JP2008063954A - Abnormality diagnostic method of drainage pump and its device - Google Patents

Abnormality diagnostic method of drainage pump and its device Download PDF

Info

Publication number
JP2008063954A
JP2008063954A JP2006239931A JP2006239931A JP2008063954A JP 2008063954 A JP2008063954 A JP 2008063954A JP 2006239931 A JP2006239931 A JP 2006239931A JP 2006239931 A JP2006239931 A JP 2006239931A JP 2008063954 A JP2008063954 A JP 2008063954A
Authority
JP
Japan
Prior art keywords
water level
determination
value
calculated
drainage pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006239931A
Other languages
Japanese (ja)
Other versions
JP5137359B2 (en
Inventor
Yutaka Toyoda
裕 豊田
Shunji Asahina
俊二 朝比奈
Tomosato Masuda
智吏 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsurumi Manufacturing Co Ltd
Original Assignee
Tsurumi Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsurumi Manufacturing Co Ltd filed Critical Tsurumi Manufacturing Co Ltd
Priority to JP2006239931A priority Critical patent/JP5137359B2/en
Publication of JP2008063954A publication Critical patent/JP2008063954A/en
Application granted granted Critical
Publication of JP5137359B2 publication Critical patent/JP5137359B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an abnormality diagnostic method of a drainage pump and its device, without requiring much labor, by properly, easily and visually confirming a secular change in performance reduction and a changing tendency of a determining value of a management object by abrasion of a part of the drainage pump, without requiring to artificially and finely manage a judging criterion value adapted with respective machine places, even in a state of being different in an operation condition with respective machine places. <P>SOLUTION: Abnormality is properly diagnosed by comparing the judging criterion value properly automatically updated to a judging criterion value calculated by statistical processing, with a determining value of a determining object, by using accumulation data stored and accumulated by being arithmetically processed by using water level change time and a planned delivery quantity of the drainage pumps P1 and P2, by using a control device 3 having the functions such as preservation and arithmetic processing of data measured with every unit time and starting-stopping control of the drainage pumps P1 and P2, based on signals of a water tank 1 capable of arithmetically operating the volume from a water level variation, one or a plurality of drainage pumps P1 and P2 and a water level sensor 2 detecting a water level. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、地下道の排水設備や雨水調整池の排水施設などの排水ポンプの異常診断を適確に予測するための、排水ポンプの異常診断方法およびその装置に関するものである。   The present invention relates to a drainage pump abnormality diagnosis method and apparatus for accurately predicting abnormality diagnosis of drainage pumps such as drainage facilities in underground passages and drainage facilities in rainwater control ponds.

流量計などの計測装置を用いることなく水槽内に複数の水位検出センサを設置し、水槽内の水位変動を各水位検出センサにて検出される信号を制御装置にて受信し、当該受信信号を基にポンプの発停を制御すると共に該受信信号を基に予め設定された設定値および数式によりポンプの吐出流量を演算し予測する方法および装置(例えば、特許文献1参照。)は公知である。そして、直近の水位変動の信号を基に演算することで該演算値の信頼性を向上させることによりポンプの閉塞、エアーロック、排水の異常流入などの不具合の検出精度を高めようとしている。しかし、地下道の排水設備や雨水調整池の排水施設などの排水ポンプでは、ポンプの性能や種類、運転回数、流入量、ポンプの運転時間など、個々の機場によって運転条件が異なるのが通常であり、上記演算直近(前回および今回)の水槽内水位変動を対象とした場合、流量計などの計測装置を用いることなく精度の高い現状のポンプの吐出流量を知得することが出来たとしても、演算により知得された上記ポンプの吐出流量値の変化が当該機場に対してどのような影響を与えているかまでは把握できなかった。   A plurality of water level detection sensors are installed in the water tank without using a measuring device such as a flow meter, and the control device receives signals detected by the water level detection sensors for fluctuations in the water level in the water tank. A method and an apparatus (for example, refer to Patent Document 1) that control pump start / stop and calculate and predict a pump discharge flow rate based on a preset set value and mathematical formula based on the received signal are well known. . Then, the calculation accuracy is improved by improving the reliability of the calculated value by calculating based on the signal of the latest water level fluctuation, thereby improving the detection accuracy of problems such as pump blockage, air lock, and abnormal inflow of drainage. However, drainage pumps such as drainage facilities in underground passages and drainage facilities in rainwater control ponds usually have different operating conditions depending on the individual machines, such as pump performance and type, number of operations, inflow, and pump operation time. In the case of water level fluctuations in the tank most recently (previous and current), even if the current discharge flow rate of the pump with high accuracy can be obtained without using a measuring device such as a flow meter, It was not possible to grasp how the change in the discharge flow rate value of the pump obtained by the above has an influence on the machine.

具体的には例えば、低下したポンプの吐出流量値が、その機場に対してもしくは設置されたポンプに対してその能力が大き過ぎるのかまたは小さ過ぎるのか或いはポンプの経年変化による性能低下なのかなどの判断が出来ず、運転状況に対してその変化が異常か否かを的確に把握することが出来ず、そのため木目の細かい人為的な運用管理が必要とされていた。また、ポンプ部品の摩耗などによる性能低下の経年変化を容易に知得することが出来なかったため、個々の機場条件に則した適正時期に保守管理をすることが出来ずに、それを補うためには保守管理の周期を短くして点検回数を増やさなければならず、また経年変化を知得するためには日々のデータを人為的に記録しグラフ化およびリスト化しなければならず、何れの場合においても多大の労力を掛けなければ対応できないという問題を有している。
特開2001−4415号公報 (第2−4頁、第1−3図)
Specifically, for example, whether the reduced discharge flow rate value of the pump is too large or too small for the machine or the installed pump, or is the performance deterioration due to aging of the pump, etc. Judgment is impossible, and it is not possible to accurately grasp whether the change is abnormal or not with respect to the driving situation. In addition, since it was not possible to easily understand the secular change in performance degradation due to wear of pump parts, etc., in order to compensate for it, maintenance management could not be performed at the appropriate time according to individual machine conditions. The maintenance cycle must be shortened to increase the number of inspections, and daily data must be artificially recorded, graphed, and listed in order to understand secular changes. There is a problem that it cannot be dealt with without a great deal of effort.
Japanese Patent Laid-Open No. 2001-4415 (page 2-4, FIG. 1-3)

解決しようとする課題は、地下道の排水設備や雨水調整池の排水施設などの排水ポンプでは、ポンプの性能や種類、運転回数、流入量、ポンプの運転時間など、個々の機場によって運転条件が異なる状態においても、各機場毎に適合する判定基準値を人為的に木目細く管理することを必要とせず、しかも上記排水ポンプのポンプ部品の摩耗などによる性能低下の経年変化や管理対象の判定値の変化傾向を適正かつ容易に視認でき、多大の労力を掛ける必要のない排水ポンプの異常診断方法およびその装置を提供することにある。   The problem to be solved is that for drainage pumps such as drainage facilities in underground passages and drainage facilities in rainwater control ponds, the operating conditions differ depending on the individual machine site, such as pump performance and type, number of operations, inflow volume, pump operation time, etc. Even in the state, it is not necessary to artificially manage the judgment standard value suitable for each machine site, and the deterioration of performance due to wear of the pump parts of the drainage pump etc. and the judgment value of the management target It is an object of the present invention to provide a drainage pump abnormality diagnosis method and apparatus capable of visually confirming a change tendency appropriately and easily and without requiring much labor.

本発明排水ポンプの異常診断方法では、水位変化量から容積を演算できる水槽と、1台または複数台の排水ポンプと、該水槽内の水位を検出する水位センサと、該水位センサからの受信信号を基に単位時間毎に計測されたデータの保存や演算処理および上記排水ポンプの発停制御などの機能を有する制御装置を用いる、排水ポンプの異常診断方法であって、上記水位変化量から演算される容積や上記水位センサからの検知信号に基く水位変化時間および該排水ポンプの計画吐出量を用いて、予め設定された数式により演算処理され記憶蓄積された蓄積データを用いて統計的処理により算出された判定の基準値に適宜自動的に更新された判定の基準値と判定対象の判定値を対比させることで適正に診断されることを最も主要な特徴とする。   In the drainage pump abnormality diagnosis method of the present invention, a water tank capable of calculating a volume from a water level change amount, one or a plurality of drainage pumps, a water level sensor for detecting the water level in the water tank, and a received signal from the water level sensor A drainage pump abnormality diagnosis method using a control device having functions such as storage and calculation processing of data measured per unit time based on the above and control of the drain pump on / off, and calculating from the water level change amount Statistical processing using accumulated data that is calculated and stored according to a predetermined mathematical formula using the volume level and the water level change time based on the detection signal from the water level sensor and the planned discharge amount of the drainage pump. The most important feature is that a diagnosis is appropriately diagnosed by comparing the reference value for determination automatically updated as appropriate with the calculated reference value for determination and the determination value to be determined.

また、本発明排水ポンプの異常診断装置では前記異常診断方法を使用して、水位変化量から容積を演算できる水槽と、1台または複数台の排水ポンプと、該水槽内の水位を検出する水位センサと、該水位センサからの受信信号を基に単位時間毎に計測されたデータの保存や演算処理および上記排水ポンプの発停制御などの機能を有する制御装置を備えた、排水ポンプの異常診断装置であって、上記水位変化量から演算される容積や上記水位センサからの検知信号に基く水位変化時間および該排水ポンプの計画吐出量を用いて、予め設定された数式により演算処理され記憶蓄積された蓄積データを用いて統計的処理により算出された判定の基準値に適宜自動的に更新し、当該判定の基準値と判定対象の判定値を対比させることで適正に診断できるよう構成したことを最も主要な特徴とする。   Further, in the drainage pump abnormality diagnosis device of the present invention, using the abnormality diagnosis method, a water tank capable of calculating the volume from the water level change amount, one or a plurality of drainage pumps, and a water level for detecting the water level in the water tank An abnormality diagnosis of a drainage pump comprising a sensor and a control device having functions such as storage and arithmetic processing of data measured every unit time based on a received signal from the water level sensor and start / stop control of the drainage pump An apparatus that uses a volume calculated from the water level change amount, a water level change time based on a detection signal from the water level sensor, and a planned discharge amount of the drainage pump, and is processed and stored according to a predetermined mathematical formula. It is possible to properly update to the judgment reference value calculated by statistical processing using the accumulated data and compare the judgment reference value with the judgment target judgment value. The most important feature that was configured.

本発明排水ポンプの異常診断方法およびその装置によれば、個々の機場によって運転条件が異なる状態においても、当該機場における水槽内の水位変化量から演算される前記の容積や水位センサからの検知信号に基く水位変化時間および該排水ポンプの計画吐出量を用いて予め設定された数式により演算処理され記憶蓄積される蓄積データを用いて統計的処理により算出された判定の基準値に適宜自動的に更新されて行くため、当該機場の使用期間が長く且つ上記記憶蓄積される蓄積データ量が多い程、当該機場に最適な信頼性の高い真正な判定の基準値へと労力を掛けることなく自動的に変貌するので、故障の前兆を含めた不具合状況の早期把握を可能とした信頼性の高い診断ができる。また、指定期間に該当する上記蓄積データを指定間隔毎に時系列処理してグラフ化およびリスト化されるので、上記排水ポンプのポンプ部品の摩耗などによる性能低下の経年変化や管理対象の判定値の変化傾向を適正かつ容易に視認でき、不足の事態を事前に回避することができると共に無駄のない効率の良いメンテナスを実施することができるという利点を有している。   According to the drainage pump abnormality diagnosis method and apparatus of the present invention, the detection signal from the volume or water level sensor calculated from the amount of change in the water level in the water tank in the machine field, even when the operating conditions differ depending on the machine field. The water level change time based on the flow rate and the planned discharge amount of the drainage pump are automatically and appropriately automatically set to the reference value of the determination calculated by the statistical process using the accumulated data that is processed and stored according to the mathematical formula set in advance. Since it is updated, the longer the period of use of the machine and the larger the amount of accumulated data stored and stored, the more automatically the automatic determination without any effort to the reliable and authentic reference value that is optimal for the machine. Therefore, it is possible to make a highly reliable diagnosis that enables an early grasp of a failure state including a sign of a failure. In addition, the accumulated data corresponding to the specified period is processed and graphed and listed in a time series for each specified interval, so the deterioration of performance due to wear of pump parts of the drainage pump and the judgment value of the management target Therefore, it is possible to appropriately and easily visually recognize the change tendency, and it is possible to avoid a shortage situation in advance and to perform efficient maintenance without waste.

水位変化量から容積を演算できる水槽と、1台または複数台の排水ポンプと、該水槽内の水位を検出する水位センサと、該水位センサからの受信信号を基に単位時間毎に計測されたデータの保存や演算処理および上記排水ポンプの発停制御などの機能を有する制御装置を用いた、排水ポンプの異常診断方法およびその装置において、上記水位変化量から演算される容積や上記水位センサからの検知信号に基く水位変化時間および該排水ポンプの計画吐出量を用いて、予め設定された数式により演算処理され記憶蓄積される蓄積データを用いて統計的処理により算出された判定の基準値の精度を補正するため判定精度調整の許容範囲設定値の設定機能を設けて適宜自動的に更新された判定の補正基準値と判定対象の判定値を対比させることで適正に診断する。また、上記蓄積データを基に指定期間を設定し、該指定期間に該当する上記蓄積データを指定間隔毎に時系列処理してグラフ化およびリスト化することで、上記指定間隔毎の経年変化による上記排水ポンプの性能低下傾向を適正かつ容易に視認し得る。更にまた、上記指定期間に該当するする該蓄積データの平均値を算出し、該平均値を許容設定値で補正した値を基準値とし、該指定期間に該当する上記蓄積データを指定間隔毎に時系列処理してグラフ化およびリスト化することで、上記指定間隔の経過に対する管理対象の判定値の変化傾向を適正かつ容易に視認し得る。   Measured per unit time based on a water tank that can calculate the volume from the amount of change in water level, one or more drain pumps, a water level sensor that detects the water level in the water tank, and a signal received from the water level sensor In a drainage pump abnormality diagnosis method and apparatus using a control device having functions such as data storage and calculation processing and on / off control of the drainage pump, the volume calculated from the water level change amount and the water level sensor Using the water level change time based on the detection signal and the planned discharge amount of the drainage pump, the reference value of the judgment calculated by statistical processing using the accumulated data calculated and stored according to a preset mathematical formula Appropriate by comparing the correction reference value of the determination and the determination value of the determination target automatically provided as appropriate by providing a setting function of the allowable range setting value of the determination accuracy adjustment to correct the accuracy. To diagnose. In addition, a specified period is set based on the accumulated data, and the accumulated data corresponding to the specified period is processed in a time series for each specified interval, and is graphed and listed. The tendency for the performance of the drainage pump to decline can be visually recognized appropriately and easily. Furthermore, an average value of the accumulated data corresponding to the specified period is calculated, a value obtained by correcting the average value with an allowable setting value is used as a reference value, and the accumulated data corresponding to the specified period is calculated at a specified interval. By performing time-series processing and graphing and listing, it is possible to appropriately and easily visually recognize the change tendency of the determination value of the management target with respect to the passage of the specified interval.

図1は本発明装置の構成を示すブロック図であり、1は流入水を貯留し水位変化量から容積が演算できる計量性を有する水槽であり、該水槽1内の貯留水を排水するための排水ポンプP1,P2を設け、上記水槽1内には水位変化を検知する水位センサ2が付設され、該水位センサ2から送信される水位変化信号を基に単位時間毎に計測されたデータの保存や演算処理および上記排水ポンプP1,P2の発停制御などの機能を有する制御装置3を設け、該制御装置3で処理された情報を基に現場状況を監視し必要に応じて例えば複数の機場を一括管理する中央管理装置(図示せず)と情報を送受信するための監視装置4を設ける。尚、本実施例では制御装置3と監視装置4は夫々別体にて構成しているが一体化として構成することもできる。また上記中央監視装置(図示せず)が各機場より蓄積データを収集し、蓄積データの長期保存、データの時系列処理によるグラフ化およびリスト化、データの統計的処理による判定基準値の算出などの機能を有しその処理結果を判定基準値として提供するように構成してもよい。 FIG. 1 is a block diagram showing the configuration of the apparatus of the present invention. Reference numeral 1 denotes a water tank having a meterability capable of storing inflow water and calculating a volume from a water level change amount, for draining the stored water in the water tank 1. Drain pumps P1 and P2 are provided, and a water level sensor 2 for detecting a change in the water level is provided in the water tank 1, and data measured per unit time based on a water level change signal transmitted from the water level sensor 2 is stored. And a control device 3 having functions such as arithmetic processing and start / stop control of the drainage pumps P1 and P2 are provided, and on-site conditions are monitored based on information processed by the control device 3, for example, a plurality of machines And a central management device (not shown) that collectively manages the monitoring device 4 for transmitting and receiving information. In the present embodiment, the control device 3 and the monitoring device 4 are configured separately, but may be configured as an integrated unit. In addition , the central monitoring device (not shown) collects accumulated data from each machine, stores the accumulated data for a long period of time, graphs and lists data by time series processing, and calculates a criterion value by statistical processing of the data The processing result may be provided as a determination reference value.

図1ないし図3を参照して、本発明の前記構成における水槽1内の水位変化に対する排水ポンプP1,P2の動作や計測および演算されるデータについて説明する。   With reference to FIG. 1 thru | or FIG. 3, the operation | movement of drainage pumps P1 and P2 with respect to the water level change in the water tank 1 in the said structure of this invention, and the data calculated and calculated are demonstrated.

図2は排水ポンプP1,P2の動作を示す線図であり、図3は排水ポンプP1,P2の動作に伴う計測および演算を説明するための線図であり、初期状態の水槽1内水位がポンプ停止水位Hs以下の状態において、排水ポンプP1,P2が停止状態から水槽1内への流入が開始されると上記排水ポンプP1,P2が停止状態のため該水槽1内の水位は次第に上昇しポンプ停止水位Hsに達すると水位センサ2がそのことを即座に検出し制御装置3へHs水位到達の信号が送信され、該制御装置3はHs水位到達信号を受信し該Hs水位到達時刻T0を記憶することで前回サイクルの一連の処理が終了し今回サイクルの一連の処理が開始される。そして、上記排水ポンプP1,P2の停止状態が維持されているので、水槽1内への流入継続に従って水槽1内の水位が更に上昇し、やがてポンプ運転水位Hdに達すると水位センサ2がそのことを即座に検出し制御装置3へHd水位到達の信号が送信され、該制御装置3はHd到達信号を受信し上記排水ポンプP1またはP2の何れかを駆動させると共に該Hd水位到達時刻T1を記憶し、上記HsからHdの水位上昇に要した時間Ti{T1−T0}を演算し、予め設定された例えば、水槽1内の断面積Amに上記HdとHsの水位差を乗じた計量容積V{Hd−HS)×Am}を基に水槽1内への単位時間当りの流入量Qinを下記の数式1により算出し記憶する。   FIG. 2 is a diagram showing the operation of the drainage pumps P1 and P2, and FIG. 3 is a diagram for explaining the measurement and calculation accompanying the operation of the drainage pumps P1 and P2, and the water level in the tank 1 in the initial state is When the drainage pumps P1 and P2 start to flow into the water tank 1 from the stopped state in the state below the pump stop water level Hs, the water level in the water tank 1 gradually rises because the drainage pumps P1 and P2 are stopped. When the pump stop water level Hs is reached, the water level sensor 2 immediately detects this, and a signal for reaching the Hs water level is transmitted to the control device 3. The control device 3 receives the Hs water level arrival signal, and determines the Hs water level arrival time T0. By storing, a series of processes in the previous cycle is completed, and a series of processes in the current cycle is started. And since the stop state of the drain pumps P1 and P2 is maintained, the water level in the water tank 1 further rises as the inflow into the water tank 1 continues, and when the water level sensor 2 eventually reaches the pump operating water level Hd, the water level sensor 2 Is immediately detected and a signal for reaching the Hd water level is transmitted to the control device 3. The control device 3 receives the Hd arrival signal and drives either the drainage pump P1 or P2 and stores the Hd water level arrival time T1. Then, the time Ti {T1−T0} required for the water level rise from Hs to Hd is calculated, and the measured volume V obtained by multiplying the preset cross-sectional area Am in the water tank 1 by the water level difference between Hd and Hs, for example. Based on {Hd−HS) × Am}, the inflow amount Qin per unit time into the water tank 1 is calculated by the following formula 1 and stored.

Figure 2008063954
Figure 2008063954

そして、現在駆動されている前記排水ポンプP1またはP2のポンプの計画吐出量Qpに対して前記数式1より算出された水槽1内への単位時間当りの流入量Qinが正常か否かを判定するための流入判定値Qを下記の数式2により算出し記憶する。   Then, it is determined whether or not the inflow amount Qin per unit time into the water tank 1 calculated from the above formula 1 is normal with respect to the planned discharge amount Qp of the drainage pump P1 or P2 that is currently driven. The inflow determination value Q for this is calculated and stored according to Equation 2 below.

Figure 2008063954
Figure 2008063954

更に、水槽1内への流入および排水ポンプP1またはP2の運転が継続されされているため、前記算出の流入量Qinが正常な場合は一旦ポンプ運転水位Hdを上回た水位が次第に低下し、やがてポンプ運転水位Hdを下回ると水位センサ2がそのことを即座に検出し制御装置3はHd水位を下回ったことを認識してHd水位を下回った時刻T2を記憶し、Hd水位を上回ってからHd水位を下回るのに要した時間Tx{T2−T1}を演算し記憶する。   Furthermore, since the inflow into the water tank 1 and the operation of the drainage pump P1 or P2 are continued, when the calculated inflow amount Qin is normal, the water level once exceeding the pump operation water level Hd gradually decreases, When the water level sensor 2 soon falls below the pump operating water level Hd, the control device 3 recognizes that the water level has fallen below the Hd water level, stores the time T2 when the water level has dropped below the Hd water level, and has exceeded the Hd water level. The time Tx {T2-T1} required to fall below the Hd water level is calculated and stored.

そして、水槽1内への流入の有無に関係なく現在駆動している排水ポンプP1,P2の何れかの運転が継続されされているので、水槽1内の水位が更に低下し、やがてポンプ停止水位Hsを下回ると水位センサ2がそのことを即座に検出し制御装置3はHs水位を下回ったことを認識し、現在駆動している上記排水ポンプP1,P2の何れかの運転を停止すると共に、Hs水位を下回った時刻T3を記憶し、Hd水位を下回ってからHs水位を下回るのに要した時間To1{T3−T2}およびHd水位到達からHs水位を下回るのに要した時間To2{T3−T1}を演算し記憶され、今回の排水ポンプP1またはP2の稼働状況に対する一連の計測および演算などの処理が終了されて次回処理に対して待機し、水槽1内に水位が再びHs水位に達すると前記段落番号0011の計測と演算および排水ポンプP1,P2の運転制御が繰りかえされ、前記算出値のQ,Tx,To1およびTo2の各数値をデータとして蓄積記憶し、該蓄積データを基に後述の統計的処理により算出された判定の基準値に適宜自動更新され、該判定の基準値と判定対象の判定値を対比させることで適正に診断される。   And since the operation | movement of either drainage pump P1, P2 currently driven is continued irrespective of the presence or absence of inflow into the water tank 1, the water level in the water tank 1 falls further, and a pump stop water level will eventually be reached. When the water level sensor 2 falls below Hs, the water level sensor 2 immediately detects that, and the control device 3 recognizes that the water level has fallen below the Hs water level, and stops the operation of any of the drain pumps P1 and P2 that are currently driven, The time T3 when the Hs water level was lowered is stored, the time To1 {T3-T2} required to fall below the Hs water level after falling below the Hd water level, and the time To2 {T3- T1} is calculated and stored, and a series of measurement and calculation processes for the current operation status of the drainage pump P1 or P2 is completed, and the next process is awaited. The measurement and calculation of the paragraph number 0011 and the operation control of the drainage pumps P1 and P2 are repeated, and the calculated values Q, Tx, To1, and To2 are accumulated and stored as data. Based on the above, it is automatically updated appropriately to a reference value for determination calculated by statistical processing described later, and a proper diagnosis is made by comparing the reference value for determination with the determination value to be determined.

次に、図4および下記の表1に示した診断の区分を参照して、本発明の前記構成の排水ポンプP1,P2の運転状況と水槽1内の水位変動およびそれらに要した時間などの稼働状況に対して予め設定された本発明装置の診断の区分について説明する。   Next, referring to FIG. 4 and the diagnosis classification shown in Table 1 below, the operation status of the drainage pumps P1, P2 having the above-described configuration of the present invention, the water level fluctuation in the water tank 1, and the time required for them, etc. The diagnosis classification of the device of the present invention set in advance for the operating status will be described.

Figure 2008063954
Figure 2008063954

図4は本発明装置の診断に対して予め想定される各稼働状況を示す線図であり、表1は上記図4に示された各稼働状況に対する診断状況を説明する区分表であり、ケースHでは水位がポンプ運転水位Hdに到達し排水ポンプP1またはP2の何れかを駆動させても前記数式1で演算された単位時間当りの流入量Qinが排水該当のポンプ計画吐出量Qp以上の流入量であったとする異常流入の流入判定がなされ、例えば図1に示す監視装置4から中央管理装置(図示せず)へ異常流入注意報を発報すると共に異常流入を記憶し、以後の診断処理を継続する。次に、ケースEでは上記流入量Qinが排水該当のポンプ計画吐出量Qp未満の流入量であったとする正常流入の判定がなされるが、排水該当のポンプまたは制御盤の何れか若しくは双方にトラブルが生じた可能性があるとしてポンプ運転異常のポンプ運転判定がなされ、例えば図1に示す監視装置4から中央管理装置(図示せず)へ機器トラブルの発生を発報すると共に今回の機器トラブルの発生を記憶し、今回の稼働状況に対する診断を終了し次回の稼働まで診断を待機する。   FIG. 4 is a diagram showing each operation situation assumed in advance for diagnosis of the apparatus of the present invention, and Table 1 is a classification table for explaining the diagnosis situation for each operation situation shown in FIG. In H, even if the water level reaches the pump operation water level Hd and either the drainage pump P1 or P2 is driven, the inflow amount Qin per unit time calculated by the equation 1 is greater than the pump planned discharge amount Qp corresponding to the drainage. For example, an abnormal inflow is determined from the monitoring device 4 shown in FIG. 1 to the central management device (not shown), and the abnormal inflow is stored, and the subsequent diagnostic processing is performed. Continue. Next, in case E, the normal inflow is judged that the inflow amount Qin is less than the planned discharge amount Qp corresponding to the drainage, but there is a problem in either or both of the pump corresponding to the drainage or the control panel. The pump operation is determined to be abnormal because of the possibility of the occurrence of the device trouble. For example, the monitoring device 4 shown in FIG. 1 reports the occurrence of the device trouble to the central management device (not shown) and The occurrence is memorized, the diagnosis for the current operation status is terminated, and the diagnosis is waited until the next operation.

次に、本発明ではエアーロック(以下ARと称す。)発生に対して詳細に判定させるため図4に示す限界値を設定することでその前兆も判定できるよう構成されていることを基に、ケースAないしケースDおよびケースFとケースGに関して順を追って異常流入と閉塞およびARの診断について説明する。   Next, in the present invention, in order to make a detailed determination on the occurrence of air lock (hereinafter referred to as AR), by setting a limit value shown in FIG. Abnormal inflow, occlusion, and diagnosis of AR will be described in order with respect to case A to case D, case F, and case G.

ケースAでは、前記数式1で演算された単位時間当りの流入量Qinが排水該当のポンプ計画吐出量Qp以下すなわち流入判定値Q≦1の流入判定が正常状況において排水該当の排水ポンプが駆動しているので運転判定も正常あり、Hd水位を上回ってから下回るまでの時間Tx(AR判定Iの判定値)がAR判定の基準値以内のためAR判定も正常であり、Hd水位を下回ってからHs水位を下回るまでの時間To1に排水された計量容積V分の単位時間当りの排水処理能力量Qout(V/To1)を運転中の排水ポンプのポンプの計画吐出量Qpで除した閉塞判定値Qoが閉塞判定の基準値以上であるので閉塞判定も正常であり、全判定が正常状態のためポンプが正常に稼働していると診断される状態である。   In case A, the inflow amount Qin per unit time calculated by the formula 1 is equal to or less than the pump planned discharge amount Qp corresponding to the drainage, that is, the drainage drainage pump is driven when the inflow determination of the inflow determination value Q ≦ 1 is normal. Therefore, the operation judgment is also normal, and since the time Tx (AR judgment I judgment value) from exceeding the Hd water level to below it is within the reference value of the AR judgment, the AR judgment is also normal and after the Hd water level falls below Blockage judgment value obtained by dividing the wastewater treatment capacity amount Qout (V / To1) per unit time of the metered volume V drained in the time To1 until the Hs water level falls below the planned discharge amount Qp of the pump of the drainage pump in operation. Since Qo is equal to or higher than the reference value for the blockage determination, the blockage determination is also normal, and since all the determinations are normal, it is diagnosed that the pump is operating normally.

ケースBでは、前記の流入判定とポンプ運転判定およびAR判定は正常状態であるが前記閉塞判定値Qoが閉塞判定の基準値以下の閉塞判定が異常であり、閉塞発生の前兆が確認されたと診断される状態である。ケースCでは流入判定とポンプ運転判定および閉塞判定は正常状態であるが、Hd水位を上回ってから下回るまでの時間Tx(AR判定Iの判定値)がAR判定の基準値を超えているが限界値を超えてないAR判定の異常であるためAR発生の前兆が確認されたと診断される状態である。   In case B, the inflow determination, the pump operation determination, and the AR determination are in a normal state, but the occlusion determination with the occlusion determination value Qo equal to or less than the reference value for the occlusion determination is abnormal, and a diagnosis of occurrence of an obstruction is confirmed It is a state to be done. In case C, the inflow determination, pump operation determination and blockage determination are normal, but the time Tx (AR determination I determination value) from exceeding the Hd water level to falling below the AR determination reference value is limited. This is a state in which it is diagnosed that a sign of the occurrence of AR has been confirmed because of an abnormality in AR determination that does not exceed the value.

ケースDでは、流入判定およびポンプ運転判定は正常状態であるが、前記同様の限界値を超えないAR判定の異常および閉塞判定が異常であるためARおよび閉塞発生の前兆が確認されたと診断される状態である。   In Case D, the inflow determination and the pump operation determination are in a normal state, but the AR determination abnormality and the blockage determination that do not exceed the same limit values as described above are abnormal, so that it is diagnosed that the AR and the sign of the occurrence of the blockage have been confirmed. State.

ケースFでは、Hd水位到達時点では流入判定値Q≦1の流入判定が正常状況であるが、その後先発排水ポンプの運転中に該排水ポンプのポンプの計画吐出量Qpを超えた大量の流入(ポンプ運転水位判定:異常)により水位が2台運転水位Hwに達して先発の排水ポンプに加えて後発の排水ポンプP1またはP2が追従運転し、一旦2台運転水位Hwを上回った水位は次第に低下し2台運転水位Hwを下回り限界値を超えてHd水位まで低下しているので、限界値を超えたAR判定の異常としてAR発生の前兆ではなく発生していると断定し、Hd水位到達以降の先発排水ポンプの運転中に該ポンプの計画吐出量Qpを超えた大量の流入があったと診断される状態である。   In Case F, the inflow determination of the inflow determination value Q ≦ 1 is normal when the Hd water level is reached, but a large amount of inflow exceeding the planned discharge amount Qp of the drainage pump during the subsequent operation of the drainage pump ( Due to pump operation water level judgment: abnormal), the water level reaches the two-unit operation water level Hw and the subsequent drainage pump P1 or P2 follows in addition to the first-stage drainage pump, and the water level that once exceeded the two-unit operation water level Hw gradually decreases However, since it is below the operating water level Hw of the two units and drops to the Hd water level exceeding the limit value, it is determined that the AR determination abnormality exceeding the limit value is not a precursor to the occurrence of AR, and after the Hd water level is reached It is in a state where it is diagnosed that there is a large amount of inflow exceeding the planned discharge amount Qp of the first drainage pump.

ケースGでは、流入判定は正常であるがHd水位到達の先発排水ポンプの運転時にARが発生し該排水ポンプの吐出能力低下により該ポンプの計画吐出量Qpと均衡し限界値内にHd水位を下回ることが出来ないため、限界値を超えたAR判定の異常としてARが発生していると断定した診断がされる状態である。   In Case G, the inflow determination is normal, but an AR occurs when the first drainage pump that reaches the Hd water level is operated, and the discharge capacity of the drainage pump is reduced to balance with the planned discharge amount Qp of the pump, so that the Hd water level falls within the limit value. Since it cannot fall below, it is a state in which it is diagnosed that AR has occurred as an abnormality in AR determination exceeding the limit value.

次に、図5ないし図9の処理手順を示すフローチャートおよび図10ないし図20の統計処理を説明するための線図を参照して、本発明の診断処理の手順を図5ないし図9のフローチャートの処理記号の左側に記載されたST(ステップナンバ)の順に具体的に説明する。   Next, referring to a flowchart showing the processing procedure of FIGS. 5 to 9 and a diagram for explaining the statistical processing of FIGS. 10 to 20, the procedure of the diagnostic processing of the present invention is a flowchart of FIGS. This will be specifically described in the order of ST (step number) written on the left side of the process symbol.

図5は本発明の診断処理全体を示すフローチャートであり、判定が開始されST1では水槽1内に汚水が流入し水位が上昇し水位センサ2によりポンプ停止水位Hsの到達を検出しその時刻T0を記録し、その後も汚水が流入し水位が更に上昇してST2では水位センサ2がポンプ運転水位Hdの到達を検出しその時刻T1が記録され、ST3ではポンプ停止水位Hsからポンプ運転水位Hdまでの水位間を満たすまでに要した時間Tiを、上記記録の時刻T1と時刻T0の差Ti=T1−T0として演算し、予め設定された例えば水槽1内の断面積Amに上記HdとHsの水位差を乗じた計量容積V{(Hd−HS)×Am}を基に水槽1内への単位時間当りの流入量Qinを前記数式1により算出し記録された該流入量Qinを排水該当の排水ポンプのポンプの計画吐出量Qpで除した流入判定値Qを前記数式2により算出し記憶する。   FIG. 5 is a flowchart showing the entire diagnosis process of the present invention. In ST1, sewage flows into the water tank 1, the water level rises, and the water level sensor 2 detects the arrival of the pump stop water level Hs. After that, the sewage flows and the water level further rises. In ST2, the water level sensor 2 detects the arrival of the pump operation water level Hd, and the time T1 is recorded. In ST3, the pump operation water level Hs to the pump operation water level Hd are recorded. The time Ti required to fill between the water levels is calculated as the difference Ti = T1−T0 between the time T1 and the time T0 of the recording, and the water levels of the above Hd and Hs are set to a preset cross-sectional area Am in the water tank 1, for example. Based on the measured volume V {(Hd−HS) × Am} multiplied by the difference, the inflow amount Qin per unit time into the water tank 1 is calculated by the above equation 1 and the recorded inflow amount Qin is drained. The inflow decision value Q obtained by dividing the planned discharge amount Qp of the pump of the drain pump is calculated and stored by the equation 2.

ST4では前記ST3で算出された流入判定値Qをメモリへ記録し、運転するたびに蓄積されるデータΣQに対して加算し「演算4」で統計的処理による流入量の再平均値(QSave=Qstd)を算出する。尚、図6および図10を基に「演算4」における上記統計的処理による流入量の再平均値(QSave=Qstd)の算出方法を詳述すると、ST4−1では前記ST3で算出された流入判定値Qをメモリへ記録すると共に蓄積データΣQに加算し、ST4−2およびST4−3では該蓄積データΣQを基に指定された所定期間内に該当する蓄積データΣQにおける流入量の平均値Qaveおよび流入量の標準偏差値σQを算出させて、図10に示すようにST4−4では採用データ範囲を定めるため、上記算出の流入量の平均値Qaveおよび標準偏差値σQの算出値を基に、信頼性を向上させるため先ず点検による人為的な水位センサの操作などの特異データ部の排除として採用データ範囲の上限値{Qup=Qave+σQ×2}と下限値{Qdw=Qave−σQ×2}を求めて採用データ範囲を確定させて、ST4−5で当該採用データ範囲内に該当する再蓄積データΣQSの再平均値QSaveを再度算出し、ST4−6では当該再平均値QSaveを後述のAR判定IIのST13またはST23の「演算1323」
および閉塞判定のST15またはST27の「演算1527」の演算処理のためメモリへ記録させる。
In ST4, the inflow determination value Q calculated in ST3 is recorded in a memory, added to the data ΣQ accumulated every time the vehicle is operated, and the re-average value (QSave = Qstd) is calculated. The calculation method of the re-average value (QSSave = Qstd) of the inflow amount by the statistical processing in “Calculation 4” based on FIGS. 6 and 10 will be described in detail. In ST4-1, the inflow calculated in ST3 is described. The determination value Q is recorded in the memory and added to the accumulated data ΣQ. In ST4-2 and ST4-3, the average value Qave of the inflow amount in the accumulated data ΣQ corresponding to the predetermined period specified based on the accumulated data ΣQ. And the standard deviation value σQ of the inflow rate is calculated, and the adopted data range is determined in ST4-4 as shown in FIG. In order to improve reliability, the upper limit value {Qup = Qave + σQ × 2} and the lower limit value of the data range adopted as the exclusion of the singular data part such as the manual operation of the water level sensor by inspection Qdw = Qave−σQ × 2} is determined to determine the adopted data range, and in ST4-5, the re-average value QSave of the re-accumulated data ΣQS corresponding to the adopted data range is calculated again. The re-average value QSave is set to “calculation 1323” in ST13 or ST23 of AR determination II described later.
In addition, the block is recorded in the memory for the calculation process of ST15 or ST27 “Calculation 1527”.

図5に戻ってST5では流入量の判定として、前記ST3において前記数式2より算出された流入判定値Qが1以下、即ち排水該当の排水ポンプのポンプの計画吐出量Qpに対して前記数式1により算出された前記流入量Qinが下回るか否かを判断し、下回る(YES)と判断された場合は正常と判定して正常処理のST6へと進み、また上回る(NO)と判断された場合にはポンプ計画吐出量Qpを超える流入量があったと判定して、後述の異常処理のST18からST19において図4および表1に示すケースHの「異常流入注意報」状態と診断され、例えばその結果を図1に示す監視装置4から中央管理装置(図示せず)へ通報および記録などの処理をし、ST6の正常処理に戻る。   Returning to FIG. 5, in ST5, as the determination of the inflow amount, the inflow determination value Q calculated from the equation 2 in ST3 is 1 or less, that is, the equation 1 with respect to the planned discharge amount Qp of the drainage drainage pump. When it is determined whether the inflow amount Qin calculated by the above is lower or lower (YES), it is determined normal and the process proceeds to ST6 of normal processing, and is determined to be higher (NO) It is determined that there has been an inflow amount exceeding the pump planned discharge amount Qp, and in the abnormal processing ST18 to ST19 described later, the “abnormal inflow warning” state of case H shown in FIG. 4 and Table 1 is diagnosed. The results are processed from the monitoring device 4 shown in FIG. 1 to the central management device (not shown) and recorded, and the process returns to the normal processing of ST6.

ST6では先発の排水ポンプのポンプ運転判定として、前記ST2で既に水位がポンプ運転水位Hdに達しているため、先発の排水ポンプが運転しているか否かを判断し、運転している(YES)と判断された場合は正常と判定して正常処理のST7へ進み、また運転していない(NO)と判断された場合には排水該当のポンプまたは制御盤の何れか若しくは双方にトラブルが生じた可能性があると判定して図4および表1に示すケースEの「機器トラブル」状態と診断され、例えばその結果を図1に示す監視装置4から中央管理装置(図示せず)へ通報および記録などの処理をし、今回の稼働状況に対する診断を終了し次回の稼働まで診断を待機する。   In ST6, since the water level has already reached the pump operation water level Hd in ST2 as a pump operation determination of the previous drainage pump, it is determined whether or not the previous drainage pump is operating (YES). If it is determined that it is normal, the process proceeds to ST7 of normal processing, and if it is determined that it is not operating (NO), trouble has occurred in either or both of the drainage pump and the control panel. It is determined that there is a possibility, and the “equipment trouble” state of case E shown in FIG. 4 and Table 1 is diagnosed. For example, the result is reported from the monitoring device 4 shown in FIG. 1 to the central management device (not shown). Processing such as recording is completed, the diagnosis for the current operation status is terminated, and the diagnosis is waited until the next operation.

ST7では使用さている複数台のポンプを夫々個別管理するため、現在稼動されている排水ポンプを認識記録し、前記ST2で記録された水位センサ2がポンプ起動のポンプ運転水位Hdの到達検出時刻T1と図3に示すポンプ運転水位Hdを下回った検出時刻T2を基に、図3に示すようにポンプ運転水位Hdの到達から下回るのに要した時間Tx=T2−T1を段落番号0022にて前述している今回のAR発生の前兆の判定に用いるAR判定Iの判定値Txとして算出し、該AR判定Iの判定値Txの判定の基準値としてST8では前回またはそれ以前の運転において後述のST10「演算10」にて算出(ST10−5)され記録(ST10−6)蓄積されている再平均値TxSaveをAR判定Iの基準値として呼び出し、ST9では図4に示すように上記算出のAR判定Iの判定値Txが当該AR判定Iの基準値の時間以内か否かを判断し、AR判定Iの基準値の時間以内(YES)と判断された場合は正常と判定して正常処理のST10「演算10」へ進み、またAR判定Iの基準値の時間を超える(NO)と判断された場合はAR発生の前兆の疑いがあると判定して後述のST20の処理へ進む。   In ST7, in order to individually manage a plurality of used pumps, the currently operated drainage pump is recognized and recorded, and the water level sensor 2 recorded in ST2 detects the arrival time T1 of the pump operating water level Hd when the pump is activated. 3, the time Tx = T2−T1 required to fall from reaching the pumping water level Hd as shown in FIG. 3 based on the detection time T2 when the pumping water level Hd has fallen below the pumping water level Hd shown in FIG. Is calculated as a determination value Tx of AR determination I used for determination of a sign of the occurrence of the current AR, and ST10, which will be described later, is used as a reference value for determination of the determination value Tx of AR determination I in the previous or previous operation. The re-average value TxSave calculated (ST10-5) and recorded (ST10-6) in "Calculation 10" is called as a reference value for AR determination I. In ST9, FIG. As shown in the figure, it is determined whether or not the calculated AR determination I determination value Tx is within the time of the AR determination I reference value. If it is determined that the AR determination I reference value is within the time (YES), it is normal. The process proceeds to ST10 “Calculation 10” of normal processing, and if it is determined that the time of the reference value of AR determination I is exceeded (NO), it is determined that there is a suspicion of the occurrence of AR, and ST20 described later. Proceed to the process.

ST10では前記ST7で算出したAR判定Iの判定値Txをメモリへ記録し、運転するたびに蓄積されるデータΣTxに対して加算し「演算10」で統計的処理による再平均値TxSave(AR判定Iの基準値)を算出する。尚、図7および図11を基に「演算10」における上記統計的処理によるAR判定Iの基準値TxSaveの算出方法を下記に詳述すると、ST10−1では前記ST7で算出されたAR判定Iの判定値Txをメモリへ記録すると共に蓄積データΣTxに加算し、ST10−2およびST10−3では該蓄積データΣTxを基に指定された所定期間内に該当する蓄積データΣTxにおけるAR判定Iの平均値TxaveおよびAR判定Iの標準偏差値σTxを算出させて、図11に示すようにST10−4では採用データ範囲を定めるため、上記算出のAR判定Iの平均値Txaveおよび標準偏差値σTxの算出値を基に、信頼性を向上させるため望ましくはARが発生するとAR判定Iの判定値Txが大きくなる傾向があるので、採用データ範囲を求める際には、特異性のある大きな値を含めないようにするため、先ず特異データ部の排除として採用データ範囲の上限値{Txup=Txave+σTx×2}を求めて上限値Txupを超えるデータを排除し採用データ範囲を確定させて、ST10−5で当該採用データ範囲内に該当する再蓄積データΣTxSの再平均値TxSaveを再度算出し、ST10−6では当該再平均値TxSaveを次回または其れ以降の前記ST8におけるAR判定Iの基準値として用いるためにメモリへ記録する。   In ST10, the determination value Tx of AR determination I calculated in ST7 is recorded in a memory, added to the data ΣTx accumulated every time the vehicle is operated, and re-averaged value TxSave (AR determination) by statistical processing in “Calculation 10”. I reference value) is calculated. A method for calculating the reference value TxSave of the AR determination I by the above statistical processing in “Calculation 10” based on FIGS. 7 and 11 will be described in detail below. In ST10-1, the AR determination I calculated in ST7 is described. Is recorded in the memory and added to the accumulated data ΣTx. In ST10-2 and ST10-3, the average of the AR determinations I in the accumulated data ΣTx corresponding to the predetermined period specified based on the accumulated data ΣTx In order to determine the adopted data range in ST10-4 as shown in FIG. 11 by calculating the value Txave and the standard deviation value σTx of the AR determination I, the calculation of the average value Txave and the standard deviation value σTx of the AR determination I calculated above is performed. In order to improve reliability based on the value, it is desirable that when AR occurs, the determination value Tx of AR determination I tends to increase. In order to avoid including a large value with specificity, first, an upper limit value {Txup = Txave + σTx × 2} of the adopted data range is obtained as exclusion of the unique data portion, and data exceeding the upper limit value Txup is obtained. In step ST10-5, the re-averaged value TxSave of the re-accumulated data ΣTxS corresponding to the adopted data range is calculated again. In ST10-6, the re-averaged value TxSave is calculated next time or that time. Recorded in the memory for use as a reference value for AR determination I in ST8 thereafter.

図5に戻ってST11では図1および図3に示すように水槽1内への正常流入状況下において、排水該当の排水ポンプが正常に運転されているため、水位センサ2がポンプ運転水位Hdを下回りポンプ停止水位Hsを下回ったことを検出しその時刻T3が記録され、当該検出時刻T3と図3に示すポンプ運転水位Hdを下回った検出時刻T2を基に、図3に示すようにポンプ運転水位Hdを下回ってからポンプ停止水位Hsを下回までに要した時間To1=T3−T2を算出し、該算出値To1は、後述のST14またはST26の閉塞判定値の算出に用いるためメモリへ記録し、ST12では、前記ST9でAR判定Iの判定値Tx>AR判定Iの基準値のAR発生の前兆の疑いがあると判定された場合において、その発生状況が軽微で前兆程度か或いはARが発生しているかを更に詳細に判定するために、ポンプ運転水位Hdを上回ってからポンプ停止水位Hsを下回るまでに要した時間To2を前記ST2で記録された時刻T1と上記時刻T3を基にそれらの時間差To2=T3−T1を算出し、前記ST9で算出されたAR判定Iの判定値Txの時間で割ることで、ポンプが運転している時間に対してAR判定Iの判定値Txの時間がどの程度の割合であるかこの値をAR判定IIの判定値Tx2=Tx/To2として算出する。   Returning to FIG. 5, in ST11, as shown in FIG. 1 and FIG. 3, since the drainage pump corresponding to the drainage is operating normally under the normal inflow state into the water tank 1, the water level sensor 2 sets the pump operating water level Hd. It is detected that the lower pump stop water level Hs has been lowered, and the time T3 is recorded. Based on the detected time T3 and the detected time T2 which has fallen below the pump operation water level Hd shown in FIG. 3, the pump operation is performed as shown in FIG. A time To1 = T3-T2 required from the time when the water level falls below the water level Hd to the time when the pump stop water level Hs falls below is calculated, and the calculated value To1 is recorded in the memory to be used for calculating the blockage determination value in ST14 or ST26 described later. In ST12, if it is determined in ST9 that there is a suspicion of AR occurrence with the AR determination I reference value Tx> AR determination I reference value, the occurrence state is slight and the indication In order to determine in more detail whether or not AR has occurred, a time To2 required from exceeding the pump operating water level Hd to below the pump stop water level Hs is recorded at the time T1 recorded at ST2 and the time T3. The time difference To2 = T3−T1 is calculated based on the above and divided by the time of the determination value Tx of the AR determination I calculated in ST9, thereby determining the AR determination I with respect to the time the pump is operating. The ratio of the time of the value Tx is calculated as the determination value Tx2 = Tx / To2 of the AR determination II.

そして、ST13では前記ST12で算出したAR判定IIの判定値Tx2をメモリへ記録し、図12に示すよう運転するたびに蓄積されるデータΣTx2に対して加算し、「演算1323」の統計的処理により算出された再平均値Tx2Saveと前記ST4「演算4」において算出し記録されている再平均値QSaveを基に図13に示すようAR判定IIの基準値Tx2stdを算出し記憶する。尚、図8および図12ないし図14を基に「演算1323」に係るAR判定IIの基準値Tx2stdの算出方法を詳述すると、ST1323−1では前記ST12で算出したAR判定IIの判定Tx2をメモリへ記録し、蓄積データΣTx2に加算し、ST1323−2およびST1323−3では該蓄積データΣTx2を基に指定された所定期間内に該当する蓄積データΣTx2におけるAR判定IIの平均値Tx2aveおよび標準偏差値σTx2を算出させて、図12に示すようにST1323−4では採用データ範囲を定めるため、上記算出のAR判定IIの平均値Tx2aveおよび標準偏差値σTx2の算出値を基に、信頼性を向上させるため望ましくはARが発生するとAR判定Iの判定値Txが大きくなる傾向があることからAR判定IIの判定値Tx2も大きくなる傾向があるため、採用データ範囲を求める際には、特異性のある大きな値を含めないようにするため、先ず特異データ部の排除として採用データ範囲の上限値{Tx2up=Tx2ave+σTx2×2}を求めて上限値Tx2upを超えるデータを排除し採用データ範囲を確定させて、ST1323−5で当該採用データ範囲内するに該当する再蓄積データΣTx2Sの再平均値Tx2Saveを再度算出し、ST1323−6で当該再平均値Tx2Saveを後述のST1323−8の直線回帰による「AR判定IIの正常値基準線:Y=aX+b」の作成に用いるためメモリへ記録する。   In ST13, the determination value Tx2 of AR determination II calculated in ST12 is recorded in the memory and added to the data ΣTx2 accumulated every time the vehicle is operated as shown in FIG. Based on the re-average value Tx2Save calculated in step ST4 and the re-average value QSave calculated and recorded in ST4 “Calculation 4”, the AR determination II reference value Tx2std is calculated and stored as shown in FIG. The calculation method of the reference value Tx2std of AR determination II related to “Calculation 1323” will be described in detail based on FIG. 8 and FIGS. 12 to 14. In ST1323-1, the determination Tx2 of AR determination II calculated in ST12 is set. Recorded in memory, added to accumulated data ΣTx2, and in ST1323-2 and ST1323-3, average value Tx2ave and standard deviation of AR determination II in accumulated data ΣTx2 within a predetermined period specified based on accumulated data ΣTx2 Since the value σTx2 is calculated and the adopted data range is determined in ST1323-4 as shown in FIG. 12, the reliability is improved based on the calculated AR determination II average value Tx2ave and standard deviation value σTx2 Therefore, it is desirable that when AR occurs, the determination value Tx of AR determination I tends to increase. Since the fixed value Tx2 also tends to be large, in order to avoid including a large value with specificity when the adopted data range is obtained, first, the upper limit value of the adopted data range {Tx2up = Tx2ave + σTx2 X2} is determined to exclude the data exceeding the upper limit value Tx2up and the adopted data range is determined. In ST1323-5, the re-averaged value Tx2Save of the re-accumulated data ΣTx2S that falls within the adopted data range is calculated again. In ST1323-6, the re-average value Tx2Save is recorded in a memory to be used for creating “normal reference line for AR determination II: Y = aX + b” by linear regression in ST1323-8 described later.

そして、ST1323−7では、前記ST4「演算4」において算出し記録されている流入判定の再平均値QSaveを呼び出し、前記ST1323−5で算出された再平均値Tx2Saveと上記ST1323−7で呼び出された両再平均値を基にST1323−8において再平均値QSaveをX=QSaveとY=Tx2Saveとして、下記の数式3より求められる直線の傾きaおよび数式4より求められる直線の切片bの両算出値を用いて、下記の数式5の直線回帰式を図13に示す「AR判定IIの正常値基準線:Y=aX+b」として求め、ST1323−9では上記AR判定IIの正常値基準線を基に上・下限値のAR判定IIの正常範囲を定め、該AR判定IIの正常値基準線を中心としてグラフに散布されたデータの分布密度の高い上・下限何れかの値を通りAR判定IIの正常値基準線に平行な直線を求めその平行線をAR判定IIの正常値基準線を中心に反転転写させて、図13に示すAR判定IIの正常範囲の上下限を求め該反転転写線をAR判定IIの基準線とする事ができるが、ARが発生するとAR判定Iの判定値Txが大きくなることからAR判定IIの判定値Tx2も大きくなる傾向があるので、上記AR判定IIの正常範囲の信頼性を上げるために、望ましくは図13に示すようグラフに散布されたデータの分布密度の高い下限値を通る下限平行線を定め、AR判定IIの正常値基準線を中心に当該下限平行線を反転転写させて上下限のAR判定IIの正常範囲を定め、反転転写された正常範囲の上限線をAR判定IIの基準線として下記の記数式5に示すAR判定IIの基準値算出の回帰直線式を求める。   In ST1323-7, the re-average value QSave of the inflow determination calculated and recorded in ST4 “Calculation 4” is called, and the re-average value Tx2Save calculated in ST1323-5 is called in ST1323-7. In ST1323-8, the re-average value QSave is set to X = QSSave and Y = Tx2Save in ST1323-8, and both the straight line slope a obtained from Equation 3 and the straight line intercept b obtained from Equation 4 are calculated. The linear regression equation of Equation 5 below is calculated as “AR determination II normal value reference line: Y = aX + b” shown in FIG. 13, and in ST1323-9, the AR determination II normal value reference line is used as a reference. The upper and lower limit AR judgment II normal ranges are defined, and the distribution density of the data scattered on the graph around the AR judgment II normal value reference line is high. A straight line that passes through one of the lower limits and is parallel to the normal value reference line of AR determination II is obtained, and the parallel line is inverted and transferred around the normal value reference line of AR determination II. The upper and lower limits of the normal range can be obtained and the reverse transfer line can be used as the reference line for AR determination II. However, when AR occurs, the determination value Tx2 for AR determination II increases because the determination value Tx for AR determination I increases. Therefore, in order to increase the reliability of the normal range of the AR determination II, preferably, a lower limit parallel line passing through a lower limit value having a high distribution density of data distributed in the graph is defined as shown in FIG. The lower limit parallel line is reversed and transferred around the normal value reference line of judgment II to determine the normal range of the upper and lower limit AR judgment II, and the upper limit line of the reverse transferred normal range is defined as the AR judgment II reference line as follows: Calculation of reference value for AR judgment II shown in Formula 5 A regression linear equation.

Figure 2008063954
Figure 2008063954

Figure 2008063954
Figure 2008063954

Figure 2008063954
Figure 2008063954

更に、ST1323−10では機場毎の特性が異なることを考慮して精度調整が可能なよう図14に示すよう、前記ST1323−9で求められた正常範囲の上限線にAR判定IIの基準線の精度調整変更用許容設定値を設けて変更設定を可能とし、変更設定による精度調整後のAR判定IIの補正基準線が求められている。   Furthermore, in ST1323-10, as shown in FIG. 14 so that the accuracy can be adjusted in consideration of the fact that the characteristics of each machine field are different, the upper limit line of the normal range obtained in ST1323-9 is the reference line of AR determination II. An allowance setting value for accuracy adjustment change is provided to enable change setting, and a correction reference line for AR determination II after accuracy adjustment by the change setting is obtained.

ST1323−11では、図13に示す前記ST1323−9のAR判定IIの基準線或いは図14に示す前記ST1323−10のAR判定IIの補正基準線を基にX軸上の値となるST3で算出された今回の運転における流入判定値Q(図13および図14の事例ではQn)に対応するY軸上の値Tx2std(精度調整後はTx2‘std)を今回使用するAR判定IIの基準値として得て記憶し、演算1323の一連の処理を終了し、後記ST14またはST24へ進む。   In ST1323-11, calculation is performed in ST3, which is a value on the X axis based on the reference line for AR determination II in ST1323-9 shown in FIG. 13 or the correction reference line for AR determination II in ST1323-10 shown in FIG. The value Tx2std on the Y axis (Tx2′std after accuracy adjustment) corresponding to the inflow determination value Q (Qn in the examples of FIGS. 13 and 14) in the current operation is used as the reference value of the AR determination II used this time The information is obtained and stored, and a series of processing of the operation 1323 is terminated, and the process proceeds to ST14 or ST24 described later.

次に、図5に戻ってST14では図1および図3に示す槽内への流入状況下において、排水該当の排水ポンプが正常に運転されているため、ポンプ運転水位Hdを下回ってから、ポンプ停止水位Hsを下回わる水位差(Hd−Hs)に降下させるための排水処理能力量を算出することで、具体的には該水位差(Hd−Hs)に槽の断面積Amを乗じた容積V=(Hd−Hs)×Amがなくなるまでに要した前記ST11で算出記録されている時間To1=T3−T2で除した槽内への流入状況下における単位時間あたりの相対排水処理能力量を下記数式6により算出し記憶された、該算出のQoutと設置されているポンプの計画吐出量Qpの割合Qoを下記数式7により閉塞判定値Qoとして算出する。   Next, returning to FIG. 5, in ST14, the drainage pump corresponding to the drainage is operating normally under the inflow state into the tank shown in FIG. 1 and FIG. By calculating the amount of wastewater treatment capacity for lowering the water level difference (Hd−Hs) below the stop water level Hs, specifically, the water level difference (Hd−Hs) was multiplied by the cross-sectional area Am of the tank. Volume V = (Hd−Hs) × Amount of relative wastewater treatment capacity per unit time under the inflow condition into the tank divided by time To1 = T3−T2 calculated and recorded in ST11 required until there is no Am The ratio Qo between the calculated Qout and the planned discharge amount Qp of the installed pump is calculated as the blockage determination value Qo according to the following expression 7.

Figure 2008063954
Figure 2008063954

Figure 2008063954
Figure 2008063954

ST15では、前記ST14で算出した閉塞判定値Qoをメモリへ記録し、図15に示すよう運転するたびに蓄積されるデータΣQoに対して加算し、「演算1527」の統計的処理により算出された再平均値QoSaveと前記ST4「演算4」において算出し記録されている再平均値QSaveを基に図16に示すよう閉塞判定の基準値Qostdを算出し記憶する。尚、図9および図15ないし図17を基に「演算1527」に係る閉塞判定の基準値Qostdの算出方法を詳述すると、ST1527−1では前記ST14で算出した閉塞判定値Qoをメモリへ記録し、蓄積データΣQoに加算し、ST1527−2およびST1527−3では該蓄積データΣQoを基に指定された所定期間内に該当する蓄積データΣQoにおける閉塞判定の平均値Qoaveおよび標準偏差値σQoを算出させて、図15に示すようにST1527−4では採用データ範囲を定めるため、上記算出の閉塞判定の平均値Qoaveおよび標準偏差値σQoの算出値を基に、信頼性を向上させるため望ましくは閉塞発生の可能性がある場合は、閉塞判定値Qoは小さくなる傾向があるため、採用データ範囲を求める際には、特異性のある小さな値を含めないようにするため、先ず特異データ部の排除として採用データ範囲の下限値{Qodw=Qoave−σQo×2}を求めて下限値Qodwを下回るデータを排除し採用データ範囲を確定させて、ST1527−5で当該採用データ範囲内するに該当する再蓄積データΣQoSの再平均値QoSaveを再度算出し、ST1527−6で当該再平均値QoSaveを後述のST1527−8の直線回帰による「閉塞正常値基準線:Y=aX+b」の作成に用いるためメモリへ記録する。   In ST15, the blockage determination value Qo calculated in ST14 is recorded in the memory, added to the data ΣQo accumulated every time operation is performed as shown in FIG. 15, and calculated by the statistical processing of “Calculation 1527”. Based on the re-average value QoSave and the re-average value QSave calculated and recorded in ST4 “Calculation 4”, a reference value Qostd for blockage determination is calculated and stored as shown in FIG. The calculation method of the blockage determination reference value Qostd according to “Calculation 1527” will be described in detail with reference to FIGS. 9 and 15 to 17. In ST1527-1, the blockage determination value Qo calculated in ST14 is recorded in the memory. Then, in ST1527-2 and ST1527-3, the average value Qoave and standard deviation value σQo of the blockage determination in the corresponding accumulated data ΣQo within a predetermined period specified based on the accumulated data ΣQo are calculated in ST1527-2 and ST1527-3 Then, as shown in FIG. 15, in ST1527-4, the adopted data range is determined. Therefore, based on the calculated values of the blockage determination average value Qoave and standard deviation value σQo described above, blockage is desirably performed in order to improve reliability. When there is a possibility of occurrence, the blockage judgment value Qo tends to be small. In order not to include a small characteristic value, the lower limit value {Qodw = Qoave−σQo × 2} of the adopted data range is first obtained as exclusion of the singular data portion, and the data that falls below the lower limit value Qdw is excluded. In step ST1527-5, the re-averaged value QoSave of the re-accumulated data ΣQoS corresponding to the range of the adopted data is recalculated. In ST1527-6, the re-averaged value QoSave is calculated as a linear regression of ST1527-8 described later. Is recorded in the memory for use in creating the “closed normal value reference line: Y = aX + b”.

そして、ST1527−7では、前記ST4「演算4」において算出し記録されている流入判定の再平均値QSaveを呼び出し、前記ST1527−5で算出された再平均値QoSaveと上記ST1527−7で呼び出された両再平均値を基にST1527−8において再平均値QSaveをX=QSaveとY=QoSaveとして、下記の数式8より求められる直線の傾きaおよび数式9より求められる直線の切片bの両算出値を用いて、下記の数式10の直線回帰式を図16に示す「閉塞正常値基準線:Y=aX+b」として求め、ST1527−9では上記閉塞正常値基準線を基に上・下限値の閉塞判定の正常範囲を定め、該閉塞正常値基準線を中心としてグラフに散布されたデータの分布密度の高い上・下限何れかの値を通り閉塞正常値基準線に平行な直線を求めその平行線を閉塞正常値基準線を中心に反転転写させて、図16に示す閉塞判定の正常範囲の上下限を求め該反転転写線を閉塞判定の基準線とする事ができるが、閉塞が発生すると相対排水処理能力量Qoutが小さくなることから閉塞判定値Qoも小さくなる傾向があるので、上記閉塞判定の正常範囲の信頼性を上げるために、望ましくは図16に示すようグラフに散布されたデータの分布密度の高い上限値を通る上限平行線を定め、閉塞正常値基準線を中心に当該上限平行線を反転転写させて上下限の閉塞判定の正常範囲を定め、反転転写された正常範囲の下限線を閉塞判定の基準線として下記数式10に示す閉塞判定の基準値算出の回帰直線式を求める。   In ST1527-7, the inflow determination re-average value QSave calculated and recorded in ST4 “Calculation 4” is called, and the re-average value QoSave calculated in ST1527-5 and called in ST1527-7 are called. In ST1527-8, the re-average value QSave is set to X = QSSave and Y = QoSave, and both the straight line slope a obtained from Equation 8 and the straight line intercept b obtained from Equation 9 are calculated. 16 is used to obtain a linear regression equation of the following Equation 10 as “obstruction normal value reference line: Y = aX + b” shown in FIG. 16, and in ST1527-9, the upper and lower limit values are calculated based on the obstruction normal value reference line. Define the normal range of occlusion judgment, and close it by passing either the upper or lower limit of the distribution density of the data distributed on the graph around the normal occlusion value reference line A straight line parallel to the normal occlusion value reference line is obtained, and the parallel line is inverted and transferred around the occlusion normal value reference line to obtain upper and lower limits of the normal range of occlusion determination shown in FIG. Although it can be set as a reference line, when the blockage occurs, the relative drainage treatment capacity amount Qout decreases, so the blockage determination value Qo also tends to decrease. Therefore, in order to increase the reliability of the normal range of the blockage determination, Preferably, an upper limit parallel line passing through an upper limit value having a high distribution density of data distributed in a graph as shown in FIG. 16 is determined, and the upper limit parallel line is inverted and transferred around the normal value reference line to determine the upper and lower limit blockage. And a regression line equation for calculating a reference value for blockage determination shown in the following formula 10 is obtained using the lower limit line of the normal range reversely transferred as a reference line for blockage determination.

Figure 2008063954
Figure 2008063954

Figure 2008063954
Figure 2008063954

Figure 2008063954
Figure 2008063954

更に、ST1527−10では機場毎の特性が異なることを考慮して精度調整が可能なよう図17に示すよう、前記ST1527−9で求められた正常範囲の下限線に閉塞判定の基準線の精度調整変更用許容設定値を設けて変更設定を可能とし、変更設定による精度調整後の閉塞判定の補正基準線が求められている。   Further, in ST1527-10, the accuracy of the blockage determination reference line is set to the lower limit line of the normal range obtained in ST1527-9 as shown in FIG. An adjustment change allowable setting value is provided to enable change setting, and a correction reference line for blockage determination after accuracy adjustment by change setting is obtained.

ST1527−11では、図16に示す前記ST1527−9の閉塞判定の基準線或いは図17に示す前記ST1527−10の閉塞判定の補正基準線を基にX軸上の値となるST3で算出された今回の運転における流入判定値Q(図16および図17の事例ではQn)に対応するY軸上の値Qostd(精度調整後はQo‘std)を今回使用する閉塞判定の基準値として得て記憶し、演算1527の一連の処理を終了し、後記ST16またはST28へ進む。   In ST1527-11, calculation is performed in ST3, which is a value on the X axis based on the reference line for blockage determination in ST1527-9 shown in FIG. 16 or the correction reference line for blockage determination in ST1527-10 shown in FIG. A value Qostd (Qo'std after accuracy adjustment) corresponding to the inflow determination value Q (Qn in the examples of FIGS. 16 and 17) in the current operation is obtained and stored as a reference value for the occlusion determination used this time. Then, a series of processing of the calculation 1527 is ended, and the process proceeds to ST16 or ST28 described later.

次に、図5に戻ってST16では前記ST15で算出した閉塞判定の基準値Qostd(精度調整後はQo‘std)をデータより呼び出し、ST17において前記ST14で算出された閉塞判定値Qoが上記閉塞判定の基準値Qostd(精度調整後はQo‘std)を上回るか否かを判断し、上回っている(YES)と判断された場合はポンプは正常に稼動されたと判定して図4および表1に示すケースAの「正常」状態と診断され、例えばその結果を図1に示す監視装置4から中央管理装置(図示せず)へ通報および記録などの処理をし、今回の運転に対する診断処理が終了され次回の運転診断処理に対して待機する。また、閉塞判定値Qoが上記閉塞判定の基準値Qostd(精度調整後はQo‘std)を下回っている(NO)と判断された場合はポンプ閉塞の前兆が確認されたと判定して4および表1に示すケースBの「閉塞注意報」状態と診断され、例えばその結果を図1に示す監視装置4から中央管理装置(図示せず)へ通報および記録などの処理をし、今回の運転に対する診断処理が終了され次回の運転診断処理に対して待機する。   Next, referring back to FIG. 5, in ST16, the blockage determination reference value Qostd (Qo'std after accuracy adjustment) calculated in ST15 is called from the data, and in ST17, the blockage determination value Qo calculated in ST14 is used as the blockage determination value. It is determined whether or not the determination reference value Qostd (Qo'std after accuracy adjustment) is exceeded. If it is determined that it exceeds (YES), it is determined that the pump has been operated normally, and FIG. The case A shown in FIG. 1 is diagnosed as a “normal” state. For example, the monitoring device 4 shown in FIG. 1 reports and records the result to the central management device (not shown), and the diagnosis processing for the current driving is performed. It is finished and waits for the next driving diagnosis process. Further, when it is determined that the blockage determination value Qo is lower than the blockage determination reference value Qostd (Qo'std after accuracy adjustment) (NO), it is determined that the precursor of the pump blockage has been confirmed, and 1 is diagnosed as the “blocking warning” state of the case B shown in FIG. 1, for example, the result is processed from the monitoring device 4 shown in FIG. 1 to the central management device (not shown), recorded, etc. The diagnosis process is completed, and the next operation diagnosis process is awaited.

ST18では、前記ST5の流入量の判定として、前記ST3において前記数式2より算出された流入判定値Qが1を超える、即ち排水該当の排水ポンプのポンプの計画吐出量Qpに対して前記数式1により算出された前記流入量Qinが上回る(NO)と判断された場合は異常流入量のポンプの計画吐出量Qpを超える流入量があったと判定し、ST19において図4および表1に示すケースHの「異常流入注意報」状態と診断され、例えばその結果を図1に示す監視装置4から中央管理装置(図示せず)へ通報および記録などの処理をし、以後の診断処理を続行させるため前記ST6の正常処理に戻る。   In ST18, as the determination of the inflow amount of ST5, the inflow determination value Q calculated from the equation 2 in ST3 exceeds 1, that is, the equation 1 with respect to the planned discharge amount Qp of the drainage pump corresponding to the drainage. When it is determined that the inflow amount Qin calculated by (NO) exceeds (NO), it is determined that there is an inflow amount exceeding the planned discharge amount Qp of the pump having an abnormal inflow amount, and the case H shown in FIG. In order to continue the subsequent diagnostic process by, for example, reporting and recording the result from the monitoring device 4 shown in FIG. 1 to the central management device (not shown). The process returns to the normal process of ST6.

ST20では、前記ST9のAR判定Iで基準値TxSaveに対して今回のAR判定Iの判定値Txが超えている(NO)と判断された場合においてはARが発生しているのか或いはポンプの運転中に多量の流入量があったのか、原因の特定ができないため、AR発生の前兆の疑いがあるとして図4に示すよう予め設定された限界値以内に槽内水位が2台運転水位Hwを上回(ON)った後に2台運転水位Hwを下回(OFF)っているか否かを判断し、限界値以内に2台運転水位Hwを上回った後に下回る(YES)と判断した場合はARが発生しているのか或いはポンプの運転中に多量の異常流入があったと判定し図4および表1に示すケースFの「ARもしくは運転中の異常流入」状態と診断され、例えばその結果を図1に示す監視装置4から中央管理装置(図示せず)へ通報および記録などの処理をした後、診断を中断し、次の運転まで待機する。また、限界値以内に2台運転水位Hwを上回らない(NO)と判断された場合はST21へ進む。   In ST20, if it is determined that the determination value Tx of the current AR determination I exceeds (NO) the reference value TxSave in the AR determination I of ST9, whether an AR has occurred or the pump is operating. Since the cause could not be specified because there was a large amount of inflow in the tank, the water level in the tank should not exceed the preset limit value as shown in FIG. If it is judged whether it is below the operating water level Hw of 2 units after being turned on (OFF), and below (YES) after exceeding the operating water level Hw of 2 units within the limit value It is determined that an AR has occurred or that there has been a large amount of abnormal inflow during operation of the pump, and a diagnosis of the “AR or abnormal inflow during operation” state of Case F shown in FIG. 4 and Table 1 is made. From the monitoring device 4 shown in FIG. After processing such as reporting and recording to a central management device (not shown), the diagnosis is interrupted and the system waits for the next operation. If it is determined that the operating water level Hw of the two vehicles does not exceed the limit value (NO), the process proceeds to ST21.

ST21では、上記ST20で図4に示す予め設定された限界値以内に2台運転水位Hwを上回(ON)ることなく(到達しない)且つポンプ運転水位Hdを下回(OFF)っているか否かを判断し、限界値以内に2台運転水位Hwを上回ることなく且つポンプ運転水位Hdを下回らない(NO)と判断されたの場合は、ARが発生しているか若しくはポンプの吐出量と流入量が均衡或いは流入量が多い状態が続いているものとして判定して図4および表1に示すケースGの「AR発生」状態と診断され、例えばその結果を図1に示す監視装置4から中央管理装置(図示せず)へ通報および記録などの処理をした後、診断を中断し、次の運転まで待機する。また、ポンプ運転水位Hdを下回る(YES)と判断された場合は何らかの理由で水位が下がりにくい状態であったと判定してST22へ進む。   In ST21, whether or not the two operating water levels Hw are not exceeded (ON) (not reached) and below the pump operating water level Hd (OFF) within the preset limit values shown in FIG. 4 in ST20. If it is determined that it does not exceed the operating water level Hw of the two units within the limit value and does not fall below the operating water level Hd of the pump (NO), whether AR has occurred or the pump discharge amount It is determined that the inflow amount is balanced or the state where the inflow amount is large continues, and the “AR occurrence” state of case G shown in FIG. 4 and Table 1 is diagnosed. For example, the result is obtained from the monitoring device 4 shown in FIG. After processing such as reporting and recording to a central management device (not shown), the diagnosis is interrupted and the system waits for the next operation. If it is determined that the pump operating water level Hd is below (YES), it is determined that the water level is difficult to decrease for some reason, and the process proceeds to ST22.

ST22では、前記段落番号0033のST12と同様の処理を行い、AR判定IIの判定値Tx2を算出し、ST23へ進む。   In ST22, the same processing as ST12 of paragraph number 0033 is performed, a determination value Tx2 of AR determination II is calculated, and the process proceeds to ST23.

ST23では、前記段落番号0034ないし0040のST13と同様の「演算1323」の処理を行い、図13に示すようにAR判定IIの基準値Tx2stdを今回使用するAR判定IIの基準値として得て記憶し、演算1323の一連の処理を終了し、ST24へ進む。   In ST23, the same "calculation 1323" processing as in ST13 of paragraph numbers 0034 to 0040 is performed, and the reference value Tx2std of AR determination II is obtained and stored as the reference value of AR determination II used this time as shown in FIG. Then, the series of operations of the operation 1323 is terminated, and the process proceeds to ST24.

ST24では、前記ST23で算出したAR判定IIの基準値Tx2stdをデータより呼び出し、ST25へ進む。   In ST24, the AR determination II reference value Tx2std calculated in ST23 is called from the data, and the process proceeds to ST25.

ST25では、前記ST22で算出したAR判定IIの判定値Tx2がST23で算出しST24で呼び出されたAR判定IIの基準値Tx2stdを下回るか否かを判断し、下回る(YES)と判断された場合は、ARらしき現象は確認したもののARの問題ではないと判定して前記段落番号0041のST14の閉塞判定へ進む。また、下回らない(NO)と判断された場合は、ARが発生している可能性は高いとしながらも、閉塞も併発している可能性があると判定してST26の閉塞判定へ進む。   In ST25, it is determined whether or not the AR determination II determination value Tx2 calculated in ST22 is lower than the AR determination II reference value Tx2std calculated in ST23 and called in ST24. If it is determined to be lower (YES) If the phenomenon that seems to be AR has been confirmed, it is determined that it is not an AR problem, and the process proceeds to the blockage determination of ST14 in paragraph 0041. On the other hand, if it is determined that the value does not fall below (NO), it is determined that there is a possibility that an AR has occurred, but there is also a possibility that a blockage has occurred, and the process proceeds to blockage determination in ST26.

ST26では、前記段落番号0041のST14と同様の処理を行い、閉塞判定値Qoを算出し、ST27へ進む。   In ST26, the same processing as ST14 of paragraph number 0041 is performed to calculate a blockage determination value Qo, and the process proceeds to ST27.

ST27では、前記段落番号0044ないし0050のST15と同様の「演算1527」の処理を行い、図16に示すように閉塞判定の基準値Qostdを今回使用する閉塞判定の基準値として得て記憶し、演算1527の一連の処理を終了し、ST28へ進む。   In ST27, the same “calculation 1527” processing as ST15 of the paragraph numbers 0044 to 0050 is performed, and as shown in FIG. 16, the blockage determination reference value Costd is obtained and stored as the blockage determination reference value used this time. A series of processing of the calculation 1527 is ended, and the process proceeds to ST28.

ST28では、前記ST27で算出した閉塞判定の基準値Qostd(精度調整後はQo‘std)をデータより呼び出し、ST29において前記ST26で算出された閉塞判定値Qoが上記閉塞判定の基準値Qostd(精度調整後はQo‘std)を上回るか否かを判断し、上回っている(YES)と判断された場合はARの前兆が確認されたと判定して図4および表1に示すケースCの「AR注意報」状態と診断され、例えばその結果を図1に示す監視装置4から中央管理装置(図示せず)へ通報および記録などの処理をし、今回の運転に対する診断処理が終了され次回の運転診断処理に対して待機する。また、閉塞判定値Qoが上記閉塞判定の基準値Qostd(精度調整後はQo‘std)を下回っている(NO)と判断された場合はポンプ閉塞の可能性もあるとしてARよび閉塞の両方の前兆が確認されたと判定して図4および表1に示すケースDの「AR+閉塞注意報」状態と診断され、例えばその結果を図1に示す監視装置4から中央管理装置(図示せず)へ通報および記録などの処理をし、今回の運転に対する診断処理が終了され次回の運転診断処理に対して待機する。   In ST28, the blockage determination reference value Qostd calculated in ST27 (Qo'std after accuracy adjustment) is called from data, and in ST29 the blockage determination value Qo calculated in ST26 is the blockage determination reference value Qostd (accuracy). After adjustment, it is determined whether or not it exceeds (Qo'std). If it is determined that it exceeds (YES), it is determined that the AR precursor has been confirmed, and "AR" of case C shown in FIG. For example, the monitoring device 4 shown in FIG. 1 reports and records the result to the central management device (not shown), and the diagnosis processing for the current driving is completed and the next driving is completed. Wait for diagnostic processing. If it is determined that the blockage determination value Qo is lower than the blockage determination reference value Qostd (Qo'std after accuracy adjustment) (NO), there is a possibility of pump blockage, and both the AR and blockage are determined. It is determined that the precursor has been confirmed, and the “AR + blocking warning” state of case D shown in FIG. 4 and Table 1 is diagnosed. For example, the result is transferred from the monitoring device 4 shown in FIG. 1 to the central management device (not shown). Processing such as notification and recording is performed, the diagnostic processing for the current driving is completed, and the next driving diagnostic processing is waited for.

次に、本発明では排水ポンプの長期稼働に伴う例えば羽根車やポンプケーシングなどの経年摩耗により次第にポンプ性能が低下するため、経年変化によるポンプ吐出性能低下の診断において、下記数式11により段落番号0027のST3で前記数式1により算出し記憶されている流入量Qinに段落番号0041のST14で前記数式6により算出し記憶されている相対排水処理能力量Qoutを加えた実際のポンプ吐出量Qpioを算出および記憶し、下記数式12により上記実際のポンプ吐出量Qpioに対する前記ポンプの計画吐出量Qpの割合をポンプ吐出量の割合Qioとして周期毎に算出および記憶し、図18に示すよう指定期間をX軸に設定し、該指定期間の間隔は現場状況に応じて日、週、月など任意に設定できることが望ましく、指定期間に該当する上記記憶蓄積された各ポンプ吐出量の割合QioをY軸上に時系列的にプロットしグラフ化およびリスト化(図示せず)することで、経年変化による緩やかなポンプ吐出性能低下傾向が可視化されるため、例えば当初のポンプ吐出量の割合Qioに対して30%低下をメンテナンス時期と予め設定することで、事前にメンテナス時期が予測され、しかも性能低下状況が視認できるので極めて適正な時期に無駄なく効率の良いメンテナスを実施することができる。   Next, in the present invention, the pump performance gradually deteriorates due to, for example, aged wear of an impeller and a pump casing accompanying long-term operation of the drainage pump. In ST3, the actual pump discharge amount Qpio is calculated by adding the stored inflow amount Qin calculated by Equation 1 to the stored relative wastewater treatment capacity amount Qout calculated by Equation 6 in ST14 of paragraph 0041 and stored. The ratio of the planned pump discharge amount Qp to the actual pump discharge amount Qpio with respect to the actual pump discharge amount Qpio is calculated and stored for each cycle as the pump discharge amount ratio Qio according to the following formula 12, and the designated period is set as shown in FIG. It can be set to the axis and the interval of the specified period can be arbitrarily set according to the site situation such as day, week, month, etc. Preferably, the ratio Qio of each pump discharge amount stored and accumulated corresponding to the specified period is plotted on the Y axis in a time series and graphed and listed (not shown), so that Since the pump discharge performance decline trend is visualized, for example, the maintenance period is predicted in advance by setting a 30% decrease as a maintenance period with respect to the ratio Qio of the initial pump discharge amount, and the performance degradation status is visually recognized. Therefore, efficient maintenance can be performed without waste at an extremely appropriate time.

Figure 2008063954
Figure 2008063954

Figure 2008063954
Figure 2008063954

更にまた、日常の閉塞およびARなどの異常状態の不具合管理として図19および図20に示すよう指定期間をX軸に設定し、該指定期間の間隔は現場状況に応じて日、週、月など任意に設定できることが望ましく、指定期間に該当する前記記憶蓄積された各種判定値をY軸上に時系列的にプロットしグラフ化およびリスト化(図示せず)することで、不具合(閉塞およびARなど)によって性能が低下しない限り当該各種判定値は一定であるため、当該指定期間における各種判定値の平均値に許容設定値を加味した値を基準値として用いることで、何時閉塞およびARなどの不具合の予兆が発生したかを適正かつ容易に視認することができる。   Furthermore, as shown in FIG. 19 and FIG. 20, the designated period is set on the X-axis for trouble management of abnormal conditions such as daily obstruction and AR, and the designated period is set to the day, week, month, etc. according to the site situation. Desirably, it can be arbitrarily set, and the various stored and stored judgment values corresponding to the specified period are plotted in time series on the Y-axis, and are graphed and listed (not shown), thereby causing problems (blockage and AR). Since the various judgment values are constant unless the performance deteriorates due to the above, the value obtained by adding the allowable set value to the average value of the various judgment values in the designated period is used as a reference value. Whether or not a sign of failure has occurred can be visually confirmed appropriately and easily.

日常管理における閉塞発生の予兆確認として、例えば図19に示すように指定期間をX軸に設定し、該指定期間の間隔は現場状況に応じて日、週、月など任意に設定できることが望ましく、指定期間に該当する前記数式12により演算され記憶蓄積された各ポンプ吐出量の割合QioをY軸上に時系列的にプロットしグラフ化およびリスト化(図示せず)することで容易に可視化することができるので、閉塞が発生すると前記数式11により算出された実際のポンプ吐出量Qpioは少なくなることからポンプ吐出量の割合Qioも低くなる傾向があるため、本実施例ではポンプ吐出量の割合Qioの平均値Qioave(記憶蓄積された各Qioの累計値÷指定期間日数)に許容設定値を減算した値を判定の基準値として用いることで、明確に何時閉塞の予兆が発生したかを適正かつ容易に確認することができる。   For example, as shown in FIG. 19, the designated period is set on the X-axis, and the designated period interval can be arbitrarily set according to the site situation, such as a day, a week, or a month. The ratio Qio of each pump discharge amount calculated and stored according to Equation 12 corresponding to the specified period is plotted on the Y axis in a time series and graphed and listed (not shown) for easy visualization. Therefore, when the blockage occurs, the actual pump discharge amount Qpio calculated by the formula 11 decreases, and therefore the pump discharge rate ratio Qio tends to decrease. In this embodiment, the ratio of the pump discharge amount By using the value obtained by subtracting the allowable setting value from the average value Qioave of Qio (cumulative value of each stored and stored Qio / number of specified period days) as a reference value for determination Sign of what time occlusion can be checked properly and easily whether it has occurred.

また、AR発生の予兆確認として、例えば図20に示すように指定期間をX軸に設定し、該指定期間の間隔は現場状況に応じて日、週、月など任意に設定できることが望ましく、指定期間に該当する前記ST1323−1で前記ST12で算出したAR判定IIの判定値Tx2を記録された蓄積データΣTx2の各AR判定IIの判定Tx2値をY軸上に時系列的にプロットしグラフ化およびリスト化(図示せず)することで容易に可視化することできるので、ARが発生すると前記ST7で算出されたAR判定Iの判定値Txが大きくなることから該AR判定IIの判定値Tx2も大きくなる傾向があるため、本実施例ではAR判定IIの判定値Tx2の平均値Tx2ave(記憶蓄積されたΣTx2÷指定期間日数)に許容設定値を加算した値を判定の基準値として用いることで、明確に何時ARの予兆が発生したかを適正かつ容易に確認することができる。   In addition, as a sign confirmation of the occurrence of AR, for example, it is desirable that a designated period is set on the X axis as shown in FIG. 20, and the interval of the designated period can be arbitrarily set according to the site situation, such as day, week, month. The determination Tx2 value of each AR determination II of the accumulated data ΣTx2 recorded with the AR determination II determination value Tx2 calculated in ST12 corresponding to the period in ST1323-1 is plotted on the Y axis in time series and graphed. Since it can be easily visualized by making a list (not shown), when AR occurs, the determination value Tx of AR determination I calculated in ST7 increases, so the determination value Tx2 of AR determination II is also In this embodiment, the value obtained by adding the allowable setting value to the average value Tx2ave (stored ΣTx2 ÷ number of specified period days) of the AR determination II determination value Tx2 is determined in this embodiment. By using as a reference value, it is possible to clearly confirm the time or sign of AR occurs properly and easily.

従って、前述の如く日常の閉塞およびARなどの異常状態の不具合管理において指定期間に該当する前記記憶蓄積された各種判定値を時系列に並べてグラフ化およびリスト化し、当該指定期間における各種判定値の平均値に許容設定値を加味した値を判定の基準値として用いることで、何時閉塞およびARなどの不具合の予兆が発生したかを適正かつ容易に視認することができるため、現状を効率よく容易に把握することができるので、不足の事態を事前に回避することができる。   Accordingly, as described above, the stored and accumulated various judgment values corresponding to the designated period in the trouble management of abnormal conditions such as daily obstructions and ARs are graphed and listed in time series, and various judgment values in the designated period are displayed. By using the average value plus the allowable set value as the reference value for judgment, it is possible to easily and visually recognize when a sign of malfunction such as blockage and AR has occurred, so the current situation can be efficiently and easily Therefore, the shortage can be avoided in advance.

本発明の一実施例のブロック図である。It is a block diagram of one Example of this invention. 本発明の槽内の水位変動に伴う排水ポンプの運転状態を示す線図である。It is a diagram which shows the driving | running state of the drainage pump accompanying the water level fluctuation | variation in the tank of this invention. 本発明の槽内の水位変動における計測時間を示す線図である。It is a diagram which shows the measurement time in the water level fluctuation | variation in the tank of this invention. 本発明の槽内の水位変動における表1に示した各診断の区分を説明するための線図である。It is a diagram for demonstrating the division of each diagnosis shown in Table 1 in the water level fluctuation | variation in the tank of this invention. 本発明の診断処理全体を示すフロー図である。It is a flowchart which shows the whole diagnostic process of this invention. 図5におけるST4の演算4の詳細処理を示すフロー図である。It is a flowchart which shows the detailed process of the calculation 4 of ST4 in FIG. 図5におけるST10の演算10の詳細処理を示すフロー図である。It is a flowchart which shows the detailed process of the calculation 10 of ST10 in FIG. 図5におけるST13およびST23の演算1323の詳細処理を示すフロー図である。It is a flowchart which shows the detailed process of the calculation 1323 of ST13 and ST23 in FIG. 図5におけるST15およびST27の演算1527の詳細処理を示すフロー図である。It is a flowchart which shows the detailed process of the calculation 1527 of ST15 and ST27 in FIG. 図6のST4の演算4における流入判定値Qの統計処理を説明するための線図である。It is a diagram for demonstrating the statistical process of the inflow determination value Q in the calculation 4 of ST4 of FIG. 図7のST10の演算10におけるAR判定Iの判定値Txの統計処理を説明するための線図である。FIG. 8 is a diagram for explaining statistical processing of a determination value Tx of AR determination I in calculation 10 of ST10 in FIG. 7. 図8のST13およびST23の演算1323におけるAR判定IIの判定値Tx2の統計処理を説明するための線図である。FIG. 10 is a diagram for explaining statistical processing of a determination value Tx2 of AR determination II in the calculation 1323 of ST13 and ST23 of FIG. 図8のST1323−8およびST1323−9における流入判定値QとAR判定IIの判定値Tx2の各該当データを散布したグラフより直線回帰式を用いてAR判定IIの基準値Tx2stdを求める統計処理を説明するための線図である。Statistical processing for obtaining the reference value Tx2std of the AR determination II using a linear regression equation from the graph in which the corresponding data of the inflow determination value Q and the determination value Tx2 of the AR determination II in ST1323-8 and ST1323-9 in FIG. It is a diagram for explaining. 図13のAR判定IIの基準値Tx2stdに図8のST1323−10およびST1323−11における精度調整変更用許容設定値を設けて変更設定を可能とした精度調整後のAR判定IIの補正基準線によりAR判定IIの基準値Tx2‘stdを求める統計処理を説明するための線図である。The reference value Tx2std of AR determination II in FIG. 13 is provided with the accuracy adjustment change allowable setting value in ST1323-10 and ST1323-11 in FIG. It is a diagram for demonstrating the statistical process which calculates | requires reference value Tx2'std of AR determination II. 図9のST15およびST27の演算1527における閉塞判定値Qoの統計処理を説明するための線図である。FIG. 10 is a diagram for explaining the statistical processing of the blockage determination value Qo in the calculation 1527 of ST15 and ST27 of FIG. 9. 図9のST1527−8およびST1527−9における流入判定値Qと閉塞判定値Qoの各該当データを散布したグラフより直線回帰式を用いて閉塞判定の基準値Qostdを求める統計処理を説明するための線図である。FIG. 9 illustrates statistical processing for determining the blockage determination reference value Costd using a linear regression equation from the graph in which the corresponding data of the inflow determination value Q and the blockage determination value Qo are scattered in ST1527-8 and ST1527-9. FIG. 図16の閉塞判定の基準値Qostdに図9のST1527−10およびST1527−11における精度調整変更用許容設定値を設けて変更設定を可能とした精度調整後の閉塞判定の補正基準線により閉塞判定の基準値Qo‘stdを求める統計処理を説明するための線図である。The blockage determination reference value Qostd in FIG. 16 is provided with the accuracy adjustment change allowable setting values in ST1527-10 and ST1527-11 in FIG. It is a diagram for demonstrating the statistical process which calculates | requires reference value Qo'std of. 経年変化によるポンプ吐出性能低下の診断を説明するための線図である。It is a diagram for demonstrating the diagnosis of the pump discharge performance fall by a secular change. 日常の閉塞の異常状態の不具合管理を説明するための線図である。It is a diagram for demonstrating defect management of the abnormal state of daily obstruction | occlusion. 日常のARの異常状態の不具合管理を説明するための線図である。It is a diagram for demonstrating failure management of the abnormal state of daily AR.

符号の説明Explanation of symbols

1 水槽
2 水位センサ
3 制御装置
P1 排水ポンプ
P2 排水ポンプ
1 Water tank 2 Water level sensor 3 Control device P1 Drain pump P2 Drain pump

Claims (6)

水位変化量から容積を演算できる水槽と、1台または複数台の排水ポンプと、該水槽内の水位を検出する水位センサと、該水位センサからの受信信号を基に単位時間毎に計測されたデータの保存や演算処理および上記排水ポンプの発停制御などの機能を有する制御装置を用いる、排水ポンプの異常診断方法であって、上記水位変化量から演算される容積や上記水位センサからの検知信号に基く水位変化時間および該排水ポンプの計画吐出量を用いて、予め設定された数式により演算処理され記憶蓄積された蓄積データを用いて統計的処理により算出された判定の基準値に適宜自動的に更新された判定の基準値と判定対象の判定値を対比させることで適正に診断されることを特徴する、排水ポンプの異常診断方法。   Measured per unit time based on a water tank that can calculate the volume from the amount of change in water level, one or more drain pumps, a water level sensor that detects the water level in the water tank, and a signal received from the water level sensor A drainage pump abnormality diagnosis method using a control device having functions such as data storage and calculation processing and on / off control of the drainage pump, wherein the volume calculated from the water level change amount and detection from the water level sensor Using the water level change time based on the signal and the planned discharge amount of the drainage pump, automatically calculate the reference value calculated by statistical processing using the accumulated data that has been calculated and stored according to a preset mathematical formula. An abnormality diagnosis method for a drainage pump, characterized in that an appropriate diagnosis is made by comparing a reference value of a determination that has been updated automatically and a determination value of a determination target. 水位変化量から容積を演算できる水槽と、1台または複数台の排水ポンプと、該水槽内の水位を検出する水位センサと、該水位センサからの受信信号を基に単位時間毎に計測されたデータの保存や演算処理および上記排水ポンプの発停制御などの機能を有する制御装置を備えた、排水ポンプの異常診断装置であって、上記水位変化量から演算される容積や上記水位センサからの検知信号に基く水位変化時間および該排水ポンプの計画吐出量を用いて、予め設定された数式により演算処理され記憶蓄積された蓄積データを用いて統計的処理により算出された判定の基準値に適宜自動的に更新し、当該判定の基準値と判定対象の判定値を対比させることで適正に診断できるよう構成したことを特徴する、排水ポンプの異常診断装置。   Measured per unit time based on a water tank that can calculate the volume from the amount of change in water level, one or more drain pumps, a water level sensor that detects the water level in the water tank, and a signal received from the water level sensor A drainage pump abnormality diagnosis device equipped with a control device having functions such as data storage and calculation processing and drain pump start / stop control, wherein the volume calculated from the water level change amount and the water level sensor Using the water level change time based on the detection signal and the planned discharge amount of the drainage pump, the judgment reference value calculated by statistical processing using the accumulated data that has been calculated and stored according to a preset mathematical formula is appropriately set. A drainage pump abnormality diagnosing device that is configured to automatically update and properly diagnose by comparing a reference value of the determination with a determination value of a determination target. 請求項1の排水ポンプの異常診断方法において、流入条件およびポンプ特性などが異なる個々の機場毎に対して前記判定の基準値の精度が大きく相異するので、当該判定の基準値を補正するため判定精度調整の許容範囲設定値の設定機能を設けることで、個々の機場毎に対応した判定の補正基準値に適宜自動的に更新された判定の補正基準値と判定対象の判定値を対比させることで適正に診断されることを特徴する、排水ポンプの異常診断方法。   In the drainage pump abnormality diagnosis method according to claim 1, since the accuracy of the reference value of the determination is greatly different for each machine place having different inflow conditions and pump characteristics, etc., the reference value for the determination is corrected. By providing a setting function for the allowable range setting value for judgment accuracy adjustment, the judgment correction reference value automatically updated as appropriate to the judgment correction reference value corresponding to each machine is compared with the judgment target judgment value. An abnormality diagnosis method for a drainage pump, characterized by being diagnosed properly. 請求項2の排水ポンプの異常診断装置において、流入条件およびポンプ特性などが異なる個々の機場毎に対して前記判定の基準値の精度が大きく相異するので、当該判定の基準値を補正するため判定精度調整の許容範囲設定値の設定機能を設けることで、個々の機場毎に対応した判定の補正基準値に適宜自動的に更新し、当該判定の補正基準値と判定対象の判定値を対比させることで適正に診断できるよう構成したことを特徴する、排水ポンプの異常診断装置。   In the drainage pump abnormality diagnosis device according to claim 2, the accuracy of the reference value of the determination is greatly different for each machine place having different inflow conditions and pump characteristics, etc., so that the reference value of the determination is corrected. By providing a setting function for the allowable range setting value for judgment accuracy adjustment, the judgment correction reference value corresponding to each machine is automatically updated as appropriate, and the judgment reference value is compared with the judgment target judgment value. An abnormality diagnosis device for a drainage pump, characterized in that it is configured so that it can be properly diagnosed. 水位変化量から容積を演算できる水槽と、1台または複数台の排水ポンプと、該水槽内の水位を検出する水位センサと、該水位センサから受信信号を基に単位時間毎に計測されたデータの保存や演算処理および上記排水ポンプの発停制御などの機能を有する制御装置を用いる、排水ポンプの異常診断方法であって、上記水位変化量から演算される容積や上記水位センサからの検知信号に基く水位変化時間および該排水ポンプの計画吐出量を用いて、予め設定された数式により演算処理され記憶蓄積された蓄積データを基に指定期間を設定し、該指定期間に該当する上記蓄積データを指定間隔毎に時系列処理してグラフ化およびリスト化することで、上記指定間隔毎の経年変化による上記排水ポンプの性能低下傾向を適正かつ容易に視認し得ることを特徴する、排水ポンプの異常診断方法。   A water tank that can calculate the volume from the amount of change in water level, one or more drain pumps, a water level sensor that detects the water level in the water tank, and data that is measured per unit time based on a signal received from the water level sensor Is a drainage pump abnormality diagnosis method using a control device having functions such as storage and calculation processing and drain pump start / stop control, wherein the volume calculated from the water level change amount and the detection signal from the water level sensor The specified period is set based on the accumulated data that is calculated and stored according to a preset mathematical formula using the water level change time based on the above and the planned discharge amount of the drainage pump, and the accumulated data corresponding to the designated period Can be graphed and listed in a time series for each specified interval, so that the tendency of the drainage pump to deteriorate due to secular changes at each specified interval can be properly and easily visually recognized. It features the door, the abnormality diagnostic method of the drainage pump. 水位変化量から容積を演算できる水槽と、1台または複数台の排水ポンプと、該水槽内の水位を検出する水位センサと、該水位センサから受信信号を基に単位時間毎に計測されたデータの保存や演算処理および上記排水ポンプの発停制御などの機能を有する制御装置を用いる、排水ポンプの異常診断方法であって、上記水位変化量から演算される容積や上記水位センサからの検知信号に基く水位変化時間および該排水ポンプの計画吐出量を用いて、予め設定された数式により演算処理され記憶蓄積された蓄積データを基に指定期間を設定し、当該指定期間に該当する蓄積データの平均値を算出し、該平均値を許容設定値で補正した値を基準値とし、該指定期間に該当する上記蓄積データを指定間隔毎に時系列処理してグラフ化およびリスト化することで、上記指定間隔の経過に対する管理対象の判定値の変化傾向を適正かつ容易に視認し得ることを特徴する、排水ポンプの異常診断方法。   A water tank that can calculate the volume from the amount of change in water level, one or more drain pumps, a water level sensor that detects the water level in the water tank, and data that is measured per unit time based on a signal received from the water level sensor Is a drainage pump abnormality diagnosis method using a control device having functions such as storage and calculation processing and drain pump start / stop control, wherein the volume calculated from the water level change amount and the detection signal from the water level sensor A specified period is set based on accumulated data that is calculated and stored according to a preset mathematical expression using the water level change time based on the above and the planned discharge amount of the drainage pump, and the accumulated data corresponding to the specified period is set. The average value is calculated, and the average value corrected with the allowable setting value is used as a reference value. The accumulated data corresponding to the specified period is processed in time series at a specified interval, and graphed and listed. In Rukoto, features that can visually recognize the change trend of the decision value managed on the course of the specified interval properly and easily, the abnormality diagnostic method of the drainage pump.
JP2006239931A 2006-09-05 2006-09-05 Drainage pump abnormality diagnosis method and apparatus Active JP5137359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006239931A JP5137359B2 (en) 2006-09-05 2006-09-05 Drainage pump abnormality diagnosis method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006239931A JP5137359B2 (en) 2006-09-05 2006-09-05 Drainage pump abnormality diagnosis method and apparatus

Publications (2)

Publication Number Publication Date
JP2008063954A true JP2008063954A (en) 2008-03-21
JP5137359B2 JP5137359B2 (en) 2013-02-06

Family

ID=39286896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006239931A Active JP5137359B2 (en) 2006-09-05 2006-09-05 Drainage pump abnormality diagnosis method and apparatus

Country Status (1)

Country Link
JP (1) JP5137359B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011245387A (en) * 2010-05-25 2011-12-08 Aquaintec Corp Method and apparatus for removing sand in settling basin
JP2012207916A (en) * 2011-03-29 2012-10-25 Chugoku Electric Power Co Inc:The Level meter and pump function inspection method using the level meter
JP2012528973A (en) * 2009-06-02 2012-11-15 グルンドフォス マネージメント アー/エス Method for determining characteristic values, in particular parameters, of an electric motor driven centrifugal pump device incorporated in equipment
CN104632602A (en) * 2013-11-08 2015-05-20 中国石油天然气集团公司 Reciprocating water injection pump state monitoring and fault diagnosis system
CN108105117A (en) * 2017-12-01 2018-06-01 山东东山新驿煤矿有限公司 A kind of mine drainage control system with Redundant Control
CN111503011A (en) * 2018-12-27 2020-08-07 株式会社久保田 Inspection well pump diagnosis method and inspection well pump diagnosis device
JP2021005542A (en) * 2019-06-27 2021-01-14 京セラ株式会社 Fuel cell device
CN113969890A (en) * 2020-07-24 2022-01-25 宝山钢铁股份有限公司 Method for monitoring operation and fault diagnosis of drainage pump based on liquid level meter
CN116696754A (en) * 2023-08-01 2023-09-05 福建省福安市明星电机有限公司 Test bench for water pump production and use method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02128171A (en) * 1988-11-07 1990-05-16 Hioki Ee Corp Method for correcting comparing reference value and tolerance for judging quality in printed circuit board inspection apparatus
JPH075154A (en) * 1993-06-17 1995-01-10 Asahi Chem Ind Co Ltd Method for automatically deciding pass/fail of concrete product by knocking
JP2000329093A (en) * 1999-05-18 2000-11-28 Toshiba Corp Pump operation confirming device
JP2001034338A (en) * 1999-07-26 2001-02-09 Kubota Corp Monitoring system for pump station
JP2003003986A (en) * 2001-06-22 2003-01-08 Tsurumi Mfg Co Ltd Method and device for prediction-computing flow-in amount into water tank under operation of drainage pump
JP2003035275A (en) * 2001-07-23 2003-02-07 Awamura Mfg Co Ltd Air lock/suction choking judgment device and method for pump facility

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02128171A (en) * 1988-11-07 1990-05-16 Hioki Ee Corp Method for correcting comparing reference value and tolerance for judging quality in printed circuit board inspection apparatus
JPH075154A (en) * 1993-06-17 1995-01-10 Asahi Chem Ind Co Ltd Method for automatically deciding pass/fail of concrete product by knocking
JP2000329093A (en) * 1999-05-18 2000-11-28 Toshiba Corp Pump operation confirming device
JP2001034338A (en) * 1999-07-26 2001-02-09 Kubota Corp Monitoring system for pump station
JP2003003986A (en) * 2001-06-22 2003-01-08 Tsurumi Mfg Co Ltd Method and device for prediction-computing flow-in amount into water tank under operation of drainage pump
JP2003035275A (en) * 2001-07-23 2003-02-07 Awamura Mfg Co Ltd Air lock/suction choking judgment device and method for pump facility

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012528973A (en) * 2009-06-02 2012-11-15 グルンドフォス マネージメント アー/エス Method for determining characteristic values, in particular parameters, of an electric motor driven centrifugal pump device incorporated in equipment
US8949045B2 (en) 2009-06-02 2015-02-03 Grundfos Management A/S Method for determining characteristic values, particularly of parameters, of a centrifugal pump aggregate driven by an electric motor and integrated in a system
JP2011245387A (en) * 2010-05-25 2011-12-08 Aquaintec Corp Method and apparatus for removing sand in settling basin
JP2012207916A (en) * 2011-03-29 2012-10-25 Chugoku Electric Power Co Inc:The Level meter and pump function inspection method using the level meter
CN104632602A (en) * 2013-11-08 2015-05-20 中国石油天然气集团公司 Reciprocating water injection pump state monitoring and fault diagnosis system
CN108105117A (en) * 2017-12-01 2018-06-01 山东东山新驿煤矿有限公司 A kind of mine drainage control system with Redundant Control
CN111503011A (en) * 2018-12-27 2020-08-07 株式会社久保田 Inspection well pump diagnosis method and inspection well pump diagnosis device
CN111503011B (en) * 2018-12-27 2024-04-09 株式会社久保田 Method and device for diagnosing inspection well pump
JP2021005542A (en) * 2019-06-27 2021-01-14 京セラ株式会社 Fuel cell device
CN113969890A (en) * 2020-07-24 2022-01-25 宝山钢铁股份有限公司 Method for monitoring operation and fault diagnosis of drainage pump based on liquid level meter
CN116696754A (en) * 2023-08-01 2023-09-05 福建省福安市明星电机有限公司 Test bench for water pump production and use method thereof
CN116696754B (en) * 2023-08-01 2023-10-20 福建省福安市明星电机有限公司 Test bench for water pump production and use method thereof

Also Published As

Publication number Publication date
JP5137359B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
JP5137359B2 (en) Drainage pump abnormality diagnosis method and apparatus
JP4542819B2 (en) Hydraulic machine, system and method for monitoring the health status of a hydraulic machine
KR100981331B1 (en) Integrated supervision and diagnosis apparatus
US20070270982A1 (en) Diagnostics in process control and monitoring systems
JP6234732B2 (en) Abnormality detection device, sewage transfer pump device and monitoring device
CN112105788B (en) Alarm management module of waste water pumping station
JPH0954613A (en) Plant facility monitor device
JP2012058937A (en) Equipment diagnostic method and equipment diagnostic system for nuclear power plant
JP2023078117A (en) Manhole pump diagnosing method and manhole pump diagnosing device
JP7175752B2 (en) Diagnostic method for mechanical equipment and diagnostic device for mechanical equipment
JP2004358573A (en) Machining fluid treating apparatus for wire cut electric discharge machine
JP2017036669A (en) Control device, control method and pump station
EP3259414B1 (en) Pump monitoring system and method
JP6809367B2 (en) Hydraulic pump abnormality diagnostic device
JP4088149B2 (en) Abnormality monitoring method for hydraulic system
US20230176563A1 (en) Method for monitoring and controlling the operation of a pump station
JP2006177316A (en) Check valve abnormality detection system of drainage pump
JP4129167B2 (en) Equipment abnormality reporting device
US20220042429A1 (en) Equipment lubricant water ingress measurement system and method
JP3235584U (en) Maintenance and inspection system for septic tank blowers, pumps and control panels
JP2024019789A (en) Manhole pump diagnostic method and manhole pump diagnostic device
JP2024019788A (en) Manhole pump diagnostic method and manhole pump diagnostic device
JP2022075128A (en) Checkup method and checkup device for manhole pump
JP2023090211A (en) Insulation resistance evaluation method and electric motor diagnostic method
JPH11269977A (en) Supervisory and control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5137359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20171122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20171122

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250