JP2009281910A - Measuring instrument of thermophysical properties - Google Patents

Measuring instrument of thermophysical properties Download PDF

Info

Publication number
JP2009281910A
JP2009281910A JP2008135145A JP2008135145A JP2009281910A JP 2009281910 A JP2009281910 A JP 2009281910A JP 2008135145 A JP2008135145 A JP 2008135145A JP 2008135145 A JP2008135145 A JP 2008135145A JP 2009281910 A JP2009281910 A JP 2009281910A
Authority
JP
Japan
Prior art keywords
heat
measured
flow density
heat flow
thermophysical property
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008135145A
Other languages
Japanese (ja)
Inventor
Hitoshi Ozaki
仁 尾崎
Yukako Akeyama
悠香子 明山
Masaya Kojima
真弥 小島
Takahito Shibayama
卓人 柴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008135145A priority Critical patent/JP2009281910A/en
Publication of JP2009281910A publication Critical patent/JP2009281910A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring instrument of thermophysical properties capable of measuring the heat conductivity of a heat insulating material with high precision. <P>SOLUTION: The heat transmitted to a heat flow density detecting means 109 from a heat source 102 through a measuring target 101 during the measurement of thermophysical properties of the measuring target 101 is stored in a heat accumulation material 113 having large specific heat or latent heat in a fixing means 108 to reduce the temperature rise of the heat flow density detecting means 109. As a result, since the temperature rise of a heat flow density sensor 107 can be suppressed, the density of a heat flow passing through the measuring target 101 can be stabilized and the thermophysical properties of the measuring target 101 can be measured with high precision by a simple constitution. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、発泡ポリウレタンや真空断熱材の断熱性能を評価する熱物性測定装置に関するものである。   The present invention relates to a thermophysical property measuring apparatus for evaluating the heat insulating performance of polyurethane foam and vacuum heat insulating material.

近年、地球環境問題への関心が高まり、冷蔵庫、自動販売機などの冷凍冷蔵機器やジャーポットなどの温熱機器の省エネ設計に対する社会的な要望が高まっている。これを受けて、機器メーカーでは、競って断熱技術の開発に注力している。   In recent years, interest in global environmental issues has increased, and there has been an increasing social demand for energy-saving designs for refrigeration equipment such as refrigerators and vending machines and thermal equipment such as jar pots. In response, equipment manufacturers are competing to develop insulation technology.

代表的な断熱技術としては、冷蔵庫などの冷凍冷蔵機器の箱体壁面に使用されている発泡ポリウレタンがある。また、最近ではグラスウールやシリカ粉末を芯材として、この芯材を樹脂と金属箔のラミネートフィルムなどのガスバリア性に優れたフィルムで覆い、また余分な水分を吸着する水分吸着剤を同封したあと、内部を真空状態にして作製される真空断熱材が高性能な断熱材として利用されている。   As a typical heat insulation technique, there is a polyurethane foam used for a box wall surface of a refrigerator-freezer such as a refrigerator. Recently, glass wool or silica powder is used as a core material, and this core material is covered with a film excellent in gas barrier properties such as a laminate film of resin and metal foil. The vacuum heat insulating material produced by making the inside into a vacuum state is used as a high performance heat insulating material.

一般に、これらの断熱材の断熱性能は、断熱材の片面から反対面への単位面積当たりの熱流密度を厚みで除した熱伝導率で評価される。この熱伝導率が小さいものほど断熱性能が高いことを意味する。熱伝導率の測定は、断熱材を温度調整可能な平行平板で挟み、断熱材の厚み方向に所定の温度差をつけたときの単位面積当たりの熱流密度を測定する。同時に平行平板間の厚みを測定し、熱伝導率を算出する。   Generally, the heat insulating performance of these heat insulating materials is evaluated by the thermal conductivity obtained by dividing the heat flow density per unit area from one surface of the heat insulating material to the opposite surface by the thickness. A smaller thermal conductivity means higher thermal insulation performance. The heat conductivity is measured by sandwiching the heat insulating material between parallel flat plates whose temperature can be adjusted, and measuring the heat flow density per unit area when a predetermined temperature difference is provided in the thickness direction of the heat insulating material. At the same time, the thickness between parallel flat plates is measured, and the thermal conductivity is calculated.

この測定方法は、断熱材両面の温度差が一定、つまり定常状態になったときの熱流密度を測定するものである。このため、測定開始から定常状態になるまでの時間が必要となる。この時間を短縮するために、測定対象の断熱材上に、熱源を挟んで温度による素材変化が生じにくいシリカなどの熱抵抗材を配置し、熱抵抗材内部の2点以上の温度差から断熱材の熱伝導率を推定する方法がある(例えば、特許文献1参照)。   This measurement method measures the heat flow density when the temperature difference between both surfaces of the heat insulating material is constant, that is, in a steady state. For this reason, time from the start of measurement to the steady state is required. In order to shorten this time, a heat resistance material such as silica, which hardly changes the material due to temperature, is placed on the heat insulation material to be measured, and the heat insulation material is insulated from the temperature difference between two or more points inside the heat resistance material. There is a method for estimating the thermal conductivity of a material (see, for example, Patent Document 1).

図2は、従来の熱伝導率測定装置の説明図である。図2に示すように、熱伝導率測定装置1は、熱発生装置2と熱抵抗材3を備えている。熱抵抗材3は、内部の温度差を測定するものである。   FIG. 2 is an explanatory diagram of a conventional thermal conductivity measuring device. As shown in FIG. 2, the thermal conductivity measuring device 1 includes a heat generating device 2 and a heat resistance material 3. The thermal resistance material 3 measures an internal temperature difference.

熱発生装置2により被測定物4と熱抵抗材3との間で熱を発生させ、被測定物4と熱抵抗材3に熱を流し、熱抵抗材3の内部の熱流によって生じる温度差を温度差測定装置5によって測定し、この温度差から被測定物4の熱伝導率を求めることができる。また、熱抵抗材3上部には、熱発生装置2と熱抵抗材3および被測定物4とを上方から荷重をかけて密着させる密着付与材6を備えている。
特開2002−131257号公報
The heat generation device 2 generates heat between the object to be measured 4 and the heat resistance material 3, and heat is passed through the object to be measured 4 and the heat resistance material 3, and a temperature difference caused by the heat flow inside the heat resistance material 3 is calculated. It can measure with the temperature difference measuring apparatus 5, and can obtain | require the thermal conductivity of the to-be-measured object 4 from this temperature difference. In addition, an adhesion imparting material 6 is provided above the heat resistance material 3 to bring the heat generating device 2, the heat resistance material 3, and the measurement object 4 into close contact with each other by applying a load from above.
JP 2002-131257 A

しかしながら、上記従来の構成では、被測定物の熱伝導率の大小に依存して、熱発生部から熱抵抗材側に供給される熱量が決まり、熱抵抗材に供給される熱量が大きい場合には、熱抵抗表面と内部の温度差が小さくなり、熱量が小さい場合には、温度差は大きくなる。この相関から被測定物の熱伝導率を算出する。この方法では、測定開始前には熱抵抗材の温度は外気温度とほぼ同じになっており、測定後には熱発生部からの熱によって温度上昇している。熱抵抗材を伝わる熱流の方向が、熱発生部から密着付与材方向に一様であれば問題ないが、実際には熱抵抗材と外気の間に温度差が存在するので、熱抵抗材から外気へ放熱が生じている。このため、同一の被測定物に対しても外気の温度変化によって、熱抵抗材の表面と内部の温度差も変化し、測定値がばらつくという課題があった。   However, in the above conventional configuration, the amount of heat supplied from the heat generating part to the heat resistance material side is determined depending on the thermal conductivity of the object to be measured, and the amount of heat supplied to the heat resistance material is large. The temperature difference between the heat resistance surface and the inside becomes small, and when the amount of heat is small, the temperature difference becomes large. From this correlation, the thermal conductivity of the object to be measured is calculated. In this method, the temperature of the heat resistance material is substantially the same as the outside air temperature before the start of measurement, and the temperature rises due to the heat from the heat generating part after the measurement. If the direction of the heat flow that travels through the heat resistance material is uniform from the heat generating part to the adhesion imparting material direction, there is no problem, but in reality there is a temperature difference between the heat resistance material and the outside air. Heat is released to the outside air. For this reason, even for the same object to be measured, the temperature difference between the surface and the inside of the heat resistance material also changes due to the temperature change of the outside air, and there is a problem that the measured value varies.

本発明は、被測定物を通過する熱流密度を、被測定物を挟んで熱源と反対側にある熱流密度センサーで検出する方法において、熱流密度センサーに供給される熱を固定手段内の比熱または潜熱が大きな蓄熱材に蓄えることにより、測定中の熱流密度センサーの温度をほぼ一定に維持することにより、温度制御された熱源から被測定物を介して熱流密度センサーに伝わる熱を安定化することによって、小型で簡単な構成でありながら、高精度で熱物性を測定できる熱物性測定装置を提供することを目的とする。   The present invention relates to a method for detecting the heat flow density passing through the object to be measured by a heat flow density sensor on the opposite side of the heat source across the object to be measured. Stabilize the heat transferred from the temperature controlled heat source to the heat flow density sensor via the measured object by maintaining the temperature of the heat flow density sensor during measurement by storing it in a heat storage material with large latent heat. Accordingly, an object of the present invention is to provide a thermophysical property measuring apparatus capable of measuring thermophysical properties with high accuracy while having a small and simple configuration.

上記目的を達成するために、本発明の熱物性測定装置は、被測定物を設置する上部が平らな熱源と、被測定物の上方に設けられ上下に可動する熱流密度検出手段とで構成され、熱流密度検出手段は、下降時に被測定物に接触する熱流密度センサーと、熱流密度センサーを底面として空間を形成するように配置して熱流密度センサーを固定する固定手段を備え、空間内に蓄熱材を備えることを特徴とするものである。   In order to achieve the above object, the thermophysical property measuring apparatus of the present invention is composed of a heat source having a flat upper portion on which the object to be measured is installed, and a heat flow density detecting means which is provided above the object to be measured and is movable up and down. The heat flow density detecting means includes a heat flow density sensor that contacts the object to be measured when descending, and a fixing means that fixes the heat flow density sensor by arranging the heat flow density sensor to form a space with the bottom surface, and stores heat in the space. A material is provided.

上記構成において、熱源上に置かれた断熱材などの被測定物は、熱源からの熱によって加熱されて温度が上昇する。そして、熱源と反対側の表面から熱流密度センサーに熱が伝わり、その熱が固定手段内の蓄熱材に蓄えられるが、蓄熱材は比熱または潜熱が大きく、熱流密度センサーからの熱侵入による温度変化がほとんどない。つまり、熱流密度検出手段は、ほとんど昇温することなく、ほぼ一定の温度を維持することができる。このことから、特別な温度制御装置を用いることなく熱流密度検出手段(低温側)の温度を安定化できるので、小型で簡素な構成でありながら、高精度で被測定物の熱物性を測定することが可能となる。   In the above configuration, an object to be measured such as a heat insulating material placed on the heat source is heated by the heat from the heat source, and the temperature rises. Then, heat is transferred from the surface opposite to the heat source to the heat flow density sensor, and the heat is stored in the heat storage material in the fixing means, but the heat storage material has a large specific heat or latent heat, and the temperature change due to heat intrusion from the heat flow density sensor There is almost no. That is, the heat flow density detecting means can maintain a substantially constant temperature with almost no increase in temperature. Therefore, the temperature of the heat flow density detecting means (low temperature side) can be stabilized without using a special temperature control device, so that the thermophysical property of the object to be measured can be measured with high accuracy while having a small and simple configuration. It becomes possible.

本発明によれば、熱源から被測定物を介して熱流密度検出手段に伝わる熱を、蓄熱材に蓄えるため、簡単な構成でありながら熱流密度検出手段の昇温を抑制でき、被測定物の熱物性値を高精度で測定可能な小型熱物性測定装置を提供することができる。   According to the present invention, the heat transmitted from the heat source to the heat flow density detection means via the object to be measured is stored in the heat storage material, so that the temperature rise of the heat flow density detection means can be suppressed while having a simple configuration, A compact thermophysical property measuring apparatus capable of measuring thermophysical property values with high accuracy can be provided.

請求項1に記載の熱物性測定装置の発明は、被測定物を設置する上部が平らな熱源と、被測定物の上方に設けられ上下に可動する熱流密度検出手段とで構成され、熱流密度検出手段は、下降時に被測定物に接触する熱流密度センサーと、熱流密度センサーを底面として空間を形成するように配置して熱流密度センサーを固定する固定手段を備え、空間内に蓄熱材を備えたものであり、被測定物の熱物性測定中に熱源から被測定物を介して熱流密度検出手段に伝わる熱を、比熱または潜熱が大きな蓄熱材によって蓄えることによって蓄熱材の温度変化がほとんどなく、熱流密度センサーの温度上昇を抑制できるので、被測定物を通過する熱流密度を安定化できることにより、小型で簡単な構成でありながら、被測定物の熱物性を高精度で測定可能となる。   The thermophysical property measuring apparatus according to claim 1 is composed of a heat source having a flat upper portion on which the object to be measured is installed and a heat flow density detecting means which is provided above the object to be measured and is movable up and down. The detection means includes a heat flow density sensor that comes into contact with the object to be measured when descending, and a fixing means that fixes the heat flow density sensor by arranging the heat flow density sensor as a bottom surface to form a space, and includes a heat storage material in the space. Because the heat transmitted from the heat source to the heat flow density detection means through the measured object during the measurement of the thermophysical properties of the measured object is stored by the heat storage material having a large specific heat or latent heat, there is almost no temperature change of the heat storage material. Since the temperature rise of the heat flow density sensor can be suppressed, the heat flow density passing through the object to be measured can be stabilized, so that the thermophysical properties of the object to be measured can be measured with high accuracy while having a small and simple configuration. To become.

請求項2に記載の熱物性測定装置の発明は、請求項1に記載の発明において、固定手段を、樹脂で構成したものである。   A thermophysical property measuring apparatus according to a second aspect is the invention according to the first aspect, wherein the fixing means is made of resin.

樹脂は金属などと比較して熱伝導率が小さい。このことから、熱源から被測定物、熱流密度センサーを介して蓄熱材に伝わる熱や、固定手段の外部から侵入する熱を低減できる。このことから、蓄熱材の温度変化がほとんどなく、熱流密度検出センサーの温度上昇をさらに抑制できるので、被測定物を通過する熱流密度をさらに安定化できることにより、小型で簡単な構成でありながら、被測定物の熱物性をさらに高精度で測定可能となる。   Resins have a lower thermal conductivity than metals. From this, it is possible to reduce heat transmitted from the heat source to the heat storage material via the object to be measured and the heat flow density sensor, and heat entering from the outside of the fixing means. From this, there is almost no temperature change of the heat storage material, and since the temperature rise of the heat flow density detection sensor can be further suppressed, the heat flow density passing through the object to be measured can be further stabilized, so that it is a small and simple configuration, The thermophysical property of the object to be measured can be measured with higher accuracy.

請求項3に記載の熱物性測定装置の発明は、請求項1または2に記載の発明において、固定手段を、樹脂層に多数の気泡を有する発泡樹脂で構成したものであり、固定手段の断熱性能が高く、固定手段外部から蓄熱材に侵入する熱をさらに低減することができ、蓄熱材の温度変化を抑制できる。このことから、熱流密度検出センサーの温度上昇をさらに抑制できるので、被測定物を通過する熱流密度をさらに安定化できることにより、小型で簡単な構成でありながら、被測定物の熱物性をさらに高精度で測定可能となる。   The invention of the thermophysical property measuring apparatus according to claim 3 is the invention according to claim 1 or 2, wherein the fixing means is composed of a foamed resin having a large number of bubbles in the resin layer, and heat insulation of the fixing means. The performance is high, the heat entering the heat storage material from the outside of the fixing means can be further reduced, and the temperature change of the heat storage material can be suppressed. As a result, the temperature rise of the heat flow density detection sensor can be further suppressed, and the heat flow density passing through the object to be measured can be further stabilized, so that the thermophysical properties of the object to be measured can be further enhanced while having a small and simple configuration. It becomes possible to measure with accuracy.

請求項4に記載の熱物性測定装置の発明は、請求項1から3のいずれか一項に記載の発明において、蓄熱材が水であることを特徴としたものであり、蓄熱材の比熱が他の物質と比較して非常に大きく、小容積でありながら多くの熱を蓄えることができ、さらに温度変化も小さい。このことから、熱流密度検出センサーの温度上昇をさらに抑制できるので、被測定物を通過する熱流密度をさらに安定化できることにより、小型で簡単な構成でありながら、被測定物の熱物性をさらに高精度で測定可能となる。   The invention of the thermophysical property measuring apparatus according to claim 4 is the invention according to any one of claims 1 to 3, wherein the heat storage material is water, and the specific heat of the heat storage material is Compared with other materials, it is very large, can store a lot of heat despite its small volume, and has a small temperature change. As a result, the temperature rise of the heat flow density detection sensor can be further suppressed, and the heat flow density passing through the object to be measured can be further stabilized, so that the thermophysical properties of the object to be measured can be further enhanced while having a small and simple configuration. It becomes possible to measure with accuracy.

請求項5に記載の熱物性測定装置の発明は、請求項1から4のいずれか一項に記載の発明において、被測定物の厚みを測定する厚み測定手段を備え、熱流密度センサーで測定される熱流密度を、厚み測定手段で測定される被測定物の厚みおよび熱源の温度と熱流密度センサーの温度差で除して被測定物の熱伝導率を算出する演算手段を備えることを特徴とするものであり、熱物性値として熱伝導率を用いることができる。熱伝導率は、被測定物の厚みに関係なく、熱の伝わり易さを比較できるので、簡単な構成でありながら、被測定物の熱物性を高精度で測定できることに加えて、異なる被測定物の熱物性を同じ指標で評価できる。   The invention of a thermophysical property measuring apparatus according to claim 5 is the invention according to any one of claims 1 to 4, further comprising a thickness measuring means for measuring the thickness of the object to be measured, which is measured by a heat flow density sensor. And a calculation means for calculating the thermal conductivity of the measurement object by dividing the heat flow density by the thickness of the measurement object measured by the thickness measurement means and the temperature difference of the heat flow density sensor and the temperature of the heat source. The thermal conductivity can be used as the thermophysical value. The thermal conductivity can be compared with the ease of heat transfer regardless of the thickness of the object to be measured, so in addition to being able to measure the thermal properties of the object to be measured with high accuracy, it is possible to measure differently. The thermophysical properties of objects can be evaluated with the same index.

請求項6に記載の熱物性測定装置の発明は、請求項5に記載の発明において、演算手段が、予め記憶させた値と演算手段で算出された値とを比較して、被測定物が所望の熱物性を有しているか否かを判定する判定手段に接続されていることを特徴とするものであり、被測定物の熱物性値の良し悪しを機械的に判定できる。このことから、簡単な構成でありながら、被測定物の熱物性を高精度で測定できることに加えて、誤認識することなく熱物性を評価できる。   The invention of the thermophysical property measuring apparatus according to claim 6 is the invention according to claim 5, wherein the computing means compares the value stored in advance with the value calculated by the computing means, It is characterized in that it is connected to a determination means for determining whether or not it has a desired thermophysical property, and it is possible to mechanically determine whether the thermophysical property value of the object to be measured is good or bad. From this fact, in addition to being able to measure the thermophysical property of the object to be measured with high accuracy, it is possible to evaluate the thermophysical property without erroneous recognition.

請求項7に記載の熱物性測定装置の発明は、請求項6に記載の発明において、判定手段で判定した結果を表示する表示手段を備えることを特徴とするものであり、被測定物の熱物性値の良し悪しを機械的に判定し、それを視覚的に認識することができる。このことから、簡単な構成でありながら、被測定物の熱物性を高精度で測定できることに加えて、さらに誤認識することなく熱物性を評価できる。   According to a seventh aspect of the present invention, there is provided the thermophysical property measuring apparatus according to the sixth aspect, further comprising display means for displaying a result determined by the determining means. It is possible to mechanically judge whether the physical property value is good or bad and to visually recognize it. From this, in addition to being able to measure the thermophysical property of the object to be measured with high accuracy, it is possible to evaluate the thermophysical property without further misrecognition.

以下、本発明の実施の形態について、図面を参照しながら説明するが、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における熱物性測定装置の構成図である。
(Embodiment 1)
FIG. 1 is a configuration diagram of a thermophysical property measuring apparatus according to Embodiment 1 of the present invention.

図1に示すように、被測定物101は、たとえば熱伝導率が0.045W/mK以下の断熱材である。冷蔵庫や住宅用の断熱材として一般的に用いられる発泡ポリウレタンがある。また、粉末やグラスウールを焼成して板状にした芯材を樹脂とアルミ箔のラミネートフィルムで袋状に作製した外被材に挿入し、内部を真空状態にしたあと開口部を熱溶着してシールした真空断熱材などがある。熱源102は、上面にステンレスや鉄製の金属板103が備えられ、その上部に被測定物101を載せることができる。また、金属板103下部に接触して電気ヒーター104が備えられ、金属板103を加熱する。金属板103は熱電対105で温度が検知され、温度調整器106を介して金属板103が所定の温度になるように電気ヒーター104の出力を調整することができる。   As shown in FIG. 1, the DUT 101 is a heat insulating material having a thermal conductivity of 0.045 W / mK or less, for example. There is a polyurethane foam generally used as a heat insulating material for refrigerators and houses. In addition, the core material made by baking powder or glass wool into a plate shape is inserted into a jacket material made into a bag shape with a laminate film of resin and aluminum foil, the inside is evacuated, and the opening is thermally welded There are sealed vacuum insulation materials. The heat source 102 includes a metal plate 103 made of stainless steel or iron on the upper surface, and the object to be measured 101 can be placed on the upper portion. An electric heater 104 is provided in contact with the lower part of the metal plate 103 to heat the metal plate 103. The temperature of the metal plate 103 is detected by the thermocouple 105, and the output of the electric heater 104 can be adjusted via the temperature regulator 106 so that the metal plate 103 reaches a predetermined temperature.

被測定物101上方には、熱流密度センサー107と樹脂製または発泡樹脂製の固定手段108からなる熱流密度検出手段109が備えられている。熱流密度センサー107は、内部に熱電対が埋設されており、上下面の温度差によって熱電対に発生する起電力から単位面積当たりに通過した熱流を測定するものである。また、固定手段108は、梁110下方に固定されたエアシリンダー111とバネ112を介して結合されており、その下面には、熱流密度センサー107が備えられている。さらに固定手段108は、熱流密度センサー107との間に空間を形成し、内部に蓄熱材113として水が充填されている。梁110は、略中央部に集中荷重がかかるので、上面にリブを立てるなどの補強構造になっている。また、エアシリンダー111にはチューブ114を介して、コンプレッサ115に接続されている。   Above the object to be measured 101, a heat flow density detecting means 109 comprising a heat flow density sensor 107 and a fixing means 108 made of resin or foamed resin is provided. The heat flow density sensor 107 has a thermocouple embedded therein, and measures the heat flow passed per unit area from the electromotive force generated in the thermocouple due to the temperature difference between the upper and lower surfaces. The fixing means 108 is coupled via an air cylinder 111 fixed below the beam 110 and a spring 112, and a heat flow density sensor 107 is provided on the lower surface thereof. Furthermore, the fixing means 108 forms a space between the heat flow density sensor 107 and is filled with water as the heat storage material 113. The beam 110 has a reinforcing structure such as a rib on the upper surface because a concentrated load is applied to the substantially central portion. The air cylinder 111 is connected to a compressor 115 via a tube 114.

被測定物101上方には厚み測定手段116が複数備えられている。厚み測定手段116は、光学非接触式である。コンプレッサ114を除く各部品は、ケーシング117内に収められている。   A plurality of thickness measuring means 116 are provided above the DUT 101. The thickness measuring means 116 is an optical non-contact type. Each component except the compressor 114 is housed in a casing 117.

熱流密度センサー107と厚み測定手段116は、信号線118でケーシング117外にある演算手段119に接続されている。演算手段119は、熱流密度センサー107と厚み測定手段116で検出される被測定物101の熱流密度と厚みおよび上下面の温度差から熱伝導率を算出し、さらに予め記憶させておいた値と算出盤を比較し、被測定物101が所望の熱物性を有しているか否かを判定する判定手段120を備えている。また、判定手段120の判定結果を表示する表示手段121を備えている。   The heat flow density sensor 107 and the thickness measuring means 116 are connected to a calculating means 119 outside the casing 117 through a signal line 118. The calculation means 119 calculates the thermal conductivity from the heat flow density and thickness of the object to be measured 101 detected by the heat flow density sensor 107 and the thickness measurement means 116 and the temperature difference between the upper and lower surfaces, and further stores the value in advance. A determination unit 120 is provided for comparing the calculation panels and determining whether the DUT 101 has desired thermophysical properties. Moreover, the display part 121 which displays the determination result of the determination means 120 is provided.

以上のように構成された熱物性測定装置について、以下その動作について説明する。   The operation of the thermophysical property measuring apparatus configured as described above will be described below.

まず、被測定物101の熱伝導率を測定するために、熱源102(高温側)の温度を調整する。例えば、上面の金属板103が40℃〜70℃になるように温度調整器106で電気ヒーター104の出力を調整するとよい。金属板103から放出される熱は、ケーシング117内の温度を僅かに上昇させる。このとき、固定手段108とケーシング117は熱交換手段113を介して互いに熱交換することによってほぼ同じ温度になる。これによって、熱流密度センサー107温度もまた、固定手段108とほぼ同じ温度になる。   First, in order to measure the thermal conductivity of the DUT 101, the temperature of the heat source 102 (high temperature side) is adjusted. For example, the output of the electric heater 104 may be adjusted by the temperature regulator 106 so that the metal plate 103 on the upper surface becomes 40 ° C. to 70 ° C. The heat released from the metal plate 103 slightly raises the temperature in the casing 117. At this time, the fixing means 108 and the casing 117 are brought to substantially the same temperature by exchanging heat with each other via the heat exchanging means 113. As a result, the temperature of the heat flow density sensor 107 is also substantially the same as that of the fixing means 108.

金属板103および熱流密度センサー107の温度が安定すれば、被測定物101が、金属板103上に設置される。その後、コンプレッサ115からチューブ114を介して圧縮空気をエアシリンダー111に供給し、熱流密度センサー107を被測定物101表面に接するように降下させる。このとき、被測定物101表面が傾斜していたとしても、複数のバネ112によって熱流密度センサー107と被測定物101が密着できる。この密着状態は、熱源102から被測定物101を介して熱流密度センサー107に熱が伝わるために、熱流密度センサー107は昇温しようとするが、熱流密度センサー107と蓄熱材113に温度差が生じると、熱は蓄熱材113に移動して蓄えられる。蓄熱材113は熱源102から被測定物101、熱流密度センサー107を介して伝わる熱と、固定手段108を介して固定手段108外部から伝わる熱を十分に蓄え、ほとんど温度変化がない。このことにより、熱流密度センサー107の昇温は抑制される。なお、被測定物101への圧縮力が強すぎる場合には、被測定物101が変形する恐れがあるので、被測定物101の圧縮変形挙動に応じて、予めコンプレッサ115からの空気圧を調整する。   If the temperatures of the metal plate 103 and the heat flow density sensor 107 are stabilized, the DUT 101 is placed on the metal plate 103. Thereafter, compressed air is supplied from the compressor 115 through the tube 114 to the air cylinder 111, and the heat flow density sensor 107 is lowered so as to be in contact with the surface of the object 101 to be measured. At this time, even if the surface of the object to be measured 101 is inclined, the heat flow density sensor 107 and the object to be measured 101 can be in close contact with each other by the plurality of springs 112. In this close contact state, heat is transferred from the heat source 102 to the heat flow density sensor 107 via the object to be measured 101, so the heat flow density sensor 107 tries to raise the temperature, but there is a temperature difference between the heat flow density sensor 107 and the heat storage material 113. When generated, the heat moves to the heat storage material 113 and is stored. The heat storage material 113 sufficiently stores heat transmitted from the heat source 102 via the object to be measured 101 and the heat flow density sensor 107 and heat transmitted from the outside of the fixing means 108 via the fixing means 108, and there is almost no temperature change. Thereby, the temperature rise of the heat flow density sensor 107 is suppressed. Note that if the compressive force applied to the device under test 101 is too strong, the device under test 101 may be deformed, so the air pressure from the compressor 115 is adjusted in advance according to the compression deformation behavior of the device under test 101. .

被測定物101の厚みは、上方に備えられた厚み測定手段116によって測定される。   The thickness of the DUT 101 is measured by the thickness measuring means 116 provided above.

このように測定された被測定物101の熱流密度と厚みおよび被測定物両面の温度差は、演算手段119に信号線118を介して電気信号で送信される。演算手段119内では、送信された各データから判別手段120で被測定物101の熱伝導率を算出し、予め記録した所望の値と比較することによって、被測定物101の断熱性能の良し悪しを判断する。また、この判断結果は、表示手段121によって視覚的にわかりやすいように表示される。   The measured heat flow density and thickness of the object to be measured 101 and the temperature difference between the two surfaces of the object to be measured are transmitted to the computing means 119 via the signal line 118 as an electric signal. In the calculation means 119, the thermal conductivity of the device under test 101 is calculated from the transmitted data by the discriminating device 120 and compared with a desired value recorded in advance, so that the heat insulation performance of the device under test 101 is good or bad. Judging. The determination result is displayed by the display means 121 so that it can be easily understood visually.

以上のように、被測定物101を設置する上部が平らな熱源102と、被測定物101の上方に設けられ上下に可動する熱流密度検出手段109とで構成され、熱流密度検出手段109は、下降時に被測定物101に接触する熱流密度センサー107と、熱流密度センサー107を底面として空間を形成するように配置して熱流密度センサー107を固定する固定手段108を備え、空間内に蓄熱材113を備えることを特徴としたものであり、被測定物101の熱物性測定中に熱源102から被測定物101を介して熱流密度検出手段109に伝わる熱を、十分な量の蓄熱材113で蓄える。このため、熱流密度センサー107の温度上昇を抑制できるので、被測定物101を通過する熱流密度を安定化できることにより、小型で簡単な構成でありながら、被測定物101の熱物性を高精度で測定可能となる。   As described above, the heat source 102 having a flat upper portion on which the object to be measured 101 is installed and the heat flow density detecting means 109 provided above the object to be measured 101 and movable up and down are configured. A heat flow density sensor 107 that contacts the object to be measured 101 when descending, and a fixing means 108 that fixes the heat flow density sensor 107 by arranging the heat flow density sensor 107 as a bottom surface to form a space, and a heat storage material 113 in the space. The heat transferred from the heat source 102 to the heat flow density detecting means 109 via the measured object 101 during the measurement of the thermophysical property of the measured object 101 is stored in a sufficient amount of the heat storage material 113. . For this reason, since the temperature rise of the heat flow density sensor 107 can be suppressed, the heat flow density passing through the object to be measured 101 can be stabilized, so that the thermophysical properties of the object to be measured 101 can be highly accurate while having a small and simple configuration. It becomes possible to measure.

以上のように、本発明にかかる熱物性測定装置は、断熱材などの熱伝導率を高精度で測定できる。このため、断熱材の量産工場などにおいて、高精度で品質検査が可能になることから、断熱材の品質向上に貢献でき、さらに断熱材を使用する冷蔵庫や住宅の品質も向上できる。   As described above, the thermophysical property measuring apparatus according to the present invention can measure the thermal conductivity of a heat insulating material or the like with high accuracy. For this reason, quality inspection can be performed with high accuracy in a mass production factory for heat insulating materials, which can contribute to improving the quality of the heat insulating materials, and further improve the quality of refrigerators and houses using the heat insulating materials.

本発明の実施の形態1における熱物性測定装置の構成図Configuration diagram of thermophysical property measuring apparatus according to Embodiment 1 of the present invention 従来の熱伝導率測定装置の説明図Illustration of a conventional thermal conductivity measurement device

符号の説明Explanation of symbols

101 被測定物
102 熱源
107 熱流密度センサー
108 固定手段(樹脂または発泡樹脂)
109 熱流密度検出手段
113 蓄熱材(水)
116 厚み測定手段
119 演算手段
120 判定手段
121 表示手段
101 Object to be measured 102 Heat source 107 Heat flow density sensor 108 Fixing means (resin or foamed resin)
109 Heat flow density detection means 113 Heat storage material (water)
116 Thickness measurement means 119 Calculation means 120 Determination means 121 Display means

Claims (7)

被測定物を設置する上部が平らな熱源と、前記被測定物の上方に設けられ上下に可動する熱流密度検出手段とで構成され、前記熱流密度検出手段は、下降時に前記被測定物に接触する熱流密度センサーと、前記熱流密度センサーを底面として空間を形成するように配置して前記熱流密度センサーを固定する固定手段を備え、空間内に蓄熱材を備えることを特徴とする熱物性測定装置。 A heat source having a flat upper portion on which the object to be measured is installed, and a heat flow density detecting means provided above the object to be measured and movable up and down, the heat flow density detecting means being in contact with the object to be measured when lowered. A heat flow density sensor, a fixing means for fixing the heat flow density sensor by arranging the heat flow density sensor as a bottom surface to form a space, and a heat storage material in the space. . 固定手段は、樹脂であることを特徴とする請求項1に記載の熱物性測定装置。 The thermophysical property measuring apparatus according to claim 1, wherein the fixing means is a resin. 固定手段は、樹脂層に多数の気泡を有する発泡樹脂であることを特徴とする請求項1または2に記載の熱物性測定装置。 The thermophysical property measuring apparatus according to claim 1 or 2, wherein the fixing means is a foamed resin having a large number of bubbles in the resin layer. 蓄熱材は、水であることを特徴とする請求項1から3のいずれか一項に記載の熱物性測定装置。 The thermophysical property measuring apparatus according to any one of claims 1 to 3, wherein the heat storage material is water. 被測定物の厚みを測定する厚み測定手段を備え、熱流密度センサーで測定ざれる熱流密度を、前記厚み測定手段で測定される被測定物の厚みおよび熱源の温度と前記熱流密度センサーの温度差で除して前記被測定物の熱伝導率を算出する演算手段を備えることを特徴とする請求項1から4のいずれか一項に記載の熱物性測定装置。 A thickness measuring means for measuring the thickness of the object to be measured is provided, and the heat flow density that is measured by the heat flow density sensor is determined by the difference between the thickness of the object to be measured and the temperature of the heat source measured by the thickness measuring means, The thermophysical property measuring apparatus according to any one of claims 1 to 4, further comprising an arithmetic unit that calculates the thermal conductivity of the object to be measured by dividing the measured value. 演算手段は、予め記憶させた値と前記演算手段で算出された値とを比較して、被測定物が所望の熱物性を有しているか否かを判定する判定手段に接続されていることを特徴とする請求項5に記載の熱物性測定装置。 The calculation means is connected to a determination means for comparing the value stored in advance with the value calculated by the calculation means to determine whether the object to be measured has a desired thermophysical property. The thermophysical property measuring apparatus according to claim 5. 判定手段で判定した結果を表示する表示手段を備えることを特徴とする請求項6に記載の熱物性測定装置。 The thermophysical property measuring apparatus according to claim 6, further comprising display means for displaying a result determined by the determining means.
JP2008135145A 2008-05-23 2008-05-23 Measuring instrument of thermophysical properties Pending JP2009281910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008135145A JP2009281910A (en) 2008-05-23 2008-05-23 Measuring instrument of thermophysical properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008135145A JP2009281910A (en) 2008-05-23 2008-05-23 Measuring instrument of thermophysical properties

Publications (1)

Publication Number Publication Date
JP2009281910A true JP2009281910A (en) 2009-12-03

Family

ID=41452501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008135145A Pending JP2009281910A (en) 2008-05-23 2008-05-23 Measuring instrument of thermophysical properties

Country Status (1)

Country Link
JP (1) JP2009281910A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2454659C2 (en) * 2010-08-02 2012-06-27 Государственное образовательное учреждение высшего профессионального образования Марийский государственный технический университет Method of evaluating thermal and physical characteristics of building enclosures made from bricks in winter season based on full-scale test results
WO2013115592A1 (en) * 2012-02-01 2013-08-08 Samsung Electronics Co., Ltd. Thermal insulation performance measurement apparatus and measurement method using the same
CN103293182A (en) * 2013-05-15 2013-09-11 天津大学 Automatic heat conductivity coefficient tester through protective heat flow meter method and detection method
KR101621006B1 (en) * 2012-02-01 2016-05-13 삼성전자주식회사 Apparatus for measuring performance of thermal insulation and measuring method using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2454659C2 (en) * 2010-08-02 2012-06-27 Государственное образовательное учреждение высшего профессионального образования Марийский государственный технический университет Method of evaluating thermal and physical characteristics of building enclosures made from bricks in winter season based on full-scale test results
WO2013115592A1 (en) * 2012-02-01 2013-08-08 Samsung Electronics Co., Ltd. Thermal insulation performance measurement apparatus and measurement method using the same
CN103245690A (en) * 2012-02-01 2013-08-14 三星电子株式会社 Thermal insulation performance measurement apparatus and measurement method using the same
US8882344B2 (en) 2012-02-01 2014-11-11 Samsung Electronics Co., Ltd. Thermal insulation performance measurement apparatus and measurement method using the same
KR101621006B1 (en) * 2012-02-01 2016-05-13 삼성전자주식회사 Apparatus for measuring performance of thermal insulation and measuring method using the same
US9618402B2 (en) 2012-02-01 2017-04-11 Samsung Electronics Co., Ltd. Thermal insulation performance measurement apparatus and measurement method using the same
CN103293182A (en) * 2013-05-15 2013-09-11 天津大学 Automatic heat conductivity coefficient tester through protective heat flow meter method and detection method

Similar Documents

Publication Publication Date Title
CN1329720C (en) Determination of the gas pressure in an evacuated thermal insulating board (vacuum panel) by using a heat sink and test layer that are integrated therein
Song et al. Thermal gap conductance of conforming surfaces in contact
JP4412385B2 (en) Refrigerant leak detection method for refrigeration cycle equipment
JP5752735B2 (en) Positioning device
CN103245690A (en) Thermal insulation performance measurement apparatus and measurement method using the same
CN104237305A (en) Testing device and testing system for rock-mass thermal conductivity
CN109997032B (en) Thermal conductivity measuring device, thermal conductivity measuring method, and vacuum degree evaluating device
JP2009281910A (en) Measuring instrument of thermophysical properties
CN101343676A (en) On-line detecting device and method for temperature of blast furnace chamber
US10036683B2 (en) Acousto-microwave system for determining mass or leak of gas in a vessel and process for same
Estorf et al. Experimental and numerical investigations on the operation of the Hypersonic Ludwieg Tube Braunschweig
CN103134828A (en) Synchronization testing device and testing method of thermal barrier performance and thermal shock performance of thermal barrier coating
CN106198617B (en) Thermal insulation properties measuring device and the measurement method for using the equipment
JP2012141283A (en) Transformation plasticity coefficient measuring apparatus and method for measuring transformation plasticity coefficient
JP2016080409A (en) Distance measuring device
JP2009281909A (en) Measuring instrument of thermophysical properties
Yang et al. Construction and calibration of a large-area heat flow meter apparatus
JP2009281908A (en) Measuring instrument of thermophysical properties
CN107741436A (en) Method of the water-bath against the thermal conductivity factor under different vacuums inside vacuum measurement VIP
CN102226746A (en) Impact-type high-temperature hardness test method
US11808665B2 (en) Leak detection device
US9816951B2 (en) Method for determining a volume thermal expansion coefficient of a liquid
CN104122032A (en) Measuring method for quickly judging VIP vacuum degree
KR102257190B1 (en) Thermal conductivity measurement system and thermal conductivity measurement method thereof
CN102246026B (en) Element for testing materials and method for characterizing using this element