JP2008064537A - Linear resolver - Google Patents

Linear resolver Download PDF

Info

Publication number
JP2008064537A
JP2008064537A JP2006241348A JP2006241348A JP2008064537A JP 2008064537 A JP2008064537 A JP 2008064537A JP 2006241348 A JP2006241348 A JP 2006241348A JP 2006241348 A JP2006241348 A JP 2006241348A JP 2008064537 A JP2008064537 A JP 2008064537A
Authority
JP
Japan
Prior art keywords
stator
magnetic
longitudinal
mover
stators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006241348A
Other languages
Japanese (ja)
Inventor
Yoshimi Kikuchi
良巳 菊池
Tadashi Okada
匡史 岡田
Kanji Kitazawa
完治 北沢
Hisafumi Mimura
尚史 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamagawa Seiki Co Ltd
Original Assignee
Tamagawa Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamagawa Seiki Co Ltd filed Critical Tamagawa Seiki Co Ltd
Priority to JP2006241348A priority Critical patent/JP2008064537A/en
Publication of JP2008064537A publication Critical patent/JP2008064537A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Linear Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make position sensing of high precision regardless of deflection of the mover by making the long mover freely movable in the space of each separately arranged magnetic stator. <P>SOLUTION: The linear resolver of this invention is constituted such that on the long base (1), in each space (15) of each stator of magnetic substance (2), the long mover (20) is made freely movable. Depending on a variation of the interlinked area between the stator pieces (11 and 12) and the curved surface (21) of the mover (20), the induced voltage is generated. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、リニアレゾルバに関し、特に、分割配置された複数の磁性体固定子の空隙内に長手可動子を移動自在とし、磁性体固定子の各固定子片と鎖交する面積が変化し、検出巻線に誘起電圧を発生させ、可動子振れと関係なく高精度な位置検出を行うようにするための新規な改良に関する。   The present invention relates to a linear resolver, and in particular, the longitudinal mover is movable in the gaps of a plurality of magnetic stators arranged in a divided manner, and the area interlinked with each stator piece of the magnetic stator changes, The present invention relates to a novel improvement for generating an induced voltage in a detection winding and performing highly accurate position detection irrespective of the movement of the mover.

従来、用いられていたこの種のリニアレゾルバとしては、特許文献1に示されるリニアレゾルバを挙げることができる。
すなわち、特許文献1に開示されたリニアレゾルバにおいては、凹凸状に形成された固定子に対し、凹凸状に形成され可動巻線を有する可動子を移動自在とし、可動子の移動に伴って可動巻線の検出巻線からリニアレゾルバ信号を得るように構成していた。
Conventionally, this type of linear resolver includes a linear resolver disclosed in Patent Document 1.
That is, in the linear resolver disclosed in Patent Document 1, a movable element having a movable winding having a concavo-convex shape is movable relative to a concavo-convex shaped stator, and is movable as the movable element moves. The linear resolver signal is obtained from the detection winding of the winding.

特開平6−300583号公報JP-A-6-300583

従来のリニアレゾルバは、以上のように構成されていたため、次のような課題が存在していた。
すなわち、凹凸上の固定子に対して凹凸状で可動巻線を有する可動子を所定の間隔を介して直線移動させているため、平面的には固定子と可動子は正確に一致している必要があり、可動子に振れが発生すると検出精度に悪影響が及んでいた。
また、固定子が一体構造であったため、磁界分布が他の磁極に影響し、検出精度を向上させることが困難であった。
Since the conventional linear resolver is configured as described above, the following problems exist.
In other words, since the movable element having a concave and convex movable winding is linearly moved at a predetermined interval with respect to the concave and convex stator, the stator and the movable element are exactly aligned in plan view. Therefore, when the mover is shaken, the detection accuracy is adversely affected.
Further, since the stator has an integral structure, the magnetic field distribution affects other magnetic poles, and it is difficult to improve detection accuracy.

本発明によるリニアレゾルバは、長手基台上に周期的あるいは非周期的に分割配置されたn対の磁性体固定子と、前記各磁性体固定子をU字型とするため固定子磁芯の両側に空隙を介して設けられた一対の固定子片と、前記固定子磁芯に巻回して設けられた励磁巻線及び検出巻線と、前記各磁性体固定子の各固定子片間の空隙内で直線方向に往復移動自在に設けられた長手可動子と、前記長手可動子の前記固定子磁芯に対向する面に形成され波状に変化する変化面とを備え、前記長手可動子の移動により前記各固定子片と鎖交する面積が変化するようにした構成であり、また、前記変化面は、Sin状あるいはサイクロイド形状に形成されている構成であり、また、前記各磁性体固定子は、Cos相固定子及びSin相固定子とからなり、前記Cos相固定子とSin相固定子のピッチはλ/4であり、前記各Cos相固定子間及び各Sin相固定子間のピッチはλ/2とした構成である。   The linear resolver according to the present invention includes n pairs of magnetic stators arranged periodically or aperiodically on a longitudinal base, and a stator core for making each of the magnetic stators U-shaped. Between a pair of stator pieces provided on both sides via a gap, an excitation winding and a detection winding provided around the stator core, and each stator piece of each magnetic stator A longitudinal mover that is provided so as to be reciprocally movable in a linear direction within the gap, and a change surface that is formed on a surface of the longitudinal mover facing the stator core and changes in a wave shape. The structure is such that the area interlinked with each stator piece is changed by movement, and the change surface is formed in a sine shape or a cycloid shape, and each magnetic body is fixed. The child consists of a Cos phase stator and a Sin phase stator. Pitch of Cos phase stator and Sin phase stator is lambda / 4, the pitch between between the Cos phase stator and the Sin phase stator is a configuration in which a lambda / 2.

本発明によるリニアレゾルバは、以上のように構成されているため、次のような効果を得ることができる。
すなわち、各磁性体固定子が分割配置されているため励磁磁界分布のゆがみ等がなく、高精度な位置検出を行うことができる。
また、固定子磁芯の両側に設けた一対の固定子片により空隙を形成し、この空隙内に長手可動子を移動自在としているため、可動子の移動変位は各固定子と可動子の鎖交する量に依存し、可動子の振れに関係なく安定した検出精度を得ることができる。
また、磁性体固定子の各固定子片の空隙内に長手可動子が重合した状態で移動自在に配置されるため、リニアレゾルバ自体の全高を従来よりも低めに抑えることができ、偏平型とすることができる。
Since the linear resolver according to the present invention is configured as described above, the following effects can be obtained.
That is, since each magnetic stator is divided and arranged, there is no distortion of the excitation magnetic field distribution, and highly accurate position detection can be performed.
Further, since a gap is formed by a pair of stator pieces provided on both sides of the stator core, and the longitudinal mover is movable in the gap, the movement displacement of the mover is caused by the chain between each stator and the mover. Depending on the amount of crossing, stable detection accuracy can be obtained regardless of the movement of the mover.
In addition, since the longitudinal mover is movably disposed in the gap of each stator piece of the magnetic stator, the total height of the linear resolver itself can be kept lower than before, and the flat type and can do.

本発明は、分割配置された複数の磁性体固定子の空隙内に長手可動子を移動自在とし、磁性体固定子の各固定子片と鎖交する面積が変化し、検出巻線に誘起電圧を発生させ、可動子振れと関係なく高精度な位置検出を行なうようにしたリニアレゾルバを提供することを目的とする。   The present invention makes it possible to move the longitudinal mover into the gaps of a plurality of magnetic stators arranged in a divided manner, and the area interlinked with each stator piece of the magnetic stator changes, and an induced voltage is applied to the detection winding. It is an object of the present invention to provide a linear resolver that generates high-precision position detection regardless of the movement of the mover.

以下、図面と共に本発明によるリニアレゾルバの好適な実施の形態について説明する。
図1において、符号1で示されるものは非磁性材からなる長手形状の長手基台であり、この長手基台1上の長手方向には、周期的あるいは非周期的に分割配置された複数の磁性体固定子2が配置されている。
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of a linear resolver according to the present invention will be described with reference to the drawings.
In FIG. 1, what is indicated by reference numeral 1 is a longitudinal base of a longitudinal shape made of a non-magnetic material, and in the longitudinal direction on the longitudinal base 1, a plurality of periodic and aperiodically divided arrangements are provided. A magnetic stator 2 is arranged.

前記各磁性体固定子2は、図1では4個しか示されていないが、検出仕様に応じて任意の数とすることができ、互いに位相が異なる(すなわち、ピッチが互いにλ/4ずつ異なる)Cos相固定子2A及びSin相固定子2Bとから構成されている。
一対の前記各Cos相固定子2Aは、互いにピッチがλ/2間隔で配置され、一対の前記各Sin相固定子2Bは、互いにピッチがλ/2間隔で配置され、前記各一対の各Cos相固定子2A及び各Sin相固定子2Bは、図1の構成に限らず、任意の数のn対とすることができる。
Although only four magnetic stators 2 are shown in FIG. 1, the number of magnetic stators 2 may be any number depending on the detection specifications, and the phases are different from each other (that is, the pitches are different from each other by λ / 4). ) Cos phase stator 2A and Sin phase stator 2B.
The pair of Cos phase stators 2A are arranged with a pitch of λ / 2 from each other, and the pair of Sin phase stators 2B are arranged with a pitch of λ / 2 from each other. The phase stator 2A and each Sin phase stator 2B are not limited to the configuration shown in FIG.

前記各磁性体固定子2は、図3及び図4に示されるように構成されている。
すなわち、四角板状をなす固定子磁芯10の両側には、一対の板状をなす固定子片11,12が取付けられ、前記固定子磁芯10及び各固定子片11,12により全体形状がコ字型又はU字型に形成されている。
Each of the magnetic material stators 2 is configured as shown in FIGS.
In other words, a pair of plate-shaped stator pieces 11 and 12 are attached to both sides of a square-plate-shaped stator magnetic core 10, and the overall shape is formed by the stator magnetic core 10 and each of the stator pieces 11 and 12. Is formed in a U-shape or a U-shape.

前記固定子磁芯10には、図3で示されるように、励磁巻線13及び検出巻線14が巻回して設けられ、前記固定子磁芯10、各固定子片11,12及び励磁巻線13と検出巻線14とにより前記磁性体固定子2が構成されている。   As shown in FIG. 3, an excitation winding 13 and a detection winding 14 are wound around the stator core 10, and the stator core 10, the stator pieces 11 and 12, and the excitation winding are provided. The magnetic stator 2 is constituted by the wire 13 and the detection winding 14.

前記各磁性体固定子2の各固定子片11,12間に形成された空隙15内には、磁性材からなり長手形状をなす長手可動子20が矢印Aの方向に沿って往復移動自在に設けられ、この長手可動子20は図示しない往復移動部材に接続されて往復移動できるように構成されている。   In a gap 15 formed between the stator pieces 11 and 12 of each magnetic stator 2, a longitudinal movable element 20 made of a magnetic material and having a longitudinal shape is reciprocally movable along the direction of arrow A. The longitudinal movable element 20 is provided and connected to a reciprocating member (not shown) so as to reciprocate.

前記長手可動子20の下面、すなわち、各磁性体固定子2と組合わせた場合の前記各巻線13,14が巻回された固定子磁芯10に対向する面は、波状、すなわち、Sin状又はサイクロイド形状に形成された変化面21が長手方向に沿って連続して形成されている。   The lower surface of the longitudinal mover 20, that is, the surface facing the stator core 10 around which the windings 13 and 14 are wound when combined with the magnetic stator 2 is wavy, that is, a sine shape. Or the change surface 21 formed in the cycloid shape is continuously formed along the longitudinal direction.

従って、前記長手可動子20が各空隙15内で矢印Aの方向に往復移動した場合、この変化面21により各固定子片11,12と鎖交する面積がこの変化面21に沿って変化するように構成されている。   Therefore, when the longitudinal movable element 20 reciprocates in the direction of the arrow A in each gap 15, the area that is linked to the stator pieces 11 and 12 is changed along the change surface 21 by the change surface 21. It is configured as follows.

次に、前述の構成において、励磁巻線13に所定の周波数の交流電圧からなる励磁信号を印加すると、各磁性体固定子2が長手基台1上で分割かつ独立して所定の間隔で配設されているため、各励磁巻線13から発生する磁界分布が長手可動子20等の影響を受けることなく安定して生成される。   Next, in the above-described configuration, when an excitation signal composed of an AC voltage having a predetermined frequency is applied to the excitation winding 13, each magnetic stator 2 is divided on the longitudinal base 1 and independently arranged at predetermined intervals. Therefore, the magnetic field distribution generated from each excitation winding 13 is stably generated without being affected by the longitudinal movable element 20 or the like.

前述の状態で、各空隙15内で長手可動子20を往復移動させると、前記変化面21の形状により空隙15の鎖交量が変化、すなわち、一対の固定子11,12と鎖交する面積が変化し、各検出巻線14に発生する誘起電圧が、長手可動子20の移動に伴うリニアレゾルバのレゾルバ信号として、Sin,Cosの2相信号が出力される。
この2相信号は、周知のR/D変換器を介してデジタル化され、デジタル機器の制御に用いられる。
When the longitudinal movable element 20 is reciprocated in each gap 15 in the above-described state, the amount of linkage of the gap 15 changes depending on the shape of the change surface 21, that is, the area linked with the pair of stators 11 and 12. Changes, and the induced voltage generated in each detection winding 14 outputs a two-phase signal of Sin and Cos as a resolver signal of a linear resolver accompanying the movement of the longitudinal movable element 20.
This two-phase signal is digitized through a well-known R / D converter and used for controlling a digital device.

従って、従来のリニアレゾルバは、可動子の移動軸が振れると、空隙が変化し精度誤差が発生したが、本発明では各固定子11,12間の空隙15であるため、空隙15は固定され、磁気的な精度が低下せず、検出誤差が発生しない。また、長手可動子20の移動変位の情報は、一対の固定子11,12と長手可動子20の鎖交する量に依存し、長手可動子20の振れに依存していない。
従来構成では、励磁磁性体が磁気的に一体化しているが、本発明では、励磁磁性体である各磁性体固定子2は電気的には一体化するが、磁気的には長手基台1上で分割されて独立するため、磁気的な特性を向上させることができる。
Therefore, in the conventional linear resolver, when the moving shaft of the mover is swung, the gap changes and an accuracy error occurs. However, in the present invention, the gap 15 is fixed between the stators 11 and 12, so that the gap 15 is fixed. , Magnetic accuracy does not decrease and no detection error occurs. Further, the information on the movement displacement of the longitudinal movable element 20 depends on the amount of interlinkage between the pair of stators 11 and 12 and the longitudinal movable element 20, and does not depend on the shake of the longitudinal movable element 20.
In the conventional configuration, the exciting magnetic body is magnetically integrated. In the present invention, each magnetic stator 2 as the exciting magnetic body is electrically integrated, but magnetically, the longitudinal base 1 is integrated. Since it is divided and independent, the magnetic characteristics can be improved.

本発明によるリニアレゾルバを示す斜視図である。It is a perspective view which shows the linear resolver by this invention. 図1の長手可動子を示す斜視図である。It is a perspective view which shows the longitudinal needle | mover of FIG. 図1の磁性体固定子を示す拡大斜視図である。It is an expansion perspective view which shows the magnetic body stator of FIG. 図3の巻線を除去した状態を示す斜視図である。It is a perspective view which shows the state which removed the coil | winding of FIG.

符号の説明Explanation of symbols

1 長手基台
2 磁性体固定子
2A Cos相固定子
2B Sin相固定子
10 固定子磁芯
11,12 固定子片
13 励磁巻線
14 検出巻線
15 空隙
20 長手可動子
21 変化面
DESCRIPTION OF SYMBOLS 1 Longitudinal base 2 Magnetic body stator 2A Cos phase stator 2B Sin phase stator 10 Stator magnetic core 11, 12 Stator piece 13 Excitation winding 14 Detection winding 15 Air gap 20 Longitudinal movable element 21 Change surface

Claims (3)

長手基台(1)上に周期的あるいは非周期的に分割配置されたn対の磁性体固定子(2)と、前記各磁性体固定子(2)をU字型とするため固定子磁芯(10)の両側に空隙(15)を介して設けられた一対の固定子片(11,12)と、前記固定子磁芯(10)に巻回して設けられた励磁巻線(13)及び検出巻線(14)と、前記各磁性体固定子(2)の各固定子片(11,12)間の空隙(15)内で直線方向に往復移動自在に設けられた長手可動子(20)と、前記長手可動子(20)の前記固定子磁芯(10)に対向する面に形成され波状に変化する変化面(21)とを備え、
前記長手可動子(20)の移動により前記各固定子片(11,12)と鎖交する面積が変化するように構成したことを特徴とするリニアレゾルバ。
N pairs of magnetic stators (2) divided periodically or non-periodically on the longitudinal base (1), and each magnetic stator (2) to form a U-shaped stator magnet A pair of stator pieces (11, 12) provided on both sides of the core (10) via a gap (15), and an excitation winding (13) provided by being wound around the stator magnetic core (10) And a longitudinal mover provided so as to be reciprocally movable in a linear direction within a gap (15) between the stator windings (11, 12) of each of the magnetic stator (2) and the detection winding (14) ( 20), and a change surface (21) that is formed in a surface facing the stator core (10) of the longitudinal mover (20) and changes in a wave shape,
A linear resolver characterized in that an area interlinking with each stator piece (11, 12) is changed by the movement of the longitudinal movable element (20).
前記変化面(21)は、Sin状あるいはサイクロイド形状に形成されていることを特徴とする請求項1記載のリニアレゾルバ。   2. The linear resolver according to claim 1, wherein the change surface (21) is formed in a Sin shape or a cycloid shape. 前記各磁性体固定子(2)は、Cos相固定子(2A)及びSin相固定子(2B)とからなり、前記Cos相固定子(2A)とSin相固定子(2B)のピッチはλ/4であり、前記各Cos相固定子(2A)間及び各Sin相固定子(2B)間のピッチはλ/2であることを特徴とする請求項1又は2記載のリニアレゾルバ。   Each of the magnetic stators (2) includes a Cos phase stator (2A) and a Sin phase stator (2B), and the pitch between the Cos phase stator (2A) and the Sin phase stator (2B) is λ. The linear resolver according to claim 1 or 2, wherein a pitch between said Cos phase stators (2A) and between each Sin phase stator (2B) is λ / 2.
JP2006241348A 2006-09-06 2006-09-06 Linear resolver Pending JP2008064537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006241348A JP2008064537A (en) 2006-09-06 2006-09-06 Linear resolver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006241348A JP2008064537A (en) 2006-09-06 2006-09-06 Linear resolver

Publications (1)

Publication Number Publication Date
JP2008064537A true JP2008064537A (en) 2008-03-21

Family

ID=39287388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006241348A Pending JP2008064537A (en) 2006-09-06 2006-09-06 Linear resolver

Country Status (1)

Country Link
JP (1) JP2008064537A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2587223A2 (en) 2011-10-28 2013-05-01 Sanyo Denki Co., Ltd. Magnetic encoder with improved resolution

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2587223A2 (en) 2011-10-28 2013-05-01 Sanyo Denki Co., Ltd. Magnetic encoder with improved resolution
CN103090889A (en) * 2011-10-28 2013-05-08 山洋电气株式会社 Magnetic encoder
US8928313B2 (en) 2011-10-28 2015-01-06 Sanyo Denki Co., Ltd. Magnetic encoder with improved resolution

Similar Documents

Publication Publication Date Title
JP5510338B2 (en) Linear motor
JP5279709B2 (en) Electric machine with slanting pole boundary
TW507047B (en) Magnetic actuator
KR101751356B1 (en) Motor having stator with coupled teeth
CN110375775B (en) Electromagnetic induction type encoder
JP5082241B2 (en) Linear motor and method of manufacturing stator included therein
JP2013238485A (en) Encoder and actuator using the same
JP4610884B2 (en) Linear actuator
JP2008064537A (en) Linear resolver
CN110277889B (en) Stator permanent magnet type rotary transformer
JP5589507B2 (en) Mover and stator of linear drive unit
JP4577491B2 (en) Moving coil linear motor
JP2008029070A (en) Angle detector
JPWO2013047610A1 (en) Actuator
JP5374739B2 (en) Linear sensor
KR20120056623A (en) Permanent magnet linear and rotating type synchronous motor
JP4047947B2 (en) Inductive linear position detector
JP2011250611A (en) Vibration generator
JP2014204481A (en) Energy converting apparatus
WO2008047461A1 (en) Linear motor
JP2006050864A (en) Cylindrical linear motor
JP2019020237A (en) Resolver
JP2012223004A (en) Cylindrical linear motor
JP4654369B2 (en) Linear resolver and displacement detector
JP2006353024A (en) Cylindrical linear motor