WO2010089883A1 - Hybrid power generation system - Google Patents

Hybrid power generation system Download PDF

Info

Publication number
WO2010089883A1
WO2010089883A1 PCT/JP2009/052094 JP2009052094W WO2010089883A1 WO 2010089883 A1 WO2010089883 A1 WO 2010089883A1 JP 2009052094 W JP2009052094 W JP 2009052094W WO 2010089883 A1 WO2010089883 A1 WO 2010089883A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
pipe
power generation
fuel cell
generation system
Prior art date
Application number
PCT/JP2009/052094
Other languages
French (fr)
Japanese (ja)
Inventor
康 岩井
晋 中野
忠晴 岸部
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to PCT/JP2009/052094 priority Critical patent/WO2010089883A1/en
Publication of WO2010089883A1 publication Critical patent/WO2010089883A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/407Combination of fuel cells with mechanical energy generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a hybrid power generation system of a fuel cell and a regenerative cycle gas turbine, and more particularly to a hybrid power generation system with improved power generation efficiency.
  • a fuel cell is basically a system that generates hydrogen by reacting with oxygen, and unlike a gas turbine or a reciprocating engine that generates electricity using a thermal cycle, it is a system that generates electricity directly using an electrochemical reaction. Because of their existence, their power generation efficiency is much higher than gas turbines.
  • the power generation efficiency can be significantly improved by combining the fuel cell with the gas turbine power generation system. This is because, in the gas turbine, the working fluid is heated by burning the fuel, but in the hybrid system of the gas turbine and the fuel cell, the fuel cell generates electricity with high efficiency by the electrochemical reaction, and the reaction energy is converted to electricity. This is because the energy of the heated working fluid can be recovered as power by the turbine after the remaining energy except the converted energy is released as heat to raise the temperature of the working fluid.
  • power generation efficiency is further improved by using a regenerative cycle gas turbine that recovers the heat of the gas turbine exhaust gas with a regenerative heat exchanger to raise the temperature, or by adding equipment that cools the compressor inlet air.
  • a fuel cell hybrid system that can be used (see, for example, Patent Document 1).
  • Patent Document 1 when the intake amount of the gas turbine is larger than the required flow rate of the fuel cell, a part of the regenerative heat exchanger outlet air is not supplied to the fuel cell but is directly bypassed and supplied to the gas turbine combustor The configuration is known.
  • An object of the present invention is to provide a hybrid power generation system that enables a gas turbine to operate efficiently while providing an operating temperature and an oxidant flow rate suitable for operating a fuel cell.
  • the present invention is a hybrid power generation system of a fuel cell and a gas turbine, wherein an oxidant pressurized by a compressor is branched into one for a fuel cell and one for a gas turbine A heat exchanger for exhaust gas is disposed so that the oxidant can be supplied to the fuel cell and the gas turbine at different temperatures and flow rates.
  • Such a configuration allows the gas turbine to operate efficiently while providing an operating temperature and oxidant flow rate suitable for operating the fuel cell.
  • the gas turbine is a regenerative cycle gas turbine
  • the heat exchanger is a regenerative heat exchanger
  • the heat exchanger raises the temperature of the oxidant pressurized by the compressor using the exhaust gas of the gas turbine, and the high temperature side heat exchanger section And a low temperature side heat exchanger portion, the first pipe for supplying the oxidant to the gas turbine from the outlet side of the low temperature side heat exchanger portion, and the outlet of the high temperature side heat exchanger portion
  • control means is provided for controlling the first flow control valve to gradually open from the fully closed state at the cold start of the fuel cell, and the first pipe
  • the temperature of the heat exchanger-supplied oxidant flowing through the second pipe is increased by reducing the flow rate of the oxidant flowing through the second pipe.
  • the heat exchanger is composed of a plurality of heat exchangers, and branched from a connecting pipe connecting the oxidant side pipes of the plurality of heat exchangers to a fuel cell Or, a pipeline network is formed to supply an oxidant for a gas turbine.
  • the heat exchanger is independent of the first heat exchanger constituting the low-temperature side heat exchanger section, and the first heat exchanger. And a second heat exchanger constituting the high-temperature side heat exchanger section, and the second heat exchange in addition to the first pipe on the outlet side of the first heat exchanger And a fourth pipe connected to the inlet side of the vessel.
  • the heat exchanger is configured to extract the oxidant for the fuel cell or the gas turbine from the middle of the pipe on the oxidant side in the heat exchanger. It is.
  • the first pipe is connected between the oxidant inlet and the oxidant outlet of the heat exchanger, and the oxidant outlet of the heat exchanger is The second pipe is connected.
  • piping on the oxidant side in the heat exchanger is separately provided for the fuel cell and the gas turbine, and the oxidant is separately supplied to the fuel cell and the gas turbine.
  • the heat exchanger is configured to be able to supply
  • piping on the oxidant side in the heat exchanger is divided into piping on the low temperature side heat exchanger unit and piping on the high temperature side heat exchanger unit,
  • the first pipe is connected between the outlet of the pipe of the low temperature side heat exchanger portion of the heat exchanger, and the second pipe is connected to the outlet of the high temperature side heat exchanger portion of the heat exchanger.
  • the heat exchanger is composed of two heat exchangers, and the oxidant side piping of the two heat exchangers is used as an oxidant for the fuel cell or the gas turbine, respectively.
  • a pipeline network is formed as a pipe for supplying
  • the heat exchanger is independent of the first heat exchanger constituting the low-temperature side heat exchanger section and the first heat exchanger. And a second heat exchanger constituting the high-temperature side heat exchanger section, wherein the first pipe is connected between the outlet of the first heat exchanger, and the second heat exchange is performed.
  • the second pipe is connected to the outlet of the vessel.
  • a part of the oxidizing agent supplied to the fuel cell is branched, and a pipe is provided so that it can be used for heating and cooling of the device constituting the fuel cell is there.
  • the heat exchanger raises the temperature of the oxidant pressurized by the compressor using the exhaust gas of the gas turbine, and the high temperature side heat exchanger section And a low temperature side heat exchanger portion, the first pipe for supplying the oxidant to the gas turbine from the outlet side of the low temperature side heat exchanger portion, and the outlet of the high temperature side heat exchanger portion
  • FIG. 1 is a system configuration diagram of a hybrid power generation system according to a first embodiment of the present invention. It is a timing chart which shows the operation sequence of the hybrid power generation system by a 1st embodiment of the present invention.
  • FIG. 7 is a system configuration diagram of a hybrid power generation system according to a second embodiment of the present invention. It is a system configuration
  • FIG. 1 is a system configuration diagram of a hybrid power generation system according to a first embodiment of the present invention.
  • the hybrid power generation system of this embodiment has a hybrid configuration of a gas turbine and a fuel cell.
  • the compressor 1 compresses and discharges the intake air, which is an oxidant, supplied from the pipe 50.
  • the compressor discharge air compressed by the compressor 1 is supplied to the regenerative heat exchanger 2 from the pipe 51.
  • the regenerative heat exchanger 10 is added in the present embodiment, and this point will be described later.
  • An outlet air of the regenerative heat exchanger 2 is supplied to the fuel cell 3 from a pipe 52, and a fuel such as hydrogen or natural gas is supplied from a pipe 62.
  • the fuel cell 3 generates electricity by the electrochemical reaction of the supplied oxidant (air) and fuel.
  • the outlet air of the fuel cell 3 is supplied to the combustor 4 from the pipe 53, the outlet exhaust gas composed of unused fuel and electrochemical reaction products is supplied from the pipe 63, and the fuel is supplied from the pipe 61. Ru.
  • the turbine 5 is driven by the combustion gas of the combustor 4 supplied by the pipe 54.
  • the generator 9 is connected to the turbine 5 in the same manner as the compressor 1 and is rotated by the driving force of the turbine 5 to generate electric power.
  • the fuel supplied by the pipes 61 and 62 is pressurized by the fuel pump 8 with the fuel supplied by the pipe 60.
  • the fuel cell 3 is a SOFC (Solid Oxide Fuel Cell), for example, there is a system that supplies natural gas instead of hydrogen as fuel, and reforms and supplies this. Steam is necessary for reforming natural gas, and a part of the outlet exhaust gas (supplied by the pipe 63) containing the water vapor generated by the electrochemical reaction of the fuel cell 3 is recycled, and the pipe 63R is used as a recycled exhaust gas. By returning to the fuel cell 3, the steam necessary for reforming is supplied.
  • SOFC Solid Oxide Fuel Cell
  • the regenerative heat exchanger 2 recovers the heat of the turbine exhaust gas supplied from the pipe 55 to raise the temperature of the compressor discharge air flowing through the pipe 51 (this regenerative heat exchanger 2 is provided Since the consumption of the gas turbine fuel flowing through the pipe 61 can be suppressed, the power generation efficiency is improved.
  • a regenerative heat exchanger 10 is provided in addition to the regenerative heat exchanger 2.
  • the inlet of the regenerative heat exchanger 10 is connected to the discharge port of the compressor 1 by a pipe 51.
  • the outlet of the regenerative heat exchanger 10 is connected to the inlet of the regenerative heat exchanger 2 by a pipe 52A.
  • the outlet of the regenerative heat exchanger 2 is connected to the inlet of the fuel cell 3 by a pipe 52F. That is, the regenerative heat exchanger 10 and the regenerative heat exchanger 2 are connected in series, and the discharge air of the compressor 1 is first heat-exchanged by the regenerative heat exchanger 10 and heated, and then the regenerative heat is generated.
  • the regenerative heat exchanger 2 is referred to as a high temperature exhaust gas side regenerative heat exchanger (high temperature side heat exchanger) 2 and the regenerative heat exchanger 10 is a low temperature exhaust gas side regenerative heat exchanger (low temperature side heat exchanger) 10 It is called.
  • the outlet of the low temperature side heat exchanger 10 is connected to the inlet of the high temperature side heat exchanger 2 by the pipe 52A, and is connected to the combustor 4 by the pipe 52G. That is, the air supplied from the compressor 51 is branched into the supply air of the combustor 4 muffled by the low temperature side heat exchanger 10 and the supply air of the high temperature side heat exchanger 2. Thereby, the amount of air of the fuel cell 3 can be adjusted by adjusting the supply air of the combustor 4, and the outlet air heated to an air temperature suitable for the operation of the fuel cell 3 is supplied to the fuel cell 3 As a result, the sound operation of the fuel cell 3 and the improvement of the plant performance can be simultaneously achieved.
  • compressor discharge air is supplied as supply air for the fuel cell 3 through the pipe 52F, and air is supplied to the combustor 4 via the fuel cell 3 to start the gas turbine.
  • the air from which the heat quantity of the exhaust gas of the gas turbine 5 is recovered to the maximum can be supplied to the fuel cell 3 through the pipe 52F and can be used to raise the temperature of the fuel cell 3, so the start of the fuel cell 3 can be accelerated.
  • the start-up time of can be shortened.
  • the low temperature side heat exchanger 10 By extracting a part of the outlet air to the combustor 4 through the pipe 52G, the flow rate of the inflowing air of the high temperature side heat exchanger 2 can be reduced to raise the temperature of the air supplied to the fuel cell 3 through the pipe 52F. .
  • the temperature of the turbine exhaust gas is about 650 ° C.
  • the air to be heated of the high temperature side heat exchanger 2 flowing through the pipe 52F can be heated up to about 600 ° C.
  • the auxiliary combustion device for raising the temperature of the fuel cell 3 to the operating temperature becomes unnecessary.
  • the pipe 52F is provided with the flow control valve V1, the pipe 61F is provided with the flow control valve V2, the pipe 52G is provided with the flow control valve V3, and the pipe 62 is provided with the flow control valve V4. There is.
  • the flow control valves V1, V2, V3 and V4 can continuously switch the flow rate of the fluid flowing through each pipe from 0% to 100%.
  • the opening degree of the flow control valves V1, V2, V3, V4 is controlled by the controller 12.
  • the controller 12 controls the opening degree of the flow control valves V1, V2, V3, V4 and the on-off valve V5 based on the flow rate, temperature, and pressure measurement signals 70 of each part.
  • FIG. 2 is a timing chart showing an operation sequence of the hybrid power generation system according to the first embodiment of the present invention.
  • the control device 12 starts the start of the gas turbine (GT) and the warming up of the fuel cell (FC). At this time, the controller 12 fully opens the flow control valve V1, fully closes the flow control valves V3 and V4, and closes the on-off valve V5. As the rotational speed of the gas turbine 5 increases, the flow control valve V1 is gradually opened to gradually increase the amount of fuel supplied from the pipe 61 to the gas turbine 5 to start the gas turbine 5. At this time, as the rotational speed of the gas turbine 5 increases, the amount of air discharged from the compressor 1 flowing through the pipe 51 also increases, so the amount of air flowing through the pipe 52F also increases.
  • the flow control valve V3 is fully closed and the on-off valve V5 is also closed, the entire amount of air discharged from the compressor 1 is sent from the low temperature side heat exchanger 10 to the high temperature side heat exchanger 2.
  • the heat of the exhaust gas of the gas turbine 5 is recovered by the heat exchangers 10 and 2 and is supplied to the fuel cell 3 as fuel cell supply air by the pipe 52F to raise the temperature of the fuel cell 3.
  • the controller 12 makes the flow rate of the fluid flowing through the pipes 52F and 61 constant.
  • the controller 12 gradually opens the flow control valve V3 to control the amount of air flowing in the pipe 52G. By increasing it, the flow rate of air flowing through the pipes 52A, 52F is reduced. Thereby, the temperature rise of the air by the high temperature side heat exchanger 2 is accelerated, and the temperature of the fuel cell 3 is raised.
  • the controller 12 When the temperature at which the fuel cell 3 can start is reached, at time t3, the controller 12 gradually opens the flow control valve V4 to start passing fuel through the fuel cell 3 and takes the load of the fuel cell 3 . At this time, since the fuel cell 3 generates heat by the reaction heat of the electrochemical reaction itself and the temperature rises, the controller 12 gradually closes the flow control valve V3 to reduce the amount of air flowing through the pipe 52G. Thus, the flow rate of air supplied from the pipe 52F to the fuel cell 3 is increased again, and the air temperature is properly adjusted.
  • the controller 12 keeps the flow control valves V1, V2, V3 and V4 at a constant opening degree.
  • the oxidant heated at the regenerative heat exchanger is taken out separately for the fuel cell and for the gas turbine, thereby supplying oxidants of different temperatures and flow rates to each. It becomes possible. Therefore, the fuel cell is designed to be supplied with oxidant at a temperature and oxidant flow rate suitable for its operation, and to the gas turbine after sufficient heat recovery in the regenerative heat exchanger at the remaining oxidant flow rate before supply. By doing this, both the sound operation of the fuel cell and the high efficiency operation of the gas turbine can be achieved.
  • the gas turbine is adjusted by adjusting the bypass flow rate, the bleed flow amount, etc. so that the heat of exhaust gas can be maximally recovered by the gas turbine intake in the regenerative heat exchanger and supplied to the fuel cell.
  • Can be used to raise the temperature of the fuel cell the startup time of the hybrid power generation system can be shortened, and the temperature of the fuel cell is raised to the operating temperature.
  • the heating device to be
  • FIG. 3 is a system configuration diagram of a hybrid power generation system according to a second embodiment of the present invention.
  • the same reference numerals as in FIG. 1 indicate the same parts.
  • the present embodiment differs from the embodiment shown in FIG. 1 in that the WAC (Water Atomizing inlet air Cooling) and the HAT (Humid Air Turbine: humidified turbine) are used as high humidity content air utilization. That is the point.
  • WAC and HAT will further improve plant performance. That is, since the WAC reduces the temperature of the intake air introduced into the compressor 1 by the pipe 50, it reduces the power necessary for driving the compressor 1 and increases the suction flow rate of the compressor 1 to reduce the temperature of the turbine 5.
  • the power generation efficiency can be improved by increasing the axial power.
  • the HAT In order to lower the temperature of the compressor discharge air discharged from the pipe 52, the HAT lowers the temperature of the exhaust gas discharged from the pipe 56 of the regenerative heat exchanger 2, and is supplied from the pipe 55 by the regenerative heat exchanger 2.
  • the power generation efficiency can be improved by increasing the heat recovery amount of the turbine exhaust gas.
  • the water supply pump 7 boosts the pressure of the water spray supply water supplied from the water supply tank 6 by the pipe 40, and the WAC water supply supplied by the pipe 41 and the HAT water supply supplied by the pipe 42 Supply to the inlet and outlet sides.
  • the steam generated by the fuel cell 3 and discharged to the turbine exhaust gas from the pipe 55 is condensed and recovered by the exhaust gas cooler 11 by the refrigerant supplied from the pipe 43.
  • the water is stored in the water supply tank 6 as recovered water.
  • the recovered water flowing through the pipe 44 can be used for the WAC and HAT. Therefore, the output can be improved and the efficiency can be improved while suppressing the external supply cost of the makeup water.
  • the power generation plant can supply both electricity and water. All of WAC water supply, HAT water supply and extraction water need to install and purify water treatment equipment by reverse osmosis membrane etc. in order to prevent equipment damage etc. and to reduce the impurity concentration according to the application. May occur.
  • the fuel cell 3 can be used without supplying water from the outside It becomes a power plant that can be operated only by recovering the water generated.
  • emitted from the piping 45 by external air can also be used as a refrigerant
  • the oxidant heated at the regenerative heat exchanger is taken out separately for the fuel cell and for the gas turbine, thereby supplying oxidants of different temperatures and flow rates to each. It becomes possible. Therefore, the fuel cell is designed to be supplied with oxidant at a temperature and oxidant flow rate suitable for its operation, and to the gas turbine after sufficient heat recovery in the regenerative heat exchanger at the remaining oxidant flow rate before supply. By doing this, both the sound operation of the fuel cell and the high efficiency operation of the gas turbine can be achieved.
  • the gas turbine is adjusted by adjusting the bypass flow rate, the bleed flow amount, etc. so that the heat of exhaust gas can be maximally recovered by the gas turbine intake in the regenerative heat exchanger and supplied to the fuel cell.
  • Can be used to raise the temperature of the fuel cell the startup time of the hybrid power generation system can be shortened, and the temperature of the fuel cell is raised to the operating temperature.
  • the heating device to be
  • FIG. 4 is a system configuration diagram of a hybrid power generation system according to a third embodiment of the present invention.
  • the same reference numerals as in FIGS. 1 and 2 indicate the same parts.
  • FIG. 5 is a timing chart showing an operation sequence of the hybrid power generation system according to the third embodiment of the present invention.
  • the present embodiment shown in FIG. 4 is different from the embodiment shown in FIG. 3 in that the air to be heated of the high temperature side heat exchanger 2 among the two stages of regenerative heat exchangers is supplied to the combustor 4 by the pipe 52G.
  • the heating air of the low temperature side heat exchanger 10 is supplied to the fuel cell 3 through the pipe 52F. Further, a flow control valve is used as the valve V5.
  • This configuration is effective when the operating temperature of the fuel cell 3 is low, and the temperature of the supply air 52F suitable for the operation of the fuel cell 3 is kept low while the turbine exhaust gas 55 is heated to the heated air by the high temperature side heat exchanger 2.
  • the power generation efficiency can be improved because the heat of
  • the controller 12 starts the start of the gas turbine (GT) and warms up the fuel cell (FC).
  • the control device 12 supplies the entire amount of the compressor discharge air 51 to the high temperature side heat exchanger 2 with the flow control valves V1 and V3 being fully closed.
  • the flow control valve V5 is gradually opened to gradually increase the amount of fuel supplied from the pipe 61 to the gas turbine 5 to start the gas turbine 5.
  • the discharge air amount of the compressor 1 flowing through the pipe 52A also increases with the increase of the rotational speed of the gas turbine 5, the air amount flowing through the pipe 52B also increases.
  • the flow control valve V1 since the flow control valve V1 is fully closed, the entire amount of air discharged from the compressor 1 is sent from the low temperature side heat exchanger 10 to the high temperature side heat exchanger 2.
  • the heat of the exhaust gas of the gas turbine 5 is recovered by the heat exchangers 10 and 2 and is supplied to the fuel cell 3 as fuel cell supply air by the pipe 52 B to heat the fuel cell 3.
  • start-up of the fuel cell 3 can be accelerated, and the start-up time of the hybrid power generation system can be shortened.
  • the controller 12 controls the flow rate of fluid flowing through the pipes 52B and 61. Be constant.
  • the controller 12 gradually opens the flow control valve V4 to increase the amount of fuel supplied to the fuel cell 3 by the pipe 62, and the flow control valve
  • the air temperature is properly changed while the air introduced into the fuel cell 3 is switched from the piping 52B to the bypass air and the fuel cell supply air from the piping 52F. While adjusting, the load on the fuel cell 3 is increased.
  • the flow control valve V3 is also gradually opened to supply the high temperature air of the high temperature side regenerative heat exchanger 2 to the fuel tank 4.
  • the controller 12 keeps the flow control valves V1, V2, V3 and V4 at a constant opening degree.
  • FIG. 6 is a block diagram of a regenerative heat exchanger used in a hybrid power generation system according to a fourth embodiment of the present invention.
  • the regenerative heat exchanger 2 is provided with a pipe 52G which extracts the air from the middle of the air side pipe, which is used as the supply air of the combustor 4 and the outlet air of the regenerative heat exchanger 2 by the pipe 52F.
  • a pipe 52G which extracts the air from the middle of the air side pipe, which is used as the supply air of the combustor 4 and the outlet air of the regenerative heat exchanger 2 by the pipe 52F.
  • the supply air of 3 air of different temperature can be supplied to each.
  • FIG. 7 is a configuration diagram of a regenerative heat exchanger used in a hybrid power generation system according to a fifth embodiment of the present invention.
  • the air side piping of the regenerative heat exchanger 2 is provided separately for the fuel cell piping 52F and the gas turbine piping 52G, so that air can be separately supplied to the fuel cell 3 and the combustor 4.
  • the regenerative heat exchanger 2 is configured.
  • the supply air of the fuel cell 3 on the side of the pipe 52F has a larger heat transfer area and heat recovery on the high temperature side, and supplies a higher temperature air than the supply air of the combustor 4 on the side of the pipe 52G. I am able to do it.
  • FIG. 8 is a configuration diagram of a regenerative heat exchanger used in a hybrid power generation system according to a sixth embodiment of the present invention.
  • the air side piping of the regenerative heat exchanger 2 is separately provided for the fuel cell and the gas turbine including the introduction position by the piping 51, and the supply air of the fuel cell 3 is obtained by the piping 52F.
  • the regenerative heat exchanger 2 is configured so that the supply air of the combustor 4 can be obtained by 52G and air can be separately supplied.
  • the air supplied from the fuel cell 3 in the pipe 52F recovers heat on the high temperature side, so that air higher in temperature than the air supplied from the combustor 4 in the pipe 52G can be supplied.
  • the high temperature side heat exchanger 2 and the low temperature side heat exchanger 10 of the embodiment shown in FIG. 1 With the regenerative heat exchanger 2 of the present embodiment, the same effect as the embodiment shown in FIG. However, at the time of cold start, it is necessary to adjust the flow rate of each part so that the heat recovery on the low temperature side can be efficiently performed by adjusting the flow rate of the bypass air 52B.
  • FIG. 9 is a block diagram of a regenerative heat exchanger used in a hybrid power generation system according to a seventh embodiment of the present invention.
  • the positions of the supply air of the fuel cell 3 of the pipe 52F of FIG. 9 and the supply air of the combustor 4 of the pipe 52G are interchanged and the HAT is introduced before the air for gas turbine is introduced into the regenerative heat exchanger 2.
  • the configuration is such that the feed water is sprayed and can be applied to the embodiment shown in FIG. 4, but since the air whose temperature has been lowered by blowing the HAT is introduced to the high temperature side of the regenerative heat exchanger 2, Heat recovery may be insufficient.
  • FIG. 10 is a configuration diagram of a regenerative heat exchanger used in a hybrid power generation system according to an eighth embodiment of the present invention.
  • the regenerative heat exchanger is constituted by a two-stage heat exchanger, and each is used for heating fuel cell supply air and for heating gas turbine supply air, and the regeneration of the embodiment shown in FIG.
  • the heat exchanger 2 is divided into two stages. Therefore, the present embodiment can obtain the same effect as the embodiment shown in FIG.
  • the spray position of the HAT water supply 42 can be made the same as that of the embodiment shown in FIG. 9, and in that case, the same effect as the embodiment shown in FIG. 9 can be obtained.
  • FIG. 11 is a system configuration diagram of a hybrid power generation system according to a ninth embodiment of the present invention.
  • the same reference numerals as in FIGS. 1 and 3 denote the same components.
  • the fuel supplied from the fuel cell 3 flowing through the pipe 52F is branched, and the fuel is discharged by the pipe 52S into the storage container containing the cell stack of the fuel cell 3.
  • the fuel cell is supplied as supply air in the cell storage container so that the fuel cell can be heated or cooled from the outside thereof.
  • fuel cell supply air supplied to raise the temperature of the fuel cell 3 can be passed through the inside and outside of the cell stack of the fuel cell 3 at the cold start of the hybrid power generation system. Since the heating of the cells can be promoted, the startup time of the hybrid power generation system can be shortened.
  • cooling can be similarly performed from both the inside and outside of the fuel cell stack, and the time required for the fuel cell cool down can be shortened.
  • Control device 40 Water spray supply water 41: WAC (Water Atomizing inlet air Cooling: water supply type intake air cooling) water supply 42: HAT (Humid Air Turbine: humidification turbine) water supply 43: Refrigerant 44: Exhaust cooler recovered water 45 ... water supply tank extraction water 50 ... intake air 51 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

Provided is a hybrid power generation system capable of efficiently operating a gas turbine while providing an operating temperature and an oxidant flow rate which are suitable for operating a fuel cell. The hybrid power generation system is provided with a fuel cell (3) and a gas turbine (5). A heat exchanger increases the temperature of air pressurized by a compressor by using exhaust gas of the gas turbine and consists of a high-temperature-side heat exchanger (2) and a low-temperature-side heat exchanger (10). A pipe (52G) supplies the air from the outflow port side of the low-temperature-side heat exchanger (10) to the gas turbine (5). A pipe (52F) supplies the air from the outflow port side of the high-temperature-side heat exchanger (2) to the fuel cell (3). A control device (12) performs control such that a flow rate control valve (V3) is gradually opened from a fully-closed state at the time of the cold start of the fuel cell to reduce the flow rate of the air flowing in the pipe (52G) and increase the temperature of the air supplied from the heat exchanger which is flowing in the pipe (52F).

Description

ハイブリッド発電システムHybrid power generation system
 本発明は、燃料電池と再生サイクルガスタービンのハイブリッド発電システムに係り、特に、発電効率の向上したハイブリッド発電システムに関する。 The present invention relates to a hybrid power generation system of a fuel cell and a regenerative cycle gas turbine, and more particularly to a hybrid power generation system with improved power generation efficiency.
 近年、燃料電池とガスタービンを組み合わせたハイブリッド発電システムの開発が盛んになってきている。 In recent years, development of a hybrid power generation system combining a fuel cell and a gas turbine has become active.
 燃料電池は、基本的には水素を酸素と反応させて発電するシステムであり、熱サイクルを利用して発電するガスタービンやレシプロエンジンとは異なり、電気化学反応を利用して直接発電するシステムであるため、ガスタービンなどと比べ発電効率が格段に高い。 A fuel cell is basically a system that generates hydrogen by reacting with oxygen, and unlike a gas turbine or a reciprocating engine that generates electricity using a thermal cycle, it is a system that generates electricity directly using an electrochemical reaction. Because of their existence, their power generation efficiency is much higher than gas turbines.
 そのため、燃料電池をガスタービン発電システムと組み合わせることで、発電効率を大幅に向上できる。なぜなら、ガスタービンでは燃料を燃焼させることにより作動流体を昇温させるが、ガスタービンと燃料電池のハイブリッドシステムでは、燃料電池において電気化学反応により高効率で発電した上、その反応エネルギのうち電気に変換されたエネルギを除いた残りのエネルギを熱として放出して作動流体を昇温させた後、加熱した作動流体のエネルギをタービンで動力として回収できるためである。 Therefore, the power generation efficiency can be significantly improved by combining the fuel cell with the gas turbine power generation system. This is because, in the gas turbine, the working fluid is heated by burning the fuel, but in the hybrid system of the gas turbine and the fuel cell, the fuel cell generates electricity with high efficiency by the electrochemical reaction, and the reaction energy is converted to electricity. This is because the energy of the heated working fluid can be recovered as power by the turbine after the remaining energy except the converted energy is released as heat to raise the temperature of the working fluid.
 また、再生熱交換器でガスタービン排ガスの熱を回収して空気を昇温させる再生サイクルガスタービンを用いたり、圧縮機入口空気を冷却する機器を付加したりすることにより、さらに発電効率を改善させることができる燃料電池ハイブリッドシステムが知られている(例えば、特許文献1参照)。特許文献1では、ガスタービンの吸気量が燃料電池の必要とする流量より多い場合、再生熱交換器出口空気の一部を燃料電池に供給せず、バイパスさせて直接ガスタービン燃焼器に供給する構成が知られている。 In addition, power generation efficiency is further improved by using a regenerative cycle gas turbine that recovers the heat of the gas turbine exhaust gas with a regenerative heat exchanger to raise the temperature, or by adding equipment that cools the compressor inlet air. There is known a fuel cell hybrid system that can be used (see, for example, Patent Document 1). In Patent Document 1, when the intake amount of the gas turbine is larger than the required flow rate of the fuel cell, a part of the regenerative heat exchanger outlet air is not supplied to the fuel cell but is directly bypassed and supplied to the gas turbine combustor The configuration is known.
[規則91に基づく訂正 31.07.2009] 
特開2005-38817号公報
[Correction based on rule 91 31.07.2009]
JP 2005-38817 A
 燃料電池を作動させるためには、燃料の他に適切な作動温度と酸化剤流量を提供する必要がある。しかし、ガスタービンに燃料電池を組み合わせるハイブリッド発電システムでは、燃料電池に適切な作動温度と酸化剤流量を提供しようとすると、以下の問題が生じる。即ち、ひとつのガスタービン機種に対して、吸気量はある程度の幅はあっても定格状態でほぼ一定であり、ガスタービンの熱効率を向上させるためタービン排ガスの熱回収を効率良く行う再生熱交換器を用いれば、再生熱交換器の出口酸化剤温度も同様にほぼ一定に定まるが、この温度は必ずしも燃料電池の運転に適した温度とは限らない。 In order to operate the fuel cell, it is necessary to provide an appropriate operating temperature and oxidant flow rate in addition to the fuel. However, in a hybrid power generation system in which a fuel cell is combined with a gas turbine, trying to provide the fuel cell with an appropriate operating temperature and oxidant flow rate causes the following problems. That is, for one type of gas turbine model, the intake air amount is almost constant in the rated state even though there is a certain extent, and a regenerative heat exchanger that efficiently recovers the heat of turbine exhaust gas to improve the thermal efficiency of the gas turbine The temperature of the outlet oxidant of the regenerative heat exchanger is also substantially constant, but this temperature is not necessarily the temperature suitable for the operation of the fuel cell.
 本発明の目的は、燃料電池を作動させるのに適した作動温度と酸化剤流量を提供しつつ、ガスタービンを効率良く動作させることを可能にするハイブリッド発電システムを提供することにある。 An object of the present invention is to provide a hybrid power generation system that enables a gas turbine to operate efficiently while providing an operating temperature and an oxidant flow rate suitable for operating a fuel cell.
 (1)上記目的を達成するために、本発明は、燃料電池とガスタービンのハイブリッド発電システムであって、圧縮機で加圧した酸化剤を燃料電池用とガスタービン用に分岐させ、かつ前記酸化剤をそれぞれ前記燃料電池と前記ガスタービンとに異なる温度と流量で供給できるように排ガスとの熱交換器を配置したものである。 
 かかる構成により、燃料電池を作動させるのに適した作動温度と酸化剤流量を提供しつつ、ガスタービンを効率良く動作させ得るものとなる。
(1) In order to achieve the above object, the present invention is a hybrid power generation system of a fuel cell and a gas turbine, wherein an oxidant pressurized by a compressor is branched into one for a fuel cell and one for a gas turbine A heat exchanger for exhaust gas is disposed so that the oxidant can be supplied to the fuel cell and the gas turbine at different temperatures and flow rates.
Such a configuration allows the gas turbine to operate efficiently while providing an operating temperature and oxidant flow rate suitable for operating the fuel cell.
[規則91に基づく訂正 31.07.2009] 
 (2)上記(1)において、好ましくは、前記ガスタービンは、再生サイクルガスタービンであり、前記熱交換器は、再生熱交換器である。
[Correction based on rule 91 31.07.2009]
(2) In the above (1), preferably, the gas turbine is a regenerative cycle gas turbine, and the heat exchanger is a regenerative heat exchanger.
 (3)上記(1)において、好ましくは、前記熱交換器は、前記ガスタービンの排ガスを用いて、前記圧縮機で加圧した酸化剤を昇温するものであり、高温側熱交換器部と低温側熱交換器部とから構成され、前記低温側熱交換器部の流出口側から前記ガスタービンに前記酸化剤を供給する第1の配管と、前記高温側熱交換器部の流出口側から前記燃料電池に前記酸化剤を供給する第2の配管と、前記第1の配管に設けられた第1の流量制御弁と、前記第2の配管に設けられた第2の流量制御弁とを備えるようにしたものである。 
 (4)上記(3)において、好ましくは、前記燃料電池のコールドスタート時に、前記第1の流量制御弁を全閉の状態から徐々に開くように制御する制御手段を備え、前記第1の配管を流れる酸化剤の流量を減じて、前記第2の配管を流れる熱交換器供給酸化剤の温度を昇温するようにしたものである。
(3) In the above (1), preferably, the heat exchanger raises the temperature of the oxidant pressurized by the compressor using the exhaust gas of the gas turbine, and the high temperature side heat exchanger section And a low temperature side heat exchanger portion, the first pipe for supplying the oxidant to the gas turbine from the outlet side of the low temperature side heat exchanger portion, and the outlet of the high temperature side heat exchanger portion A second pipe for supplying the oxidant to the fuel cell from the side, a first flow control valve provided for the first pipe, and a second flow control valve provided for the second pipe And the like.
(4) In the above (3), preferably, control means is provided for controlling the first flow control valve to gradually open from the fully closed state at the cold start of the fuel cell, and the first pipe The temperature of the heat exchanger-supplied oxidant flowing through the second pipe is increased by reducing the flow rate of the oxidant flowing through the second pipe.
 (5)上記(3)において、好ましくは、前記第1の配管と前記第2の配管とを接続する第3の配管と、該第3の配管の途中に設けられた第3の開閉弁若しくは流量制御弁と、前記ガスタービンの起動時に、前記第3の開閉弁若しくは流量制御弁を開くように制御する制御手段を備え、前記第2の配管から前記燃料電池に流れる酸化剤の流量を減じて、前記燃料電池の圧力損失を低減するようにしたものである。 (5) In the above (3), preferably, a third pipe connecting the first pipe and the second pipe, and a third on-off valve provided in the middle of the third pipe or A flow control valve and control means for controlling to open the third on-off valve or the flow control valve when starting the gas turbine, and reducing the flow rate of the oxidant flowing from the second pipe to the fuel cell To reduce the pressure loss of the fuel cell.
 (6)上記(3)において、好ましくは、前記熱交換器は複数の熱交換器で構成され、前記複数の熱交換器の酸化剤側の配管同士を繋ぐ連結配管から分岐して燃料電池用またはガスタービン用の酸化剤を供給するように管路網を形成したものである。 (6) In the above (3), preferably, the heat exchanger is composed of a plurality of heat exchangers, and branched from a connecting pipe connecting the oxidant side pipes of the plurality of heat exchangers to a fuel cell Or, a pipeline network is formed to supply an oxidant for a gas turbine.
 (7)上記(6)において、好ましくは、前記熱交換器は、前記低温側熱交換器部を構成する第1の熱交換器と、該第1の熱交換器とは独立しており、前記高温側熱交換器部を構成する第2の熱交換器とから構成され、前記第1の熱交換器の流出口側には、前記第1の配管の他に、前記第2の熱交換器の流入口側に接続される第4の配管を備えるようにしたものである。 (7) In the above (6), preferably, the heat exchanger is independent of the first heat exchanger constituting the low-temperature side heat exchanger section, and the first heat exchanger. And a second heat exchanger constituting the high-temperature side heat exchanger section, and the second heat exchange in addition to the first pipe on the outlet side of the first heat exchanger And a fourth pipe connected to the inlet side of the vessel.
 (8)上記(3)において、好ましくは、前記熱交換器内で酸化剤側の配管の途中から燃料電池用またはガスタービン用の酸化剤を抽気するように、前記熱交換器を構成したものである。 (8) In the above (3), preferably, the heat exchanger is configured to extract the oxidant for the fuel cell or the gas turbine from the middle of the pipe on the oxidant side in the heat exchanger. It is.
 (9)上記(8)において、好ましくは、前記熱交換器の酸化剤流入口と酸化剤流出口の間に、前記第1の配管を接続し、前記熱交換器の酸化剤流出口に、前記第2の配管を接続したものである。 (9) In the above (8), preferably, the first pipe is connected between the oxidant inlet and the oxidant outlet of the heat exchanger, and the oxidant outlet of the heat exchanger is The second pipe is connected.
 (10)上記(3)において、好ましくは、前記熱交換器内の酸化剤側の配管を燃料電池用とガスタービン用とで分けて設け、前記燃料電池と前記ガスタービンとに別々に酸化剤を供給できるように、前記熱交換器を構成したものである。 (10) In the above (3), preferably, piping on the oxidant side in the heat exchanger is separately provided for the fuel cell and the gas turbine, and the oxidant is separately supplied to the fuel cell and the gas turbine. The heat exchanger is configured to be able to supply
 (11)上記(10)において、好ましくは、前記熱交換器内の酸化剤側の配管を前記低温側熱交換器部の配管と、前記高温側熱交換器部の配管とに分けて設け、前記熱交換器の前記低温側熱交換器部の配管の流出口の間に、前記第1の配管を接続し、前記熱交換器の前記高温側熱交換器部の流出口に、前記第2の配管を接続したものである。 (11) In the above (10), preferably, piping on the oxidant side in the heat exchanger is divided into piping on the low temperature side heat exchanger unit and piping on the high temperature side heat exchanger unit, The first pipe is connected between the outlet of the pipe of the low temperature side heat exchanger portion of the heat exchanger, and the second pipe is connected to the outlet of the high temperature side heat exchanger portion of the heat exchanger. The piping of the
 (12)上記(3)において、好ましくは、前記熱交換器を2つの熱交換器で構成し、前記2つの熱交換器の酸化剤側の配管をそれぞれ前記燃料電池または前記ガスタービンに酸化剤を供給する配管として管路網を形成したものである。 (12) In the above (3), preferably, the heat exchanger is composed of two heat exchangers, and the oxidant side piping of the two heat exchangers is used as an oxidant for the fuel cell or the gas turbine, respectively. A pipeline network is formed as a pipe for supplying
 (13)上記(12)において、好ましくは、前記熱交換器は、前記低温側熱交換器部を構成する第1の熱交換器と、該第1の熱交換器とは独立しており、前記高温側熱交換器部を構成する第2の熱交換器とから構成され、前記第1の熱交換器の流出口の間に、前記第1の配管を接続し、前記第2の熱交換器の流出口に、前記第2の配管を接続したものである。 (13) In the above (12), preferably, the heat exchanger is independent of the first heat exchanger constituting the low-temperature side heat exchanger section and the first heat exchanger. And a second heat exchanger constituting the high-temperature side heat exchanger section, wherein the first pipe is connected between the outlet of the first heat exchanger, and the second heat exchange is performed. The second pipe is connected to the outlet of the vessel.
 (14)上記(1)において、好ましくは、前記燃料電池に供給される酸化剤の一部を分岐し、前記燃料電池を構成する機器の加熱や冷却に利用できるように配管を設けたものである。 (14) In the above (1), preferably, a part of the oxidizing agent supplied to the fuel cell is branched, and a pipe is provided so that it can be used for heating and cooling of the device constituting the fuel cell is there.
 (15)上記(14)において、好ましくは、前記熱交換器は、前記ガスタービンの排ガスを用いて、前記圧縮機で加圧した酸化剤を昇温するものであり、高温側熱交換器部と低温側熱交換器部とから構成され、前記低温側熱交換器部の流出口側から前記ガスタービンに前記酸化剤を供給する第1の配管と、前記高温側熱交換器部の流出口側から前記燃料電池に前記酸化剤を供給する第2の配管と、前記第2の配管から分岐するとともに、前記酸化剤を前記燃料電池のセルスタックを収めた格納容器内に供給する第5の配管を備えるようにしたものである。 (15) In the above (14), preferably, the heat exchanger raises the temperature of the oxidant pressurized by the compressor using the exhaust gas of the gas turbine, and the high temperature side heat exchanger section And a low temperature side heat exchanger portion, the first pipe for supplying the oxidant to the gas turbine from the outlet side of the low temperature side heat exchanger portion, and the outlet of the high temperature side heat exchanger portion A second pipe for supplying the oxidant to the fuel cell from the side, and a fifth pipe branched from the second pipe and for supplying the oxidant into a storage container containing a cell stack of the fuel cell It is equipped with piping.
 本発明によれば、燃料電池を作動させるのに適した作動温度と酸化剤流量を提供しつつ、ガスタービンを効率良く動作させることが可能となる。
According to the present invention, it is possible to operate a gas turbine efficiently while providing an operating temperature and an oxidant flow rate suitable for operating a fuel cell.
本発明の第1の実施形態によるハイブリッド発電システムのシステム構成図である。1 is a system configuration diagram of a hybrid power generation system according to a first embodiment of the present invention. 本発明の第1の実施形態によるハイブリッド発電システムの運転シーケンスを示すタイミングチャートである。It is a timing chart which shows the operation sequence of the hybrid power generation system by a 1st embodiment of the present invention. 本発明の第2の実施形態によるハイブリッド発電システムのシステム構成図である。FIG. 7 is a system configuration diagram of a hybrid power generation system according to a second embodiment of the present invention. 本発明の第3の実施形態によるハイブリッド発電システムのシステム構成図である。It is a system configuration | structure figure of the hybrid electric power generation system by the 3rd Embodiment of this invention. 本発明の第3の実施形態によるハイブリッド発電システムの運転シーケンスを示すタイミングチャートである。It is a timing chart which shows the operation sequence of the hybrid power generation system by a 3rd embodiment of the present invention. 本発明の第4実施形態によるハイブリッド発電システムに用いる再生熱交換器の構成図である。It is a block diagram of the regenerative heat exchanger used for the hybrid electric power generation system by 4th Embodiment of this invention. 本発明の第5実施形態によるハイブリッド発電システムに用いる再生熱交換器の構成図である。It is a block diagram of the regenerative heat exchanger used for the hybrid electric power generation system by 5th Embodiment of this invention. 本発明の第6実施形態によるハイブリッド発電システムに用いる再生熱交換器の構成図である。It is a block diagram of the regenerative heat exchanger used for the hybrid electric power generation system by 6th Embodiment of this invention. 本発明の第7実施形態によるハイブリッド発電システムに用いる再生熱交換器の構成図である。It is a block diagram of the regenerative heat exchanger used for the hybrid electric power generation system by 7th Embodiment of this invention. 本発明の第8実施形態によるハイブリッド発電システムに用いる再生熱交換器の構成図である。It is a block diagram of the regenerative heat exchanger used for the hybrid electric power generation system by 8th Embodiment of this invention. 本発明の第9の実施形態によるハイブリッド発電システムのシステム構成図である。It is a system configuration | structure figure of the hybrid electric power generation system by the 9th Embodiment of this invention.
[規則91に基づく訂正 31.07.2009] 
 以下、図1及び図2を用いて、本発明の第1の実施形態によるハイブリッド発電システムの構成及び動作について説明する。 
 最初に、図1を用いて、本実施形態によるハイブリッド発電システムのシステム構成について説明する。 
 図1は、本発明の第1の実施形態によるハイブリッド発電システムのシステム構成図である。
[Correction based on rule 91 31.07.2009]
The configuration and operation of the hybrid power generation system according to the first embodiment of the present invention will be described below with reference to FIGS. 1 and 2.
First, the system configuration of the hybrid power generation system according to the present embodiment will be described using FIG. 1.
FIG. 1 is a system configuration diagram of a hybrid power generation system according to a first embodiment of the present invention.
 本実施形態のハイブリッド発電システムは、ガスタービンと燃料電池のハイブリッド構成となっている。 The hybrid power generation system of this embodiment has a hybrid configuration of a gas turbine and a fuel cell.
 最初に、本実施形態の特徴を明確にするため、本実施形態のハイブリッド発電システムの基本構成,すなわち、従来から備えられている構成について説明する。 First, in order to clarify the features of the present embodiment, the basic configuration of the hybrid power generation system of the present embodiment, that is, the conventionally provided configuration will be described.
 圧縮機1は、配管50から供給される,酸化剤である吸気を圧縮して吐出する。再生熱交換器2には、圧縮機1により圧縮された圧縮機吐出空気が配管51から供給される。なお、再生熱交換器10は、本実施形態において追加されたものであり、この点については後述する。燃料電池3には、再生熱交換器2の出口空気が配管52から供給され、また、水素や天然ガスなどの燃料が配管62から供給される。燃料電池3は、供給された酸化剤(空気)と燃料の電気化学反応により発電する。燃焼器4には、燃料電池3の出口空気が配管53から供給され、また、未利用燃料や電気化学反応生成物から成る出口排ガスが配管63から供給され、さらに、配管61から燃料が供給される。タービン5は、配管54により供給される燃焼器4の燃焼ガスにより駆動される。発電機9は、圧縮機1と同様にタービン5に連結され、タービン5の駆動力により回転し発電する。 The compressor 1 compresses and discharges the intake air, which is an oxidant, supplied from the pipe 50. The compressor discharge air compressed by the compressor 1 is supplied to the regenerative heat exchanger 2 from the pipe 51. The regenerative heat exchanger 10 is added in the present embodiment, and this point will be described later. An outlet air of the regenerative heat exchanger 2 is supplied to the fuel cell 3 from a pipe 52, and a fuel such as hydrogen or natural gas is supplied from a pipe 62. The fuel cell 3 generates electricity by the electrochemical reaction of the supplied oxidant (air) and fuel. The outlet air of the fuel cell 3 is supplied to the combustor 4 from the pipe 53, the outlet exhaust gas composed of unused fuel and electrochemical reaction products is supplied from the pipe 63, and the fuel is supplied from the pipe 61. Ru. The turbine 5 is driven by the combustion gas of the combustor 4 supplied by the pipe 54. The generator 9 is connected to the turbine 5 in the same manner as the compressor 1 and is rotated by the driving force of the turbine 5 to generate electric power.
 ここで、配管61,62により供給される燃料は、配管60により供給される燃料を燃料ポンプ8で加圧される。燃料電池3がSOFC(Solid Oxide Fuel Cell:固体酸化物形燃料電池)の場合などでは、燃料として水素ではなく天然ガスを供給し、これを改質して使用するシステムがある。天然ガスの改質には蒸気が必要であり、燃料電池3の電気化学反応により生成された水蒸気を含む出口排ガス(配管63により供給される)の一部をリサイクルし、配管63Rによりリサイクル排ガスとして燃料電池3に戻すことにより、改質に必要な蒸気を供給している。 Here, the fuel supplied by the pipes 61 and 62 is pressurized by the fuel pump 8 with the fuel supplied by the pipe 60. When the fuel cell 3 is a SOFC (Solid Oxide Fuel Cell), for example, there is a system that supplies natural gas instead of hydrogen as fuel, and reforms and supplies this. Steam is necessary for reforming natural gas, and a part of the outlet exhaust gas (supplied by the pipe 63) containing the water vapor generated by the electrochemical reaction of the fuel cell 3 is recycled, and the pipe 63R is used as a recycled exhaust gas. By returning to the fuel cell 3, the steam necessary for reforming is supplied.
 このハイブリッド発電システムでは、再生熱交換器2で、配管55から供給されるタービン排ガスの熱を回収して、配管51を流れる圧縮機吐出空気を昇温させ(この再生熱交換器2を備えたサイクルを再生サイクルと称する)、配管61を流れるガスタービン燃料の消費量を抑えることができるため、発電効率が向上している。 In this hybrid power generation system, the regenerative heat exchanger 2 recovers the heat of the turbine exhaust gas supplied from the pipe 55 to raise the temperature of the compressor discharge air flowing through the pipe 51 (this regenerative heat exchanger 2 is provided Since the consumption of the gas turbine fuel flowing through the pipe 61 can be suppressed, the power generation efficiency is improved.
 次に、本実施形態の特徴的な構成について説明する。 Next, the characteristic configuration of the present embodiment will be described.
 本実施形態では、再生熱交換器2に加えて、再生熱交換器10を備えている。再生熱交換器10の入口は、配管51により圧縮機1の吐出口に接続されている。再生熱交換器10の出口は、配管52Aにより、再生熱交換器2の入口に接続されている。再生熱交換器2の出口は、配管52Fにより燃料電池3の入口に接続されている。すなわち、再生熱交換器10と再生熱交換器2は直列に接続されており、圧縮機1の吐出空気は、最初に、再生熱交換器10により熱交換され、昇温された後、再生熱交換器2により熱交換され、昇温される。一方、熱源となるガスタービン5からの燃焼ガスは、配管55により、最初に、再生熱交換器2に供給され、再生熱交換器2により熱交換されることで燃焼ガスの温度が降下した後、再生熱交換器10に供給される。そこで、以下、再生熱交換器2を高温排ガス側再生熱交換器(高温側熱交換器)2と称し、再生熱交換器10を低温排ガス側再生熱交換器(低温側熱交換器)10と称する。 In the present embodiment, in addition to the regenerative heat exchanger 2, a regenerative heat exchanger 10 is provided. The inlet of the regenerative heat exchanger 10 is connected to the discharge port of the compressor 1 by a pipe 51. The outlet of the regenerative heat exchanger 10 is connected to the inlet of the regenerative heat exchanger 2 by a pipe 52A. The outlet of the regenerative heat exchanger 2 is connected to the inlet of the fuel cell 3 by a pipe 52F. That is, the regenerative heat exchanger 10 and the regenerative heat exchanger 2 are connected in series, and the discharge air of the compressor 1 is first heat-exchanged by the regenerative heat exchanger 10 and heated, and then the regenerative heat is generated. Heat is exchanged by the exchanger 2 and the temperature is raised. On the other hand, the combustion gas from the gas turbine 5 serving as the heat source is first supplied to the regenerative heat exchanger 2 by the pipe 55 and heat-exchanged by the regenerative heat exchanger 2 so that the temperature of the combustion gas is lowered. , To the regenerative heat exchanger 10. Therefore, hereinafter, the regenerative heat exchanger 2 is referred to as a high temperature exhaust gas side regenerative heat exchanger (high temperature side heat exchanger) 2 and the regenerative heat exchanger 10 is a low temperature exhaust gas side regenerative heat exchanger (low temperature side heat exchanger) 10 It is called.
 さらに、本実施形態では、低温側熱交換器10の出口は、配管52Aにより高温側熱交換器2の入口に接続されると共に、配管52Gにより燃焼器4に接続されている。すなわち、圧縮機51から供給される空気は、低温側熱交換器10により消音された燃焼器4の供給空気と、高温側熱交換器2の供給空気とに分岐される。これにより、燃焼器4の供給空気を調整することで、燃料電池3の空気量を調整することができ、燃料電池3の運転に適した空気温度まで加熱した出口空気を燃料電池3に供給することができ、燃料電池3の健全な運転とプラント性能の向上が同時に図れる。 Furthermore, in the present embodiment, the outlet of the low temperature side heat exchanger 10 is connected to the inlet of the high temperature side heat exchanger 2 by the pipe 52A, and is connected to the combustor 4 by the pipe 52G. That is, the air supplied from the compressor 51 is branched into the supply air of the combustor 4 muffled by the low temperature side heat exchanger 10 and the supply air of the high temperature side heat exchanger 2. Thereby, the amount of air of the fuel cell 3 can be adjusted by adjusting the supply air of the combustor 4, and the outlet air heated to an air temperature suitable for the operation of the fuel cell 3 is supplied to the fuel cell 3 As a result, the sound operation of the fuel cell 3 and the improvement of the plant performance can be simultaneously achieved.
 すなわち、燃料電池3のコールドスタート時には、圧縮機吐出空気を配管52Fにより燃料電池3の供給空気として供給し、燃料電池3を経由して空気を燃焼器4に供給してガスタービンを起動することにより、ガスタービン5の排ガスの熱量を最大限回収した空気を配管52Fにより燃料電池3に供給して、燃料電池3の昇温に利用できるため、燃料電池3の起動が早められ、ハイブリッド発電システムの起動時間を短縮することができる。 That is, at the cold start of the fuel cell 3, compressor discharge air is supplied as supply air for the fuel cell 3 through the pipe 52F, and air is supplied to the combustor 4 via the fuel cell 3 to start the gas turbine. Thus, the air from which the heat quantity of the exhaust gas of the gas turbine 5 is recovered to the maximum can be supplied to the fuel cell 3 through the pipe 52F and can be used to raise the temperature of the fuel cell 3, so the start of the fuel cell 3 can be accelerated. The start-up time of can be shortened.
 このとき、再生サイクルガスタービンが定格運転に到達しても、配管52Fから燃料電池に供給される空気の温度が低く、燃料電池3の始動温度に達しない場合は、低温側熱交換器10の出口空気の一部を配管52Gにより燃焼器4に抜出すことにより、高温側熱交換器2の流入空気流量を減じて、配管52Fにより燃料電池3に供給される空気の温度を上げることができる。ガスタービンの機種にもよるが、タービン排ガスの温度が650℃程度であれば、配管52Fに流れる高温側熱交換器2の被加熱空気は600℃程度まで昇温でき、電気化学反応を開始できる温度にまで燃料電池3を昇温させることが可能である。ひとたび電気化学反応が開始されれば、その反応熱により燃料電池3は定格運転温度にまで昇温していく。そのため、本実施形態の構成では、燃料電池3を作動温度まで昇温させる助燃装置が不要となる。 At this time, even if the regenerative cycle gas turbine reaches the rated operation, if the temperature of the air supplied to the fuel cell from the piping 52F is low and does not reach the start temperature of the fuel cell 3, the low temperature side heat exchanger 10 By extracting a part of the outlet air to the combustor 4 through the pipe 52G, the flow rate of the inflowing air of the high temperature side heat exchanger 2 can be reduced to raise the temperature of the air supplied to the fuel cell 3 through the pipe 52F. . Depending on the type of gas turbine, if the temperature of the turbine exhaust gas is about 650 ° C., the air to be heated of the high temperature side heat exchanger 2 flowing through the pipe 52F can be heated up to about 600 ° C. and electrochemical reaction can be started It is possible to raise the temperature of the fuel cell 3 to a temperature. Once the electrochemical reaction is initiated, the heat of reaction causes the fuel cell 3 to rise to the rated operating temperature. Therefore, in the configuration of the present embodiment, the auxiliary combustion device for raising the temperature of the fuel cell 3 to the operating temperature becomes unnecessary.
 また、ガスタービンの起動に際して、燃料電池3での圧力損失が大きく燃焼器への空気供給が阻まれる場合など燃料電池3を経由するとガスタービンの起動が妨げられるときは、配管52Bにより、燃料電池3をバイパスさせて、配管52Gにより燃焼器4へ空気供給し、ガスタービンを起動した後、配管52Fにより燃料電池3への空気供給を開始し、燃料電池3を昇温させることにより、ハイブリッド発電システムの起動時間を短縮することができる。配管52Bの途中には、開閉弁V5が設けられている。開閉弁V5は、配管52Bを流れる流体の流量を0%と100%とに2段階に切り替えることができる。開閉弁V5の開度は、制御装置12によって制御される。 In addition, when starting the gas turbine, if the pressure loss in the fuel cell 3 is large and air supply to the combustor is interrupted, such as when passing through the fuel cell 3 prevents the gas turbine from being started, the fuel cell is connected by the pipe 52B 3 is bypassed, air is supplied to the combustor 4 by the pipe 52G, and after the gas turbine is started, air supply to the fuel cell 3 is started by the pipe 52F, and the temperature of the fuel cell 3 is raised, whereby hybrid power generation is performed. System startup time can be reduced. An open / close valve V5 is provided in the middle of the pipe 52B. The on-off valve V5 can switch the flow rate of the fluid flowing through the pipe 52B in two stages of 0% and 100%. The opening degree of the on-off valve V5 is controlled by the controller 12.
 また、配管52Fには流量制御弁V1が設けられ、配管61Fには流量制御弁V2が設けられ、配管52Gには流量制御弁V3が設けられ、配管62には流量制御弁V4が設けられている。流量制御弁V1,V2,V3,V4は、それぞれの配管を流れる流体の流量を0%~100%まで連続的に切り替えることができる。流量制御弁V1,V2,V3,V4の開度は、制御装置12によって制御される。 The pipe 52F is provided with the flow control valve V1, the pipe 61F is provided with the flow control valve V2, the pipe 52G is provided with the flow control valve V3, and the pipe 62 is provided with the flow control valve V4. There is. The flow control valves V1, V2, V3 and V4 can continuously switch the flow rate of the fluid flowing through each pipe from 0% to 100%. The opening degree of the flow control valves V1, V2, V3, V4 is controlled by the controller 12.
 制御装置12は、各部の流量,温度,圧力計測信号70に基づいて、流量制御弁V1,V2,V3,V4及び開閉弁V5の開度を制御する。 The controller 12 controls the opening degree of the flow control valves V1, V2, V3, V4 and the on-off valve V5 based on the flow rate, temperature, and pressure measurement signals 70 of each part.
 次に、図2を用いて、本実施形態によるハイブリッド発電システムの運転シーケンスについて説明する。 
 図2は、本発明の第1の実施形態によるハイブリッド発電システムの運転シーケンスを示すタイミングチャートである。
Next, an operation sequence of the hybrid power generation system according to the present embodiment will be described with reference to FIG.
FIG. 2 is a timing chart showing an operation sequence of the hybrid power generation system according to the first embodiment of the present invention.
 時刻t0において、制御装置12は、ガスタービン(GT)の起動と燃料電池(FC)の暖気を開始する。このとき、制御装置12は、流量制御弁V1を全開とし、流量制御弁V3,V4を全閉とし、開閉弁V5を閉じる。ガスタービン5の回転数の増加と共に、流量制御弁V1を徐々に開き、配管61からガスタービン5に供給される燃料量を徐々に増加して、ガスタービン5を起動する。このとき、ガスタービン5の回転数の増加に従って、配管51を流れる圧縮機1の吐出空気量も増加するため、配管52Fを流れる空気量も増加する。ここで、流量制御弁V3は全閉であり、開閉弁V5も閉じているので、圧縮機1の吐出空気量の全量が、低温側熱交換器10から高温側熱交換器2に送られる。ガスタービン5の排ガスの熱は、熱交換器10,2により熱回収され、配管52Fにより燃料電池供給空気として燃料電池3に供給され、燃料電池3を昇温する。 At time t0, the control device 12 starts the start of the gas turbine (GT) and the warming up of the fuel cell (FC). At this time, the controller 12 fully opens the flow control valve V1, fully closes the flow control valves V3 and V4, and closes the on-off valve V5. As the rotational speed of the gas turbine 5 increases, the flow control valve V1 is gradually opened to gradually increase the amount of fuel supplied from the pipe 61 to the gas turbine 5 to start the gas turbine 5. At this time, as the rotational speed of the gas turbine 5 increases, the amount of air discharged from the compressor 1 flowing through the pipe 51 also increases, so the amount of air flowing through the pipe 52F also increases. Here, since the flow control valve V3 is fully closed and the on-off valve V5 is also closed, the entire amount of air discharged from the compressor 1 is sent from the low temperature side heat exchanger 10 to the high temperature side heat exchanger 2. The heat of the exhaust gas of the gas turbine 5 is recovered by the heat exchangers 10 and 2 and is supplied to the fuel cell 3 as fuel cell supply air by the pipe 52F to raise the temperature of the fuel cell 3.
 時刻t1において、ガスタービンが定格に達すると、制御装置12は、配管52F,61を流れる流体の流量を一定とする。 When the gas turbine reaches the rating at time t1, the controller 12 makes the flow rate of the fluid flowing through the pipes 52F and 61 constant.
 時刻t2において、燃料電池3のコールドスタートの制御となり、燃料電池3を始動できる温度まで昇温させるために、制御装置12は、流量制御弁V3を徐々に開き、配管52Gに流れる空気の量を増加させることで、配管52A,52Fに流れる空気の流量を減少させる。これにより、高温側熱交換器2による空気の温度上昇が速まり、燃料電池3を昇温させる。 At time t2, in order to control the cold start of the fuel cell 3 and raise the temperature to a temperature at which the fuel cell 3 can be started, the controller 12 gradually opens the flow control valve V3 to control the amount of air flowing in the pipe 52G. By increasing it, the flow rate of air flowing through the pipes 52A, 52F is reduced. Thereby, the temperature rise of the air by the high temperature side heat exchanger 2 is accelerated, and the temperature of the fuel cell 3 is raised.
 燃料電池3が始動できる温度に達したならば、時刻t3において、制御装置12は、流量制御弁V4を徐々に開いて、燃料電池3に燃料を通し始め、燃料電池3の負荷をとっていく。この際、燃料電池3は電気化学反応の反応熱により自ら発熱し、温度が上昇するため、制御装置12は、流量制御弁V3を徐々に閉じていき、配管52Gに流れる空気の量を減少させることで、配管52Fから燃料電池3に供給される空気の流量を再び増加させ、空気温度を適切に調整する。 When the temperature at which the fuel cell 3 can start is reached, at time t3, the controller 12 gradually opens the flow control valve V4 to start passing fuel through the fuel cell 3 and takes the load of the fuel cell 3 . At this time, since the fuel cell 3 generates heat by the reaction heat of the electrochemical reaction itself and the temperature rises, the controller 12 gradually closes the flow control valve V3 to reduce the amount of air flowing through the pipe 52G. Thus, the flow rate of air supplied from the pipe 52F to the fuel cell 3 is increased again, and the air temperature is properly adjusted.
 そして、時刻t4において、燃料電池3の定格運転が開始すると、制御装置12は、流量制御弁V1,V2,V3,V4の開度を一定とする。 Then, when rated operation of the fuel cell 3 is started at time t4, the controller 12 keeps the flow control valves V1, V2, V3 and V4 at a constant opening degree.
 なお、図2には、図示されていないが、前述したように、ガスタービンの起動に際して、ガスタービンの起動が妨げられるときは、配管52Bにより、燃料電池3をバイパスさせて、配管52Gにより燃焼器4へ空気供給し、ガスタービンを起動した後、配管52Fにより燃料電池3への空気供給を開始し、燃料電池3を昇温させることにより、ハイブリッド発電システムの起動時間を短縮することができる。 Although not illustrated in FIG. 2, as described above, when starting of the gas turbine is interrupted, when the start of the gas turbine is hindered, the fuel cell 3 is bypassed by the pipe 52B and combustion is performed by the pipe 52G. By supplying air to the fuel cell 4 and starting the gas turbine, air supply to the fuel cell 3 is started by the pipe 52F, and the temperature of the fuel cell 3 is raised, whereby the start time of the hybrid power generation system can be shortened. .
 以上説明したように、本実施形態によれば、再生熱交換器で加熱した酸化剤を燃料電池用とガスタービン用とで別々に取り出すことにより、各々に異なる温度と流量の酸化剤を供給することが可能となる。そこで、燃料電池にはその運転に適した温度と酸化剤流量の酸化剤を供給し、ガスタービンには残りの酸化剤流量で再生熱交換器での熱回収を十分行ってから供給するよう設計することにより、燃料電池の健全な運転とガスタービンの高効率な運転が両立できる。 As described above, according to the present embodiment, the oxidant heated at the regenerative heat exchanger is taken out separately for the fuel cell and for the gas turbine, thereby supplying oxidants of different temperatures and flow rates to each. It becomes possible. Therefore, the fuel cell is designed to be supplied with oxidant at a temperature and oxidant flow rate suitable for its operation, and to the gas turbine after sufficient heat recovery in the regenerative heat exchanger at the remaining oxidant flow rate before supply. By doing this, both the sound operation of the fuel cell and the high efficiency operation of the gas turbine can be achieved.
 さらに、ハイブリッド発電システムのコールドスタート時に、再生熱交換器において排ガスの熱量を最大限にガスタービン吸気で回収して燃料電池に供給できるようにバイパス流量や抽気流量などを調整することにより、ガスタービンを起動して再生熱交換器で暖められた酸化剤を全量燃料電池の昇温に利用することができ、ハイブリッド発電システムの起動時間を短縮することができるとともに、燃料電池を作動温度まで昇温させる加熱装置も不要となる。 Furthermore, at the time of cold start of the hybrid power generation system, the gas turbine is adjusted by adjusting the bypass flow rate, the bleed flow amount, etc. so that the heat of exhaust gas can be maximally recovered by the gas turbine intake in the regenerative heat exchanger and supplied to the fuel cell. Can be used to raise the temperature of the fuel cell, the startup time of the hybrid power generation system can be shortened, and the temperature of the fuel cell is raised to the operating temperature. The heating device to be
 次に、図3を用いて、本発明の第2の実施形態によるハイブリッド発電システムの構成及び動作について説明する。 
 図3は、本発明の第2の実施形態によるハイブリッド発電システムのシステム構成図である。なお、図1と同一符号は、同一部分を示している。
Next, the configuration and operation of a hybrid power generation system according to a second embodiment of the present invention will be described using FIG.
FIG. 3 is a system configuration diagram of a hybrid power generation system according to a second embodiment of the present invention. The same reference numerals as in FIG. 1 indicate the same parts.
 本実施形態が、図1に示した実施形態と異なるのは、高湿分空気利用としてWAC(Water Atomizing inlet air Cooling:水噴霧式吸気冷却)とHAT(Humid Air Turbine:加湿タービン)を備えている点である。WACやHATを使用すると、プラント性能がさらに向上する。即ち、WACは、配管50により圧縮機1に導入される吸気の温度を低下させるため、圧縮機1の駆動に必要な動力を低下させるとともに、圧縮機1の吸込流量を増加させてタービン5の軸出力を増加させることにより、発電効率を向上できる。HATは、配管52から吐出される圧縮機吐出空気の温度を低下させるため、再生熱交換器2の配管56から排出する排気の温度を低下させて、再生熱交換器2による配管55から供給されるタービン排ガスの熱回収量を増加させることにより、発電効率を向上できる。 The present embodiment differs from the embodiment shown in FIG. 1 in that the WAC (Water Atomizing inlet air Cooling) and the HAT (Humid Air Turbine: humidified turbine) are used as high humidity content air utilization. That is the point. Using WAC and HAT will further improve plant performance. That is, since the WAC reduces the temperature of the intake air introduced into the compressor 1 by the pipe 50, it reduces the power necessary for driving the compressor 1 and increases the suction flow rate of the compressor 1 to reduce the temperature of the turbine 5. The power generation efficiency can be improved by increasing the axial power. In order to lower the temperature of the compressor discharge air discharged from the pipe 52, the HAT lowers the temperature of the exhaust gas discharged from the pipe 56 of the regenerative heat exchanger 2, and is supplied from the pipe 55 by the regenerative heat exchanger 2. The power generation efficiency can be improved by increasing the heat recovery amount of the turbine exhaust gas.
 ここで、給水ポンプ7は、給水タンク6から配管40により供給される水噴霧供給水を昇圧して、配管41により供給されるWAC給水及び配管42により供給されるHAT給水として、圧縮機1の入口側及び出口側に供給する。 Here, the water supply pump 7 boosts the pressure of the water spray supply water supplied from the water supply tank 6 by the pipe 40, and the WAC water supply supplied by the pipe 41 and the HAT water supply supplied by the pipe 42 Supply to the inlet and outlet sides.
 また、本実施形態のハイブリッド発電システムでは、燃料電池3で生成され、配管55からタービン排ガスに排出される水蒸気を、配管43から供給される冷媒により排気冷却器11で凝縮・回収し、配管44により回収水として給水タンク6に溜める構成としている。これにより、配管44を流れる回収水をWAC、HATに利用できるため、補給水の外部供給コストを抑えつつ、出力向上と高効率化を図ることができる。 Further, in the hybrid power generation system of the present embodiment, the steam generated by the fuel cell 3 and discharged to the turbine exhaust gas from the pipe 55 is condensed and recovered by the exhaust gas cooler 11 by the refrigerant supplied from the pipe 43. Thus, the water is stored in the water supply tank 6 as recovered water. As a result, the recovered water flowing through the pipe 44 can be used for the WAC and HAT. Therefore, the output can be improved and the efficiency can be improved while suppressing the external supply cost of the makeup water.
 また、給水タンク6で余った水は、配管45により、抜出水として取り出せる流路構成としているので、電気と水の両方を供給できる発電プラントとなっている。WAC給水、HAT給水、抜出水は、いずれも、機器の損傷などを防いだり、用途に応じて不純物濃度を低減したりするために、逆浸透膜などによる水処理装置を設置して浄化させる必要が生じる場合がある。 Further, since the water remaining in the water supply tank 6 has a flow path configuration that can be taken out as extracted water by the pipe 45, the power generation plant can supply both electricity and water. All of WAC water supply, HAT water supply and extraction water need to install and purify water treatment equipment by reverse osmosis membrane etc. in order to prevent equipment damage etc. and to reduce the impurity concentration according to the application. May occur.
 配管43から供給される冷媒として外気を用い、タービン排ガスに含まれる水蒸気を空冷の排気冷却器11で凝縮、回収するハイブリッド発電システムを考えると、外部から水を補給しなくても燃料電池3で生成する水を回収するだけで運転できる発電プラントとなる。また図示してはいないが、配管45から排出する抜出水を外気で冷却させたものを、冷媒として用いることもできる。 Considering a hybrid power generation system where outside air is used as refrigerant supplied from the piping 43 and water vapor contained in the turbine exhaust gas is condensed and recovered by the air-cooled exhaust cooler 11, the fuel cell 3 can be used without supplying water from the outside It becomes a power plant that can be operated only by recovering the water generated. Moreover, although not shown in figure, what cooled the extraction water discharged | emitted from the piping 45 by external air can also be used as a refrigerant | coolant.
 以上説明したように、本実施形態によれば、再生熱交換器で加熱した酸化剤を燃料電池用とガスタービン用とで別々に取り出すことにより、各々に異なる温度と流量の酸化剤を供給することが可能となる。そこで、燃料電池にはその運転に適した温度と酸化剤流量の酸化剤を供給し、ガスタービンには残りの酸化剤流量で再生熱交換器での熱回収を十分行ってから供給するよう設計することにより、燃料電池の健全な運転とガスタービンの高効率な運転が両立できる。 As described above, according to the present embodiment, the oxidant heated at the regenerative heat exchanger is taken out separately for the fuel cell and for the gas turbine, thereby supplying oxidants of different temperatures and flow rates to each. It becomes possible. Therefore, the fuel cell is designed to be supplied with oxidant at a temperature and oxidant flow rate suitable for its operation, and to the gas turbine after sufficient heat recovery in the regenerative heat exchanger at the remaining oxidant flow rate before supply. By doing this, both the sound operation of the fuel cell and the high efficiency operation of the gas turbine can be achieved.
 さらに、ハイブリッド発電システムのコールドスタート時に、再生熱交換器において排ガスの熱量を最大限にガスタービン吸気で回収して燃料電池に供給できるようにバイパス流量や抽気流量などを調整することにより、ガスタービンを起動して再生熱交換器で暖められた酸化剤を全量燃料電池の昇温に利用することができ、ハイブリッド発電システムの起動時間を短縮することができるとともに、燃料電池を作動温度まで昇温させる加熱装置も不要となる。 Furthermore, at the time of cold start of the hybrid power generation system, the gas turbine is adjusted by adjusting the bypass flow rate, the bleed flow amount, etc. so that the heat of exhaust gas can be maximally recovered by the gas turbine intake in the regenerative heat exchanger and supplied to the fuel cell. Can be used to raise the temperature of the fuel cell, the startup time of the hybrid power generation system can be shortened, and the temperature of the fuel cell is raised to the operating temperature. The heating device to be
 さらに、WACやHATを用いることで、プラント性能がさらに向上する。 Furthermore, plant performance is further improved by using WAC and HAT.
 次に、図4及び図5を用いて、本発明の第3の実施形態によるハイブリッド発電システムの構成及び動作について説明する。 
 図4は、本発明の第3の実施形態によるハイブリッド発電システムのシステム構成図である。なお、図1及び図2と同一符号は、同一部分を示している。図5は、本発明の第3の実施形態によるハイブリッド発電システムの運転シーケンスを示すタイミングチャートである。
Next, the configuration and operation of a hybrid power generation system according to a third embodiment of the present invention will be described using FIGS. 4 and 5.
FIG. 4 is a system configuration diagram of a hybrid power generation system according to a third embodiment of the present invention. The same reference numerals as in FIGS. 1 and 2 indicate the same parts. FIG. 5 is a timing chart showing an operation sequence of the hybrid power generation system according to the third embodiment of the present invention.
 図4に示す本実施形態が、図3に示した実施形態と異なる点は、二段ある再生熱交換器のうち高温側熱交換器2の被加熱空気が配管52Gにより燃焼器4に供給され、低温側熱交換器10の被加熱空気が配管52Fにより燃料電池3に供給される点にある。また、弁V5としては、流量制御弁を用いている。 The present embodiment shown in FIG. 4 is different from the embodiment shown in FIG. 3 in that the air to be heated of the high temperature side heat exchanger 2 among the two stages of regenerative heat exchangers is supplied to the combustor 4 by the pipe 52G. The heating air of the low temperature side heat exchanger 10 is supplied to the fuel cell 3 through the pipe 52F. Further, a flow control valve is used as the valve V5.
 この構成は、燃料電池3の動作温度が低い場合に有効であり、燃料電池3の運転に適した供給空気52Fの温度を低く抑えながら、高温側熱交換器2で被加熱空気にタービン排ガス55の熱を十分回収させることができるため、発電効率を向上させることができる。 This configuration is effective when the operating temperature of the fuel cell 3 is low, and the temperature of the supply air 52F suitable for the operation of the fuel cell 3 is kept low while the turbine exhaust gas 55 is heated to the heated air by the high temperature side heat exchanger 2. The power generation efficiency can be improved because the heat of
 図5に示すように、本実施形態のハイブリッド発電システムをコールドスタートさせる時は、時刻t0において、制御装置12は、ガスタービン(GT)の起動と燃料電池(FC)の暖気を開始する。このとき、制御装置12は、流量制御弁V1,V3は全閉として、圧縮機吐出空気51の全量を高温側熱交換器2に供給する。ガスタービン5の回転数の増加と共に、流量制御弁V5を徐々に開き、配管61からガスタービン5に供給される燃料量を徐々に増加して、ガスタービン5を起動する。このとき、ガスタービン5の回転数の増加に従って、配管52Aを流れる圧縮機1の吐出空気量も増加するため、配管52Bを流れる空気量も増加する。ここで、流量制御弁V1は全閉であるので、圧縮機1の吐出空気量の全量が、低温側熱交換器10から高温側熱交換器2に送られる。ガスタービン5の排ガスの熱は、熱交換器10,2により熱回収され、配管52Bにより燃料電池供給空気として燃料電池3に供給され、燃料電池3を昇温する。これにより、燃料電池3の起動が早められ、ハイブリッド発電システムの起動時間を短縮することができる
 時刻t1において、ガスタービンが定格に達すると、制御装置12は、配管52B,61を流れる流体の流量を一定とする。
As shown in FIG. 5, when cold starting the hybrid power generation system of the present embodiment, at time t0, the controller 12 starts the start of the gas turbine (GT) and warms up the fuel cell (FC). At this time, the control device 12 supplies the entire amount of the compressor discharge air 51 to the high temperature side heat exchanger 2 with the flow control valves V1 and V3 being fully closed. As the rotational speed of the gas turbine 5 increases, the flow control valve V5 is gradually opened to gradually increase the amount of fuel supplied from the pipe 61 to the gas turbine 5 to start the gas turbine 5. At this time, since the discharge air amount of the compressor 1 flowing through the pipe 52A also increases with the increase of the rotational speed of the gas turbine 5, the air amount flowing through the pipe 52B also increases. Here, since the flow control valve V1 is fully closed, the entire amount of air discharged from the compressor 1 is sent from the low temperature side heat exchanger 10 to the high temperature side heat exchanger 2. The heat of the exhaust gas of the gas turbine 5 is recovered by the heat exchangers 10 and 2 and is supplied to the fuel cell 3 as fuel cell supply air by the pipe 52 B to heat the fuel cell 3. As a result, start-up of the fuel cell 3 can be accelerated, and the start-up time of the hybrid power generation system can be shortened. At time t1, when the gas turbine reaches its rating, the controller 12 controls the flow rate of fluid flowing through the pipes 52B and 61. Be constant.
 燃料電池3が始動できる温度に達したならば、時刻t3において、制御装置12は、流量制御弁V4を徐々に開いて、配管62により燃料電池3に供給される燃料量を増やし、流量制御弁V5を徐々に閉じながら、流量制御弁V1を徐々に開くことで、燃料電池3に導入する空気を配管52Bからバイパス空気から、配管52Fからの燃料電池供給空気に切り替えながら、空気温度を適切に調整するとともに、燃料電池3の負荷を上げていく。また、このとき、流量制御弁V3も徐々に開いて、高温側再生熱交換器2の高温空気を燃料器4に供給する。 When the temperature at which the fuel cell 3 can start is reached, at time t3, the controller 12 gradually opens the flow control valve V4 to increase the amount of fuel supplied to the fuel cell 3 by the pipe 62, and the flow control valve By gradually opening the flow control valve V1 while gradually closing V5, the air temperature is properly changed while the air introduced into the fuel cell 3 is switched from the piping 52B to the bypass air and the fuel cell supply air from the piping 52F. While adjusting, the load on the fuel cell 3 is increased. At this time, the flow control valve V3 is also gradually opened to supply the high temperature air of the high temperature side regenerative heat exchanger 2 to the fuel tank 4.
 そして、時刻t4において、燃料電池3の定格運転が開始すると、制御装置12は、流量制御弁V1,V2,V3,V4の開度を一定とする。 Then, when rated operation of the fuel cell 3 is started at time t4, the controller 12 keeps the flow control valves V1, V2, V3 and V4 at a constant opening degree.
 以上のように、本実施形態では、再生熱交換器が二段あるため、流量、温度の異なる二種類の空気が取り出せ、起動時や負荷運転時など運転フェーズに応じて運転に適した空気を燃料電池に供給しつつ、発電効率を低下させない運転を可能としている。 As described above, in the present embodiment, since there are two stages of regenerative heat exchangers, two types of air having different flow rates and temperatures can be taken out, and the air suitable for operation according to the operation phase such as start or load operation It enables operation without reducing the power generation efficiency while supplying fuel cells.
 次に、図6を用いて、本発明の第4の実施形態によるハイブリッド発電システムの構成について説明する。なお、本実施形態によるハイブリッド発電システムの全体構成は、図1,図4に示すものと同様である。 
 図6は、本発明の第4実施形態によるハイブリッド発電システムに用いる再生熱交換器の構成図である。
Next, the configuration of a hybrid power generation system according to a fourth embodiment of the present invention will be described using FIG. The overall configuration of the hybrid power generation system according to the present embodiment is the same as that shown in FIGS.
FIG. 6 is a block diagram of a regenerative heat exchanger used in a hybrid power generation system according to a fourth embodiment of the present invention.
 本実施形態では、再生熱交換器2に空気側配管の途中から抽気する配管52Gを設けており、これを燃焼器4の供給空気とし、再生熱交換器2の出口空気を配管52Fにより燃料電池3の供給空気として、温度の異なる空気をそれぞれに供給できるようにしている。 In the present embodiment, the regenerative heat exchanger 2 is provided with a pipe 52G which extracts the air from the middle of the air side pipe, which is used as the supply air of the combustor 4 and the outlet air of the regenerative heat exchanger 2 by the pipe 52F. As the supply air of 3, air of different temperature can be supplied to each.
 図1に示した高温側熱交換器2と低温側熱交換器10の組みを、本実施形態の再生熱交換器2に取り換えることにより、図1に示した実施形態と同様の効果が得られる。 By replacing the combination of the high temperature side heat exchanger 2 and the low temperature side heat exchanger 10 shown in FIG. 1 with the regenerative heat exchanger 2 of this embodiment, the same effect as the embodiment shown in FIG. 1 can be obtained. .
[規則91に基づく訂正 31.07.2009] 
 また、図6において、配管52Gを燃料電池3の供給空気とし、配管52Fを燃焼器4の供給空気とすることで、この場合の再生熱交換器2を図4に示した実施形態の高温側熱交換器2と低温側熱交換器10の組みと取り換えることにより、図4に示した実施形態と同様の効果が得られる。
[Correction based on rule 91 31.07.2009]
Further, in FIG. 6, by using the pipe 52G as supply air for the fuel cell 3 and the pipe 52F as supply air for the combustor 4, the regenerative heat exchanger 2 in this case is the high temperature side of the embodiment shown in FIG. By replacing the combination of the heat exchanger 2 and the low temperature side heat exchanger 10, the same effect as that of the embodiment shown in FIG. 4 can be obtained.
 次に、図7を用いて、本発明の第5の実施形態によるハイブリッド発電システムの構成について説明する。なお、本実施形態によるハイブリッド発電システムの全体構成は、図1,図4に示すものと同様である。 
 図7は、本発明の第5実施形態によるハイブリッド発電システムに用いる再生熱交換器の構成図である。
Next, the configuration of a hybrid power generation system according to a fifth embodiment of the present invention will be described using FIG. The overall configuration of the hybrid power generation system according to the present embodiment is the same as that shown in FIGS.
FIG. 7 is a configuration diagram of a regenerative heat exchanger used in a hybrid power generation system according to a fifth embodiment of the present invention.
 本実施形態では、再生熱交換器2の空気側配管を燃料電池用配管52Fとガスタービン用配管52Gとで分けて設け、燃料電池3と燃焼器4とに別々に空気を供給できるように、再生熱交換器2を構成している。 In the present embodiment, the air side piping of the regenerative heat exchanger 2 is provided separately for the fuel cell piping 52F and the gas turbine piping 52G, so that air can be separately supplied to the fuel cell 3 and the combustor 4. The regenerative heat exchanger 2 is configured.
 図7では、配管52Fの側の燃料電池3の供給空気の方が伝熱面積を大きくかつ高温側での熱回収としており、配管52Gの側の燃焼器4の供給空気より高温の空気を供給できるようにしている。図1に示した実施形態の高温側熱交換器2と低温側熱交換器10の組みを、本実施形態の再生熱交換器2に取り換えることにより、図1に示した実施形態と同様の効果が得られる。 In FIG. 7, the supply air of the fuel cell 3 on the side of the pipe 52F has a larger heat transfer area and heat recovery on the high temperature side, and supplies a higher temperature air than the supply air of the combustor 4 on the side of the pipe 52G. I am able to do it. By replacing the combination of the high temperature side heat exchanger 2 and the low temperature side heat exchanger 10 of the embodiment shown in FIG. 1 with the regenerative heat exchanger 2 of the present embodiment, the same effect as the embodiment shown in FIG. Is obtained.
[規則91に基づく訂正 31.07.2009] 
 また、図6に示した実施形態と同様に、図7の配管52Fの燃料電池3の供給空気Fと配管52Gの燃焼器4の供給空気の位置を入れ替えてもよいものである。
[Correction based on rule 91 31.07.2009]
Further, as in the embodiment shown in FIG. 6, the positions of the supply air F of the fuel cell 3 of the pipe 52F of FIG. 7 and the supply air of the combustor 4 of the pipe 52G may be interchanged.
 次に、図8を用いて、本発明の第6の実施形態によるハイブリッド発電システムの構成について説明する。なお、本実施形態によるハイブリッド発電システムの全体構成は、図1,図4に示すものと同様である。 
 図8は、本発明の第6実施形態によるハイブリッド発電システムに用いる再生熱交換器の構成図である。
Next, a configuration of a hybrid power generation system according to a sixth embodiment of the present invention will be described using FIG. The overall configuration of the hybrid power generation system according to the present embodiment is the same as that shown in FIGS.
FIG. 8 is a configuration diagram of a regenerative heat exchanger used in a hybrid power generation system according to a sixth embodiment of the present invention.
 本実施形態では、再生熱交換器2の空気側配管を配管51による導入位置も含めて燃料電池用とガスタービン用とで分けて設け、配管52Fにより燃料電池3の供給空気を得て、配管52Gにより燃焼器4の供給空気を得て、それぞれ別々に空気を供給できるように、再生熱交換器2を構成している。 In the present embodiment, the air side piping of the regenerative heat exchanger 2 is separately provided for the fuel cell and the gas turbine including the introduction position by the piping 51, and the supply air of the fuel cell 3 is obtained by the piping 52F. The regenerative heat exchanger 2 is configured so that the supply air of the combustor 4 can be obtained by 52G and air can be separately supplied.
 図7では、配管52Fの燃料電池3の供給空気の方が高温側で熱回収しており、配管52Gの燃焼器4の供給空気より高温の空気を供給できるようにしている。図1に示した実施形態の高温側熱交換器2と低温側熱交換器10の組みを、本実施形態の再生熱交換器2に取り換えることにより、図1に示した実施形態と同様の効果が得られるが、コールドスタート時にはバイパス空気52Bの流量を調節して低温側の熱回収も効率よく行えるように、各部空気流量を調整する必要がある。 In FIG. 7, the air supplied from the fuel cell 3 in the pipe 52F recovers heat on the high temperature side, so that air higher in temperature than the air supplied from the combustor 4 in the pipe 52G can be supplied. By replacing the combination of the high temperature side heat exchanger 2 and the low temperature side heat exchanger 10 of the embodiment shown in FIG. 1 with the regenerative heat exchanger 2 of the present embodiment, the same effect as the embodiment shown in FIG. However, at the time of cold start, it is necessary to adjust the flow rate of each part so that the heat recovery on the low temperature side can be efficiently performed by adjusting the flow rate of the bypass air 52B.
[規則91に基づく訂正 31.07.2009] 
 また、図6に示した実施形態と同様に、図8の配管52Fの燃料電池3の供給空気Fと配管52Gの燃焼器4の供給空気の位置を入れ替えてもよいものである。
[Correction based on rule 91 31.07.2009]
Further, as in the embodiment shown in FIG. 6, the positions of the supply air F of the fuel cell 3 of the pipe 52F of FIG. 8 and the supply air of the combustor 4 of the pipe 52G may be interchanged.
[規則91に基づく訂正 31.07.2009] 
 次に、図9を用いて、本発明の第7の実施形態によるハイブリッド発電システムの構成について説明する。なお、本実施形態によるハイブリッド発電システムの全体構成は、図1,図4に示すものと同様である。 
 図9は、本発明の第7実施形態によるハイブリッド発電システムに用いる再生熱交換器の構成図である。
[Correction based on rule 91 31.07.2009]
Next, a configuration of a hybrid power generation system according to a seventh embodiment of the present invention will be described using FIG. The overall configuration of the hybrid power generation system according to the present embodiment is the same as that shown in FIGS.
FIG. 9 is a block diagram of a regenerative heat exchanger used in a hybrid power generation system according to a seventh embodiment of the present invention.
[規則91に基づく訂正 31.07.2009] 
 本実施形態は、再生熱交換器2の空気側配管は図8と同じであるが、配管51の圧縮機吐出空気からガスタービン用空気を分岐させた後で再生熱交換器2に導入する前に、配管42からHAT給水を噴霧している点が異なる。このように構成することにより、HAT運転時に燃料電池3に湿分の少ない空気(配管52Fによる燃料電池3の供給空気)を供給でき、酸化剤として不純物の量を低減できる。
[Correction based on rule 91 31.07.2009]
In this embodiment, although the air side piping of the regenerative heat exchanger 2 is the same as that of FIG. 8, the air for gas turbine is branched from the compressor discharge air of the piping 51 and thereafter introduced into the regenerative heat exchanger 2 The difference is that the HAT feed water is sprayed from the piping 42. By configuring in this manner, air with less moisture (air supplied by the fuel cell 3 through the pipe 52F) can be supplied to the fuel cell 3 during HAT operation, and the amount of impurities as an oxidant can be reduced.
 本実施形態の場合は、図9の配管52Fの燃料電池3の供給空気と配管52Gの燃焼器4の供給空気の位置を入れ替え、ガスタービン用空気の再生熱交換器2への導入前にHAT給水を噴霧する構成とし、図4に示した実施形態に適用することもできるが、HATを吹いて温度低下させた空気が再生熱交換器2の高温側に導入されるため、低温側での熱回収が不十分となるおそれがある。 In the case of the present embodiment, the positions of the supply air of the fuel cell 3 of the pipe 52F of FIG. 9 and the supply air of the combustor 4 of the pipe 52G are interchanged and the HAT is introduced before the air for gas turbine is introduced into the regenerative heat exchanger 2. The configuration is such that the feed water is sprayed and can be applied to the embodiment shown in FIG. 4, but since the air whose temperature has been lowered by blowing the HAT is introduced to the high temperature side of the regenerative heat exchanger 2, Heat recovery may be insufficient.
 次に、図10を用いて、本発明の第8の実施形態によるハイブリッド発電システムの構成について説明する。なお、本実施形態によるハイブリッド発電システムの全体構成は、図1,図4に示すものと同様である。 
 図10は、本発明の第8実施形態によるハイブリッド発電システムに用いる再生熱交換器の構成図である。
Next, a configuration of a hybrid power generation system according to an eighth embodiment of the present invention will be described using FIG. The overall configuration of the hybrid power generation system according to the present embodiment is the same as that shown in FIGS.
FIG. 10 is a configuration diagram of a regenerative heat exchanger used in a hybrid power generation system according to an eighth embodiment of the present invention.
 本実施形態は、再生熱交換器を二段の熱交換器で構成し、それぞれを燃料電池供給空気加熱用とガスタービン供給空気加熱用に使用しており、図8に示した実施形態の再生熱交換器2を二段に切り分けた構成となっている。よって本実施形態は、図8に示した実施形態と同じ効果が得られる。 In the present embodiment, the regenerative heat exchanger is constituted by a two-stage heat exchanger, and each is used for heating fuel cell supply air and for heating gas turbine supply air, and the regeneration of the embodiment shown in FIG. The heat exchanger 2 is divided into two stages. Therefore, the present embodiment can obtain the same effect as the embodiment shown in FIG.
 また、HAT給水42の噴霧位置を図9に示した実施形態と同じにすることもでき、その場合は、図9に示した実施形態と同じ効果が得られる。 Also, the spray position of the HAT water supply 42 can be made the same as that of the embodiment shown in FIG. 9, and in that case, the same effect as the embodiment shown in FIG. 9 can be obtained.
 次に、図11を用いて、本発明の第9の実施形態によるハイブリッド発電システムの構成及び動作について説明する。 
 図11は、本発明の第9の実施形態によるハイブリッド発電システムのシステム構成図である。なお、図1及び図3と同一符号は、同一部分を示している。
Next, the configuration and operation of a hybrid power generation system according to a ninth embodiment of the present invention will be described using FIG.
FIG. 11 is a system configuration diagram of a hybrid power generation system according to a ninth embodiment of the present invention. The same reference numerals as in FIGS. 1 and 3 denote the same components.
 本実施形態は、図3に示した実施形態において、配管52Fを流れる燃料電池3の供給空気の一部を分岐して、燃料電池3のセルスタックを収めた格納容器内に、配管52Sにより燃料電池格納容器内供給空気として供給し、燃料電池セルをその外側からも加熱または冷却できるようにしたものである。 In this embodiment, in the embodiment shown in FIG. 3, the fuel supplied from the fuel cell 3 flowing through the pipe 52F is branched, and the fuel is discharged by the pipe 52S into the storage container containing the cell stack of the fuel cell 3. The fuel cell is supplied as supply air in the cell storage container so that the fuel cell can be heated or cooled from the outside thereof.
 このように構成することにより、ハイブリッド発電システムのコールドスタート時に、燃料電池3を昇温させるために供給する燃料電池供給空気を、燃料電池3のセルスタックの内外両面に通すことができ、燃料電池セルの加熱を促進できるため、ハイブリッド発電システムの起動時間を短縮できる。 With this configuration, fuel cell supply air supplied to raise the temperature of the fuel cell 3 can be passed through the inside and outside of the cell stack of the fuel cell 3 at the cold start of the hybrid power generation system. Since the heating of the cells can be promoted, the startup time of the hybrid power generation system can be shortened.
 また、燃料電池のクールダウン時に、燃料電池供給空気に低温の空気を供給すれば、同様に燃料電池セルスタックの内外両面から冷却が可能であり、燃料電池のクールダウンに要する時間を短縮できる。
In addition, when low temperature air is supplied to the fuel cell supply air at the time of cool down of the fuel cell, cooling can be similarly performed from both the inside and outside of the fuel cell stack, and the time required for the fuel cell cool down can be shortened.
符号の説明Explanation of sign
1…圧縮機
2…高温排ガス側再生熱交換器(高温側熱交換器)
3…燃料電池
4…燃焼器
5…タービン
6…給水タンク
7…給水ポンプ
8…燃料ポンプ
9…発電機
10…低温排ガス側再生熱交換器(低温側熱交換器)
11…排気冷却器(水回収装置)
12…制御装置
40…水噴霧供給水
41…WAC(Water Atomizing inlet air Cooling:水噴霧式吸気冷却)給水
42…HAT(Humid Air Turbine:加湿タービン)給水
43…冷媒
44…排気冷却器回収水
45…給水タンク抜出水
50…吸気
51…圧縮機吐出空気
52…再生熱交換器出口空気
52A…高温側熱交換器供給空気
52B…バイパス空気
52C…低温側熱交換器出口空気
52F…燃料電池供給空気
52G…燃焼器供給空気
52H…高温側熱交換器出口空気
52S…燃料電池格納容器内供給空気
53…燃料電池出口空気
53R…燃料電池リサイクル空気
54…燃焼器燃焼ガス
55…タービン排ガス
56…再生熱交換器排気
60…燃料
61…燃焼器供給燃料
62…燃料電池供給燃料
63…燃料電池出口排ガス
63R…燃料電池リサイクル排ガス
70…各部流量、温度、圧力計測信号
1 ... compressor 2 ... high temperature exhaust gas side regenerative heat exchanger (high temperature side heat exchanger)
DESCRIPTION OF SYMBOLS 3 ... Fuel cell 4 ... Combustor 5 ... Turbine 6 ... Water supply tank 7 ... Water supply pump 8 ... Fuel pump 9 ... Generator 10 ... Low temperature exhaust gas side regenerative heat exchanger (low temperature side heat exchanger)
11 ... Exhaust cooler (water recovery device)
12: Control device 40: Water spray supply water 41: WAC (Water Atomizing inlet air Cooling: water supply type intake air cooling) water supply 42: HAT (Humid Air Turbine: humidification turbine) water supply 43: Refrigerant 44: Exhaust cooler recovered water 45 ... water supply tank extraction water 50 ... intake air 51 ... compressor discharge air 52 ... regeneration heat exchanger outlet air 52A ... high temperature side heat exchanger supply air 52B ... bypass air 52C ... low temperature side heat exchanger outlet air 52F ... fuel cell supply air 52G: Combustor supply air 52H: High temperature side heat exchanger outlet air 52S: Fuel cell storage container supply air 53: Fuel cell outlet air 53R: Fuel cell recycle air 54: Combustor combustion gas 55: Turbine exhaust gas 56: Regeneration heat Exchanger exhaust 60 ... Fuel 61 ... Combustor supply fuel 62 ... Fuel cell supply fuel 63 ... Fuel cell outlet exhaust gas 63R ... Fuel cell recycle exhaust gas 70 ... Parts flow, temperature, pressure measurement signal

Claims (15)

  1. (元の請求項1に対応)
     燃料電池とガスタービンのハイブリッド発電システムであって、
     圧縮機で加圧した酸化剤を燃料電池用とガスタービン用に分岐させ、かつ前記酸化剤をそれぞれ前記燃料電池と前記ガスタービンとに異なる温度と流量で供給できるように排ガスとの熱交換器を配置したことを特徴とするハイブリッド発電システム。
    (Corresponding to the original claim 1)
    A hybrid power generation system of a fuel cell and a gas turbine,
    A heat exchanger with exhaust gas so that the oxidant pressurized by the compressor can be branched for the fuel cell and the gas turbine, and the oxidant can be supplied to the fuel cell and the gas turbine at different temperatures and flow rates, respectively. A hybrid power generation system characterized in that
  2. (元の請求項2に対応)
     請求項1記載のハイブリッド発電システムにおいて、
     前記ガスタービンは、再生サイクルガスタービンであり、
     前記熱交換器は、再生熱交換器であることを特徴とするハイブリッド発電システム。
    (Corresponding to the original claim 2)
    In the hybrid power generation system according to claim 1,
    The gas turbine is a regenerative cycle gas turbine,
    The hybrid power generation system, wherein the heat exchanger is a regenerative heat exchanger.
  3. (元の請求項2を具体化した構成;配管52G,52F)
     請求項1記載のハイブリッド発電システムにおいて、
     前記熱交換器は、前記ガスタービンの排ガスを用いて、前記圧縮機で加圧した酸化剤を昇温するものであり、高温側熱交換器部と低温側熱交換器部とから構成され、
     前記低温側熱交換器部の流出口側から前記ガスタービンに前記酸化剤を供給する第1の配管と、
     前記高温側熱交換器部の流出口側から前記燃料電池に前記酸化剤を供給する第2の配管と、
     前記第1の配管に設けられた第1の流量制御弁と、
     前記第2の配管に設けられた第2の流量制御弁とを備えることを特徴とするハイブリッド発電システム。
    (A configuration in which the original claim 2 is embodied; piping 52G, 52F)
    In the hybrid power generation system according to claim 1,
    The heat exchanger raises the temperature of the oxidant pressurized by the compressor using the exhaust gas of the gas turbine, and includes a high temperature side heat exchanger portion and a low temperature side heat exchanger portion.
    A first pipe for supplying the oxidant to the gas turbine from an outlet side of the low temperature side heat exchanger section;
    A second pipe for supplying the oxidant to the fuel cell from the outlet side of the high temperature side heat exchanger section;
    A first flow control valve provided in the first pipe;
    And a second flow control valve provided in the second pipe.
  4. (請求項3に対して、コールドスタート時の制御動作を特定したもの)
     請求項3記載のハイブリッド発電システムにおいて、
     前記燃料電池のコールドスタート時に、前記第1の流量制御弁を全閉の状態から徐々に開くように制御する制御手段を備え、
     前記第1の配管を流れる酸化剤の流量を減じて、前記第2の配管を流れる熱交換器供給酸化剤の温度を昇温することを特徴とするハイブリッド発電システム。
    (For claim 3, the control operation at cold start is specified.)
    In the hybrid power generation system according to claim 3,
    The fuel cell system further comprises control means for controlling the first flow control valve to gradually open from the fully closed state at the cold start of the fuel cell.
    A hybrid power generation system characterized by reducing the flow rate of the oxidant flowing through the first pipe to raise the temperature of the heat exchanger supply oxidant flowing through the second pipe.
  5. (請求項3に対して、ガスタービン起動時に、燃料電池の圧力損失を低減する構成と制御動作を特定したもの)
     請求項3記載のハイブリッド発電システムにおいて、
     前記第1の配管と前記第2の配管とを接続する第3の配管と、
     該第3の配管の途中に設けられた第3の開閉弁若しくは流量制御弁と、
     前記ガスタービンの起動時に、前記第3の開閉弁若しくは流量制御弁を開くように制御する制御手段を備え、
     前記第2の配管から前記燃料電池に流れる酸化剤の流量を減じて、前記燃料電池の圧力損失を低減することを特徴とするハイブリッド発電システム。
    (In contrast to claim 3, the configuration and control operation for reducing the pressure loss of the fuel cell at the time of gas turbine startup are specified.)
    In the hybrid power generation system according to claim 3,
    A third pipe connecting the first pipe and the second pipe;
    A third on-off valve or a flow control valve provided in the middle of the third pipe;
    Control means for controlling to open the third on-off valve or the flow control valve when the gas turbine is started,
    A hybrid power generation system, which reduces the pressure loss of the fuel cell by reducing the flow rate of the oxidant flowing from the second pipe to the fuel cell.
  6. (元の請求項3に対応)
     請求項3記載のハイブリッド発電システムにおいて、
     前記熱交換器は複数の熱交換器で構成され、
     前記複数の熱交換器の酸化剤側の配管同士を繋ぐ連結配管から分岐して燃料電池用またはガスタービン用の酸化剤を供給するように管路網を形成したことを特徴とするハイブリッド発電システム。
    (Corresponding to the original claim 3)
    In the hybrid power generation system according to claim 3,
    The heat exchanger comprises a plurality of heat exchangers,
    A hybrid power generation system characterized in that a pipeline network is formed so as to supply an oxidant for a fuel cell or a gas turbine by branching from a connection pipe that connects the oxidant side pipes of the plurality of heat exchangers. .
  7. (元の請求項3を具体化した構成)
     請求項6記載のハイブリッド発電システムにおいて、
     前記熱交換器は、前記低温側熱交換器部を構成する第1の熱交換器と、
     該第1の熱交換器とは独立しており、前記高温側熱交換器部を構成する第2の熱交換器とから構成され、
     前記第1の熱交換器の流出口側には、前記第1の配管の他に、前記第2の熱交換器の流入口側に接続される第4の配管を備えることを特徴とするハイブリッド発電システム。
    (Configuration that embodies the original claim 3)
    In the hybrid power generation system according to claim 6,
    The heat exchanger is a first heat exchanger that constitutes the low temperature side heat exchanger section;
    And a second heat exchanger that is independent of the first heat exchanger and that constitutes the high temperature side heat exchanger section,
    In addition to the first pipe, a fourth pipe connected to the inlet of the second heat exchanger is provided on the outlet side of the first heat exchanger. Power generation system.
  8. (元の請求項4に対応;図6)
     請求項3記載のハイブリッド発電システムにおいて、
     前記熱交換器内で酸化剤側の配管の途中から燃料電池用またはガスタービン用の酸化剤を抽気するように、前記熱交換器を構成したことを特徴とするハイブリッド発電システム。
    (Corresponding to the original claim 4; FIG. 6)
    In the hybrid power generation system according to claim 3,
    A hybrid power generation system, wherein the heat exchanger is configured to extract an oxidant for a fuel cell or a gas turbine from a middle of a pipe on an oxidant side in the heat exchanger.
  9. (元の請求項4を具体化した構成)
     請求項8記載のハイブリッド発電システムにおいて、
     前記熱交換器の酸化剤流入口と酸化剤流出口の間に、前記第1の配管を接続し、
     前記熱交換器の酸化剤流出口に、前記第2の配管を接続したことを特徴とするハイブリッド発電システム。
    (A configuration in which the original claim 4 is embodied)
    In the hybrid power generation system according to claim 8,
    Connecting the first pipe between the oxidant inlet and the oxidant outlet of the heat exchanger;
    A hybrid power generation system characterized in that the second pipe is connected to an oxidant outlet of the heat exchanger.
  10. (元の請求項5に対応;図7~図9)
     請求項3記載のハイブリッド発電システムにおいて、
     前記熱交換器内の酸化剤側の配管を燃料電池用とガスタービン用とで分けて設け、前記燃料電池と前記ガスタービンとに別々に酸化剤を供給できるように、前記熱交換器を構成したことを特徴とするハイブリッド発電システム。
    (Corresponding to the original claim 5; FIGS. 7 to 9)
    In the hybrid power generation system according to claim 3,
    The oxidant side piping in the heat exchanger is provided separately for the fuel cell and the gas turbine, and the heat exchanger is configured so that the oxidant can be separately supplied to the fuel cell and the gas turbine. The hybrid power generation system characterized by having done.
  11. (元の請求項5を具体化した構成)
     請求項10記載のハイブリッド発電システムにおいて、
     前記熱交換器内の酸化剤側の配管を前記低温側熱交換器部の配管と、前記高温側熱交換器部の配管とに分けて設け、
     前記熱交換器の前記低温側熱交換器部の配管の流出口の間に、前記第1の配管を接続し、
     前記熱交換器の前記高温側熱交換器部の流出口に、前記第2の配管を接続したことを特徴とするハイブリッド発電システム。
    (A configuration in which the original claim 5 is embodied)
    The hybrid power generation system according to claim 10,
    Piping on the oxidant side in the heat exchanger is divided into piping of the low temperature side heat exchanger unit and piping of the high temperature side heat exchanger unit,
    The first pipe is connected between the outlet of the pipe of the low temperature side heat exchanger portion of the heat exchanger,
    A hybrid power generation system characterized in that the second pipe is connected to an outlet of the high temperature side heat exchanger portion of the heat exchanger.
  12. (元の請求項6に対応;図10)
     請求項3記載のハイブリッド発電システムにおいて、
     前記熱交換器を2つの熱交換器で構成し、前記2つの熱交換器の酸化剤側の配管をそれぞれ前記燃料電池または前記ガスタービンに酸化剤を供給する配管として管路網を形成したことを特徴とするハイブリッド発電システム。
    (Corresponding to the original claim 6; FIG. 10)
    In the hybrid power generation system according to claim 3,
    The heat exchanger is composed of two heat exchangers, and the pipeline on the oxidant side of the two heat exchangers is formed as a pipeline for supplying the oxidant to the fuel cell or the gas turbine. A hybrid power generation system characterized by
  13. (元の請求項6を具体化した構成)
     請求項12記載のハイブリッド発電システムにおいて、
     前記熱交換器は、前記低温側熱交換器部を構成する第1の熱交換器と、
     該第1の熱交換器とは独立しており、前記高温側熱交換器部を構成する第2の熱交換器とから構成され、
     前記第1の熱交換器の流出口の間に、前記第1の配管を接続し、
     前記第2の熱交換器の流出口に、前記第2の配管を接続したことを特徴とするハイブリッド発電システム。
    (A configuration in which the original claim 6 is embodied)
    In the hybrid power generation system according to claim 12,
    The heat exchanger is a first heat exchanger that constitutes the low temperature side heat exchanger section;
    And a second heat exchanger that is independent of the first heat exchanger and that constitutes the high temperature side heat exchanger section,
    Connecting the first pipe between the outlet of the first heat exchanger;
    The hybrid power generation system, wherein the second pipe is connected to an outlet of the second heat exchanger.
  14. (元の請求項7に対応;図11)
     請求項1記載のハイブリッド発電システムにおいて、
    前記燃料電池に供給される酸化剤の一部を分岐し、前記燃料電池を構成する機器の加熱や冷却に利用できるように配管を設けたことを特徴とするハイブリッド発電システム。
    (Corresponding to the original claim 7; FIG. 11)
    In the hybrid power generation system according to claim 1,
    A hybrid power generation system characterized in that a part of an oxidant supplied to the fuel cell is branched, and a pipe is provided so that it can be used for heating and cooling of devices constituting the fuel cell.
  15. (元の請求項7を具体化した構成)
     請求項14記載のハイブリッド発電システムにおいて、
     前記熱交換器は、前記ガスタービンの排ガスを用いて、前記圧縮機で加圧した酸化剤を昇温するものであり、高温側熱交換器部と低温側熱交換器部とから構成され、
     前記低温側熱交換器部の流出口側から前記ガスタービンに前記酸化剤を供給する第1の配管と、
     前記高温側熱交換器部の流出口側から前記燃料電池に前記酸化剤を供給する第2の配管と、
     前記第2の配管から分岐するとともに、前記酸化剤を前記燃料電池のセルスタックを収めた格納容器内に供給する第5の配管を備えることを特徴とするハイブリッド発電システム。
    (A configuration in which the original claim 7 is embodied)
    The hybrid power generation system according to claim 14
    The heat exchanger raises the temperature of the oxidant pressurized by the compressor using the exhaust gas of the gas turbine, and includes a high temperature side heat exchanger portion and a low temperature side heat exchanger portion.
    A first pipe for supplying the oxidant to the gas turbine from an outlet side of the low temperature side heat exchanger section;
    A second pipe for supplying the oxidant to the fuel cell from the outlet side of the high temperature side heat exchanger section;
    A hybrid power generation system comprising: a fifth pipe branched from the second pipe and supplying the oxidant into a storage container containing a cell stack of the fuel cell.
PCT/JP2009/052094 2009-02-06 2009-02-06 Hybrid power generation system WO2010089883A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/052094 WO2010089883A1 (en) 2009-02-06 2009-02-06 Hybrid power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/052094 WO2010089883A1 (en) 2009-02-06 2009-02-06 Hybrid power generation system

Publications (1)

Publication Number Publication Date
WO2010089883A1 true WO2010089883A1 (en) 2010-08-12

Family

ID=42541804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052094 WO2010089883A1 (en) 2009-02-06 2009-02-06 Hybrid power generation system

Country Status (1)

Country Link
WO (1) WO2010089883A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102088099A (en) * 2010-12-16 2011-06-08 西安交通大学 Combined cold-heat-power supplying circulation system driven by solid oxide fuel cell
GB2494666A (en) * 2011-09-15 2013-03-20 Rolls Royce Fuel Cell Systems Ltd A solid oxide fuel cell system
JP2015111525A (en) * 2013-12-06 2015-06-18 三菱日立パワーシステムズ株式会社 Controller of hybrid power generation system, hybrid power generation system including the same, and method for controlling hybrid power generation system
US9570766B2 (en) 2011-09-15 2017-02-14 Lg Fuel Cell Systems, Inc. Solid oxide fuel cell system
CN113710885A (en) * 2019-05-31 2021-11-26 三菱动力株式会社 Pressurized air supply system, fuel cell system provided with same, and method for starting pressurized air supply system
CN113982753A (en) * 2021-11-03 2022-01-28 上海交通大学 Coal gasification and SOFC-HAT integrated hybrid power generation system
WO2023117185A1 (en) * 2021-12-22 2023-06-29 Robert Bosch Gmbh Fuel cell device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119239A (en) * 2002-09-27 2004-04-15 Mitsubishi Heavy Ind Ltd Fuel cell-gas turbine power generation equipment and combined cycle power generation equipment
JP2004206896A (en) * 2002-12-24 2004-07-22 Mitsubishi Heavy Ind Ltd Fuel cell-gas turbine power generation facility
JP2006147575A (en) * 2004-11-18 2006-06-08 Siemens Power Generation Inc Recuperative atmospheric-pressure sofc/gas turbine hybrid cycle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119239A (en) * 2002-09-27 2004-04-15 Mitsubishi Heavy Ind Ltd Fuel cell-gas turbine power generation equipment and combined cycle power generation equipment
JP2004206896A (en) * 2002-12-24 2004-07-22 Mitsubishi Heavy Ind Ltd Fuel cell-gas turbine power generation facility
JP2006147575A (en) * 2004-11-18 2006-06-08 Siemens Power Generation Inc Recuperative atmospheric-pressure sofc/gas turbine hybrid cycle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102088099A (en) * 2010-12-16 2011-06-08 西安交通大学 Combined cold-heat-power supplying circulation system driven by solid oxide fuel cell
GB2494666A (en) * 2011-09-15 2013-03-20 Rolls Royce Fuel Cell Systems Ltd A solid oxide fuel cell system
GB2494666B (en) * 2011-09-15 2014-11-05 Rolls Royce Fuel Cell Systems Ltd A solid oxide fuel cell system
US9570766B2 (en) 2011-09-15 2017-02-14 Lg Fuel Cell Systems, Inc. Solid oxide fuel cell system
US9666885B2 (en) 2011-09-15 2017-05-30 Lg Fuel Cell Systems, Inc. Solid oxide fuel cell system
JP2015111525A (en) * 2013-12-06 2015-06-18 三菱日立パワーシステムズ株式会社 Controller of hybrid power generation system, hybrid power generation system including the same, and method for controlling hybrid power generation system
CN113710885A (en) * 2019-05-31 2021-11-26 三菱动力株式会社 Pressurized air supply system, fuel cell system provided with same, and method for starting pressurized air supply system
US20220223887A1 (en) * 2019-05-31 2022-07-14 Mitsubishi Power, Ltd. Pressurized air supply system, fuel cell system comprising the pressurized air supply system, and starting method of the pressurized air supply system
CN113982753A (en) * 2021-11-03 2022-01-28 上海交通大学 Coal gasification and SOFC-HAT integrated hybrid power generation system
WO2023117185A1 (en) * 2021-12-22 2023-06-29 Robert Bosch Gmbh Fuel cell device

Similar Documents

Publication Publication Date Title
JP4579560B2 (en) Fuel cell, normal pressure turbine, hybrid system
WO2010089883A1 (en) Hybrid power generation system
KR101352198B1 (en) Fuel cell hybrid system
JP5185659B2 (en) Combined system
US9777629B2 (en) Power generation system
JP5442206B2 (en) Power system
JP5185658B2 (en) Combined system
JP2013196890A (en) Co2 recovery type power generation system
JP4753407B2 (en) Power generation and power equipment
JP2001115859A (en) Caes power generating system
JP2002298889A (en) Solid electrolyte fuel cell system
US9422862B2 (en) Combined cycle power system including a fuel cell and a gas turbine
JP4461166B2 (en) Fuel cell-gas turbine power generation facility
JP2005044572A (en) Hybrid type fuel cell system
JP2003217602A (en) Combined power generation system using high temperature fuel cell
JP2008522367A (en) Water removal by a reactive air pump powered by a fuel cell system operable during the shutdown process
JP5787791B2 (en) SOFC combined power generation apparatus and operation method thereof
JP2005203223A (en) Combined power generation system using high temperature fuel cell
GB2458112A (en) Heat and Process Water Recovery System
JP4578787B2 (en) Hybrid fuel cell system
JP4209150B2 (en) Combined power generation facility
JP2004169696A (en) Composite power generation facility
JP2000012047A (en) Gas turbine intake cooling system by fuel cell
JP2008226676A (en) Fuel cell system
JP2006097638A (en) Combined power generation system using solid oxide type fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09839660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09839660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP