JP2008064453A - Coolant leakage detecting method and refrigerating cycle device - Google Patents

Coolant leakage detecting method and refrigerating cycle device Download PDF

Info

Publication number
JP2008064453A
JP2008064453A JP2007273722A JP2007273722A JP2008064453A JP 2008064453 A JP2008064453 A JP 2008064453A JP 2007273722 A JP2007273722 A JP 2007273722A JP 2007273722 A JP2007273722 A JP 2007273722A JP 2008064453 A JP2008064453 A JP 2008064453A
Authority
JP
Japan
Prior art keywords
refrigerant
liquid
liquid reservoir
amount
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007273722A
Other languages
Japanese (ja)
Other versions
JP4412385B2 (en
Inventor
Koji Yamashita
浩司 山下
Hiroshi Nakada
浩 中田
Hajime Fujimoto
肇 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007273722A priority Critical patent/JP4412385B2/en
Publication of JP2008064453A publication Critical patent/JP2008064453A/en
Application granted granted Critical
Publication of JP4412385B2 publication Critical patent/JP4412385B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coolant leakage detecting method and a refrigerating cycle device facilitating attachment of a sensor, and capable of carrying out accurate coolant leakage detection in regard to a refrigerating cycle device. <P>SOLUTION: A step is provided for calculating a coolant amount in a liquid pool from a coolant liquid level position in the liquid pool of a refrigerating cycle circulating a coolant by connecting a compressor, a condenser, the liquid pool, an expanding means, and an evaporator by a piping. A step is provided for judging if there is coolant leakage by comparing a coolant amount associated with a condensation temperature and an evaporation temperature of the refrigerating cycle during normal operation, and the newly calculated coolant amount. A step is provided for discriminating whether it is within a certain time after compressor activation when calculating the coolant amount in the liquid pool. If it is discriminated that the certain time has passed after the compressor activation, the coolant amount is calculated by the coolant liquid level position to judge if there is coolant leakage. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、主としてショーケース等の冷却源として用いられる冷凍機の冷凍サイクル装置に関し、特に冷媒漏れの検知に関するものである。   The present invention relates to a refrigeration cycle apparatus for a refrigerator mainly used as a cooling source for a showcase or the like, and more particularly to detection of refrigerant leakage.

従来の冷凍サイクル装置である図12において、101は圧縮機、102は凝縮器、103は受液タンク(液溜)、104は膨張弁、105は蒸発器、106は高圧ガス管、107は高圧液管、108は電磁弁、109は低圧液管、110は低圧ガス管、111は低圧圧力スイッチ、112は補助タンク、112aは前記補助タンク112の下部と前記受液タンク(液溜)103の下部を連通する連通管、112bは前記補助タンク112の上部と前記受液タンク(液溜)103の上部を連通する連通管、113はフロート式レベルセンサである(例えば、特許文献1参照)。 In FIG. 12, which is a conventional refrigeration cycle apparatus, 101 is a compressor, 102 is a condenser, 103 is a liquid receiving tank (liquid reservoir), 104 is an expansion valve, 105 is an evaporator, 106 is a high pressure gas pipe, and 107 is a high pressure. The liquid pipe, 108 is a solenoid valve, 109 is a low pressure liquid pipe, 110 is a low pressure gas pipe, 111 is a low pressure switch, 112 is an auxiliary tank, 112a is the lower part of the auxiliary tank 112 and the liquid receiving tank (liquid reservoir) 103. A communication pipe that communicates the lower part, 112b is a communication pipe that communicates the upper part of the auxiliary tank 112 and the upper part of the liquid receiving tank (liquid reservoir) 103, and 113 is a float type level sensor (see, for example, Patent Document 1).

上記構成において、前記圧縮機101と凝縮器102と受液タンク103と膨張弁104と蒸発器105とを順次接続して冷媒サイクルを形成しており、前記受液タンク103と補助タンク112とを連通管112aおよび112bによって連通させることによって受液タンク103と補助タンク112との液冷媒を同液面レベルとさせている。前記補助タンク112にはフロート式レベルセンサ113が配設され、液面レベルを検出できるようになっており、検出した受液タンク103の液面が予め定められた正常液面レベル以上か否かによって冷媒漏れの検知をしている。尚、上記冷凍サイクルの冷媒の流れ及び作用等については、周知の通りであるので説明を省略する。 In the above configuration, the compressor 101, the condenser 102, the liquid receiving tank 103, the expansion valve 104, and the evaporator 105 are sequentially connected to form a refrigerant cycle, and the liquid receiving tank 103 and the auxiliary tank 112 are connected to each other. By communicating with the communication pipes 112a and 112b, the liquid refrigerant in the liquid receiving tank 103 and the auxiliary tank 112 is brought to the same liquid level. The auxiliary tank 112 is provided with a float level sensor 113 so that the liquid level can be detected. Whether the detected liquid level of the liquid receiving tank 103 is equal to or higher than a predetermined normal liquid level. The refrigerant leak is detected. The refrigerant flow and action in the refrigeration cycle are well known and will not be described.

別の従来の冷凍サイクル装置である図13において、202は圧縮機、203は凝縮器、204はレシーバタンク(液溜)、205は調節弁、206は冷凍ショーケース、207は蒸発器、208は液取出し管、209はフローサイト(サイトグラス)、210はドライヤ、211はアキュムレータ、212は発光器、213は受光器、214は判別回路である(例えば、特許文献2参照)。 In FIG. 13, which is another conventional refrigeration cycle apparatus, 202 is a compressor, 203 is a condenser, 204 is a receiver tank (liquid reservoir), 205 is a control valve, 206 is a refrigeration showcase, 207 is an evaporator, and 208 is A liquid take-out tube, 209 is a flow sight (sight glass), 210 is a dryer, 211 is an accumulator, 212 is a light emitter, 213 is a light receiver, and 214 is a discrimination circuit (see, for example, Patent Document 2).

上記構成において、圧縮機202と凝縮器203とレシーバタンク204と調節弁205と蒸発器207とを順次接続して冷媒サイクルを形成しており、レシーバタンク204の下部から延びる液取出し管208にドライヤ210を介してフローサイト(サイトグラス)209が取り付けられており、レシーバタンク204からの冷媒液の流出状態を確認するようになっている。それは、前記フローサイト209内を流れる冷媒液に向けて発光器212から投光し、受光器213で受光し、受光器213の検出信号のレベルに基づき判別回路214で判別することで、冷媒液への気泡の混入、すなわち冷媒漏れの検知をしている。尚、冷凍サイクルの冷媒の流れ及び作用等については、前述同様周知の通りであるので説明を省略する。 In the above configuration, the compressor 202, the condenser 203, the receiver tank 204, the control valve 205, and the evaporator 207 are sequentially connected to form a refrigerant cycle, and the liquid take-out pipe 208 extending from the lower part of the receiver tank 204 is connected to the dryer. A flow site (sight glass) 209 is attached via 210, and the outflow state of the refrigerant liquid from the receiver tank 204 is confirmed. That is, light is emitted from the light emitter 212 toward the refrigerant liquid flowing in the flow site 209, received by the light receiver 213, and determined by the determination circuit 214 based on the level of the detection signal of the light receiver 213. Detecting air bubbles in the tank, that is, refrigerant leakage. Note that the refrigerant flow and action of the refrigeration cycle are well known as described above, and thus the description thereof is omitted.

特開平10−103820号公報JP-A-10-103820 特開平6−185839号公報JP-A-6-185839

以上のように図12の従来の冷凍サイクル装置は、液溜103内の液面レベルを測定して冷媒漏れを検知しようとすると、前記液溜103あるいは液溜103と前記連通管112a及び112bで接続した前記補助タンク112に穴をあけて、前記フロート式レベルセンサ113等の液面測定手段を取り付ける必要があり、液面測定手段の設置に多大な労力がかかる。また、冷凍機は基本的に24時間稼動のため、既に設置して稼動している冷凍機の液溜には液面測定手段が取り付けることができず、更に測定した液溜内の冷媒液面高さが同じでも冷媒の温度が異なれば冷媒量(冷媒の重量)は異なり、測定した液溜内の冷媒液面高さを温度を用いて重量に換算しないと、冷媒漏れの判断を誤る危険性があるという問題点があった。   As described above, the conventional refrigeration cycle apparatus shown in FIG. 12 measures the liquid level in the liquid reservoir 103 to detect the leakage of the refrigerant, the liquid reservoir 103 or the liquid reservoir 103 and the communication pipes 112a and 112b. It is necessary to make a hole in the connected auxiliary tank 112 and to attach a liquid level measuring means such as the float type level sensor 113, and it takes a lot of labor to install the liquid level measuring means. In addition, since the refrigerator is basically operated for 24 hours, the liquid level measuring means cannot be attached to the liquid reservoir of the refrigerator that has already been installed and operated, and the measured refrigerant liquid level in the liquid reservoir. Even if the height is the same, the refrigerant amount (refrigerant weight) will be different if the refrigerant temperature is different. If the measured refrigerant liquid level in the liquid reservoir is not converted to weight using temperature, there is a risk of misjudgment of refrigerant leakage. There was a problem that there was.

また、冷媒漏れのない正常な運転において、液溜103内の冷媒量(冷媒の重量)は、凝縮器102内の冷媒の飽和温度もしくは圧縮機101の高圧側の圧力、あるいは蒸発器105内の冷媒の飽和温度もしくは圧縮機101の低圧側の圧力の変化に応じて変化をし、この変化の仕方はシステム構成によって決まる一定の関係にあるため、このことを考慮して冷媒漏れ検知を行わないと、精度のよい冷媒漏れ検知、すなわち冷媒漏れの早期発見はできないという問題点があった。   In a normal operation with no refrigerant leakage, the amount of refrigerant in the liquid reservoir 103 (the weight of the refrigerant) depends on the saturation temperature of the refrigerant in the condenser 102 or the pressure on the high pressure side of the compressor 101, or in the evaporator 105. Changes occur according to changes in the saturation temperature of the refrigerant or the pressure on the low pressure side of the compressor 101, and the manner of this change has a certain relationship determined by the system configuration. However, there is a problem that accurate refrigerant leak detection, that is, early detection of refrigerant leak cannot be performed.

また、図13の従来の冷凍サイクル装置は、液溜204の出口側についているサイトグラス209に、前記発光器212、受光器213、判別回路214等の
気泡検知手段を取り付けて、冷媒液への気泡の混入検知によって、冷媒漏れの検知をするようにしているが、液溜内の冷媒液が殆どなくなり液溜の出口管の位置まで冷媒液面が下がってこないと冷媒漏れを検知できないため、冷媒漏れの早期発見ができず、前記検知手段が冷媒漏れを検知してから、冷媒不足により冷凍機が所定の性能を維持できなくなる現象が出るまでの時間が短く、従ってショーケース206の食品が温まって鮮度が悪くなってしまう前に冷凍機に冷媒を再充填する対策を取ることができないという問題点があった。
Further, in the conventional refrigeration cycle apparatus of FIG. 13, bubble detection means such as the light emitter 212, the light receiver 213, and the discrimination circuit 214 are attached to the sight glass 209 on the outlet side of the liquid reservoir 204, so that the refrigerant liquid is supplied. Although the refrigerant leak is detected by detecting the mixing of bubbles, the refrigerant leak cannot be detected unless there is almost no refrigerant liquid in the liquid reservoir and the refrigerant liquid level is lowered to the position of the outlet pipe of the liquid reservoir. Since the refrigerant leak cannot be detected at an early stage and the detection means detects the refrigerant leak, it takes a short time until the phenomenon that the refrigerator cannot maintain the predetermined performance due to the lack of the refrigerant. There was a problem that it was not possible to take measures to refill the refrigerator with refrigerant before it became warm and deteriorated in freshness.

本発明は上記のような問題点を解消するためになされたもので、冷媒漏れを精度よく発見できる冷媒漏れ検知方法及び冷凍サイクル装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a refrigerant leak detection method and a refrigeration cycle apparatus that can accurately detect a refrigerant leak.

本発明に係る冷凍サイクル装置の冷媒漏れ検知方法は、圧縮機、凝縮器、液溜、膨張手段、及び蒸発器を配管にて接続し冷媒を循環させる冷凍サイクルの前記液溜内の冷媒液面位置から前記液溜内の冷媒量を算出するステップと、通常運転中の前記冷凍サイクルの凝縮温度と蒸発温度に関係した冷媒量と新たに算出した冷媒量を比較して冷媒漏れを判断するステップと、前記液溜内の前記冷媒量を算出する際に圧縮機起動後一定時間内かを判別するステップと、を備え、圧縮機起動後一定時間経過と判別した時の前記冷媒液面位置により前記冷媒量を算出し冷媒漏れを判断する。   The refrigerant leakage detection method for a refrigeration cycle apparatus according to the present invention includes a compressor, a condenser, a liquid reservoir, an expansion means, and an evaporator connected by piping to circulate the refrigerant in the liquid reservoir of the refrigeration cycle. Calculating the amount of refrigerant in the liquid reservoir from the position, and comparing the amount of refrigerant related to the condensation temperature and evaporation temperature of the refrigeration cycle during normal operation with the newly calculated amount of refrigerant to determine refrigerant leakage And determining whether the refrigerant amount in the liquid reservoir is within a certain period of time after starting the compressor when calculating the amount of refrigerant in the liquid reservoir, The refrigerant amount is calculated to determine refrigerant leakage.

本発明に係る冷媒漏れ検知方法は、液溜内の前記冷媒量を算出する際に圧縮機起動後一定時間内かを判別するステップと、を備え、圧縮機起動後一定時間経過と判別した時の冷媒液面位置により前記冷媒量を算出し冷媒漏れを判断するので
精度のよい冷媒漏れ検知ができる。
The refrigerant leakage detection method according to the present invention comprises a step of determining whether a certain time has elapsed after starting the compressor when calculating the amount of the refrigerant in the liquid reservoir. Since the refrigerant amount is calculated from the refrigerant liquid level position and the refrigerant leak is judged, the refrigerant leak can be detected with high accuracy.

実施の形態1.
図1は、本発明における実施の形態の一例を示す冷凍サイクル装置の構成図である。
図において、1は圧縮機、2は凝縮器、3は凝縮器用送風機、4は液溜、5は電磁弁、6は膨張手段、7は蒸発器、8は蒸発器用送風機、9は高圧ガス配管、10は低圧ガス配管、11は液溜4の入口側の高圧液配管、12は液溜4の出口側の高圧液配管、13は冷媒漏れ検知手段、15は液面測定手段、30は例えばサーミスタなどの温度測定手段であり、前記液溜4の例えば表面温度を測定する。
前記圧縮機1、電磁弁5、膨張手段6、蒸発器7、蒸発器用送風機8は、例えば1つもしくは複数個設置され、図では各々3台の例として示す。また、前記凝縮器2および凝縮器用送風機3は、例えば機械室もしくは屋外に設置され、前記蒸発器7および蒸発器用送風機8は、例えば店舗等に設置されるショーケース等に内蔵される。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a refrigeration cycle apparatus showing an example of an embodiment of the present invention.
In the figure, 1 is a compressor, 2 is a condenser, 3 is a condenser blower, 4 is a liquid reservoir, 5 is a solenoid valve, 6 is expansion means, 7 is an evaporator, 8 is an evaporator blower, and 9 is a high-pressure gas pipe. 10 is a low-pressure gas pipe, 11 is a high-pressure liquid pipe on the inlet side of the liquid reservoir 4, 12 is a high-pressure liquid pipe on the outlet side of the liquid reservoir 4, 13 is a refrigerant leak detecting means, 15 is a liquid level measuring means, 30 is, for example, It is a temperature measuring means such as a thermistor, and measures, for example, the surface temperature of the liquid reservoir 4.
For example, one or a plurality of the compressor 1, the electromagnetic valve 5, the expansion means 6, the evaporator 7, and the evaporator blower 8 are installed. The condenser 2 and the condenser blower 3 are installed, for example, in a machine room or outdoors, and the evaporator 7 and the evaporator blower 8 are built in, for example, a showcase installed in a store or the like.

図2は、上記のように構成された冷凍サイクル装置の前記液溜4を示す図である。尚、図2において、上記図1と同一又は相当部分には同一符号を付し説明を省略する。
図において、14は前記液溜4の例えば圧力配管用炭素鋼鋼管等からなる筐体、15aは前記筐体14に設けられた例えば超音波センサーで、15bは前記超音波センサー15aのコントローラであり、この15a、15bにより前記液面測定手段15を構成する。16は冷媒液面である。また、図3には、冷凍サイクル装置の冷媒の動作を示すモリエル線図を示しており、図中に付した符号は、図1の構成図の符号と対応している。
FIG. 2 is a view showing the liquid reservoir 4 of the refrigeration cycle apparatus configured as described above. In FIG. 2, the same or corresponding parts as those in FIG.
In the figure, reference numeral 14 denotes a casing made of, for example, a carbon steel pipe for pressure piping of the liquid reservoir 4, 15a denotes, for example, an ultrasonic sensor provided in the casing 14, and 15b denotes a controller of the ultrasonic sensor 15a. The liquid level measuring means 15 is constituted by these 15a and 15b. Reference numeral 16 denotes a refrigerant liquid level. FIG. 3 shows a Mollier diagram showing the operation of the refrigerant of the refrigeration cycle apparatus, and the reference numerals in the drawing correspond to the reference numerals in the configuration diagram of FIG.

まず、冷凍サイクルの動作について説明する。低温低圧のガス冷媒は、圧縮機1で圧縮されて高温高圧のガス冷媒になり、高圧ガス配管9を介して凝縮器2へ流入し、凝縮器2で周囲の流体、例えば空気や水と熱交換をして放熱し高温高圧の液冷媒になり、液溜4の上部の液溜入口に接続された高圧液配管11を介して液溜4へ流入する。液溜4へ流入した高温高圧の液冷媒は、液溜4の下部の液溜出口に接続された高圧液配管12から流出し、電磁弁5を通った後、膨張手段6で減圧されて低温低圧の二相冷媒となって蒸発器7へ流入し、蒸発器7で周囲の流体、例えば空気と熱交換をして低温低圧のガス冷媒となり、低圧ガス配管10を介して、圧縮機1へ吸入される。 First, the operation of the refrigeration cycle will be described. The low-temperature and low-pressure gas refrigerant is compressed by the compressor 1 to become a high-temperature and high-pressure gas refrigerant, and flows into the condenser 2 through the high-pressure gas pipe 9. The condenser 2 heats the surrounding fluid such as air and water. It exchanges heat and becomes a high-temperature and high-pressure liquid refrigerant, and flows into the liquid reservoir 4 through the high-pressure liquid pipe 11 connected to the liquid reservoir inlet at the top of the liquid reservoir 4. The high-temperature and high-pressure liquid refrigerant that has flowed into the liquid reservoir 4 flows out of the high-pressure liquid pipe 12 connected to the liquid reservoir outlet at the bottom of the liquid reservoir 4, passes through the electromagnetic valve 5, and then is decompressed by the expansion means 6 to be low temperature. The refrigerant becomes a low-pressure two-phase refrigerant and flows into the evaporator 7. In the evaporator 7, heat exchange with the surrounding fluid, for example, air, becomes a low-temperature and low-pressure gas refrigerant, and enters the compressor 1 via the low-pressure gas pipe 10. Inhaled.

次に、冷凍サイクル内の冷媒量について説明する。例えばスーパーマーケットのショーケース用の冷却に用いる冷凍機においては、ショーケースは食品売り場に設置されるが、その数、大きさ、種類、配置は設置される店によって異なり、それによってショーケース内に配置されている蒸発器7の内容積も異なる。また、圧縮機1、凝縮器2、液溜4の設置場所も店の構造によって異なり、例えば食品売り場の裏手に設置される場合や屋上に設置される場合があり、それによって蒸発器7と圧縮機1、凝縮器2、液溜4との距離が変り、低圧ガス配管10や高圧液配管12等の配管の長さも異なったものとなる。 Next, the amount of refrigerant in the refrigeration cycle will be described. For example, in a refrigerator used for cooling for a supermarket showcase, the showcase is installed in the food department, but the number, size, type, and arrangement differ depending on the store where it is installed, and are arranged in the showcase accordingly. The internal volume of the evaporator 7 is also different. Moreover, the installation location of the compressor 1, the condenser 2, and the liquid reservoir 4 also differs depending on the store structure. For example, the compressor 1, the condenser 2, and the liquid reservoir 4 may be installed behind the food department or on the roof. The distances between the machine 1, the condenser 2, and the liquid reservoir 4 are changed, and the lengths of the low-pressure gas pipe 10 and the high-pressure liquid pipe 12 are also different.

冷凍サイクルが所定の性能を発揮するためには冷凍サイクルの内容積に適した冷媒量を必要とし、蒸発器の内容積や配管の長さが異なると冷凍サイクル全体で必要とする冷媒量も異なったものとなるため、冷凍機の冷媒は、機器を設置した現地で冷凍サイクルを構成した後に充填される。また、冷凍サイクルでの必要冷媒量は、冷凍サイクルの状態によっても異なり、冷凍サイクルの状態は外気温度やショーケース等の負荷側機器の運転状態によって異なるため、通常冷媒を充填する時は、運転状態によらず凝縮器や蒸発器等の各構成機器に必要な冷媒量が常時配分されるように、少し多めに冷媒を充填する。 In order for the refrigeration cycle to exhibit the specified performance, an amount of refrigerant suitable for the internal volume of the refrigeration cycle is required, and the amount of refrigerant required for the entire refrigeration cycle differs depending on the internal volume of the evaporator and the length of the piping. Therefore, the refrigerant of the refrigerator is charged after configuring the refrigeration cycle at the site where the equipment is installed. In addition, the amount of refrigerant required in the refrigeration cycle varies depending on the state of the refrigeration cycle, and the state of the refrigeration cycle varies depending on the outside air temperature and the operating state of load-side equipment such as showcases. Regardless of the state, a little more refrigerant is charged so that the necessary amount of refrigerant is always distributed to each component device such as a condenser and an evaporator.

よって、圧縮機1、凝縮器2、蒸発器7および配管9〜12に配分される冷媒量は、それぞれの内容積、性能および運転状態によって決まり、冷凍サイクルに充填された冷媒のうち、冷凍サイクルの各構成機器が適性冷媒量になった後の余剰冷媒は、液溜4の中に溜まることになる。従って、液溜4内の冷媒量は冷凍サイクルの状態により時々刻々変化するが、凝縮器2や蒸発器7といった各構成機器内の冷媒の圧力や飽和温度等を測定することで各構成機器内の冷媒量を演算し、冷媒充填量との差し引きで液溜4内の冷媒量を推測することができる。すなわち、ある時刻において液溜4内の冷媒量を測定し、通常の冷凍サイクルの運転状態あるいは以前の時刻における液溜4内の冷媒量と比較することで、液溜4内の冷媒量の変化が通常の変化範囲内であるのか否かを冷媒漏れ検知手段13において演算、判断することで、冷凍サイクルからの冷媒漏れを知ることが可能となる。 Therefore, the refrigerant | coolant amount allocated to the compressor 1, the condenser 2, the evaporator 7, and the piping 9-12 is decided by each internal volume, performance, and an operating state, and, among the refrigerant | coolants with which the refrigerating cycle was filled, a refrigerating cycle. The surplus refrigerant after each component device reaches the appropriate amount of refrigerant will be accumulated in the liquid reservoir 4. Therefore, the amount of refrigerant in the liquid reservoir 4 changes from moment to moment depending on the state of the refrigeration cycle, but by measuring the refrigerant pressure, saturation temperature, etc. in each component such as the condenser 2 and the evaporator 7, The refrigerant amount in the liquid reservoir 4 can be estimated by subtracting the refrigerant amount from the refrigerant charge amount. That is, the amount of refrigerant in the liquid reservoir 4 is measured by measuring the amount of refrigerant in the liquid reservoir 4 at a certain time and comparing it with the operating state of the normal refrigeration cycle or the amount of refrigerant in the liquid reservoir 4 at the previous time. It is possible to know the refrigerant leakage from the refrigeration cycle by calculating and judging in the refrigerant leakage detection means 13 whether or not is within the normal change range.

しかし、液溜4は内部に高圧の液冷媒を貯留するため、圧力配管用炭素鋼鋼管等の金属で形成し、しかも法規に則って耐圧強度を考えて設計、製作された圧力容器でなければならず、その一部に覗き窓のような透明な部分を設けることは可能であるが、実用上は液溜4の大部分は不透明な容器になる。なお、不透明とは光学的に不透明という意味で、光に類するものを用いて液溜4の外部から内部の液面を測定したり、目視によって液溜4の内部全体を透視することが不可能であるということを意味する。また、液溜4の一部に光学的に透明な覗き窓を取り付けたとしても、液溜4内の液面は常時変動しているため、その覗き窓から、液溜4内の冷媒液面の正確な位置を測定もしくは監視することは困難である。 However, since the liquid reservoir 4 stores high-pressure liquid refrigerant inside, the liquid reservoir 4 is formed of a metal such as a carbon steel pipe for pressure piping, and is not a pressure vessel designed and manufactured in consideration of pressure resistance in accordance with regulations. However, it is possible to provide a transparent portion such as a viewing window in a part thereof, but in practice, most of the liquid reservoir 4 is an opaque container. Note that the term “opaque” means optically opaque, and it is impossible to measure the internal liquid level from the outside of the liquid reservoir 4 using something similar to light or to see through the entire interior of the liquid reservoir 4 by visual observation. It means that. Even if an optically transparent viewing window is attached to a part of the liquid reservoir 4, the liquid level in the liquid reservoir 4 is constantly changing. It is difficult to measure or monitor the exact position of the.

一方、音波あるいは超音波といった高周波振動は、気体、液体、固体のいかなる媒質の中も伝わる性質を持っており、この性質を利用することで、液溜4の筐体14の外側から、液溜4内の冷媒液の液面の測定が考えられる。そして、超音波は弾性を持ついかなる媒質をも伝わり、気体、液体、固体のいずれに対しても使用される。超音波が媒質中を伝播していく速度は、媒質の種類と温度によって異なる。 On the other hand, high-frequency vibrations such as sound waves or ultrasonic waves have the property of being transmitted in any medium such as gas, liquid, and solid. By utilizing this property, the liquid reservoir 4 is provided from the outside of the casing 14 of the liquid reservoir 4. The measurement of the liquid level of the refrigerant liquid in 4 can be considered. The ultrasonic wave is transmitted through any medium having elasticity, and is used for any of gas, liquid, and solid. The speed at which ultrasonic waves propagate through the medium depends on the type of medium and the temperature.

表1に代表的な媒質の音速を示す。表中( )内は媒質の温度を表し、単位は[cm/s]である。   Table 1 shows the sound speed of typical media. In the table, the value in () represents the temperature of the medium, and the unit is [cm / s].

Figure 2008064453
Figure 2008064453

尚、表中空気、水、金属の音速は、1995年11月30日に丸善から発行された「理科年表」に記述の数値を用い、また、フロンの音速は、1998年にNISTから発売されたソフト「REFPROP Ver6.01」を用いて計算した値を記した。また、表中R22およびR404Aはフロン系の冷媒であり、前記R404Aは複数の冷媒を混合した混合冷媒で、表中には標準組成の時の値を示している。また、液溜内には上部に冷媒ガス、下部に冷媒液が存在するため、表中には冷媒が液の時と、ガスの時の両者の音速を記載した。 The sound speeds of air, water, and metal in the table are the values described in the “Science Chronology” published by Maruzen on November 30, 1995, and the sound speed of Freon was released from NIST in 1998. The value calculated using the software “REFPROP Ver6.01” is shown. Also, R22 and R404A in the table are chlorofluorocarbon refrigerants, and R404A is a mixed refrigerant in which a plurality of refrigerants are mixed. The table shows the values at the standard composition. Further, since the refrigerant gas exists in the upper part and the refrigerant liquid exists in the lower part in the liquid reservoir, the sound speeds of both when the refrigerant is liquid and when it is gas are shown in the table.

超音波の発生方法にはいくつかの方法があるが、その発生方法の例を以下に示す。
まず、磁歪振動子による方法。ニッケル、鉄−アルミニウム合金等の金属、ニッケル−銅−コバルト系フェライトは、磁場を与えると伸びたり縮んだりする。この性質により、磁場を作るための巻線に高周波電流を流すと、超音波振動が起こる。
There are several methods for generating ultrasonic waves. Examples of such methods are shown below.
First, a method using a magnetostrictive vibrator. Metals such as nickel and iron-aluminum alloys, and nickel-copper-cobalt ferrite expand or contract when a magnetic field is applied. Due to this property, ultrasonic vibration occurs when a high-frequency current is passed through a winding for creating a magnetic field.

次に電歪振動子による方法。チタン酸バリウム磁器、チタン酸ジルコン酸鉛磁器等の燒結体に、銀電極を施して直流電界を印加すると伸び変形する。この性質により電極間に高周波電界を印加すると、超音波振動が発生する。 Next, a method using an electrostrictive vibrator. When a DC electrode is applied to a sintered body such as a barium titanate porcelain or a lead zirconate titanate porcelain and a DC electric field is applied, it is deformed. Due to this property, when a high frequency electric field is applied between the electrodes, ultrasonic vibration is generated.

次に圧電振動子による方法。水晶、ロッシェル塩、圧電性セラミックなどの圧電結晶は、電界を印加すると伸縮またはすべり変形をする。この性質を利用し、高周波電圧を印加すると、超音波振動が発生する。 Next, a method using a piezoelectric vibrator. Piezoelectric crystals such as quartz, Rochelle salt, and piezoelectric ceramic expand or contract or slide when an electric field is applied. When this property is utilized and a high frequency voltage is applied, ultrasonic vibration is generated.

上記に超音波の発生方法の例をいくつか説明したが、その中のいずれかの方法を用いてもよいし、また、超音波を発生させる他の方法によっても構わない。 Several examples of ultrasonic generation methods have been described above, but any of these methods may be used, or other methods for generating ultrasonic waves may be used.

超音波は進行していく途中に異なった媒質があると、その境界で一部は反射し一部は透過する。超音波が密度ρ1、速度c1の媒質1から密度ρ2、速度c2の媒質2へ垂直に入射した時、超音波の反射率Rおよび透過率Tは次式で示される。
R=(ρ2×c2−ρ1×c1)/(ρ1×c1+ρ2×c2)
T=1−R
If there is a different medium while the ultrasonic wave travels, part of it is reflected and part of it is transmitted. When ultrasonic waves are perpendicularly incident on the medium 2 having the density ρ1 and the velocity c1 from the medium 1 having the density ρ2 and the velocity c2, the reflectance R and the transmittance T of the ultrasonic waves are expressed by the following equations.
R = (ρ2 × c2−ρ1 × c1) / (ρ1 × c1 + ρ2 × c2)
T = 1-R

また、超音波がある媒質中を伝わる時間τは、媒質内の伝播速度cと伝播距離Lから次式で求められる。
τ=L/c
従って、超音波の発信器と受信器を超音波センサとして一体化し、その超音波センサの発信器で超音波を発信し、媒質の界面で反射して戻ってきた超音波を受信器で受信し、発信から受信までの時間Δtを測定すれば、次式によって媒質の厚みLを知ることができる。
L=(Δt×c)/2
Also, the time τ during which an ultrasonic wave travels in a medium can be obtained from the propagation velocity c and propagation distance L in the medium by the following equation.
τ = L / c
Therefore, the ultrasonic transmitter and receiver are integrated as an ultrasonic sensor, the ultrasonic sensor transmitter transmits ultrasonic waves, and the ultrasonic waves reflected and returned at the interface of the medium are received by the receiver. If the time Δt from transmission to reception is measured, the thickness L of the medium can be obtained from the following equation.
L = (Δt × c) / 2

前記液溜4の筐体14の底部に、例えば発信器と受信器が一体化された超音波センサ15aを設置することを想定する。前記超音波センサ15aの発信器から発信された超音波は、筐体14の外面から入射し、その内部を材質に応じた速度で伝わり、筐体14の内面に到達する。すると、筐体14内には冷媒液があるため、筐体14と冷媒液との界面で反射がおこり、超音波の一部が再び筐体14内を伝わって超音波センサ15aの受信器で受信され、残りは界面を透過する。なお、この時の超音波の反射率および透過率は上記に示した式で求まる。 It is assumed that, for example, an ultrasonic sensor 15a in which a transmitter and a receiver are integrated is installed at the bottom of the casing 14 of the liquid reservoir 4. The ultrasonic wave transmitted from the transmitter of the ultrasonic sensor 15 a is incident from the outer surface of the housing 14, travels through the inside at a speed corresponding to the material, and reaches the inner surface of the housing 14. Then, since there is a refrigerant liquid in the casing 14, reflection occurs at the interface between the casing 14 and the refrigerant liquid, and a part of the ultrasonic wave is again transmitted through the casing 14 and is received by the receiver of the ultrasonic sensor 15a. Received, the rest passes through the interface. Note that the reflectance and transmittance of the ultrasonic wave at this time can be obtained from the above-described equations.

また、筐体14と冷媒液との界面を透過した超音波は、冷媒液内を冷媒液の物性および温度に応じた速度で伝わり、冷媒液と冷媒ガスの界面である冷媒液面16に到達する。そして、界面の冷媒液面16で超音波の一部が反射され、再び冷媒液内を伝わり、更に筐体14をも透過して超音波センサの受信器で受信される。 Further, the ultrasonic wave transmitted through the interface between the casing 14 and the refrigerant liquid is transmitted through the refrigerant liquid at a speed corresponding to the physical properties and temperature of the refrigerant liquid, and reaches the refrigerant liquid surface 16 that is the interface between the refrigerant liquid and the refrigerant gas. To do. Then, a part of the ultrasonic wave is reflected by the refrigerant liquid surface 16 at the interface, is transmitted again through the refrigerant liquid, further passes through the housing 14 and is received by the receiver of the ultrasonic sensor.

ただし、上記界面の冷媒液面16で反射され冷媒液を透過した超音波のうちの一部は、液溜4の筐体14に入射する際に冷媒液と筐体14との界面で反射され、何回か反射を繰り返して受信器に到達するものもあったり、また、冷媒液面16を透過した超音波も液溜4上面の筐体14で反射されて、これも何回か反射を繰り返して受信器に到達するものもあり、非常に複雑な現象となるため、演算によってどの界面で反射してきた超音波かを分別する必要がある。 However, some of the ultrasonic waves reflected by the refrigerant liquid surface 16 at the interface and transmitted through the refrigerant liquid are reflected by the interface between the refrigerant liquid and the casing 14 when entering the casing 14 of the liquid reservoir 4. Some reflections reach the receiver several times, and the ultrasonic wave that has passed through the coolant liquid level 16 is also reflected by the casing 14 on the upper surface of the liquid reservoir 4, and this is also reflected several times. Some of them repeatedly reach the receiver, which is a very complicated phenomenon. Therefore, it is necessary to discriminate which ultrasonic wave is reflected at which interface by calculation.

図4に液面測定手段15の超音波センサ15a、超音波コントローラ15bおよび冷媒漏れ検知手段13の構成図を示す。
前記液面測定手段15の超音波センサ15aは、発信器23、受信器24で構成され、超音波コントローラ15bは、超音波発生回路25、メモリなどの記憶装置26、タイマー27、演算装置28、例えば液晶ディスプレイやD/A変換器などの出力装置29により構成される。一方、前記冷媒漏れ検知手段13は、例えばA/D変換器などの入力装置40、演算装置41、例えば液晶ディスプレイやD/A変換器などの出力装置42、メモリなどの記憶装置43で構成される。
FIG. 4 shows a configuration diagram of the ultrasonic sensor 15 a, the ultrasonic controller 15 b, and the refrigerant leak detection unit 13 of the liquid level measurement unit 15.
The ultrasonic sensor 15a of the liquid level measuring means 15 includes a transmitter 23 and a receiver 24, and the ultrasonic controller 15b includes an ultrasonic generation circuit 25, a storage device 26 such as a memory, a timer 27, a calculation device 28, For example, it comprises an output device 29 such as a liquid crystal display or a D / A converter. On the other hand, the refrigerant leak detection means 13 is configured by an input device 40 such as an A / D converter, an arithmetic device 41, an output device 42 such as a liquid crystal display or a D / A converter, and a storage device 43 such as a memory. The

次に動作について説明する。前記超音波コントローラ15bの超音波発生回路25で、前記超音波センサ15aの発信器23を動かし超音波を発生させる。そして、前述したように媒質の界面で反射してきた超音波を受信器24で受信し、演算装置28へ送る。また一方、前記記憶装置26に予め記憶された、例えば表1に示すような、筐体14の媒質による各温度毎の超音波伝播速度や厚さ、あるいは冷媒液や冷媒ガスの媒質による各温度毎の超音波伝播速度等の情報や、タイマー27の時間に関する情報も前記演算装置28へ送られる。演算装置28では、これらの情報を基に、液溜4の筐体14と冷媒液との界面で反射して戻ってきた超音波や、冷媒液と冷媒ガスとの界面で反射して戻ってきた超音波、あるいは、その他各界面での反射を何回か繰り返して戻ってきた超音波とを演算により分別する。そして、冷媒液と冷媒ガスとの界面で反射して戻ってきた超音波の発信から受信までの時間から冷媒液面16の高さを求め、これを出力装置29から出力する。 Next, the operation will be described. The ultrasonic generator circuit 25 of the ultrasonic controller 15b moves the transmitter 23 of the ultrasonic sensor 15a to generate ultrasonic waves. Then, as described above, the ultrasonic wave reflected at the interface of the medium is received by the receiver 24 and sent to the arithmetic unit 28. On the other hand, as shown in Table 1, for example, as shown in Table 1, the ultrasonic propagation speed and thickness for each temperature, or the temperatures of the refrigerant liquid and the refrigerant gas, which are stored in advance in the storage device 26, are shown. Information on the ultrasonic wave propagation speed for each time and information on the time of the timer 27 are also sent to the arithmetic unit 28. Based on these pieces of information, the arithmetic unit 28 reflects the ultrasonic wave reflected and returned at the interface between the casing 14 of the liquid reservoir 4 and the refrigerant liquid, and returns after reflecting at the interface between the refrigerant liquid and the refrigerant gas. The ultrasonic waves or the ultrasonic waves that have returned after being repeatedly reflected at each interface are separated by calculation. Then, the height of the refrigerant liquid surface 16 is obtained from the time from transmission to reception of the ultrasonic wave reflected and returned at the interface between the refrigerant liquid and the refrigerant gas, and this is output from the output device 29.

そして、液面測定手段15の前記出力装置29から出力された、液溜4の冷媒液面高さ情報は、前記冷媒漏れ検知手段13の入力装置40へ入力され、予め記憶装置43に記憶された後述するアルゴリズムに基づいて、演算装置41において演算がなされ、冷媒漏れの有無や冷媒漏れの量が判断され、出力装置42から例えばユーザーの監視装置やディスプレー等の表示装置(図示せず)に出力される。また、現在および過去における冷媒液面高さや凝縮温度、蒸発温度、冷媒漏れの有無や冷媒漏れの量が記憶装置43に新たに記憶される。 Then, the refrigerant liquid level information of the liquid reservoir 4 output from the output device 29 of the liquid level measuring means 15 is input to the input device 40 of the refrigerant leak detecting means 13 and stored in the storage device 43 in advance. On the basis of an algorithm described later, calculation is performed in the calculation device 41, the presence or absence of refrigerant leakage and the amount of refrigerant leakage are determined, and the output device 42 displays a display device (not shown) such as a user monitoring device or a display. Is output. Further, the current and past refrigerant liquid level, condensing temperature, evaporating temperature, the presence or absence of refrigerant leakage, and the amount of refrigerant leakage are newly stored in the storage device 43.

尚、前記超音波センサー15aの測定において、超音波センサー15aと液溜4の筐体14とは密接しており、その間には他の物質は殆ど存在しないことを前提にしている。すなわち、筐体14と超音波センサー15aとの間には空気が入らないように、超音波センサー15aの取付け部は柔らかい材質で構成し、かつ超音波センサー15aに圧力をかけて筐体14に密着させることが望ましく、この密着度が弱いと検出精度が悪くなってしまう。超音波センサー15aの取付け部の材質としては、例えばゴムやジェル状の物質等が考えられ、また超音波センサー15aに圧力をかける方法としては、例えば磁石の磁力を利用する方法やベルトの張力を利用する方法等が考えられる。 In the measurement by the ultrasonic sensor 15a, it is assumed that the ultrasonic sensor 15a and the casing 14 of the liquid reservoir 4 are in close contact with each other and there is almost no other substance between them. That is, the mounting portion of the ultrasonic sensor 15a is made of a soft material so that air does not enter between the casing 14 and the ultrasonic sensor 15a, and pressure is applied to the ultrasonic sensor 15a to the casing 14. It is desirable to make it closely contact, and when this contact degree is weak, detection accuracy will deteriorate. As the material of the attachment portion of the ultrasonic sensor 15a, for example, rubber or a gel-like substance can be considered, and as a method of applying pressure to the ultrasonic sensor 15a, for example, a method using a magnetic force of a magnet or a belt tension is used. The method to use etc. can be considered.

また、液面測定手段15が超音波センサーの場合は、液溜4の底面に取付ける方が、ゴミの付着が少なく、また日射や照明による加熱の影響も受けにくいため、信頼性上や測定精度上望ましい。例えば、液溜4の天井面に取付けた場合は、超音波が筐体14、冷媒ガス、冷媒液の順番に透過することになり、底面に取付けた場合と透過順番が異なることになるが、コントローラ15bでの演算を変更すれば対応可能である。従って、取付け位置は、超音波が液溜4の冷媒液面16に対して、ほぼ垂直に入射する位置であればどの位置でも良い。 Further, when the liquid level measuring means 15 is an ultrasonic sensor, it is less likely to be attached to the bottom of the liquid reservoir 4 and less susceptible to the effects of solar radiation and illumination, so that the reliability and measurement accuracy are improved. Desirable above. For example, when attached to the ceiling surface of the liquid reservoir 4, the ultrasonic wave will be transmitted in the order of the housing 14, refrigerant gas, refrigerant liquid, the transmission order will be different from when it is attached to the bottom surface, This can be handled by changing the calculation in the controller 15b. Therefore, the attachment position may be any position as long as the ultrasonic wave is incident substantially perpendicularly to the coolant level 16 of the liquid reservoir 4.

以上のようにして、原理的には、液溜4の筐体14の内部にセンサーを設けずに、筐体14の外部に前記超音波センサー15a等の液面測定手段15を設置して、液溜4内部の冷媒液面16の高さを測定することができるようになる。
しかし、これは液溜4内の流体が静止している場合のことであり、実際は図1に示すように、液溜4は冷凍サイクル内に配置されているため、その内部には常に冷媒が出入りしており、それに伴い液溜4内の冷媒液面16も常時数mmの幅で揺動している。従って、このような場合において、液溜4の外側に付けた液面測定手段15によって、冷媒液面16を測定するには多少工夫が必要となる。
As described above, in principle, without providing a sensor inside the casing 14 of the liquid reservoir 4, the liquid level measuring means 15 such as the ultrasonic sensor 15a is installed outside the casing 14, The height of the coolant level 16 inside the liquid reservoir 4 can be measured.
However, this is a case where the fluid in the liquid reservoir 4 is stationary. Actually, as shown in FIG. 1, since the liquid reservoir 4 is disposed in the refrigeration cycle, there is always a refrigerant inside. The refrigerant liquid level 16 in the liquid reservoir 4 is constantly oscillating with a width of several millimeters. Therefore, in such a case, some measure is required to measure the refrigerant liquid level 16 by the liquid level measuring means 15 attached to the outside of the liquid reservoir 4.

上記図2に示すように、液溜4の上部に液溜入口側の高圧液配管11があり、該高圧液配管11から流入した液冷媒は、重力と慣性力とによってそのまま下に落下して冷媒液面16に衝突し、その衝突エネルギーによって液溜4内の冷媒液面16が揺動するものと考えられる。液冷媒と冷媒液面16との衝突エネルギーは、高圧液配管11と冷媒液面16との距離および冷凍サイクルを循環している冷媒循環量によって異なり、高圧液配管11と冷媒液面16との距離は冷媒液面16の高さによって異なる。衝突エネルギーが異なれば、冷媒液面16の揺動幅も異なるものと思われ、実際、冷媒液面16の高さによって、冷媒液面16の揺動幅が変化することは実験によっても確認されている。 As shown in FIG. 2 above, there is a high-pressure liquid pipe 11 on the liquid reservoir inlet side at the top of the liquid reservoir 4, and the liquid refrigerant flowing from the high-pressure liquid pipe 11 falls down as it is due to gravity and inertial force. It is considered that the refrigerant liquid level 16 collides with the refrigerant liquid level 16 and the refrigerant liquid level 16 in the liquid reservoir 4 is swung by the collision energy. The collision energy between the liquid refrigerant and the refrigerant liquid level 16 depends on the distance between the high pressure liquid pipe 11 and the refrigerant liquid level 16 and the amount of refrigerant circulating in the refrigeration cycle. The distance varies depending on the height of the coolant liquid level 16. It is considered that if the collision energy is different, the rocking width of the refrigerant liquid surface 16 is also different. In fact, it is confirmed by experiments that the rocking width of the refrigerant liquid surface 16 changes depending on the height of the refrigerant liquid surface 16. ing.

実験によれば、この揺動幅は大きい時で±4mm程度、小さい時で±1mm程度、また、揺動の周波数は小さい時で1Hz程度、大きい時で3Hz程度となっている。また、冷媒液面16の揺動は液溜4内の冷媒液内に渦流れが発生することが原因であるが、渦は非定常的な現象で一定してできるものでないことは流体力学上知られている。そして、冷媒液面16の揺動は、きれいな正弦波形のようにプラス側とマイナス側の変動が同じように発生するわけではなく、実験で観察した結果では、冷媒液面の波立ち方も一定しておらず、またプラス側(上側)に比べマイナス側(下側)への変動の方がゆっくりとしており、冷媒液面16の平均的な位置としては、プラス側とマイナス側の高さの単純平均よりも多少下側に思われる。 According to experiments, this oscillation width is about ± 4 mm when large, about ± 1 mm when small, and the oscillation frequency is about 1 Hz when small and about 3 Hz when large. Further, the fluctuation of the refrigerant liquid level 16 is caused by the generation of a vortex flow in the refrigerant liquid in the liquid reservoir 4, but it is considered that the vortex is not an unsteady phenomenon and cannot be made constant. Are known. The fluctuation of the refrigerant liquid level 16 does not cause the same fluctuation on the plus side and the minus side like a clean sine waveform. In addition, the fluctuation toward the minus side (lower side) is slower than the plus side (upper side), and the average position of the refrigerant liquid level 16 is simply the height between the plus side and the minus side. It seems a little below the average.

したがって、液面測定手段15による液溜4の冷媒液面16の測定は、上記液溜4特有の現象を踏まえた上で行わなければいけない。そうしないと、冷媒漏れ検知手段13での演算および判断に誤りが生じ、冷媒漏れをしていないのに冷媒漏れをしていると判断してしまったり、冷媒漏れが起きているのに冷媒漏れが起きていないと判断してしまったりする可能性がある。 Therefore, the measurement of the refrigerant liquid level 16 of the liquid reservoir 4 by the liquid level measuring means 15 must be performed in consideration of the phenomenon specific to the liquid reservoir 4. Otherwise, an error will occur in the calculation and judgment in the refrigerant leak detection means 13, and it will be judged that the refrigerant has leaked even though the refrigerant has not leaked, or the refrigerant leak has occurred. There is a possibility that it will be determined that the problem has not occurred.

測定、処理方法としては、まず、液面測定手段15のサンプリング周波数が上記液面揺動周波数と一致していると、測定したデータは揺動している液面の同じ位置を常に測定していることになるため、これを回避する必要がある。
方法としては、異なる2つの周波数、例えば3Hzと5Hz等でサンプリングして平均化する方法、あるいは、1つのサンプリング周波数でなるべく長く、例えば1Hzで数分間測定する等して誤差を減らす方法等が考えられる。
As a measuring and processing method, first, when the sampling frequency of the liquid level measuring means 15 coincides with the liquid level fluctuation frequency, the measured data always measures the same position of the liquid level that is fluctuating. This will need to be avoided.
As a method, a method of sampling and averaging at two different frequencies, such as 3 Hz and 5 Hz, or a method of reducing errors by measuring as long as possible at one sampling frequency, for example, 1 Hz for several minutes, etc. It is done.

また、冷媒液面の揺動幅および揺動周波数を考慮して、データのサンプリング数、処理方法を決めなければならない。サンプリング数は例えば最低10個、できれば数十個以上、処理方法は例えば測定データの単純平均よりも20%程下側になるように平均を決める方法等が考えられる。また、圧縮機1の発停があると冷媒液面16は大きく変動するため、圧縮機1の動作と測定およびデータ処理とを連携させ、圧縮機1が動いてから一定時間後、例えば20分後に測定を行う等も誤差を減らす方法である。 In addition, the number of data samplings and the processing method must be determined in consideration of the rocking width and rocking frequency of the refrigerant liquid surface. For example, the sampling number is at least 10, preferably several tens or more, and the processing method is, for example, a method of determining an average so that it is about 20% lower than the simple average of measurement data. Further, since the refrigerant liquid level 16 greatly fluctuates when the compressor 1 starts and stops, the operation of the compressor 1 is linked with the measurement and data processing, and after a certain period of time, for example, 20 minutes after the compressor 1 moves. Performing measurements later is a method for reducing errors.

以上のようにして、液溜4内の冷媒液面16の高さが測定できる。しかし、この液溜4内の冷媒液面16の高さを直接用いて冷媒漏れを判断すると、推定誤差が大きく、誤判断になってしまう危険性があるため、冷媒漏れの判断は液溜4内の冷媒量を算出し、それを基に行うようにする。したがって、冷媒漏れを判断するためには、ある時刻において液溜4内の冷媒量を算出し、通常の冷凍サイクルの運転状態あるいは以前の時刻における液溜4内の冷媒量と比較する必要がある。冷媒は温度が異なると密度が異なるため、液溜4内の冷媒量(冷媒の重量)を算出するためには、液面測定手段15によって冷媒液面16の高さを測定し、冷媒液の温度を温度測定手段30によって測定(図1の液溜4の表面温度による冷媒の凝縮温度)し、該温度から冷媒液の密度を求め、冷媒液面16の高さを冷媒量に換算して算出する。 As described above, the height of the coolant level 16 in the liquid reservoir 4 can be measured. However, if the refrigerant leak is determined by directly using the height of the refrigerant liquid level 16 in the liquid reservoir 4, the estimation error is large and there is a risk of erroneous determination. The amount of refrigerant in the inside is calculated, and based on that. Therefore, in order to determine refrigerant leakage, it is necessary to calculate the refrigerant amount in the liquid reservoir 4 at a certain time and compare it with the operating state of the normal refrigeration cycle or the refrigerant amount in the liquid reservoir 4 at the previous time. . Since the refrigerant has different densities at different temperatures, in order to calculate the amount of refrigerant in the liquid reservoir 4 (the weight of the refrigerant), the height of the refrigerant liquid level 16 is measured by the liquid level measuring means 15, The temperature is measured by the temperature measuring means 30 (condensation temperature of the refrigerant by the surface temperature of the liquid reservoir 4 in FIG. 1), the density of the refrigerant liquid is obtained from the temperature, and the height of the refrigerant liquid surface 16 is converted into the refrigerant amount. calculate.

次に図5、図6は、本実施の形態における別の冷凍サイクル装置の構成例を示した図である。尚、図5、図6において、上記図1の構成図と同一または相当部分には同一符号を付し説明を省略する。
上記図1の構成例においては、液溜4内の冷媒量と液溜4の表面温度による冷媒の凝縮温度の2つの情報をもとに冷媒漏れの判断を行うようにしたが、図5、図6の構成においては、液溜4内の冷媒量と凝縮温度および蒸発温度の3つの情報をもとに冷媒漏れの判断を行うようにして、より精度の向上を図るようにしたものである。
図5において、30aは例えば前記高圧液配管11に設けられた例えばサーミスタ等の温度測定手段で、30bは前記膨張手段6から蒸発器7に至る低圧側の流路に設けられた例えばサーミスタ等の温度測定手段であり、前記温度測定手段30a、30bによって、それぞれ凝縮温度および蒸発温度を測定する。
また、図6において、31aは前記圧縮機1と凝縮器2に至る吐出側の高圧ガス配管9に設けられた圧力センサー等の圧力測定手段で、31bは前記蒸発器7と圧縮機1に至る低圧側の低圧ガス配管10に設けられた圧力センサー等の圧力測定手段であり、前記高圧側の圧力測定手段31aと前記低圧側の圧力測定手段31bとにより検知された圧力を、冷媒漏れ検知手段13においてそれぞれ飽和温度に換算することで凝縮温度と蒸発温度を求める。
Next, FIG. 5 and FIG. 6 are diagrams showing a configuration example of another refrigeration cycle apparatus in the present embodiment. 5 and 6, the same or corresponding parts as those in the configuration diagram of FIG.
In the configuration example of FIG. 1 described above, the refrigerant leakage is determined based on two pieces of information of the refrigerant amount in the liquid reservoir 4 and the refrigerant condensation temperature based on the surface temperature of the liquid reservoir 4. In the configuration of FIG. 6, the accuracy of the refrigerant is further improved by determining the refrigerant leakage based on the three information of the refrigerant amount in the liquid reservoir 4, the condensation temperature, and the evaporation temperature. .
In FIG. 5, 30 a is a temperature measuring means such as a thermistor provided in the high-pressure liquid pipe 11, for example, and 30 b is a temperature sensor such as a thermistor provided in the low-pressure side channel extending from the expansion means 6 to the evaporator 7. The temperature measuring means measures the condensation temperature and the evaporation temperature by the temperature measuring means 30a and 30b, respectively.
In FIG. 6, reference numeral 31 a denotes a pressure measuring means such as a pressure sensor provided in the high-pressure gas pipe 9 on the discharge side leading to the compressor 1 and the condenser 2, and 31 b reaches the evaporator 7 and the compressor 1. Pressure measuring means such as a pressure sensor provided in the low pressure gas pipe 10 on the low pressure side, and the pressure detected by the pressure measuring means 31a on the high pressure side and the pressure measuring means 31b on the low pressure side is used as refrigerant leakage detection means. In 13, the condensation temperature and the evaporation temperature are obtained by converting into the saturation temperature.

図7は、凝縮温度すなわち凝縮器2内の冷媒の飽和温度と、蒸発温度すなわち蒸発器7内の冷媒の飽和温度と、液溜4内の冷媒量(冷媒の重量)との関係を示した図である。尚、図中蒸発温度は、高圧液配管12が長い場合と短い場合について表している。 FIG. 7 shows the relationship between the condensation temperature, that is, the saturation temperature of the refrigerant in the condenser 2, the evaporation temperature, that is, the saturation temperature of the refrigerant in the evaporator 7, and the amount of refrigerant in the liquid reservoir 4 (the weight of the refrigerant). FIG. In the figure, the evaporation temperature is shown for the case where the high-pressure liquid pipe 12 is long and short.

図7に示すように、液溜4内の冷媒量は、凝縮温度が高くなると少なくなり、また、蒸発温度が高くなると少なくなる。すなわち、凝縮温度が高くなると凝縮器2内の冷媒と周囲空気との温度差が大きくなり、冷媒と空気との熱交換量、すなわちガス冷媒を凝縮させて液冷媒にする能力が増えるため、凝縮器2内の液冷媒の割合が増え、その分凝縮器2全体での冷媒量も増えて、余剰冷媒が減り液溜4内の冷媒量が減少する。 As shown in FIG. 7, the amount of refrigerant in the liquid reservoir 4 decreases as the condensation temperature increases, and decreases as the evaporation temperature increases. That is, as the condensation temperature increases, the temperature difference between the refrigerant in the condenser 2 and the ambient air increases, and the amount of heat exchange between the refrigerant and air, that is, the ability to condense the gas refrigerant into a liquid refrigerant increases. The proportion of the liquid refrigerant in the vessel 2 increases, and the amount of refrigerant in the entire condenser 2 increases accordingly, so that the excess refrigerant is reduced and the amount of refrigerant in the liquid reservoir 4 is reduced.

一方、蒸発温度が高くなると、蒸発器7内の冷媒と周囲空気との温度差が小さくなり、冷媒と空気との熱交換量、すなわち液冷媒を蒸発させてガス冷媒にする能力が減るため、蒸発器7内の液冷媒の割合が増え、その分蒸発器7全体での冷媒量も増えて、余剰冷媒が減り液溜4内の冷媒量が減る。
また、蒸発温度が高くなると、圧縮機1に吸入されるガス冷媒の密度も大きくなるため冷凍サイクルを循環する冷媒流量が増加し、その分凝縮器2および蒸発器7内の冷媒量が増加して液溜4内の余剰冷媒が減る。この2つの要因によって蒸発温度が高くなると液溜4内の冷媒量が少なくなる。
On the other hand, when the evaporation temperature increases, the temperature difference between the refrigerant in the evaporator 7 and the ambient air decreases, and the amount of heat exchange between the refrigerant and air, that is, the ability to evaporate the liquid refrigerant into a gas refrigerant decreases. The proportion of the liquid refrigerant in the evaporator 7 increases, and the amount of refrigerant in the entire evaporator 7 increases accordingly, so that the excess refrigerant decreases and the amount of refrigerant in the liquid reservoir 4 decreases.
Further, when the evaporation temperature increases, the density of the gas refrigerant sucked into the compressor 1 also increases, so that the refrigerant flow rate circulating in the refrigeration cycle increases, and the amount of refrigerant in the condenser 2 and the evaporator 7 increases accordingly. As a result, the excess refrigerant in the liquid reservoir 4 is reduced. When the evaporation temperature increases due to these two factors, the amount of refrigerant in the liquid reservoir 4 decreases.

また、図7に示すように前記高圧液配管12が長くなると、凝縮温度の変化に対する液溜4内の冷媒量の変化の傾きが小さくなる。すなわち、前述した通り凝縮温度が高くなると凝縮器2内の冷媒量が増加するが、高圧液配管12内の液冷媒の密度が小さくなるため、凝縮温度が高くなると高圧液配管12内の冷媒量は逆に少なくなる。従って、高圧液配管12が長くなると、冷凍サイクル全体の冷媒量に占める高圧液配管12内の冷媒量の割合が大きくなり、高圧液配管12内の冷媒量の変化によって、凝縮器2における冷媒量の変化の影響が緩和されるため、凝縮温度の変化に対する液溜4内の冷媒量の変化量が小さくなる。図7に示した変化の関係は実験およびシミュレーションによって確認している。
冷凍機の液溜4内の冷媒量と凝縮温度及び蒸発温度及び高圧液配管長さとは上記ような関係があり、冷媒漏れの判断はこの関係を考慮して行わなければならない。
Further, as shown in FIG. 7, when the high-pressure liquid pipe 12 becomes longer, the inclination of the change in the refrigerant amount in the liquid reservoir 4 with respect to the change in the condensation temperature becomes smaller. That is, as described above, the amount of refrigerant in the condenser 2 increases as the condensation temperature increases, but the density of the liquid refrigerant in the high-pressure liquid pipe 12 decreases, so that the amount of refrigerant in the high-pressure liquid pipe 12 increases as the condensation temperature increases. On the contrary decreases. Therefore, when the high-pressure liquid pipe 12 becomes longer, the ratio of the refrigerant amount in the high-pressure liquid pipe 12 to the refrigerant quantity in the entire refrigeration cycle increases, and the amount of refrigerant in the condenser 2 due to the change in the refrigerant amount in the high-pressure liquid pipe 12. Therefore, the amount of change in the refrigerant amount in the liquid reservoir 4 with respect to the change in the condensation temperature is reduced. The relationship of changes shown in FIG. 7 is confirmed by experiments and simulations.
The refrigerant quantity in the liquid reservoir 4 of the refrigerator, the condensing temperature, the evaporating temperature, and the high-pressure liquid pipe length have the above relationship, and the judgment of the refrigerant leakage must be made in consideration of this relationship.

図8は冷媒漏れ判断アルゴリズムの一例を示すフローチャートで、表2は、測定された液溜4の冷媒液面高さや凝縮温度をもとに算出された液溜4内の冷媒量のデータを記憶装置のメモリに記憶する際の、データ領域の区分の仕方の一例を示した表である。尚、表2においてCTは凝縮温度、ETは蒸発温度を表す。
今、図5、図6の構成例のように圧縮機1の運転台数が同一で、凝縮温度及び蒸発温度がほぼ同じである場合を同一運転条件と呼称する。前述した図7より明らかなように、液溜4内の冷媒量は凝縮温度と蒸発温度とが決まれば一意に決まるため、同一運転条件における液溜4内の冷媒量はほぼ同じになる。もし、冷媒漏れがおきれば、正常運転状態の液溜4内の冷媒量のデータとの間に差異が生じるため、正常運転状態の前記冷媒量のデータを学習、記憶しておけば、それを基に冷媒漏れの判定ができる。以下に、冷媒漏れ判断について図8のフローチャート、表2のデータ領域の区分の仕方の一例をもとに説明する。
FIG. 8 is a flowchart showing an example of the refrigerant leakage judgment algorithm, and Table 2 stores data on the refrigerant amount in the liquid reservoir 4 calculated based on the measured coolant liquid level and condensing temperature of the liquid reservoir 4. It is the table | surface which showed an example of the method of the division of a data area when memorize | storing in the memory of an apparatus. In Table 2, CT represents the condensation temperature, and ET represents the evaporation temperature.
Now, a case where the number of operating compressors 1 is the same as in the configuration examples of FIGS. 5 and 6 and the condensation temperature and the evaporation temperature are substantially the same is referred to as the same operating condition. As is clear from FIG. 7 described above, the amount of refrigerant in the liquid reservoir 4 is uniquely determined when the condensation temperature and the evaporation temperature are determined, so the amount of refrigerant in the liquid reservoir 4 under the same operating conditions is substantially the same. If there is a refrigerant leak, there will be a difference with the refrigerant amount data in the liquid reservoir 4 in the normal operation state. Therefore, if the refrigerant amount data in the normal operation state is learned and stored, The refrigerant leakage can be determined based on the above. Hereinafter, the refrigerant leakage judgment will be described based on an example of the method of dividing the data area in the flowchart of FIG.

まず、Step1でデータ測定時刻(例えば1時間毎)か否か判断され、Yesであれば、Step2において凝縮温度と蒸発温度と液溜4内の冷媒液面16の高さを測定する。尚、冷媒液面16の高さ測定などについては前述した通りであるので、ここでの説明を省略する。そして、Step3において前記Step2のデータが有効データか否かの判定をする。つまり、圧縮機が動いてからしばらく時間が経過しないと冷凍サイクルの状態が安定しないため、圧縮機の起動もしくは圧縮機の運転台数の変更がなされてからの経過時間をカウントしておき、測定したデータが圧縮機の起動後一定時間(例えば20分)を経過しているものを有効データとし、起動後一定時間を経過していないものを無効データとして判定する。   First, it is determined whether or not it is a data measurement time (for example, every hour) at Step 1, and if Yes, at Step 2, the condensation temperature, the evaporation temperature, and the height of the refrigerant liquid level 16 in the liquid reservoir 4 are measured. Note that the measurement of the height of the refrigerant liquid level 16 and the like is as described above, and a description thereof will be omitted here. In Step 3, it is determined whether or not the data in Step 2 is valid data. In other words, since the state of the refrigeration cycle will not be stable until a certain time has passed since the compressor moved, the elapsed time since the start of the compressor or the change in the number of operating compressors was counted and measured Data for which a certain time (for example, 20 minutes) has elapsed since the start of the compressor is determined as valid data, and data for which a certain time has not elapsed since the start is determined as invalid data.

前記Step3で有効データか否かの判定でYesであれば、次にStep4で測定した有効データの液溜4の冷媒液面高さや凝縮温度等をもとに算出された液溜4内の冷媒量データの格納すべきデータ領域を、凝縮温度と蒸発温度から例えば表2に示すような、(1)〜(16)に分けた領域で判定する。 If the determination in Step 3 is yes or not, the refrigerant in the liquid reservoir 4 is calculated based on the coolant level, the condensing temperature, etc. of the liquid reservoir 4 of the effective data measured in Step 4 next. The data area in which the quantity data is to be stored is determined by the areas divided into (1) to (16) as shown in Table 2 from the condensation temperature and the evaporation temperature.

Figure 2008064453
Figure 2008064453

尚、前記データ領域には、前測定時刻までに学習、記憶されたデータ群が格納されている。データ群とは、複数の冷媒量データの平均値、冷媒量データの個数および平均値からのずれの最大値等をいう。 In the data area, a data group learned and stored up to the previous measurement time is stored. The data group means an average value of a plurality of refrigerant amount data, the number of refrigerant amount data, a maximum value of deviation from the average value, and the like.

次に、Step5において、前記Step4で判定された新たな冷媒量データの該当するデータ領域が有効領域になっているか否かを判定する。この有効領域の判定においては、該当するデータ領域に前測定時刻までに学習、記憶されている前記データ群の個数が、所定数以上(例えば5個以上)になっているデータ領域を有効領域と呼称し、判定する。 Next, in Step 5, it is determined whether or not the corresponding data area of the new refrigerant amount data determined in Step 4 is an effective area. In the determination of the effective area, a data area in which the number of the data groups learned and stored in the corresponding data area by the previous measurement time is a predetermined number or more (for example, 5 or more) is defined as an effective area. Name and judge.

そして、前記Step5において該当するデータ領域が有効領域でなかった場合(No)は、Step6で前記新たに測定された有効データから算出された冷媒量データが正常データか否かを判断する。尚、正常データとは該当するデータ領域に記憶されている複数の冷媒量データの平均値からあまり大きく離れていないデータをいう。測定データにノイズが乗っている場合や温度データを誤測定した場合等は算出された冷媒量データが、前記平均値から大きくずれてくるため、それを判断し、異常なデータを除外する。前記Step6で正常データの場合(Yes)は、Step7において前記算出された冷媒量データを該当する前記データ領域に記憶させ、Step8で該当する前記データ領域のデータ数を1つカウントアップする。 If the corresponding data area is not an effective area in Step 5 (No), it is determined in Step 6 whether the refrigerant amount data calculated from the newly measured effective data is normal data. The normal data refers to data that is not so far from the average value of the plurality of refrigerant amount data stored in the corresponding data area. When noise is added to the measurement data, or when the temperature data is erroneously measured, the calculated refrigerant amount data greatly deviates from the average value, so that it is judged and abnormal data is excluded. In the case of normal data in Step 6 (Yes), the calculated refrigerant amount data is stored in the corresponding data area in Step 7, and the number of data in the corresponding data area is counted up by 1 in Step 8.

前記Step5で該当するデータ領域が有効領域であった場合(Yes)は、Step9において、新たに測定された有効データから算出された冷媒量データと、その該当する有効領域のデータとを比較して冷媒漏れの判定を行う。
冷媒漏れの判定方法としては、例えば新たに測定された有効データから算出された冷媒量データが、該当する有効領域に記憶されているデータよりも少ない値になっているとき、すなわち液溜4内の冷媒量が減少傾向にあり、しかもその減少傾向がある一定の時間継続している場合に、冷媒漏れが起きていると判断する方法が考えられる。以下に減少傾向の判断について説明する。
If the corresponding data area in Step 5 is an effective area (Yes), in Step 9, the refrigerant amount data calculated from the newly measured effective data is compared with the data in the corresponding effective area. Determine refrigerant leakage.
As a method for determining refrigerant leakage, for example, when the refrigerant amount data calculated from newly measured effective data is smaller than the data stored in the corresponding effective area, that is, in the liquid reservoir 4. There is a method of determining that a refrigerant leak has occurred when the amount of the refrigerant is decreasing and has continued for a certain period of time. The determination of the decreasing tendency will be described below.

データ領域には例えば表2に示すように範囲があり、データ領域(1)は凝縮温度(CT)が25℃から34℃の間で、蒸発温度(ET)が−25℃から−21℃の間のデータが格納されるように、凝縮温度と蒸発温度にはそれぞれ9℃及び4℃の幅がある。従って、1つのデータ領域に格納された複数の冷媒量データの平均値と、新たに測定された有効データから算出された冷媒量データを単純に比較しても、液溜4内の冷媒量が減少傾向にあるのか否かは判断が難しい。
したがって、該当するデータ領域に記憶された複数の冷媒量データの平均値、冷媒量データの個数および前記複数の冷媒量データそれぞれの平均値からのずれの最大値等のデータ群をもとに、新たに測定された有効データから算出された冷媒量データと前記記憶された平均値との偏差が、前記平均値からのずれの最大値よりも大きい場合、液溜4内の冷媒量が減少傾向にあると判断する。
For example, the data region has a range as shown in Table 2, and the data region (1) has a condensation temperature (CT) between 25 ° C. and 34 ° C. and an evaporation temperature (ET) between −25 ° C. and −21 ° C. The condensing temperature and the evaporating temperature have a range of 9 ° C. and 4 ° C., respectively, so that data between them is stored. Therefore, even if the average value of a plurality of refrigerant amount data stored in one data area and the refrigerant amount data calculated from the newly measured effective data are simply compared, the refrigerant amount in the liquid reservoir 4 is not increased. It is difficult to judge whether or not it is decreasing.
Therefore, based on a data group such as an average value of a plurality of refrigerant amount data stored in the corresponding data area, the number of refrigerant amount data, and the maximum value of deviation from the average value of each of the plurality of refrigerant amount data, When the deviation between the refrigerant amount data calculated from the newly measured effective data and the stored average value is larger than the maximum deviation from the average value, the refrigerant amount in the liquid reservoir 4 tends to decrease. It is determined that

そして、例えば装置が故障した場合やメンテナンスをする場合等で、この冷媒漏れ判断のフローを実施しないときを終了条件として、例えばスイッチ等を用いるなどして、該スイッチの動作を終了のトリガとして、Step10において終了するか否か判断し、Noであればこの冷媒漏れ判断フローを繰り返し実行し、Yesであれば終了する。 And, for example, when the apparatus has failed or when maintenance is performed, when the refrigerant leak determination flow is not performed, as an end condition, for example, using a switch or the like, the operation of the switch is used as an end trigger, In Step 10, it is determined whether or not to end. If No, the refrigerant leakage determination flow is repeatedly executed, and if Yes, the process ends.

以上のように本実施の形態1においては、冷凍機の冷媒漏れの判断をするためのセンサーを液溜の外部に取付けるようにしたので、設置工事が容易で、既に設置して稼動している冷凍機の液溜にも容易に取付けることができる。また、前記液溜の外部に取付けたセンサーにより液溜内の冷媒液面の高さを測定し、そして温度測定手段により冷媒の凝縮温度を測定し、該温度から冷媒液の密度を求め、冷媒液面高さを冷媒量(冷媒の重量)に換算して算出して、その冷媒量の変化から冷媒漏れを判断するようにしたので、精度よくそして早期に発見することができる。   As described above, in the first embodiment, since the sensor for judging the refrigerant leakage of the refrigerator is attached to the outside of the liquid reservoir, the installation work is easy, and it has already been installed and operated. It can be easily installed in the liquid reservoir of the refrigerator. Further, the height of the refrigerant liquid level in the liquid reservoir is measured by a sensor attached to the outside of the liquid reservoir, the refrigerant condensing temperature is measured by the temperature measuring means, and the density of the refrigerant liquid is obtained from the temperature. Since the liquid level is calculated by converting into the refrigerant amount (refrigerant weight) and the refrigerant leakage is judged from the change in the refrigerant amount, it can be detected accurately and early.

尚、上記実施の形態においては、液面測定手段15を液溜4の外部に取付けて冷媒液面高さを測定するようにしたが、例えば従来例の図12に示すような液溜に補助タンクが接続されて構成される冷凍サイクル装置であった場合は、液溜4に限定するものではなく、前記補助タンクの外部に液面測定手段15を設けて測定するようにしてもよい。 In the above embodiment, the liquid level measuring means 15 is attached to the outside of the liquid reservoir 4 to measure the refrigerant liquid level. However, for example, the liquid reservoir as shown in FIG. In the case of a refrigeration cycle apparatus configured with a tank connected thereto, the measurement is not limited to the liquid reservoir 4, and liquid level measuring means 15 may be provided outside the auxiliary tank for measurement.

また、上記実施の形態における凝縮温度は、液溜4の表面温度測定や凝縮器2と液溜4とを接続する高圧液配管11の冷媒温度測定による凝縮温度、あるいは圧縮機1と前記凝縮器2に至る吐出側の高圧ガス配管9に設けた圧力センサーによる冷媒の圧力測定から飽和温度に換算することで求める凝縮温度などに限定するものではなく、例えば前記補助タンクの表面温度、あるいは液溜4内もしくは補助タンク内の冷媒温度や前記凝縮器2内の冷媒の飽和温度測定、または液溜4と膨張手段6とを接続する高圧液配管12の冷媒温度測定による凝縮温度、あるいは圧縮機1の吐出側から膨張手段6に至る流路のいずれかの位置に設けた圧力センサーによる冷媒の圧力測定から飽和温度に換算することで求める凝縮温度としても構わない。 The condensing temperature in the above embodiment is the condensing temperature by measuring the surface temperature of the liquid reservoir 4 or the refrigerant temperature of the high-pressure liquid pipe 11 connecting the condenser 2 and the liquid reservoir 4 or the compressor 1 and the condenser. 2 is not limited to the condensation temperature obtained by converting the refrigerant pressure to the saturation temperature by the pressure sensor provided in the high-pressure gas pipe 9 on the discharge side leading to 2, for example, the surface temperature of the auxiliary tank or the liquid reservoir 4, the refrigerant temperature in the auxiliary tank or the saturation temperature of the refrigerant in the condenser 2, or the condensation temperature by the refrigerant temperature measurement of the high-pressure liquid pipe 12 connecting the liquid reservoir 4 and the expansion means 6, or the compressor 1. The condensation temperature may be determined by converting the refrigerant pressure into a saturation temperature from the pressure measurement of the refrigerant by a pressure sensor provided at any position in the flow path from the discharge side to the expansion means 6.

また、蒸発温度は、膨張手段6から蒸発器7に至る流路の冷媒温度測定による蒸発温度、あるいは蒸発器7と圧縮機1に至る低圧側の低圧ガス配管10に設けた圧力センサーによる冷媒の圧力測定から飽和温度に換算することで求める蒸発温度などに限定するものではなく、例えば蒸発器7内の冷媒の飽和温度測定、あるいは膨張手段6から圧縮機1に至る流路のいずれかの位置に設けた圧力センサーによる冷媒の圧力測定から飽和温度に換算することで求める蒸発温度としても構わない。 Further, the evaporation temperature is determined by measuring the refrigerant temperature in the flow path from the expansion means 6 to the evaporator 7 or the pressure sensor provided in the low-pressure gas pipe 10 on the low-pressure side leading to the evaporator 7 and the compressor 1. It is not limited to the evaporating temperature obtained by converting the pressure measurement into the saturation temperature, for example, the saturation temperature measurement of the refrigerant in the evaporator 7 or any position in the flow path from the expansion means 6 to the compressor 1 The evaporation temperature may be determined by converting the refrigerant pressure to a saturation temperature based on the pressure measurement of the refrigerant using the pressure sensor.

また、冷媒漏れの判断は、液溜内冷媒量と凝縮温度と蒸発温度の3つの情報を用いて行う方が精度が良いが、例えば蒸発器7の内容積が小さい場合等は、蒸発温度の変化が液溜4内の冷媒量に及ぼす影響が、凝縮温度の液溜4内の冷媒量に及ぼす影響に比べて小さいため、図1に示すような液溜内冷媒量と凝縮温度の2つの情報で冷媒漏れの判断を行うようにしてもよい。 In addition, it is better to judge the leakage of the refrigerant by using the three information of the amount of refrigerant in the liquid reservoir, the condensation temperature, and the evaporation temperature. For example, when the internal volume of the evaporator 7 is small, the evaporation temperature Since the effect of the change on the amount of refrigerant in the liquid reservoir 4 is smaller than the effect of the condensation temperature on the amount of refrigerant in the liquid reservoir 4, two amounts of refrigerant in the liquid reservoir and the condensation temperature as shown in FIG. You may make it judge refrigerant | coolant leakage with information.

また、上記冷媒漏れ判断アルゴリズムは1つの例として、これに限定されるものではなく、例えば測定した温度データや算出された冷媒量データから、上記図7に示すような直線を作成し、その直線からデータが大きく離れた場合に冷媒漏れと判断するようにしてもよく、あるいは、図7の直線をシミュレーション等によって予め標準パターンとして作成しておき、これから大きく離れた場合に冷媒漏れと判断するようにしてもよい。 Further, the refrigerant leakage determination algorithm is not limited to this example. For example, a straight line as shown in FIG. 7 is created from measured temperature data or calculated refrigerant amount data, and the straight line is generated. It may be determined that the refrigerant leaks when the data is far from, or the straight line of FIG. 7 is created as a standard pattern in advance by simulation or the like, and it is determined that the refrigerant leaks when it is far away from this. It may be.

また、上記実施の形態においては、液面測定手段15と冷媒漏れ検知手段13とを別々にし、液面測定手段15の測定値を基に冷媒漏れ検知手段13において冷媒漏れの判断をするようにしたが、冷媒漏れ検知手段13が液面測定手段15に内臓されていても構わない。例えば、液面測定手段15内の演算装置28において冷媒漏れの判断をするように液面測定手段15を構成すれば、冷媒漏れ検知手段13を別に具備しなくてもよく構成も簡単になる。また、冷媒漏れ検知手段13は液面測定手段15の測定情報に何らかの演算を加えることのできるものであればどんなものでもよく、例えばパソコンのようなものでも構わない。 Further, in the above embodiment, the liquid level measuring means 15 and the refrigerant leak detecting means 13 are separately provided, and the refrigerant leak detecting means 13 judges the refrigerant leak based on the measured value of the liquid level measuring means 15. However, the refrigerant leakage detection means 13 may be incorporated in the liquid level measurement means 15. For example, if the liquid level measuring means 15 is configured so that the refrigerant leak is determined in the arithmetic unit 28 in the liquid level measuring means 15, the refrigerant leak detecting means 13 may not be provided separately, and the configuration is simplified. Further, the refrigerant leak detection means 13 may be anything as long as it can add some calculation to the measurement information of the liquid level measurement means 15, and may be a personal computer, for example.

実施の形態2.
本実施の形態は、上記実施の形態1における冷凍サイクル装置をネットワークを通じて構成するようにしたものである。
図9及び図10に、本実施の形態における冷凍サイクル装置の構成図を示す。
尚、図9は1つの店舗に対して冷凍機が1つのみ配置されている場合を、図10は1つの店舗に対して冷凍機が複数個(図では2台で示す)配置されている場合をそれぞれ示す。また、図9及び図10において、上記実施の形態1における冷凍サイクル装置と同一又は相当部分には同一符号を付し説明を省略する。
Embodiment 2. FIG.
In the present embodiment, the refrigeration cycle apparatus in the first embodiment is configured through a network.
9 and 10 are configuration diagrams of the refrigeration cycle apparatus in the present embodiment.
9 shows a case where only one refrigerator is arranged for one store, and FIG. 10 shows that a plurality of refrigerators (shown by two in the figure) are arranged for one store. Each case is shown. 9 and 10, the same or corresponding parts as those in the refrigeration cycle apparatus in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

図9及び図10において、17は例えばスーパーマーケットやコンビニエンスストアの店舗、18は前記店舗17内に複数個設置されたショーケース、19は前記店舗17外に配置された冷凍機であり、前記ショーケース18内の蒸発器(図示せず)とは高圧液配管12及び低圧ガス配管10で接続されている。20はネットワークであり、前記冷凍機19の内部もしくは近辺に配置された液溜4の外部に密接して設けられた液面測定手段15の測定情報を基に冷媒漏れを判断する冷媒漏れ検知手段13を介して電話回線などの有線や移動体回線などの無線等によってに接続されている。21は前記ネットワーク20に前記有線や無線等によって接続され、例えば遠隔の前記店舗を経営する本部、あるいは設備を管理する業者の事務所等に設置され、例えばCRTや液晶画面等の表示手段とキーボード、マウス、釦等の入力手段を有する遠隔監視手段である。 9 and 10, 17 is a store of a supermarket or a convenience store, 18 is a showcase installed in the store 17, 19 is a refrigerator placed outside the store 17, and the showcase An evaporator (not shown) in 18 is connected by a high pressure liquid pipe 12 and a low pressure gas pipe 10. Reference numeral 20 denotes a network, which is a refrigerant leak detecting means for judging refrigerant leak based on measurement information of the liquid level measuring means 15 provided in close contact with the outside of the liquid reservoir 4 disposed in or near the refrigerator 19. 13 is connected via a wired line such as a telephone line or a wireless line such as a mobile line. 21 is connected to the network 20 by the wire or wireless, and is installed in a head office that manages the remote store or an office of a company that manages facilities, for example, a display means such as a CRT or a liquid crystal screen and a keyboard Remote monitoring means having input means such as a mouse and a button.

図11は液面測定手段15と冷媒漏れ検知手段13及び遠隔監視手段21の構成図を示す。尚、図において上記実施の形態1における液面測定手段15及び冷媒漏れ検知手段13と同一及び相当部分は同一符号を付し説明を省略する。
前記遠隔監視手段21は、例えばA/D変換器などの入力装置44、演算装置45、例えば液晶ディスプレイやD/A変換器などの出力装置46、例えばメモリなどの記憶装置47により構成される。尚、前記遠隔監視手段21の入力装置44と前記冷媒漏れ検知手段13の出力装置42とは、前記ネットワーク20を間に介して、有線あるいは無線等によって接続されている。
FIG. 11 shows a configuration diagram of the liquid level measuring means 15, the refrigerant leak detection means 13 and the remote monitoring means 21. In the figure, the same and corresponding parts as those of the liquid level measuring means 15 and the refrigerant leak detecting means 13 in the first embodiment are given the same reference numerals and their description is omitted.
The remote monitoring means 21 includes an input device 44 such as an A / D converter, an arithmetic device 45, an output device 46 such as a liquid crystal display or a D / A converter, and a storage device 47 such as a memory. The input device 44 of the remote monitoring means 21 and the output device 42 of the refrigerant leak detection means 13 are connected via the network 20 by wire or wireless.

本実施の形態においては、冷凍サイクル装置における冷凍サイクルの動作や液面測定手段15および冷媒漏れ検知手段13の冷媒漏れ判断等の基本的な構成動作については、上記実施の形態1で説明した通りであるので、ここでの説明を省略し、ネットワークを利用する点について主に説明する。 In the present embodiment, the basic configuration operations such as the operation of the refrigeration cycle in the refrigeration cycle apparatus and the refrigerant leak determination of the liquid level measurement means 15 and the refrigerant leak detection means 13 are as described in the first embodiment. Therefore, the description here is omitted, and the point of using the network will be mainly described.

液面測定手段15によって測定した液溜4内の冷媒液面高さ、あるいは冷媒漏れ検知手段13によって演算、判断された冷媒漏れに関する情報は、ネットワーク20を介して例えば店舗17を経営する本部や設備を管理する業者の事務所等に設置されてある遠隔監視手段21に送出される。 Information about the refrigerant liquid level in the liquid reservoir 4 measured by the liquid level measuring means 15 or the refrigerant leak calculated and judged by the refrigerant leak detecting means 13 is, for example, the headquarters operating the store 17 via the network 20 The data is sent to the remote monitoring means 21 installed in the office of a trader who manages the equipment.

遠隔監視手段21はネットワーク20経由で入力装置44から、現在および過去における冷媒液面高さや凝縮温度、蒸発温度、冷媒漏れの有無や冷媒漏れ量等の
情報が入力され、記憶装置47に記憶される。遠隔監視手段21の演算装置45は、冷媒漏れ検知手段13の演算装置41と比べて高速の演算が可能であるため、演算量の多い上記冷媒漏れ検知アルゴリズムの演算が可能であり、また遠隔監視手段21の記憶装置47は、冷媒漏れ検知手段13の記憶装置43と比べてデータを記憶する容量が多いため、多くのデータの記憶が可能であり、数時間前あるいは数日前のデータを記憶できるため、冷媒漏れの変化を過去に遡って分析でき、的確な判断が下せる。
The remote monitoring means 21 receives information such as the current and past refrigerant liquid level height, condensing temperature, evaporation temperature, presence or absence of refrigerant leakage, refrigerant leakage amount, etc. from the input device 44 via the network 20, and is stored in the storage device 47. The Since the computing device 45 of the remote monitoring means 21 can perform high-speed computation as compared with the computing device 41 of the refrigerant leak detection means 13, the computation of the refrigerant leak detection algorithm with a large computation amount is possible, and remote monitoring is possible. Since the storage device 47 of the means 21 has a larger capacity for storing data than the storage device 43 of the refrigerant leak detection means 13, it can store a large amount of data and can store data several hours ago or several days ago. Therefore, changes in refrigerant leakage can be analyzed retrospectively, and accurate judgment can be made.

以上のように本実施の形態2においては、店舗等に設置される冷凍機の冷媒漏れ検知手段と、例えば遠隔の前記店舗を経営する本部、あるいは設備を管理する業者の事務所等に設置された遠隔監視手段とをネットワーク経由で電話回線などの有線、あるいは移動体回線などの無線にて接続することで、常時冷凍機の冷媒漏れの発生状況を監視することができるため、冷媒漏れを早期に発見し、そして早期に対策を施すことができる。   As described above, in the second embodiment, the refrigerant leakage detection means of a refrigerator installed in a store or the like, for example, the headquarters that manages the remote store, or the office of a trader who manages facilities, etc. By connecting the remote monitoring means via a network, such as a telephone line or wireless connection such as a mobile line, it is possible to monitor the occurrence of refrigerant leakage in the freezer at all times. You can discover and take action early.

以上のように本発明の冷凍サイクル装置は、圧縮機、凝縮器、液溜、膨張手段および蒸発器を有する冷凍サイクル装置、あるいは、前記液溜に接続される補助タンクを有する冷凍サイクル装置であって、前記液溜内もしくは補助タンク内の冷媒液面高さを測定する液面測定手段を備え、前記液溜もしくは前記補助タンクの外部に取付けて測定するようにしたので、設置工事が容易で、既に設置して稼動している冷凍機の液溜あるいは補助タンクにも容易に取付け測定することができる。また、前記液溜もしくは補助タンクの表面温度、あるいは前記液溜内もしくは補助タンク内の冷媒温度、あるいは前記凝縮器内の冷媒の飽和温度、あるいは前記凝縮器と前記液溜もしくは前記液溜と前記膨張手段とを接続する配管の冷媒温度を測定する温度測定手段、または、前記圧縮機の吐出側から前記膨張手段に至る流路の何れかの位置の冷媒の圧力を測定する圧力測定手段を備え、前記液面測定手段による冷媒液面高さ情報と、前記温度測定手段による何れかの温度情報または前記圧力測定手段による圧力情報とにより、冷媒漏れを検知する冷媒漏れ検知手段とを備えたので、精度のよい冷媒漏れ検知と早期発見ができる冷凍サイクル装置を得ることができる。   As described above, the refrigeration cycle apparatus of the present invention is a refrigeration cycle apparatus having a compressor, a condenser, a liquid reservoir, an expansion means, and an evaporator, or a refrigeration cycle apparatus having an auxiliary tank connected to the liquid reservoir. In addition, the liquid level measuring means for measuring the liquid level in the liquid reservoir or the auxiliary tank is provided, and it is attached to the outside of the liquid reservoir or the auxiliary tank for measurement. It can be easily mounted and measured in a liquid reservoir or auxiliary tank of a refrigerator already installed and operating. The surface temperature of the liquid reservoir or auxiliary tank, the refrigerant temperature in the liquid reservoir or auxiliary tank, the saturation temperature of the refrigerant in the condenser, or the condenser and the liquid reservoir or the liquid reservoir and the Temperature measuring means for measuring the refrigerant temperature of the pipe connecting the expansion means, or pressure measuring means for measuring the pressure of the refrigerant at any position in the flow path from the discharge side of the compressor to the expansion means Since the refrigerant liquid level height information by the liquid level measuring means and any one of the temperature information by the temperature measuring means or the pressure information by the pressure measuring means, the refrigerant leakage detecting means for detecting the refrigerant leakage is provided. Thus, it is possible to obtain a refrigeration cycle apparatus capable of detecting refrigerant leakage with high accuracy and early detection.

また、本発明の冷凍サイクル装置は、圧縮機、凝縮器、液溜、膨張手段および蒸発器を有する冷凍サイクル装置、あるいは、前記液溜に接続される補助タンクを有する冷凍サイクル装置であって、前記液溜内もしくは補助タンク内の冷媒液面高さを測定する液面測定手段を備え、前記液溜もしくは前記補助タンクの外部に取付けて測定するようにしたので、上記請求項1同様に設置工事が容易で、既に設置して稼動している冷凍機の液溜あるいは補助タンクにも容易に取付け測定することができる。また、前記液溜もしくは補助タンクの表面温度、あるいは前記液溜内もしくは補助タンク内の冷媒温度、あるいは前記凝縮器内の冷媒の飽和温度、あるいは前記凝縮器と前記液溜もしくは前記液溜と前記膨張手段とを接続する配管の冷媒温度を測定する高圧側温度測定手段または前記圧縮機の吐出側から前記膨張手段に至る流路の何れかの位置の冷媒の圧力を測定する高圧側圧力測定手段と、前記蒸発器内の冷媒の飽和温度、あるいは前記膨張手段から前記蒸発器に至る流路の冷媒温度を測定する低圧側温度測定手段または前記膨張手段から前記圧縮機に至る流路の何れかの位置の冷媒の圧力を測定する低圧側圧力測定手段を備え、前記液面測定手段による冷媒液面高さ情報と、前記高圧側温度測定手段による何れかの温度情報または前記高圧側圧力測定手段による圧力情報と、前記低圧側温度測定手段による何れかの温度情報または前記低圧側圧力測定手段による圧力情報とにより、冷媒漏れを検知する冷媒漏れ検知手段とを備えたので、より精度のよい冷媒漏れ検知と早期発見ができる冷凍サイクル装置を得ることができる。 Further, the refrigeration cycle apparatus of the present invention is a refrigeration cycle apparatus having a compressor, a condenser, a liquid reservoir, an expansion means and an evaporator, or a refrigeration cycle apparatus having an auxiliary tank connected to the liquid reservoir, Since the liquid level measuring means for measuring the liquid level of the refrigerant in the liquid reservoir or the auxiliary tank is provided and is mounted outside the liquid reservoir or the auxiliary tank, the measurement is performed in the same manner as in the above claim 1. The construction is easy, and it can be easily mounted and measured in the liquid reservoir or auxiliary tank of a refrigerator already installed and operating. The surface temperature of the liquid reservoir or auxiliary tank, the refrigerant temperature in the liquid reservoir or auxiliary tank, the saturation temperature of the refrigerant in the condenser, or the condenser and the liquid reservoir or the liquid reservoir and the High pressure side temperature measuring means for measuring the refrigerant temperature of the pipe connecting the expansion means or high pressure side pressure measuring means for measuring the pressure of the refrigerant at any position in the flow path from the discharge side of the compressor to the expansion means And either the saturation temperature of the refrigerant in the evaporator, or the low pressure side temperature measuring means for measuring the refrigerant temperature in the flow path from the expansion means to the evaporator, or the flow path from the expansion means to the compressor Low pressure side pressure measuring means for measuring the pressure of the refrigerant at the position of the refrigerant, the refrigerant liquid level height information by the liquid level measuring means, any temperature information by the high pressure side temperature measuring means or the high Since the refrigerant leakage detecting means for detecting the refrigerant leakage is provided by pressure information by the side pressure measuring means and any temperature information by the low pressure side temperature measuring means or pressure information by the low pressure side pressure measuring means. It is possible to obtain a refrigeration cycle apparatus capable of detecting refrigerant leakage with high accuracy and early detection.

また、本発明の冷凍サイクル装置は、前記液面測定手段に音波あるいは超音波または振動を利用するようにしたので、前記液溜あるいは補助タンク内部にセンサーを設けることなく、液溜あるいは補助タンクの外部から冷媒液面高さを測定することが可能となるため、センサーの取付け工事を容易にし、また、既に設置して稼動している冷凍機にも取付けることができる。 In the refrigeration cycle apparatus of the present invention, since the liquid level measuring means uses sound waves, ultrasonic waves, or vibrations, a sensor in the liquid reservoir or auxiliary tank can be provided without providing a sensor inside the liquid reservoir or auxiliary tank. Since the refrigerant liquid level can be measured from the outside, the sensor installation work can be facilitated, and the refrigerant can be installed in a refrigerator that is already installed and operating.

また、本発明の冷凍サイクル装置は、圧縮機、凝縮器、液溜、膨張手段および蒸発器を有する冷凍サイクル装置であって、前記液溜内部の冷媒液面高さを測定する液面測定手段と、前記液溜の表面温度、あるいは前記液溜内の冷媒温度、あるいは前記凝縮器内の冷媒の飽和温度、あるいは前記凝縮器と前記液溜もしくは前記液溜と前記膨張手段とを接続する配管の冷媒温度を測定する高圧側温度測定手段または前記圧縮機の吐出側から前記膨張手段に至る流路の何れかの位置の冷媒の圧力を測定する高圧側圧力測定手段と、前記蒸発器内の冷媒の飽和温度、あるいは前記膨張手段から前記蒸発器に至る流路の冷媒温度を測定する低圧側温度測定手段または前記膨張手段から前記圧縮機に至る流路の何れかの位置の冷媒の圧力を測定する低圧側圧力測定手段と、前記液面測定手段による冷媒液面高さ情報と、前記高圧側温度測定手段による何れかの温度情報または前記高圧側圧力測定手段による圧力情報と、前記低圧側温度測定手段による何れかの温度情報または前記低圧側圧力測定手段による圧力情報とにより、冷媒漏れを検知する冷媒漏れ検知手段とを備えたので、上記請求項2同様精度のよい冷媒漏れ検知と早期発見ができる冷凍サイクル装置を得ることができる。 The refrigeration cycle apparatus of the present invention is a refrigeration cycle apparatus having a compressor, a condenser, a liquid reservoir, an expansion means, and an evaporator, and is a liquid level measuring means for measuring the refrigerant liquid level in the liquid reservoir. And the surface temperature of the liquid reservoir, the refrigerant temperature in the liquid reservoir, the saturation temperature of the refrigerant in the condenser, or the pipe connecting the condenser and the liquid reservoir or the liquid reservoir and the expansion means A high pressure side temperature measuring means for measuring the refrigerant temperature of the refrigerant, a high pressure side pressure measuring means for measuring the pressure of the refrigerant at any position in the flow path from the discharge side of the compressor to the expansion means, and in the evaporator The refrigerant saturation temperature or the pressure of the refrigerant at any position in the flow path from the expansion means to the compressor is measured by the low pressure side temperature measurement means for measuring the refrigerant temperature in the flow path from the expansion means to the evaporator. Low pressure side to measure Force measuring means, refrigerant liquid level height information by the liquid level measuring means, any temperature information by the high pressure side temperature measuring means or pressure information by the high pressure side pressure measuring means, and by the low pressure side temperature measuring means According to any one of the temperature information or the pressure information from the low-pressure side pressure measuring means, the refrigerant leakage detecting means for detecting the refrigerant leakage is provided. A cycle device can be obtained.

また、本発明の冷凍サイクル装置は、前記冷媒漏れ検知手段に遠隔監視手段を有線もしくは無線にて接続するようにしたので、例えば前記遠隔監視手段を店舗を経営する本部や設備を管理する業者の事務所等に設け、常時冷媒漏れを監視することができるため、冷媒漏れを早期に発見し、そして早期に対策を施すことができる。 In the refrigeration cycle apparatus of the present invention, the remote monitoring means is wired or wirelessly connected to the refrigerant leak detection means. For example, the remote monitoring means is used by a company that manages a headquarter or facility that manages a store. Since it is provided in an office or the like and the refrigerant leakage can be constantly monitored, it is possible to detect the refrigerant leakage at an early stage and to take countermeasures at an early stage.

本発明の実施の形態1における冷凍サイクル装置の構成図である。It is a block diagram of the refrigeration cycle apparatus in Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置の液溜を示す図である。It is a figure which shows the liquid reservoir of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置の冷媒の動作を示すモリエル線図である。It is a Mollier diagram which shows the operation | movement of the refrigerant | coolant of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る液面測定手段及び冷媒漏れ検知手段の構成図である。It is a block diagram of the liquid level measurement means and refrigerant | coolant leak detection means which concern on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置の他の構成図である。It is another block diagram of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置のさらに他の構成図である。FIG. 5 is still another configuration diagram of the refrigeration cycle apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る凝縮温度と蒸発温度と液溜内冷媒量との関係を示した図である。It is the figure which showed the relationship between the condensation temperature which concerns on Embodiment 1 of this invention, evaporation temperature, and the refrigerant | coolant amount in a liquid reservoir. 本発明の実施の形態1に係る冷媒漏れ検知アルゴリズムの一例を示すフローチャートである。It is a flowchart which shows an example of the refrigerant | coolant leak detection algorithm which concerns on Embodiment 1 of this invention. 本発明の実施の形態2における冷凍サイクル装置の構成図である。It is a block diagram of the refrigeration cycle apparatus in Embodiment 2 of this invention. 本発明の実施の形態2に係る冷凍サイクル装置の他の構成図である。It is another block diagram of the refrigerating-cycle apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る液面測定手段と冷媒漏れ検知手段及び遠隔監視手段の構成図である。It is a block diagram of the liquid level measurement means, refrigerant | coolant leak detection means, and remote monitoring means which concern on Embodiment 2 of this invention. 従来の冷凍サイクル装置を示す構成図である。It is a block diagram which shows the conventional refrigeration cycle apparatus. 従来の他の冷凍サイクル装置を示す構成図である。It is a block diagram which shows the other conventional refrigeration cycle apparatus.

符号の説明Explanation of symbols

1 圧縮機、 2 凝縮器、 4 液溜、 6 膨張手段、 7 蒸発器、 9 高圧ガス配管、 10 低圧ガス配管、 11 液溜4の入口側の高圧液配管、 12 液溜4の出口側の高圧液配管、13 冷媒漏れ検知手段、15 液面測定手段、 17 店舗、 18 ショーケース、 19 冷凍機、 20 ネットワーク、 21 遠隔監視手段、 23 発信器、 24 受信器、 25 超音波発生回路、 26 記憶装置、 27 タイマー、 28 演算装置、 29 出力装置、 30 温度測定手段、 30a、30b 温度測定手段、 31a、31b 圧力測定手段、 40 入力装置、 41 演算装置、 42 出力装置、 43 記憶装置、 44 入力装置、 45 演算装置、 46 出力装置、 47 記憶装置。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 Condenser, 4 Liquid reservoir, 6 Expansion means, 7 Evaporator, 9 High pressure gas piping, 10 Low pressure gas piping, 11 High pressure liquid piping of the inlet side of the liquid reservoir 4, 12 Outlet side of the liquid reservoir 4 High pressure liquid piping, 13 Refrigerant leak detection means, 15 Liquid level measurement means, 17 Store, 18 Showcase, 19 Refrigerator, 20 Network, 21 Remote monitoring means, 23 Transmitter, 24 Receiver, 25 Ultrasonic wave generation circuit, 26 Storage device, 27 timer, 28 computing device, 29 output device, 30 temperature measuring means, 30a, 30b temperature measuring means, 31a, 31b pressure measuring means, 40 input device, 41 computing device, 42 output device, 43 storage device, 44 Input device, 45 arithmetic device, 46 output device, 47 storage device.

Claims (9)

圧縮機、凝縮器、液溜、膨張手段、及び蒸発器を配管にて接続し冷媒を循環させる冷凍サイクルの前記液溜内の冷媒液面位置から前記液溜内の冷媒量を算出するステップと、通常運転中の前記冷凍サイクルの凝縮温度と蒸発温度に関係した冷媒量と新たに算出した冷媒量を比較して冷媒漏れを判断するステップと、前記液溜内の前記冷媒量を算出する際に圧縮機起動後一定時間内かを判別するステップと、を備え、圧縮機起動後一定時間経過と判別した時の前記冷媒液面位置により前記冷媒量を算出し冷媒漏れを判断することを特徴とする冷凍サイクル装置の冷媒漏れ検知方法。 Calculating a refrigerant amount in the liquid reservoir from a refrigerant liquid surface position in the liquid reservoir of a refrigeration cycle in which a compressor, a condenser, a liquid reservoir, an expansion means, and an evaporator are connected by piping to circulate the refrigerant; Comparing the refrigerant amount related to the condensation temperature and evaporation temperature of the refrigeration cycle during normal operation with the newly calculated refrigerant amount, and determining the refrigerant leakage, and calculating the refrigerant amount in the liquid reservoir And a step of determining whether a certain time has elapsed after starting the compressor, and determining the refrigerant leakage by calculating the amount of the refrigerant based on the refrigerant liquid level position when it is determined that the certain time has elapsed after starting the compressor. A refrigerant leak detection method for a refrigeration cycle apparatus. 前記液溜内の冷媒量は冷媒の凝縮温度から冷媒密度を求めて換算することを特徴とする請求項1記載の冷凍サイクル装置の冷媒漏れ検知方法。 2. The refrigerant leakage detection method for a refrigeration cycle apparatus according to claim 1, wherein the refrigerant amount in the liquid reservoir is converted by obtaining a refrigerant density from a refrigerant condensation temperature. 圧縮機、凝縮器、液溜、膨張手段、及び蒸発器を配管にて接続し冷媒を循環させる冷凍サイクルの冷媒の凝縮温度から冷媒密度を求め前記液溜内の冷媒量を前記液溜内の冷媒液面位置と前記冷媒密度から算出するステップと、凝縮温度に応じてあらかじめ記憶された冷媒量と運転中に算出した冷媒量とを比較して冷媒漏れを判断するステップと、を備え、前記液溜内の前記冷媒量を算出する際に圧縮機起動後一定時間経過後のデータにより算出し冷媒漏れを判断することを特徴とする冷凍サイクル装置の冷媒漏れ検知方法。 A refrigerant density is obtained from the refrigerant condensation temperature of a refrigeration cycle in which a compressor, a condenser, a liquid reservoir, an expansion means, and an evaporator are connected by piping to circulate the refrigerant, and the refrigerant amount in the liquid reservoir is determined. A step of calculating from the refrigerant liquid level position and the refrigerant density, and a step of determining refrigerant leakage by comparing the refrigerant amount stored in advance according to the condensation temperature and the refrigerant amount calculated during operation, A refrigerant leak detection method for a refrigeration cycle apparatus, characterized in that, when calculating the amount of refrigerant in a liquid reservoir, refrigerant leak is determined by calculation based on data after a predetermined time has elapsed since the start of the compressor. 前記冷媒漏れを判断する場合、新たに算出する前記冷媒量が減少傾向が継続しているときに冷媒漏れと判断することを特徴とする請求項1または3記載の冷凍サイクル装置の冷媒漏れ検知方法。 The refrigerant leakage detection method for a refrigeration cycle apparatus according to claim 1 or 3, wherein when the refrigerant leakage is determined, the refrigerant leakage is determined when the newly calculated refrigerant amount continues to decrease. . 新たに算出された冷媒量が格納される領域に、過去に学習し記憶されている冷媒量を算出したデータ数が所定数以上かどうかを判断し所定数以上の場合に冷媒漏れを判断することを特徴とする請求項1または3記載の冷凍サイクル装置の冷媒漏れ検知方法。 In the area where the newly calculated refrigerant amount is stored, it is determined whether or not the number of data obtained by calculating the refrigerant amount that has been learned and stored in the past is equal to or greater than a predetermined number, and if it is equal to or greater than the predetermined number, the refrigerant leakage is determined. The refrigerant leakage detection method for a refrigeration cycle apparatus according to claim 1 or 3, wherein 圧縮機、凝縮器、液溜、膨張手段、及び蒸発器を配管にて接続し冷媒を循環させる冷凍サイクルと、前記冷媒が上部から流入する前記液溜内の変動する冷媒液面の高さを測定する液面測定手段と、を備え、前記液面測定手段は異なる周波数でサンプリングし、もしくは1つの周波数で所定時間サンプリングして、測定したサンプリングデータを平均して液面の高さとすることを特徴とする冷凍サイクル装置。 A compressor, a condenser, a liquid reservoir, an expansion means, and an evaporator are connected by piping to refrigeration cycle for circulating the refrigerant, and the height of the fluctuating refrigerant liquid level in the liquid reservoir from which the refrigerant flows in from above. A liquid level measuring means for measuring, wherein the liquid level measuring means samples at a different frequency, or samples at a single frequency for a predetermined time, and averages the measured sampling data to obtain a liquid level height. A characteristic refrigeration cycle apparatus. 前記液面測定手段の測定する液面の高さは測定データの単純平均よりも低い高さとすることを特徴とする請求項6記載の冷凍サイクル装置。 7. The refrigeration cycle apparatus according to claim 6, wherein the liquid level measured by the liquid level measuring means is lower than a simple average of measurement data. 前記液面測定手段は音波あるいは超音波または振動を利用したことを特徴とする請求項6または7記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 6 or 7, wherein the liquid level measuring means uses sound waves, ultrasonic waves, or vibrations. 前記液面測定手段は前記液溜または前記液溜に接続された補助タンクの外部に取り付けられ前記液溜または前記補助タンク内部の液面高さを測定することを特徴とする請求項6または7記載の冷凍サイクル装置。 The liquid level measuring means is attached to the outside of the liquid reservoir or an auxiliary tank connected to the liquid reservoir, and measures the liquid level inside the liquid reservoir or the auxiliary tank. The refrigeration cycle apparatus described.
JP2007273722A 2007-10-22 2007-10-22 Refrigerant leak detection method for refrigeration cycle equipment Expired - Lifetime JP4412385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007273722A JP4412385B2 (en) 2007-10-22 2007-10-22 Refrigerant leak detection method for refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007273722A JP4412385B2 (en) 2007-10-22 2007-10-22 Refrigerant leak detection method for refrigeration cycle equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001357261A Division JP4123764B2 (en) 2001-11-22 2001-11-22 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2008064453A true JP2008064453A (en) 2008-03-21
JP4412385B2 JP4412385B2 (en) 2010-02-10

Family

ID=39287315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007273722A Expired - Lifetime JP4412385B2 (en) 2007-10-22 2007-10-22 Refrigerant leak detection method for refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP4412385B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113804A1 (en) * 2009-03-30 2010-10-07 三菱電機株式会社 Refrigeration cycle device
CN102147142A (en) * 2010-02-08 2011-08-10 Lg电子株式会社 Air conditioner and method for controlling air conditioner
WO2011111114A1 (en) * 2010-03-12 2011-09-15 三菱電機株式会社 Refrigeration air conditioning device
JP2012117732A (en) * 2010-11-30 2012-06-21 Sanyo Electric Co Ltd Refrigeration equipment
JP2012117735A (en) * 2010-11-30 2012-06-21 Sanyo Electric Co Ltd Refrigeration equipment
JP2012117733A (en) * 2010-11-30 2012-06-21 Sanyo Electric Co Ltd Refrigeration equipment
WO2012144524A1 (en) * 2011-04-21 2012-10-26 ホシザキ電機株式会社 Method for operating ice-making machine
JP2012229864A (en) * 2011-04-26 2012-11-22 Hoshizaki Electric Co Ltd Operation method of ice making machine
CN104596172A (en) * 2010-03-12 2015-05-06 三菱电机株式会社 Refrigeration air conditioning device
US9239180B2 (en) 2009-10-23 2016-01-19 Mitsubishi Electric Corporation Refrigeration and air-conditioning apparatus
CN110579061A (en) * 2019-09-26 2019-12-17 长虹美菱股份有限公司 anti-condensation combined refrigerator and control method thereof
CN110857804A (en) * 2018-08-24 2020-03-03 奥克斯空调股份有限公司 Air conditioner refrigerant leakage fault detection method and air conditioner
CN110895025A (en) * 2018-09-12 2020-03-20 奥克斯空调股份有限公司 Air conditioner refrigerant leakage detection method and air conditioner using same
CN110940051A (en) * 2018-09-25 2020-03-31 奥克斯空调股份有限公司 Air conditioner refrigerant leakage detection method and air conditioner using same
CN112557989A (en) * 2020-11-12 2021-03-26 珠海一多监测科技有限公司 Online monitoring and diagnosing method for number of mols of gas molecules of current transformer
US11231198B2 (en) * 2019-09-05 2022-01-25 Trane International Inc. Systems and methods for refrigerant leak detection in a climate control system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102563939B (en) * 2012-02-17 2014-04-30 青岛海尔空调电子有限公司 Air-cooling water chiller
US10113763B2 (en) 2013-07-10 2018-10-30 Mitsubishi Electric Corporation Refrigeration cycle apparatus
US9696235B2 (en) * 2015-03-18 2017-07-04 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Managing water leakage from a water cooling system within a compute node

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06123529A (en) * 1992-10-08 1994-05-06 Mitsubishi Heavy Ind Ltd Apparatus for diagnosing refrigerant leakage in refrigeration unit
JPH08100970A (en) * 1994-09-30 1996-04-16 Toshiba Corp Refrigerating device
JPH09273839A (en) * 1996-04-05 1997-10-21 Hitachi Ltd Refrigerating cycle
JPH10281599A (en) * 1997-04-02 1998-10-23 Hitachi Ltd Refrigerant amount determining apparatus
JP2000274982A (en) * 1999-03-23 2000-10-06 Mitsubishi Electric Corp Heat exchanger and air-conditioning refrigerating device using the same
JP2001227822A (en) * 2000-02-17 2001-08-24 Mitsubishi Electric Corp Refrigerating air conditioner
JP2001272266A (en) * 2000-03-27 2001-10-05 Ricoh Elemex Corp Ultrasonic level gauge

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06123529A (en) * 1992-10-08 1994-05-06 Mitsubishi Heavy Ind Ltd Apparatus for diagnosing refrigerant leakage in refrigeration unit
JPH08100970A (en) * 1994-09-30 1996-04-16 Toshiba Corp Refrigerating device
JPH09273839A (en) * 1996-04-05 1997-10-21 Hitachi Ltd Refrigerating cycle
JPH10281599A (en) * 1997-04-02 1998-10-23 Hitachi Ltd Refrigerant amount determining apparatus
JP2000274982A (en) * 1999-03-23 2000-10-06 Mitsubishi Electric Corp Heat exchanger and air-conditioning refrigerating device using the same
JP2001227822A (en) * 2000-02-17 2001-08-24 Mitsubishi Electric Corp Refrigerating air conditioner
JP2001272266A (en) * 2000-03-27 2001-10-05 Ricoh Elemex Corp Ultrasonic level gauge

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113804A1 (en) * 2009-03-30 2010-10-07 三菱電機株式会社 Refrigeration cycle device
JP2010236714A (en) * 2009-03-30 2010-10-21 Mitsubishi Electric Corp Refrigerating cycle device
US8806877B2 (en) 2009-03-30 2014-08-19 Mitsubishi Electric Corporation Refrigerating cycle apparatus
US9239180B2 (en) 2009-10-23 2016-01-19 Mitsubishi Electric Corporation Refrigeration and air-conditioning apparatus
CN102147142A (en) * 2010-02-08 2011-08-10 Lg电子株式会社 Air conditioner and method for controlling air conditioner
CN102147142B (en) * 2010-02-08 2014-05-07 Lg电子株式会社 Air conditioner and method for controlling air conditioner
JP5558555B2 (en) * 2010-03-12 2014-07-23 三菱電機株式会社 Refrigeration air conditioner
CN102792108A (en) * 2010-03-12 2012-11-21 三菱电机株式会社 Refrigeration air conditioning device
JPWO2011111114A1 (en) * 2010-03-12 2013-06-27 三菱電機株式会社 Refrigeration air conditioner
US9222711B2 (en) 2010-03-12 2015-12-29 Mitsubishi Electric Corporation Refrigerating and air-conditioning apparatus
WO2011111114A1 (en) * 2010-03-12 2011-09-15 三菱電機株式会社 Refrigeration air conditioning device
CN102792108B (en) * 2010-03-12 2015-02-18 三菱电机株式会社 Refrigeration air conditioning device
CN104596172A (en) * 2010-03-12 2015-05-06 三菱电机株式会社 Refrigeration air conditioning device
JP2012117733A (en) * 2010-11-30 2012-06-21 Sanyo Electric Co Ltd Refrigeration equipment
JP2012117735A (en) * 2010-11-30 2012-06-21 Sanyo Electric Co Ltd Refrigeration equipment
JP2012117732A (en) * 2010-11-30 2012-06-21 Sanyo Electric Co Ltd Refrigeration equipment
WO2012144524A1 (en) * 2011-04-21 2012-10-26 ホシザキ電機株式会社 Method for operating ice-making machine
JP2012229864A (en) * 2011-04-26 2012-11-22 Hoshizaki Electric Co Ltd Operation method of ice making machine
CN110857804A (en) * 2018-08-24 2020-03-03 奥克斯空调股份有限公司 Air conditioner refrigerant leakage fault detection method and air conditioner
CN110857804B (en) * 2018-08-24 2021-04-27 奥克斯空调股份有限公司 Air conditioner refrigerant leakage fault detection method and air conditioner
CN110895025A (en) * 2018-09-12 2020-03-20 奥克斯空调股份有限公司 Air conditioner refrigerant leakage detection method and air conditioner using same
CN110895025B (en) * 2018-09-12 2021-03-12 奥克斯空调股份有限公司 Air conditioner refrigerant leakage detection method and air conditioner using same
CN110940051A (en) * 2018-09-25 2020-03-31 奥克斯空调股份有限公司 Air conditioner refrigerant leakage detection method and air conditioner using same
CN110940051B (en) * 2018-09-25 2021-03-12 奥克斯空调股份有限公司 Air conditioner refrigerant leakage detection method and air conditioner using same
US11231198B2 (en) * 2019-09-05 2022-01-25 Trane International Inc. Systems and methods for refrigerant leak detection in a climate control system
US11971183B2 (en) 2019-09-05 2024-04-30 Trane International Inc. Systems and methods for refrigerant leak detection in a climate control system
CN110579061A (en) * 2019-09-26 2019-12-17 长虹美菱股份有限公司 anti-condensation combined refrigerator and control method thereof
CN112557989A (en) * 2020-11-12 2021-03-26 珠海一多监测科技有限公司 Online monitoring and diagnosing method for number of mols of gas molecules of current transformer
CN112557989B (en) * 2020-11-12 2024-05-28 珠海一多监测科技有限公司 Online monitoring and diagnosing method for molar quantity of gas molecules of current transformer

Also Published As

Publication number Publication date
JP4412385B2 (en) 2010-02-10

Similar Documents

Publication Publication Date Title
JP4412385B2 (en) Refrigerant leak detection method for refrigeration cycle equipment
JP4123764B2 (en) Refrigeration cycle equipment
JP4317878B2 (en) Air conditioner and method for judging refrigerant amount
JP6091506B2 (en) Refrigeration air conditioner, refrigerant leak detection device, and refrigerant leak detection method
JP4113700B2 (en) Liquid level detection device, liquid reservoir, refrigeration cycle device, and refrigerant leakage detection system
US9329115B2 (en) Fluid density measurement device
WO2017081872A1 (en) Device for detecting refrigerant leakage in refrigeration cycle
US8775123B2 (en) Method for determination of the coefficient of performanace of a refrigerating machine
JP2017089983A5 (en)
CN110887165B (en) Refrigerant leakage detection method and device and air conditioner
JP5473957B2 (en) Refrigerant leak detection device and refrigeration air conditioner
JP5253359B2 (en) Refrigerant state determination device
CN110873434B (en) Refrigerant leakage detection method and device and air conditioner
US9146048B2 (en) Chemical state monitor for refrigeration system
JP2000249435A (en) Freezing apparatus and refrigerant leak detection method therefor
JP3490908B2 (en) Refrigerant refrigerant leak detection system
JP6925357B2 (en) Refrigeration cycle equipment
JP6202274B2 (en) Air conditioner
JP2009281910A (en) Measuring instrument of thermophysical properties
Yan et al. A study on an online measurement method to determine the oil discharge ratio by utilizing Coriolis mass flow meter in a calorimeter
JPH10176877A (en) System for judging enclosing amount of refrigerant
JP2017133817A (en) Refrigerant leakage detection device in refrigeration cycle
JP2000321103A (en) Tester for refrigerating compressor
Tran et al. On side refrigerant measurement of heat pump seasonal performances
WO2023145016A1 (en) Diagnostic device and refrigeration cycle device having same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4412385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term