記目的を達成するための請求項1に係る本発明の複合発電設備は、水素を含むアノードガスが供給されると共に酸素を含むカソードガスが供給され、アノードガス及びカソードガスの電気化学反応により発電を行う燃料電池と、燃料電池の排気ガスが導入されて燃焼される燃焼器と、燃焼器からの燃焼ガスを膨張するガスタービンと、アノードガスの供給系に備えられ燃料を改質すると共にガスタービンの排気ガスの熱を改質熱源とする改質器と、燃料電池のアノード極側に備えられアノードガスを改質することにより吸熱反応させる内部改質手段と、ガスタービンの排気ガスを熱回収してカソードガスの予熱を行う予熱手段と、改質器の改質熱源であるガスタービンの排気ガスの、改質器への熱源流通量、改質器の出口側で調整すると共に、ガスタービンの排気ガスの、予熱手段への熱源流通量を、予熱手段の出口側で調整し、改質器の燃料の改質状態を調整することで内部改質手段の改質状況を調整し燃料電池の運転温度を規制する改質状況調整手段と、改質器への燃料の流通量を調整して燃料の改質状態を調整することで内部改質手段の改質状況を調整する第2改質状況調整手段とを備えたことを特徴とする。 In order to achieve the above object, the combined power generation facility of the present invention according to claim 1 is supplied with an anode gas containing hydrogen and a cathode gas containing oxygen, and generates electricity by an electrochemical reaction between the anode gas and the cathode gas. A fuel cell, a combustor in which exhaust gas of the fuel cell is introduced and combusted, a gas turbine that expands the combustion gas from the combustor, and an anode gas supply system that reforms the fuel and gas A reformer that uses the heat of the exhaust gas of the turbine as a heat source for reforming, an internal reforming means that is provided on the anode electrode side of the fuel cell and performs an endothermic reaction by reforming the anode gas, and heats the exhaust gas of the gas turbine a preheating means for performing preheating of the cathode gas recovered, the exhaust gas of a gas turbine is modified heat source of the reformer, the heat source circulation amount to the reformer, result adjustment at the outlet side of the reformer , The exhaust gas of a gas turbine, a heat source flow rate of the preheating means, to adjust the outlet side of the pre-heating means, the reforming of internal reforming means by adjusting the reforming conditions of the fuel reformer The reforming status adjusting means that regulates and regulates the operating temperature of the fuel cell, and the reforming status of the internal reforming means is adjusted by adjusting the amount of fuel flowing to the reformer and adjusting the reforming state of the fuel And a second reforming state adjusting means.

請求項1に係る本発明では、改質状況調整手段によりガスタービンの排気ガスの、改質器への熱源流通量、予熱手段への熱源流通量を調整し、改質器の改質熱源の状況を調整して燃料の改質状態を調整し、調整された燃料をアノードガスとして内部改質手段で改質させ、吸熱反応させることで運転温度を所定温度に維持し、温度制御に対する動力を用いることなく運転温度を所定の状態に制御することができる燃料電池、及び、ガスタービンを備えた複合発電設備とすることができる。
そして、第2改質状況調整手段により燃料の改質器への流通量を更に調整し、流通量を含めた改質状態の調整を行うことができる燃料電池を備えた複合発電設備とすることができる。
In the present invention according to claim 1, the reforming condition adjusting means adjusts the heat source circulation amount of the exhaust gas of the gas turbine to the reformer and the heat source circulation amount to the preheating means, and the reforming heat source of the reformer is adjusted. By adjusting the situation and adjusting the reforming state of the fuel, the adjusted fuel is reformed by the internal reforming means as an anode gas, and the endothermic reaction is performed to maintain the operating temperature at a predetermined temperature, and the power for temperature control is increased. It can be set as the combined electric power generation equipment provided with the fuel cell which can control operation temperature to a predetermined state, and a gas turbine, without using.
And it is set as the combined power generation equipment provided with the fuel cell which can adjust the reforming state including the circulation amount by further adjusting the flow amount of the fuel to the reformer by the second reforming state adjusting means. Can do.

また、請求項2に係る本発明の複合発電設備は、請求項1に記載の複合発電設備において、燃料電池のカソードガスとして所定圧力の純酸素が供給され、水素と酸素の比が所定の量論比率で供給されて燃料電池が運転されることを特徴とする。 According to a second aspect of the present invention, there is provided the combined power generation facility according to the first aspect, wherein pure oxygen at a predetermined pressure is supplied as the cathode gas of the fuel cell, and the ratio of hydrogen to oxygen is a predetermined amount. The fuel cell is operated by being supplied at a stoichiometric ratio.

請求項2に係る本発明では、燃料と当量比の酸素を供給して、水素と酸素の比が所定の量論比率となる量論比運転が行われる燃料電池を備えた複合発電設備とすることができる。 The present invention according to claim 2 is a combined power generation facility including a fuel cell in which oxygen in an equivalent ratio to fuel is supplied and a stoichiometric operation is performed in which the ratio of hydrogen to oxygen becomes a predetermined stoichiometric ratio. be able to.

また、請求項3に係る本発明の複合発電設備は、請求項1または請求項2に記載の複合発電設備において、所定圧力の純酸素は、圧力スウィング吸着により窒素ガスが濃縮されて空気から除去されて製造された加圧状態の酸素であることを特徴とする。 According to a third aspect of the present invention, there is provided the combined power generation facility according to the first or second aspect , wherein the pure oxygen at a predetermined pressure is removed from the air by concentrating nitrogen gas by pressure swing adsorption. It is the oxygen of the pressurized state manufactured by being manufactured.

請求項3に係る本発明では、加圧状態の酸素を容易に得ることができ、酸素を加圧する設備を備える必要がない燃料電池を備えた複合発電設備とすることができる。 According to the third aspect of the present invention, it is possible to obtain a combined power generation facility including a fuel cell that can easily obtain pressurized oxygen and does not need to include a facility for pressurizing oxygen.

また、請求項4に係る本発明の複合発電設備は、請求項1から請求項3のいずれか一項に記載の複合発電設備において、燃料電池は、水素を含むアノードガス及び酸素と二酸化炭素を含むカソードガスの電気化学反応により発電を行う溶融炭酸塩形燃料電池であり、ガスタービンの排気ガスの二酸化炭素をカソードガスに混合する循環系統を備え、循環系統には、ガスタービンの排気ガスから二酸化炭素を得る分離手段が備えられていることを特徴とする。 A combined power generation facility according to a fourth aspect of the present invention is the combined power generation facility according to any one of the first to third aspects, wherein the fuel cell includes an anode gas containing hydrogen, oxygen, and carbon dioxide. a molten carbonate fuel cell which generates power by an electrochemical reaction of the cathode gas containing, comprising a circulation system for mixing carbon dioxide of the exhaust gas of the gas turbine to the cathode gas, the circulation system, from the exhaust gas of the gas turbine A separation means for obtaining carbon dioxide is provided.

請求項4に係る本発明では、燃料と当量比の酸素だけを供給することで発電に伴って発生した二酸化炭素の全量を回収してカソードガスの酸化剤として二酸化炭素を高濃度で得ることができる閉サイクルのシステムを構築することが可能になり、高次元で高効率化を図ることができる複合発電設備とすることができる。 In the present invention according to claim 4 , by supplying only oxygen in an equivalent ratio to the fuel, the total amount of carbon dioxide generated with power generation can be recovered to obtain carbon dioxide at a high concentration as an oxidant for the cathode gas. It is possible to construct a closed cycle system that can be used, and it is possible to provide a combined power generation facility that can achieve high efficiency at a high level.

上記目的を達成するための請求項5に係る本発明の複合発電設備は、水素を含むアノードガス及び酸素と二酸化炭素を含むカソードガスの電気化学反応により発電を行う溶融炭酸塩形燃料電池と、溶融炭酸塩形燃料電池の排気ガスが導入されて燃焼される燃焼器と、燃焼器からの燃焼ガスを膨張するガスタービンと、バイパス流路が設けられたアノードガスの供給系に備えられ、バイパス流路の燃料量が調整されて燃料が送られ、燃料を改質すると共に、ガスタービンの排気ガスの熱を改質熱源とする改質器と、溶融炭酸塩形燃料電池のアノード極側に備えられアノードガスを改質することにより吸熱反応させる内部改質手段と、ガスタービンの排気ガスの二酸化炭素をカソードガスに混合する循環系統を備え、循環系統は、ガスタービンの排気ガスを熱回収してカソードガスの予熱を行う予熱手段と、ガスタービンの排気ガスを改質器に流通させる流通系統と、予熱手段の経路及び流通系統へのガスタービンの排気ガスの熱源流通量を調整して改質器での改質状態を調整することでアノードガスの改質状況を調整し、内部改質手段の改質状況を制御して溶融炭酸塩形燃料電池の運転温度を規制する改質状況調整手段と、予熱手段及び流通系統を流通したガスタービンの排気ガスから二酸化炭素を得る分離手段と、分離手段で分離された二酸化炭素を加圧してカソードガスに混合する加圧手段とを備えたことを特徴とする。 In order to achieve the above object, the combined power generation facility of the present invention according to claim 5 is a molten carbonate fuel cell that generates power by an electrochemical reaction of an anode gas containing hydrogen and a cathode gas containing oxygen and carbon dioxide, A combustor in which exhaust gas from a molten carbonate fuel cell is introduced and combusted, a gas turbine that expands the combustion gas from the combustor, and an anode gas supply system provided with a bypass flow path are provided and bypassed. The amount of fuel in the flow path is adjusted and the fuel is sent to reform the fuel and to the reformer that uses the heat of the exhaust gas from the gas turbine as the heat source for reforming and to the anode side of the molten carbonate fuel cell and internal reforming means for endothermic reaction by reforming the anode gas provided, comprising a circulation system for mixing carbon dioxide of the exhaust gas of the gas turbine to the cathode gas, the circulation lines, the gas turbine A preheating means for performing preheating of the cathode gas vapor gas and heat recovery, the circulation system for circulating exhaust gas of the gas turbine to the reformer, the heat source distribution of the exhaust gas of the gas turbine to the path and distribution system of the preheating means By adjusting the amount and adjusting the reforming state in the reformer, the reforming status of the anode gas is adjusted, and the reforming status of the internal reforming means is controlled to control the operating temperature of the molten carbonate fuel cell. The reforming condition adjusting means to regulate, the preheating means, the separation means for obtaining carbon dioxide from the exhaust gas of the gas turbine that has circulated through the distribution system, and the pressurization for pressurizing and mixing the carbon dioxide separated by the separation means with the cathode gas Means.

請求項5に係る本発明では、改質状況調整手段によりガスタービンの排気ガスの熱源流通量を調整し、改質器の改質熱源の状況を調整して燃料の改質状態を調整し、調整された燃料をアノードガスとして内部改質手段で改質させ、吸熱反応させることで運転温度を所定温度に維持し、温度制御に対する動力を用いることなく運転温度を所定の状態に制御することができる溶融炭酸塩形燃料電池を備えた複合発電設備となり、燃料と当量比の酸素だけを供給することで発電に伴って発生した二酸化炭素の全量を回収してカソードガスの酸化剤として二酸化炭素を高濃度で得ることができる閉サイクルのシステムを構築することが可能になり、高次元で高効率化を図ることができる複合発電設備とすることができる。
In the present invention according to claim 5, the heat source circulation amount of the exhaust gas of the gas turbine is adjusted by the reforming state adjusting means, the state of the reforming heat source of the reformer is adjusted to adjust the reforming state of the fuel, The adjusted fuel is reformed by the internal reforming means as an anode gas, and the operation temperature is maintained at a predetermined temperature by an endothermic reaction, and the operation temperature is controlled to a predetermined state without using power for temperature control. This is a combined power generation facility equipped with a molten carbonate fuel cell that can be used to recover all the carbon dioxide generated during power generation by supplying only oxygen in an equivalent ratio to the fuel and use carbon dioxide as an oxidant for the cathode gas. It is possible to construct a closed cycle system that can be obtained at a high concentration, and it is possible to provide a combined power generation facility that can achieve high efficiency at a high level.

そして、請求項6に係る本発明の複合発電設備は、請求項5に記載の複合発電設備において、アノードガスの改質器への流通状態を調整して内部改質手段の改質状況を制御するアノードガス流通調整手段を備えたことを特徴とする。 And the combined power generation facility of the present invention according to claim 6 is the combined power generation facility according to claim 5 , wherein the state of reforming of the internal reforming means is controlled by adjusting the flow state of the anode gas to the reformer. An anode gas flow adjusting means is provided.

請求項6に係る本発明では、改質器への流通状態を調整して内部改質手段の改質状況を調整して溶融炭酸塩形燃料電池の温度制御を行うことができる。 In the present invention according to claim 6 , it is possible to control the temperature of the molten carbonate fuel cell by adjusting the flow state to the reformer and adjusting the reforming state of the internal reforming means.

また、請求項7に係る本発明の複合発電設備は、請求項5または請求項6に記載の複合発電設備において、加圧手段は二酸化炭素圧縮機であり、二酸化炭素圧縮機の出口側で溶融炭酸塩形燃料電池のカソードガスとして所定圧力の純酸素が供給され、水素と酸素の比が所定の量論比率で供給されて溶融炭酸塩形燃料電池が運転されることを特徴とする。 The combined power generation facility according to the present invention according to claim 7 is the combined power generation facility according to claim 5 or 6 , wherein the pressurizing means is a carbon dioxide compressor and melts at the outlet side of the carbon dioxide compressor. A molten carbonate fuel cell is operated by supplying pure oxygen at a predetermined pressure as a cathode gas of the carbonate fuel cell and supplying a ratio of hydrogen and oxygen at a predetermined stoichiometric ratio.

請求項7に係る本発明では、二酸化炭素だけを圧縮する圧縮機を備えることで閉サイクルのシステムを構築することが可能になる。 In the present invention according to claim 7 , it is possible to construct a closed cycle system by including a compressor that compresses only carbon dioxide.

また、請求項8に係る本発明の複合発電設備は、請求項5または請求項6に記載の複合発電設備において、加圧手段は酸素・二酸化炭素圧縮機であり、酸素・二酸化炭素圧縮機の入口側で溶融炭酸塩形燃料電池のカソードガスとして常圧の純酸素が供給され、水素と酸素の比が所定の量論比率で供給されて溶融炭酸塩形燃料電池が運転されることを特徴とする。 The combined power generation facility of the present invention according to claim 8 is the combined power generation facility according to claim 5 or 6 , wherein the pressurizing means is an oxygen / carbon dioxide compressor, At the inlet side, normal pressure pure oxygen is supplied as the cathode gas of the molten carbonate fuel cell, and the molten carbonate fuel cell is operated with the ratio of hydrogen and oxygen supplied at a predetermined stoichiometric ratio. And

請求項8に係る本発明では、供給される純酸素を圧縮する圧縮機を備えることで閉サイクルのシステムを構築することが可能になる。 In the present invention according to claim 8 , it is possible to construct a closed cycle system by including a compressor for compressing supplied pure oxygen.

本発明の複合発電設備は、発電に対する損失を極力抑えて高次元での効率化・高性能化を図ることができる燃料電池設備とガスタービンとを組み合わせた複合発電設備とすることができる。   The combined power generation facility of the present invention can be a combined power generation facility that combines a fuel cell facility and a gas turbine that can achieve high efficiency and high performance while minimizing losses to power generation.

本発明の第1実施形態例に係る複合発電設備の概略系統図である。1 is a schematic system diagram of a combined power generation facility according to a first embodiment of the present invention. 本発明の第2実施形態例に係る複合発電設備の概略系統図である。It is a schematic system diagram of the combined power generation facility according to the second embodiment of the present invention. 本発明の第3実施形態例に係る複合発電設備の概略系統図である。It is a schematic system diagram of the combined power generation facility according to the third embodiment of the present invention. 本発明の第4実施形態例に係る複合発電設備の概略系統図である。It is a schematic system diagram of the combined power generation facility according to the fourth embodiment of the present invention.

図1には本発明の第1実施形態例に係る複合発電設備の概略系統、図2には本発明の第2実施形態例に係る複合発電設備の概略系統、図3には本発明の第3実施形態例に係る複合発電設備の概略系統、図4には本発明の第4実施形態例に係る複合発電設備の概略系統を示してある。   1 is a schematic system of a combined power generation facility according to a first embodiment of the present invention, FIG. 2 is a schematic system of a combined power generation facility according to a second embodiment of the present invention, and FIG. FIG. 4 shows a schematic system of a combined power generation facility according to a fourth embodiment of the present invention.

図1に基づいて第1実施形態例を説明する。   A first embodiment will be described with reference to FIG.

図1に示すように、本実施形態例の複合発電設備1には、溶融炭酸塩形燃料電池(MCFC)2が備えられ、MCFC2の出口ガス(排気ガス)が導入されて燃焼が行われる燃焼器3が設けられている。燃焼器3からの燃焼ガスを膨張して駆動するガスタービン4が備えられ、ガスタービン4には発電機5が同軸上に設けられている。ガスタービン4の駆動により発電機5が作動して発電が行われる。尚、図中の符号で6は燃焼器3の前流側に供えられ逆火を防止するための混合器である。   As shown in FIG. 1, the combined power generation facility 1 of the present embodiment is provided with a molten carbonate fuel cell (MCFC) 2, and combustion in which outlet gas (exhaust gas) of the MCFC 2 is introduced and combustion is performed. A vessel 3 is provided. A gas turbine 4 that expands and drives the combustion gas from the combustor 3 is provided, and the gas turbine 4 is provided with a generator 5 coaxially. The generator 5 is operated by driving the gas turbine 4 to generate power. Reference numeral 6 in the figure is a mixer provided on the upstream side of the combustor 3 to prevent backfire.

MCFC2は、例えば、ニッケル多孔質体の燃料極(アノード)7と、例えば、酸化ニッケル多孔質体の空気極(カソード)8との間に、電解質(炭酸塩)が挟まれて構成されている。そして、天然ガス等の燃料fから得られた水素(H)をアノード7に供給すると共に、空気(O)とCOをカソード8に供給することで、HとOの電気化学反応により発電が行われる。 The MCFC 2 is configured, for example, by sandwiching an electrolyte (carbonate) between a fuel electrode (anode) 7 of a nickel porous body and an air electrode (cathode) 8 of a nickel oxide porous body, for example. . Then, hydrogen (H 2 ) obtained from the fuel f such as natural gas is supplied to the anode 7, and air (O 2 ) and CO 2 are supplied to the cathode 8, whereby the H 2 and O 2 electrochemistry is obtained. Electricity is generated by the reaction.

ガスタービン4の下流にはガスタービン4で仕事を終えた排気ガスの熱回収を行う改質器9及びカソードガス予熱器10が並列に設けられると共に、改質器9及びカソードガス予熱器10の下流側には蒸気発生器11が設けられている。蒸気発生器11で発生した蒸気は改質のための蒸気として燃料fに供給される。   Downstream of the gas turbine 4, a reformer 9 and a cathode gas preheater 10 that perform heat recovery of exhaust gas that has finished work in the gas turbine 4 are provided in parallel, and the reformer 9 and the cathode gas preheater 10 A steam generator 11 is provided on the downstream side. The steam generated by the steam generator 11 is supplied to the fuel f as steam for reforming.

蒸気発生器11で熱回収された排気ガスはドレン分離冷却器12で凝縮水(HO)と非凝縮ガス(CO)に分離される。ドレン分離冷却器12で分離されたCOはCO圧縮機13で圧縮され、加圧されたOと混合されてカソードガス予熱器10に送られる(循環系統)。カソードガス予熱器10で予熱されたOとCOの混合ガス(カソードガス)がMCFC2のカソード8に供給される。 The exhaust gas heat recovered by the steam generator 11 is separated into condensed water (H 2 O) and non-condensed gas (CO 2 ) by the drain separation cooler 12. The CO 2 separated by the drain separation cooler 12 is compressed by the CO 2 compressor 13, mixed with the pressurized O 2 and sent to the cathode gas preheater 10 (circulation system). A mixed gas (cathode gas) of O 2 and CO 2 preheated by the cathode gas preheater 10 is supplied to the cathode 8 of the MCFC 2 .

燃料f(例えば、メタン)は供給系としての供給路14から改質器9に送られ、改質器9で改質されてアノードガス(Hを含むアノードガス)とされる。改質器9で改質されたアノードガスがMCFC2のアノード7に供給される。 The fuel f (for example, methane) is sent to the reformer 9 from a supply path 14 as a supply system, and is reformed by the reformer 9 to be an anode gas (an anode gas containing H 2 ). The anode gas reformed by the reformer 9 is supplied to the anode 7 of the MCFC 2.

CO圧縮機13で圧縮されたCOが混合されるOは、圧力スウィング吸着により窒素ガスが濃縮されて空気から除去されて製造された加圧状態のOであり、例えば、酸素が95%で窒素が5%の組成とされている。このため、加圧状態のOを容易に得ることができ、循環系統に備えられる圧縮機にてCOだけを圧縮するCO圧縮機13とすることが可能になる。COだけを圧縮する圧縮機とすることで圧縮流体が特定されるため、翼の設計等が容易な圧縮機とすることができる。 O 2 to CO 2 is mixed compressed in the CO 2 compressor 13, nitrogen gas is concentrated by pressure swing adsorption is a O 2 under pressure produced is removed from the air, for example, oxygen The composition is 95% and nitrogen is 5%. For this reason, O 2 in a pressurized state can be easily obtained, and the CO 2 compressor 13 that compresses only CO 2 by the compressor provided in the circulation system can be obtained. Since a compressed fluid is specified by using a compressor that compresses only CO 2 , the compressor can be easily designed with blades and the like.

一方、MCFC2のアノード7には吸熱反応手段としての内部改質手段15が備えられ、内部改質手段15によりアノードガスが改質されて吸熱反応を生じさせるようになっている。詳細は後述するが、アノードガスを内部改質手段15で改質して吸熱反応させることで、MCFC2の運転温度が規制される。MCFC2の運転温度を規制するために、内部改質手段15で改質されるアノードガスの改質状況が調整される(吸熱調整手段)。   On the other hand, the anode 7 of the MCFC 2 is provided with an internal reforming means 15 as an endothermic reaction means, and the anode gas is reformed by the internal reforming means 15 to cause an endothermic reaction. Although details will be described later, the operating temperature of the MCFC 2 is regulated by reforming the anode gas by the internal reforming means 15 and causing an endothermic reaction. In order to regulate the operating temperature of the MCFC 2, the reforming status of the anode gas reformed by the internal reforming means 15 is adjusted (endothermic adjusting means).

つまり、改質器9の改質熱源であるガスタービン4の排気ガスの流通を調整して改質器9の温度を調整し、燃料fの改質状態が調整される(例えば、改質器9での改質率を低下させる:改質状況調整手段)。また、改質器9への燃料fの流通を調整して流通量を調整し、内部改質手段15の改質状況が調整される(例えば、改質器9での改質率を低下させる:第2改質調整手段)。   That is, the temperature of the reformer 9 is adjusted by adjusting the flow of the exhaust gas of the gas turbine 4 that is the reforming heat source of the reformer 9, and the reformed state of the fuel f is adjusted (for example, the reformer The reforming rate at 9 is lowered: reforming condition adjusting means). Further, the flow rate of the fuel f to the reformer 9 is adjusted to adjust the flow rate, and the reforming status of the internal reforming means 15 is adjusted (for example, the reforming rate in the reformer 9 is lowered). : Second reforming adjusting means).

改質状況調整手段を説明する。   The reforming condition adjusting means will be described.

ガスタービン4の排気側に設けられた改質器9に排気ガスを流通させる改質流路16が備えられると共に、ガスタービン4の排気側に設けられたカソードガス予熱器10に排気ガスを流通させる予熱流路17が備えられている。改質流路16及び予熱流路17は蒸気発生器11の上流で合流されている。また、ガスタービン4の排気ガスを蒸気発生器11の上流に直接合流させるバイパス流路18が設けられている。   A reforming passage 16 is provided for flowing the exhaust gas to the reformer 9 provided on the exhaust side of the gas turbine 4, and the exhaust gas is supplied to the cathode gas preheater 10 provided on the exhaust side of the gas turbine 4. A preheating flow path 17 is provided. The reforming channel 16 and the preheating channel 17 are joined upstream of the steam generator 11. In addition, a bypass flow path 18 is provided to join the exhaust gas of the gas turbine 4 directly upstream of the steam generator 11.

改質器9の下流側の改質流路16には改質流量調整弁19が設けられ、カソードガス予熱器10の下流側の予熱流路17には予熱流量調整弁20が設けられている。改質流量調整弁19及び予熱流量調整弁20の開度を制御することにより、改質流路16、予熱流路17、バイパス流路18へのガスタービン4の排気ガス流量が制御され、改質器9の熱源となる排気ガス流量が調整されて燃料fの改質状態が調整される。   A reforming flow rate adjusting valve 19 is provided in the reforming flow path 16 on the downstream side of the reformer 9, and a preheating flow rate adjusting valve 20 is provided in the preheating flow path 17 on the downstream side of the cathode gas preheater 10. . By controlling the opening degree of the reforming flow rate adjusting valve 19 and the preheating flow rate adjusting valve 20, the exhaust gas flow rate of the gas turbine 4 to the reforming channel 16, the preheating channel 17, and the bypass channel 18 is controlled. The reformed state of the fuel f is adjusted by adjusting the flow rate of the exhaust gas that becomes the heat source of the mass device 9.

第2改質調整手段を説明する。   The second reforming adjusting means will be described.

燃料fの供給系には改質器9を流通しないバイパス流路21が設けられ、バイパス流路21には改質器9を流通する燃料fの量、即ち、燃料fの改質量を調整する流量調整弁22が設けられている。改質流量調整弁19及び予熱流量調整弁20の調整により改質器9の熱源の量が調整され、熱量に応じた燃料fが流通するように流量調整弁22が調整される。これにより、改質器9での改質率を低下させてその分アノードガスを内部改質手段15で改質させて吸熱反応を行わせ、MCFC2の運転温度を規制することができる。   A bypass channel 21 that does not flow through the reformer 9 is provided in the fuel f supply system, and the amount of fuel f that flows through the reformer 9, that is, the reforming amount of the fuel f, is adjusted in the bypass channel 21. A flow rate adjustment valve 22 is provided. The amount of the heat source of the reformer 9 is adjusted by adjusting the reforming flow rate adjusting valve 19 and the preheating flow rate adjusting valve 20, and the flow rate adjusting valve 22 is adjusted so that the fuel f corresponding to the amount of heat flows. As a result, the reforming rate in the reformer 9 is reduced, and the anode gas is reformed by that amount by the internal reforming means 15 to cause an endothermic reaction, thereby controlling the operating temperature of the MCFC 2.

上述した複合発電設備1では、MCFC2の排気ガスは燃焼器3で未燃分が完全燃焼されてガスタービン4を駆動し、ガスタービン4の排気ガスの熱が回収(ガス予熱、改質熱源等)され、ドレン分離冷却器12で凝縮水(HO)と非凝縮ガス(CO)に分離される。これらのうち、電池反応及び燃焼で生じたHOは系外に排出し、COは昇圧してカソードガスとして循環使用する。 In the combined power generation facility 1 described above, the exhaust gas of the MCFC 2 is completely combusted by the combustor 3 to drive the gas turbine 4, and the heat of the exhaust gas of the gas turbine 4 is recovered (gas preheating, reforming heat source, etc.) And is separated into condensed water (H 2 O) and non-condensed gas (CO 2 ) by the drain separation cooler 12. Among these, H 2 O generated by the cell reaction and combustion is discharged out of the system, and CO 2 is pressurized and circulated as a cathode gas.

このため、燃料fと当量比のOだけを供給して量論比運転を行うことで発電に伴って発生したCOの全量を回収してカソードガスの酸化剤としてCOを高濃度で得ることができる閉サイクルのシステムを構築することが可能になり、高次元で高効率化を図ることができる複合発電設備1とすることができる。また、ガスタービン4の排気ガスの熱を用いてアノードガス及びカソードガスを適切に昇温させることができる。 For this reason, by supplying only O 2 in an equivalent ratio to the fuel f and performing stoichiometric ratio operation, the entire amount of CO 2 generated during power generation is recovered, and CO 2 is used as a cathode gas oxidant in a high concentration. It is possible to construct a closed-cycle system that can be obtained, and the combined power generation facility 1 that can achieve high efficiency at a high level can be obtained. Further, the anode gas and the cathode gas can be appropriately heated using the heat of the exhaust gas of the gas turbine 4.

そして、改質流量調整弁19及び予熱流量調整弁20の調整によりガスタービン4の排気ガスの流通を調整し、改質器9の改質熱源の状況を調整して燃料fの改質状態を調整し、改質状態が調整された燃料fをアノードガスとして内部改質手段15で改質させて吸熱反応させている。吸熱反応によりMCFC2の運転温度が所定温度に維持され、温度制御に対する動力を用いることなくMCFC2の運転温度を所定の状態に制御することができる。   Then, the flow of the exhaust gas from the gas turbine 4 is adjusted by adjusting the reforming flow rate adjusting valve 19 and the preheating flow rate adjusting valve 20, and the state of the reforming heat source of the reformer 9 is adjusted to change the reforming state of the fuel f. The fuel f that has been adjusted and whose reformed state has been adjusted is reformed by the internal reforming means 15 as an anode gas and subjected to an endothermic reaction. The operation temperature of the MCFC 2 is maintained at a predetermined temperature by the endothermic reaction, and the operation temperature of the MCFC 2 can be controlled to a predetermined state without using power for temperature control.

因みに、温度制御に対する動力を用いる場合、カソード8の排気ガスをブロアにより循環させてMCFC2の温度を制御することが考えられる。この時、冷却後の排気ガスをカソードガスに合流させてカソード8に供給することになるが、排気ガスの循環によりO以外のもの(例えば、窒素)が蓄積され、燃料fと当量比のOにより量論比運転する設備としているも拘らず、発電効率の低下を招いてしまう。このため、本実施形態例のように、圧力スウィング吸着により窒素ガスが濃縮されて空気から除去されて製造された加圧状態のOガス(僅かであるが窒素が含まれるカソードガス)を用いると、Oの比率が相対的に低下して発電効率の低下が顕著に現れる虞がある。 Incidentally, when power for temperature control is used, it is conceivable to control the temperature of the MCFC 2 by circulating the exhaust gas of the cathode 8 using a blower. At this time, the exhaust gas after cooling is merged with the cathode gas and supplied to the cathode 8, but other than O 2 (for example, nitrogen) is accumulated by the circulation of the exhaust gas, and has an equivalent ratio to the fuel f. Although it is a facility that operates stoichiometrically with O 2 , power generation efficiency is reduced. For this reason, as in the present embodiment example, pressurized O 2 gas (a small amount of cathode gas containing nitrogen) produced by concentrating nitrogen gas by pressure swing adsorption and removing it from the air is used. And there is a possibility that the ratio of O 2 is relatively lowered and the power generation efficiency is significantly reduced.

上述した複合発電設備1は、吸熱反応によりMCFC2の運転温度が所定温度に維持され、カソード8の排気ガスをブロアにより循環させる、といった温度制御に対する動力を用いることなく、MCFC2の運転温度を所定の状態に制御することができるので、温度制御用の動力が不要になり、Oの比率の相対的な低下の問題が生じることがなく、高い効率を維持することができる。そして、低温のガスが流通する流路に設けられた改質流量調整弁19、予熱流量調整弁20、流量調整弁22の開度を制御することによりMCFC2の運転温度を制御することができるので、高価な高温対応の弁を用いることなくMCFC2の運転温度を制御することができる。また、圧力スウィング吸着により窒素ガスが濃縮されて空気から除去されて製造された加圧状態のOが用いられるので、加圧状態の酸素を容易に得ることができ、酸素を加圧する設備を備える必要がない。 In the combined power generation facility 1 described above, the operating temperature of the MCFC 2 is maintained at a predetermined temperature by the endothermic reaction, and the operating temperature of the MCFC 2 is set to the predetermined temperature without using power for temperature control such that the exhaust gas of the cathode 8 is circulated by the blower. Since the temperature can be controlled, power for temperature control becomes unnecessary, and there is no problem of a relative decrease in the O 2 ratio, and high efficiency can be maintained. Then, the operating temperature of the MCFC 2 can be controlled by controlling the openings of the reforming flow rate adjusting valve 19, the preheating flow rate adjusting valve 20, and the flow rate adjusting valve 22 provided in the flow path through which the low temperature gas flows. The operation temperature of the MCFC 2 can be controlled without using an expensive high temperature compatible valve. In addition, since pressurized O 2 produced by concentrating nitrogen gas by pressure swing adsorption and removed from the air is used, pressurized oxygen can be easily obtained, and equipment for pressurizing oxygen can be installed. There is no need to prepare.

従って、温度制御用の動力が不要になり高い効率を維持することができるMCFC2を備えた複合発電設備1となり、燃料と当量比のOだけを供給することで発電に伴って発生したCOの全量を回収してカソードガスの酸化剤としてCOを高濃度で得ることができる閉サイクルのシステムを構築することが可能になり、高次元で高効率化を図ることができる複合発電設備1となる。このため、発電に対する損失を極力抑えて高次元で効率化・高性能化を図ることができるMCFC2とガスタービン4とを組み合わせた複合発電設備1とすることができる。 Accordingly, power for temperature control is not required, and the combined power generation facility 1 having the MCFC 2 capable of maintaining high efficiency is obtained, and CO 2 generated by power generation by supplying only O 2 with an equivalent ratio to the fuel. It is possible to construct a closed cycle system that can collect CO2 at a high concentration as an oxidant for cathode gas by collecting the total amount of CO 2 and can achieve high efficiency at a high level. It becomes. For this reason, it can be set as the combined power generation equipment 1 which combined MCFC2 and the gas turbine 4 which can aim at efficiency improvement and high performance in a high dimension, suppressing the loss with respect to electric power generation as much as possible.

尚、上述した実施形態例では、圧力スウィング吸着により窒素ガスが濃縮されて空気から除去されて製造された加圧状態のOを供給する例を挙げて説明したが、例えば、深冷設備で製造した純Oを別途加圧して供給することも可能である。 In the above-described embodiment, the example in which pressurized O 2 produced by concentrating nitrogen gas by pressure swing adsorption and removing it from the air has been described. The manufactured pure O 2 can be separately pressurized and supplied.

図2に基づいて第2実施形態例を説明する。   A second embodiment will be described with reference to FIG.

第2実施形態例の複合発電設備31は、第1実施形態例の複合発電設備1に対して常圧の純Oを供給し、回収したCOと共に圧縮してカソードガスとしたものである。このため、第1実施形態例の複合発電設備1の構成部材と同一部材には同一符号を付して重複する説明は省略してある。 The combined power generation facility 31 of the second embodiment supplies normal pressure pure O 2 to the combined power generation facility 1 of the first embodiment, and compresses it with the recovered CO 2 to form a cathode gas. . For this reason, the same code | symbol is attached | subjected to the same member as the structural member of the combined power generation equipment 1 of 1st Embodiment, and the overlapping description is abbreviate | omitted.

第1実施形態例のCO圧縮機13(図1参照)に代えて、図2に示すように、ドレン分離冷却器12とカソードガス予熱器10との間には、圧縮機32が備えられている。圧縮機32はCOとOの混合ガスが圧縮され、カソードガスとしてカソードガス予熱器10で予熱されてMCFC2のカソード8に供給される。圧縮機32の入口側には、例えば、深冷設備で製造された常圧の純Oが供給され、ドレン分離冷却器12で回収されたCOが混合される。 Instead of the CO 2 compressor 13 (see FIG. 1) of the first embodiment, as shown in FIG. 2, a compressor 32 is provided between the drain separation cooler 12 and the cathode gas preheater 10. ing. The compressor 32 compresses a mixed gas of CO 2 and O 2 , is preheated by the cathode gas preheater 10 as a cathode gas, and is supplied to the cathode 8 of the MCFC 2. The inlet side of the compressor 32 is supplied with, for example, pure O 2 at normal pressure manufactured by a deep cooling facility, and CO 2 recovered by the drain separation cooler 12 is mixed.

第2実施形態例の複合発電設備31は、第1実施形態例の複合発電設備1と同様に、温度制御用の動力が不要になり高い効率を維持することができるMCFC2を備えた複合発電設備31となり、燃料と当量比のOだけを供給することで発電に伴って発生したCOの全量を回収してカソードガスの酸化剤としてCOを高濃度で得ることができる閉サイクルのシステムを構築することが可能になり、高次元で高効率化を図ることができる複合発電設備31となる。このため、発電に対する損失を極力抑えて高次元で効率化・高性能化を図ることができるMCFC2とガスタービン4とを組み合わせた複合発電設備31とすることができる。 The combined power generation facility 31 of the second embodiment is similar to the combined power generation facility 1 of the first embodiment, and the combined power generation facility including the MCFC 2 that can maintain high efficiency because power for temperature control becomes unnecessary. 31 is a closed cycle system that recovers the entire amount of CO 2 generated by power generation by supplying only O 2 in an equivalent ratio to the fuel, and can obtain CO 2 at a high concentration as an oxidant of the cathode gas. It becomes possible to construct the combined power generation facility 31 that can achieve high efficiency in a high dimension. For this reason, it can be set as the combined power generation equipment 31 which combined MCFC2 and the gas turbine 4 which can aim at efficiency improvement and performance improvement in a high dimension, suppressing the loss with respect to electric power generation as much as possible.

そして、常圧の純Oを圧縮することができるので、深冷設備で製造した極めて純度の高いOを供給することができる。このため、燃料と当量比のOを安定して供給することができ、高効率の発電を安定して行うことができる。 Then, it is possible to compress the pure O 2 at atmospheric pressure, it can be supplied O 2 very high purity produced in cryogenic equipment. For this reason, O 2 having an equivalent ratio to the fuel can be stably supplied, and highly efficient power generation can be stably performed.

図3に基づいて本発明の第3実施形態例を説明する。   A third embodiment of the present invention will be described based on FIG.

第3実施形態例の複合発電設備35は、第1実施形態例の複合発電設備1に対して、MCFC2に代えて酸化物固体電解質形燃料電池(SOFC)を適用したもので、カソードガスとして常圧のOを適用したものである。そして、COを循環させる閉サイクルではなく、第1実施形態例の内部改質手段15と同様の機能としてSOFCの内部改質手段39を使用した構成となっている。このため、第1実施形態例の複合発電設備1の構成部材と同一部材には同一符号を付して重複する説明は省略してある。 The combined power generation facility 35 of the third embodiment is obtained by applying an oxide solid oxide fuel cell (SOFC) instead of the MCFC 2 to the combined power generation facility 1 of the first embodiment, and is normally used as a cathode gas. The pressure O 2 is applied. In addition, instead of a closed cycle in which CO 2 is circulated, the SOFC internal reforming means 39 is used as a function similar to the internal reforming means 15 of the first embodiment. For this reason, the same code | symbol is attached | subjected to the same member as the structural member of the combined power generation equipment 1 of 1st Embodiment, and the overlapping description is abbreviate | omitted.

第1実施形態例のMCFC2(図1参照)に代えて、図3に示すように、酸化物固体電解質形燃料電池(SOFC)36が備えられている。SOFC36は、空気極(カソード)37と燃料が供給される燃料極(アノード)38とを備え、アノード38には吸熱反応手段としての内部改質手段39が備えられている。そして、第1実施形態例におけるCO圧縮機13(図1参照)は設けられておらず、ドレン分離冷却器で分離された気体は外部に放出(回収)される。 Instead of the MCFC 2 (see FIG. 1) of the first embodiment, an oxide solid oxide fuel cell (SOFC) 36 is provided as shown in FIG. The SOFC 36 includes an air electrode (cathode) 37 and a fuel electrode (anode) 38 to which fuel is supplied. The anode 38 is provided with an internal reforming means 39 as an endothermic reaction means. The CO 2 compressor 13 (see FIG. 1) in the first embodiment is not provided, and the gas separated by the drain separation cooler is discharged (collected) to the outside.

SOFC36のカソード37にはカソードガス予熱器10で所定温度に予熱されたOが供給され、SOFC36のアノード38には改質器9で改質された燃料f(バイパス流路21の流通が調整された燃料fが供給されて発電が行われる。アノード38では内部改質手段39で燃料fが改質され(吸熱反応)、SOFC36の温度が調整される。 The cathode 37 of the SOFC 36 is supplied with O 2 preheated to a predetermined temperature by the cathode gas preheater 10, and the anode 38 of the SOFC 36 is supplied with the fuel f reformed by the reformer 9 (the flow of the bypass passage 21 is adjusted). The supplied fuel f is supplied to generate power, and the anode 38 reforms the fuel f by the internal reforming means 39 (endothermic reaction), and adjusts the temperature of the SOFC 36.

第3実施形態例の複合発電設備35は、第1実施形態例の複合発電設備1と同様に、温度制御用の動力が不要とされた複合発電設備35となり、高次元で高効率化を図ることができる複合発電設備35となる。このため、発電に対する損失を極力抑えて高次元で効率化・高性能化を図ることができるSOFC36とガスタービン4とを組み合わせた複合発電設備35とすることができる。   Similar to the combined power generation facility 1 of the first embodiment, the combined power generation facility 35 of the third embodiment is a combined power generation facility 35 that does not require power for temperature control, and achieves higher dimensions and higher efficiency. The combined power generation facility 35 can be obtained. For this reason, it is possible to provide a combined power generation facility 35 that combines the SOFC 36 and the gas turbine 4, which can suppress loss to power generation as much as possible and achieve higher efficiency and higher performance in a higher dimension.

図4に基づいて本発明の第4実施形態例を説明する。   A fourth embodiment of the present invention will be described based on FIG.

図4に示すように、本実施形態例の複合発電設備41には、溶融炭酸塩形燃料電池(MCFC)42が備えられ、MCFC42の出口ガス(排気ガス)の一部が導入されて燃焼が行われる燃焼器43が設けられている。また、空気を圧縮する圧縮機44と圧縮空気及び燃料fを燃焼する燃焼器45と燃焼器45からの燃焼ガスを膨張して発電を行うタービン46とを有するガスタービン設備47が備えられている。MCFC42の排気ガスの一部はガスタービン設備47のタービン46で膨張される燃焼ガスに混合される。   As shown in FIG. 4, the combined power generation facility 41 of the present embodiment is provided with a molten carbonate fuel cell (MCFC) 42, and a part of the outlet gas (exhaust gas) of the MCFC 42 is introduced for combustion. A combustor 43 is provided to be performed. Further, a gas turbine equipment 47 having a compressor 44 that compresses air, a combustor 45 that combusts compressed air and fuel f, and a turbine 46 that expands combustion gas from the combustor 45 and generates electric power is provided. . A part of the exhaust gas of the MCFC 42 is mixed with the combustion gas expanded by the turbine 46 of the gas turbine equipment 47.

尚、図中の符号で48は燃焼器43の前流側に供えられ逆火を防止するための混合器、49はガスタービン設備47の始動用のモータ兼発電機、50は始動時に圧縮機44で圧縮された空気の一部と燃料が導入されて燃焼ガスを生成しMCFC42の排気ガスに混合する始動燃焼器である。   Reference numeral 48 in the figure denotes a mixer provided on the upstream side of the combustor 43 to prevent backfire, 49 a motor / generator for starting the gas turbine equipment 47, and 50 a compressor at the start. This is a start combustor in which a part of the air compressed in 44 and fuel are introduced to generate combustion gas and mix it with the exhaust gas of MCFC42.

MCFC42は、例えば、ニッケル多孔質体の燃料極(アノード)51と、例えば、酸化ニッケル多孔質体の空気極(カソード)52との間に、電解質(炭酸塩)が挟まれて構成されている。そして、天然ガス等の燃料fから得られた水素(H)をアノード51に供給すると共に、圧縮機44で圧縮された空気をカソード52に供給することで、HとOの電気化学反応により発電が行われる。 The MCFC 42 is configured, for example, by sandwiching an electrolyte (carbonate) between a fuel electrode (anode) 51 of a nickel porous body and an air electrode (cathode) 52 of a nickel oxide porous body, for example. . Then, hydrogen (H 2 ) obtained from the fuel f such as natural gas is supplied to the anode 51, and the air compressed by the compressor 44 is supplied to the cathode 52, whereby the H 2 and O 2 electrochemistry is supplied. Electricity is generated by the reaction.

燃料fはアノードガス予熱器53で予熱された後、改質器54で改質されアノードガス予熱器53で熱回収されてアノード51に供給される。MCFC42の排気ガスは混合器48で混合されて燃焼器43で燃焼され、改質器54の熱源として熱回収された後、ブロア55によりカソード52に圧送される。   The fuel f is preheated by the anode gas preheater 53, reformed by the reformer 54, recovered by the anode gas preheater 53, and supplied to the anode 51. The exhaust gas of the MCFC 42 is mixed by the mixer 48, burned by the combustor 43, recovered as heat as a heat source of the reformer 54, and then pumped to the cathode 52 by the blower 55.

一方、カソード52の排気ガスの一部がガスタービン設備47の燃焼器45の燃焼ガスに合流されてタービン46で膨張され、タービン46の排気ガスは蒸気発生器56で熱回収される。蒸気発生器56で熱回収された排気ガスは凝縮器57で凝縮されて凝縮水が蒸気発生器56に給水ポンプにより給水されると共に排気ガスが放出される。   On the other hand, a part of the exhaust gas of the cathode 52 is merged with the combustion gas of the combustor 45 of the gas turbine equipment 47 and expanded by the turbine 46, and the exhaust gas of the turbine 46 is recovered by the steam generator 56. The exhaust gas heat-recovered by the steam generator 56 is condensed by the condenser 57, and the condensed water is supplied to the steam generator 56 by the feed water pump and the exhaust gas is released.

また、MCFC42のアノード51には吸熱反応手段としての内部改質手段61が備えられ、内部改質手段61によりアノードガスが改質されて吸熱反応を生じさせるようになっている。詳細は後述するが、アノードガスを内部改質手段61で改質して吸熱反応させることで、MCFC42の運転温度が規制される。MCFC42の運転温度を規制するために、内部改質手段61で改質されるアノードガスの改質状況が調整される(吸熱調整手段)。   The anode 51 of the MCFC 42 is provided with an internal reforming means 61 as an endothermic reaction means, and the anode gas is reformed by the internal reforming means 61 to cause an endothermic reaction. Although details will be described later, the operating temperature of the MCFC 42 is regulated by reforming the anode gas by the internal reforming means 61 and causing an endothermic reaction. In order to regulate the operating temperature of the MCFC 42, the reforming status of the anode gas reformed by the internal reforming means 61 is adjusted (endothermic adjusting means).

つまり、改質器54の改質熱源である燃焼器43からの燃焼ガスの流通を調整して改質器54の温度を調整し、燃料fの改質状態が調整される(例えば、改質器54での改質率を低下させる:改質状況調整手段)。また、改質器54への燃料fの流通を調整して流通量を調整し、内部改質手段61の改質状況が調整される(例えば、改質器54での改質率を低下させる:第2改質調整手段)。   That is, the temperature of the reformer 54 is adjusted by adjusting the flow of the combustion gas from the combustor 43 that is the reforming heat source of the reformer 54, and the reformed state of the fuel f is adjusted (for example, reforming). The reforming rate in the vessel 54 is reduced: reforming condition adjusting means). Further, the flow rate of the fuel f to the reformer 54 is adjusted to adjust the flow rate, and the reforming status of the internal reforming means 61 is adjusted (for example, the reforming rate in the reformer 54 is reduced). : Second reforming adjusting means).

改質状況調整手段を説明する。   The reforming condition adjusting means will be described.

燃焼器43の後流側に設けられた改質器54に燃焼ガスを流通させる改質流路62が備えられると共に、改質器54をバイパスするバイパス流路63が備えられている。そして、改質器54の後流側のバイパス流路63との合流部の前側には燃焼ガス流量調整弁64が設けられている。燃焼ガス流量調整弁64の開度を調整することにより改質流路62、バイパス流路63への燃焼器43の燃焼ガスの流量が制御され、改質器54の熱源となる燃焼ガス流量が調整されて燃料fの改質状態が調整される。   A reforming channel 62 for allowing combustion gas to flow through the reformer 54 provided on the downstream side of the combustor 43 is provided, and a bypass channel 63 for bypassing the reformer 54 is provided. A combustion gas flow rate adjustment valve 64 is provided on the front side of the junction with the bypass flow path 63 on the downstream side of the reformer 54. The flow rate of the combustion gas of the combustor 43 to the reforming flow path 62 and the bypass flow path 63 is controlled by adjusting the opening of the combustion gas flow rate adjusting valve 64, and the combustion gas flow rate serving as the heat source of the reformer 54 is changed. The reformed state of the fuel f is adjusted by adjusting.

第2改質調整手段を説明する。   The second reforming adjusting means will be described.

燃料fの供給系にはアノードガス予熱器53を流通させて改質器54に燃料fを流通させる流通路65と、アノードガス予熱器53をバイパスして改質器54に燃料fを流通させるバイパス流通路66と、MCFC42のアノード51に燃料fを直接供給する燃料供給路67とが備えられている。流通路65、バイパス流通路66、燃料供給路67の分岐部位には三方弁68が設けられ、三方弁68の開度状態を調整することにより流通路65、バイパス流通路66、燃料供給路67への燃料fの供給量、即ち、燃料fの改質量を調整することができる。   In the fuel f supply system, the anode gas preheater 53 is circulated to flow the fuel f to the reformer 54, and the anode gas preheater 53 is bypassed to flow the fuel f to the reformer 54. A bypass flow passage 66 and a fuel supply passage 67 for directly supplying the fuel f to the anode 51 of the MCFC 42 are provided. A three-way valve 68 is provided at a branch portion of the flow passage 65, the bypass flow passage 66, and the fuel supply passage 67, and the flow passage 65, the bypass flow passage 66, and the fuel supply passage 67 are adjusted by adjusting the opening state of the three-way valve 68. The amount of fuel f supplied to the fuel, that is, the amount of reforming of fuel f can be adjusted.

改質状況調整手段及び第2改質調整手段により、改質器54の熱源の量が調整され、熱量に応じた燃料fが改質器54を流通するようになる。これにより、改質器54での改質率を低下させてその分アノードガスを内部改質手段61で改質させて吸熱反応を行わせ、MCFC42の運転温度を規制することができる。   The amount of heat source of the reformer 54 is adjusted by the reforming state adjusting means and the second reforming adjusting means, and the fuel f corresponding to the amount of heat flows through the reformer 54. As a result, the reforming rate in the reformer 54 is reduced, and the anode gas is reformed by that amount by the internal reforming means 61 to cause an endothermic reaction, and the operating temperature of the MCFC 42 can be regulated.

上述した複合発電設備41では、燃焼ガス流量調整弁64の調整により燃焼器43の燃焼ガス流量を調整して改質器54の改質熱源の状況を調整し、三方弁68の調整により燃料fの改質量を調整し、燃料fの改質状態が調整される。そして、改質状態が調整された燃料fをアノードガスとして内部改質手段61で改質させて吸熱反応させている。吸熱反応によりMCFC42の運転温度が所定温度に維持され、圧縮空気を燃焼させるガスタービン設備47を備えた設備で、温度制御に対する動力を用いることなくMCFC42の運転温度を所定の状態に制御することができる。   In the combined power generation facility 41 described above, the combustion gas flow rate of the combustor 43 is adjusted by adjusting the combustion gas flow rate adjustment valve 64 to adjust the state of the reforming heat source of the reformer 54, and the fuel f is adjusted by adjusting the three-way valve 68. The reforming amount of the fuel f is adjusted to adjust the reforming state of the fuel f. Then, the reformed state of the fuel f is reformed by the internal reforming means 61 as an anode gas to cause an endothermic reaction. The operation temperature of the MCFC 42 is maintained at a predetermined temperature by the endothermic reaction, and the operation temperature of the MCFC 42 can be controlled to a predetermined state without using power for temperature control in a facility provided with a gas turbine facility 47 that burns compressed air. it can.

従って、温度制御用の動力が極僅かとなり高い効率を維持することができるMCFC42を備えた複合発電設備41となり、圧縮空気を燃焼させるガスタービン設備47を備えた設備で、高次元で高効率化を図ることができる複合発電設備41となる。   Accordingly, the power for temperature control becomes very small, and the combined power generation facility 41 having the MCFC 42 capable of maintaining high efficiency is obtained, and the facility having the gas turbine facility 47 for combusting the compressed air is improved in high dimension and high efficiency. Thus, the combined power generation facility 41 can be achieved.

本発明は、水素と酸素との電気化学反応により電力を得る燃料電池装置とガスタービンを組み合わせた複合発電設備の産業分野で利用することができる。 The present invention can be utilized in the industrial fields of electrochemical reactions combined cycle facility that combines fuel cell apparatus and the gas turbine for obtaining power by the hydrogen and oxygen.

1、31、35、41 複合発電設備
2、42 溶融炭酸塩形燃料電池(MCFC)
3、43、45 燃焼器
4 ガスタービン
5 発電機
6、48 混合器
7、38、51 燃料極(アノード)
8、37、52 空気極(カソード)
9、54 改質器
10 カソードガス予熱器
11、56 蒸気発生器
12 ドレン分離冷却器
13 CO圧縮機
15、39、61 内部改質手段
16、62 改質流路
17 予熱流路
18 バイパス流路
19 改質流量調整弁
20 予熱流量調整弁
21、63 バイパス流路
22 流量調整弁
32、44 圧縮機
36 酸化物固体電解質形燃料電池(SOFC)
46 タービン
47 ガスタービン設備
49 モータ/発電機
50 始動燃焼器
55 ブロア
57 凝縮器
64 燃焼ガス流量調整弁
65 流通路
66 バイパス流通路
67 燃料供給路
68 三方弁
1, 31, 35, 41 Combined power generation facility 2, 42 Molten carbonate fuel cell (MCFC)
3, 43, 45 Combustor 4 Gas turbine 5 Generator 6, 48 Mixer 7, 38, 51 Fuel electrode (anode)
8, 37, 52 Air electrode (cathode)
9, 54 Reformer 10 Cathode gas preheater 11, 56 Steam generator 12 Drain separation cooler 13 CO 2 compressor 15, 39, 61 Internal reforming means 16, 62 Reform channel 17 Preheat channel 18 Bypass flow Path 19 Reformation flow rate adjustment valve 20 Preheating flow rate adjustment valve 21, 63 Bypass flow path 22 Flow rate adjustment valve 32, 44 Compressor 36 Oxide solid oxide fuel cell (SOFC)
46 Turbine 47 Gas Turbine Equipment 49 Motor / Generator 50 Start Combustor 55 Blower 57 Condenser 64 Combustion Gas Flow Rate Adjustment Valve 65 Flow Path 66 Bypass Flow Path 67 Fuel Supply Path 68 Three-way Valve

Claims (8)

水素を含むアノードガスが供給されると共に酸素を含むカソードガスが供給され、アノードガス及びカソードガスの電気化学反応により発電を行う燃料電池と、
燃料電池の排気ガスが導入されて燃焼される燃焼器と、
燃焼器からの燃焼ガスを膨張するガスタービンと、
アノードガスの供給系に備えられ燃料を改質すると共にガスタービンの排気ガスの熱を改質熱源とする改質器と、
燃料電池のアノード極側に備えられアノードガスを改質することにより吸熱反応させる内部改質手段と、
ガスタービンの排気ガスを熱回収してカソードガスの予熱を行う予熱手段と、
改質器の改質熱源であるガスタービンの排気ガスの、改質器への熱源流通量を、改質器の出口側で調整すると共に、ガスタービンの排気ガスの、予熱手段への熱源流通量、予熱手段の出口側で調整し、改質器の燃料の改質状態を調整することで内部改質手段の改質状況を調整し燃料電池の運転温度を規制する改質状況調整手段と、
改質器への燃料の流通量を調整して燃料の改質状態を調整することで内部改質手段の改質状況を調整する第2改質状況調整手段とを備えた
ことを特徴とする複合発電設備。
A fuel cell that is supplied with an anode gas containing hydrogen and a cathode gas containing oxygen, and generates electricity by an electrochemical reaction between the anode gas and the cathode gas;
A combustor in which the exhaust gas of the fuel cell is introduced and burned,
A gas turbine for expanding the combustion gas from the combustor;
A reformer provided in an anode gas supply system for reforming fuel and using the heat of the exhaust gas of the gas turbine as a reforming heat source;
An internal reforming means provided on the anode electrode side of the fuel cell and performing an endothermic reaction by reforming the anode gas;
Preheating means for recovering heat from the exhaust gas of the gas turbine and preheating the cathode gas;
While adjusting the amount of heat source flow of the gas turbine exhaust gas, which is the reforming heat source of the reformer, to the reformer on the outlet side of the reformer, the heat source flow of the gas turbine exhaust gas to the preheating means the amount and adjusted at the outlet side of the preheating means, the reforming conditions regulating means for regulating the operating temperature of the adjusted fuel cell reforming of internal reforming means by adjusting the reforming conditions of the fuel reformer When,
And a second reforming state adjusting unit that adjusts the reforming state of the internal reforming unit by adjusting the amount of fuel flowing to the reformer to adjust the reforming state of the fuel. Combined power generation facilities.
請求項1に記載の複合発電設備において、
燃料電池のカソードガスとして所定圧力の純酸素が供給され、水素と酸素の比が所定の量論比率で供給されて燃料電池が運転される
ことを特徴とする複合発電設備。
The combined power generation facility according to claim 1,
A combined power generation facility, wherein pure oxygen at a predetermined pressure is supplied as a cathode gas of a fuel cell, and a fuel cell is operated with a ratio of hydrogen and oxygen supplied at a predetermined stoichiometric ratio.
請求項1または請求項2に記載の複合発電設備において、
所定圧力の純酸素は、圧力スウィング吸着により窒素ガスが濃縮されて空気から除去されて製造された加圧状態の酸素である
ことを特徴とする複合発電設備。
In the combined power generation facility according to claim 1 or 2,
Pure oxygen at a predetermined pressure is pressurized oxygen produced by concentrating nitrogen gas by pressure swing adsorption and removing it from the air.
請求項1〜請求項3のいずれか一項に記載の複合発電設備において、
燃料電池は、水素を含むアノードガス及び酸素と二酸化炭素を含むカソードガスの電気化学反応により発電を行う溶融炭酸塩形燃料電池であり、
ガスタービンの排気ガスの二酸化炭素をカソードガスに混合する循環系統を備え、
循環系統には、ガスタービンの排気ガスから二酸化炭素を得る分離手段が備えられている
ことを特徴とする複合発電設備。
In the combined power generation facility according to any one of claims 1 to 3,
The fuel cell is a molten carbonate fuel cell that generates electricity by an electrochemical reaction of an anode gas containing hydrogen and a cathode gas containing oxygen and carbon dioxide.
It has a circulation system that mixes carbon dioxide in the exhaust gas of the gas turbine with the cathode gas,
A combined cycle power generation facility characterized in that the circulation system is provided with separation means for obtaining carbon dioxide from the exhaust gas of the gas turbine .
水素を含むアノードガス及び酸素と二酸化炭素を含むカソードガスの電気化学反応により発電を行う溶融炭酸塩形燃料電池と、
溶融炭酸塩形燃料電池の排気ガスが導入されて燃焼される燃焼器と、
燃焼器からの燃焼ガスを膨張するガスタービンと、
バイパス流路が設けられたアノードガスの供給系に備えられ、バイパス流路の燃料量が調整されて燃料が送られ、燃料を改質すると共に、ガスタービンの排気ガスの熱を改質熱源とする改質器と、
溶融炭酸塩形燃料電池のアノード極側に備えられアノードガスを改質することにより吸熱反応させる内部改質手段と、
ガスタービンの排気ガスの二酸化炭素をカソードガスに混合する循環系統を備え、
循環系統は、
ガスタービンの排気ガスを熱回収してカソードガスの予熱を行う予熱手段と、
ガスタービンの排気ガスを改質器に流通させる流通系統と、
予熱手段の経路及び流通系統へのガスタービンの排気ガスの熱源流通量を調整して改質器での改質状態を調整することでアノードガスの改質状況を調整し、内部改質手段の改質状況を制御して溶融炭酸塩形燃料電池の運転温度を規制する改質状況調整手段と、
予熱手段及び流通系統を流通したガスタービンの排気ガスから二酸化炭素を得る分離手段と、
分離手段で分離された二酸化炭素を加圧してカソードガスに混合する加圧手段と
を備えた
ことを特徴とする複合発電設備。
A molten carbonate fuel cell that generates electricity by an electrochemical reaction of an anode gas containing hydrogen and a cathode gas containing oxygen and carbon dioxide;
A combustor in which exhaust gas from a molten carbonate fuel cell is introduced and burned,
A gas turbine for expanding the combustion gas from the combustor;
Provided in an anode gas supply system provided with a bypass channel, the amount of fuel in the bypass channel is adjusted and fuel is sent to reform the fuel, and the heat of the exhaust gas of the gas turbine is used as a reforming heat source. A reformer to
An internal reforming means provided on the anode electrode side of the molten carbonate fuel cell and performing an endothermic reaction by reforming the anode gas;
It has a circulation system that mixes carbon dioxide in the exhaust gas of the gas turbine with the cathode gas,
The circulation system is
Preheating means for recovering heat from the exhaust gas of the gas turbine and preheating the cathode gas;
A distribution system for distributing the exhaust gas of the gas turbine to the reformer;
The reforming state of the anode gas is adjusted by adjusting the reforming state in the reformer by adjusting the route of the preheating means and the heat source circulation amount of the exhaust gas of the gas turbine to the distribution system, and the internal reforming means A reforming condition adjusting means for controlling the reforming condition to regulate the operating temperature of the molten carbonate fuel cell;
Separation means for obtaining carbon dioxide from the exhaust gas of the gas turbine that has circulated through the preheating means and the distribution system;
And a pressurizing unit that pressurizes the carbon dioxide separated by the separating unit and mixes it with the cathode gas.
請求項5に記載の複合発電設備において、
アノードガスの改質器への流通状態を調整して内部改質手段の改質状況を制御するアノードガス流通調整手段を備えた
ことを特徴とする複合発電設備。
In the combined power generation facility according to claim 5,
A combined power generation facility comprising anode gas flow adjusting means for controlling a reforming state of internal reforming means by adjusting a flow state of anode gas to a reformer.
請求項5または請求項6に記載の複合発電設備において、
加圧手段は二酸化炭素圧縮機であり、二酸化炭素圧縮機の出口側で溶融炭酸塩形燃料電池のカソードガスとして所定圧力の純酸素が供給され、水素と酸素の比が所定の量論比率で供給されて溶融炭酸塩形燃料電池が運転される
ことを特徴とする複合発電設備。
In the combined power generation facility according to claim 5 or 6,
The pressurizing means is a carbon dioxide compressor, pure oxygen at a predetermined pressure is supplied as the cathode gas of the molten carbonate fuel cell at the outlet side of the carbon dioxide compressor, and the ratio of hydrogen to oxygen is a predetermined stoichiometric ratio. A combined power generation facility characterized in that a molten carbonate fuel cell is supplied and operated.
請求項5または請求項6に記載の複合発電設備において、
加圧手段は酸素・二酸化炭素圧縮機であり、酸素・二酸化炭素圧縮機の入口側で溶融炭酸塩形燃料電池のカソードガスとして常圧の純酸素が供給され、水素と酸素の比が所定の量論比率で供給されて溶融炭酸塩形燃料電池が運転される
ことを特徴とする複合発電設備。
In the combined power generation facility according to claim 5 or 6,
The pressurizing means is an oxygen / carbon dioxide compressor. At the inlet side of the oxygen / carbon dioxide compressor, normal pressure pure oxygen is supplied as the cathode gas of the molten carbonate fuel cell, and the ratio of hydrogen to oxygen is predetermined. A combined power generation facility characterized in that a molten carbonate fuel cell is operated in a stoichiometric ratio.
JP2006116080A 2006-04-19 2006-04-19 Combined power generation facility Expired - Fee Related JP5522646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006116080A JP5522646B2 (en) 2006-04-19 2006-04-19 Combined power generation facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006116080A JP5522646B2 (en) 2006-04-19 2006-04-19 Combined power generation facility

Publications (2)

Publication Number Publication Date
JP2007287579A JP2007287579A (en) 2007-11-01
JP5522646B2 true JP5522646B2 (en) 2014-06-18

Family

ID=38759150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006116080A Expired - Fee Related JP5522646B2 (en) 2006-04-19 2006-04-19 Combined power generation facility

Country Status (1)

Country Link
JP (1) JP5522646B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277280A (en) * 2007-03-30 2008-11-13 Yamatake Corp Fuel cell system and operation method of fuel cell system
JP5323333B2 (en) * 2007-08-28 2013-10-23 本田技研工業株式会社 Fuel cell system and operation method thereof
JP5120075B2 (en) * 2008-06-03 2013-01-16 トヨタ自動車株式会社 Fuel cell system
JP2009295534A (en) * 2008-06-09 2009-12-17 Yamatake Corp Fuel cell system and operation method for fuel cell system
JP2010067576A (en) * 2008-09-12 2010-03-25 Central Res Inst Of Electric Power Ind Fuel cell equipment, compound power generation facility, and fuel transformation device
US7818969B1 (en) 2009-12-18 2010-10-26 Energyield, Llc Enhanced efficiency turbine
JP6103624B2 (en) * 2012-10-29 2017-03-29 一般財団法人電力中央研究所 Cogeneration type power supply and cogeneration system
JP5931775B2 (en) * 2013-02-25 2016-06-08 三菱日立パワーシステムズ株式会社 Combined power generation system
EP2969927B1 (en) * 2013-03-15 2021-06-23 ExxonMobil Research and Engineering Company Integrated power generation and chemical production using fuel cells
JP6115310B2 (en) * 2013-05-22 2017-04-19 株式会社デンソー Fuel cell system
CN110710040B (en) * 2017-01-31 2023-07-18 国际壳牌研究有限公司 Method and system for producing hydrogen, electricity and co-production
JP6276880B2 (en) * 2017-03-01 2018-02-07 三菱日立パワーシステムズ株式会社 Power generation system
CN108417876A (en) * 2018-05-22 2018-08-17 中国华能集团清洁能源技术研究院有限公司 A kind of high-temperature fuel cell coupled electricity-generation system and method
CN112673501B (en) * 2018-09-12 2024-03-05 日产自动车株式会社 Fuel cell system
JP6800367B1 (en) * 2020-06-15 2020-12-16 東京瓦斯株式会社 Fuel cell system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2581662B2 (en) * 1985-02-20 1997-02-12 三菱電機株式会社 Fuel cell generator
JP3108079B2 (en) * 1990-07-05 2000-11-13 電源開発株式会社 Fuel cell, carbon dioxide fixed combined power generation method
JPH1126004A (en) * 1997-07-02 1999-01-29 Toshiba Corp Power generating system
JP4629950B2 (en) * 2002-08-05 2011-02-09 財団法人電力中央研究所 Molten carbonate fuel cell power generation system and power generation method in the power generation system
JP4265173B2 (en) * 2002-08-23 2009-05-20 日産自動車株式会社 Power generator
US6974644B2 (en) * 2004-02-06 2005-12-13 Fuelcell Energy, Inc. Internal reforming fuel cell assembly with selectively adjustable direct and indirect internal reforming

Also Published As

Publication number Publication date
JP2007287579A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
JP5522646B2 (en) Combined power generation facility
US8329345B2 (en) Combined power generation equipment
JP5004156B2 (en) Power generation equipment
KR101634391B1 (en) Fuel cell power production system with an integrated hydrogen utilization device
JP6374965B2 (en) Recirculation apparatus and method for high temperature battery systems
JP5331819B2 (en) MCFC power generation system
US20070292727A1 (en) Fuel Cell System and Method for Generating Electrical Energy Using a Fuel Cell System
JP2008529218A (en) Fuel cell power plant
JP2004207241A (en) Integrated fuel cell hybrid generator with re-circulated air fuel flow
JP2005276836A (en) Method and system for start and transient operation of fuel cell-gas turbine combined system
EP2356715A1 (en) Apparatus and method for capturing carbon dioxide from combustion exhaust gas and generating electric energy by means of mcfc systems
JP2002319428A (en) Molten carbonate fuel cell power generating device
KR102017993B1 (en) hybrid electric power generator system
JP4461166B2 (en) Fuel cell-gas turbine power generation facility
JP2001135336A (en) Fuel cell system
JP5183118B2 (en) Power generation system
JP5134186B2 (en) Combined power generation system using solid oxide fuel cell
JP2001143731A (en) Fuel cell system
JP4212322B2 (en) Combined power generation facilities for fuel cells and micro gas turbines and their startup methods
KR102548739B1 (en) Fuel cell system having high thermal efficiency
JPS63239777A (en) Operation method for fuel cell power generating plant
JP3741288B2 (en) Method and apparatus for controlling cathode temperature of molten carbonate fuel cell power generation facility
JP2004134235A (en) Fuel cell fluid supply system and turbine power generation facility
JPH06333585A (en) Method and device for starting fuel cell generating device
JP2007026997A (en) Fuel cell temperature control method for fused carbonate type fuel cell power generator, and device for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140213

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140402

R150 Certificate of patent or registration of utility model

Ref document number: 5522646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees