JP2008063409A - Method for producing hydrophilic polymer particle - Google Patents

Method for producing hydrophilic polymer particle Download PDF

Info

Publication number
JP2008063409A
JP2008063409A JP2006241539A JP2006241539A JP2008063409A JP 2008063409 A JP2008063409 A JP 2008063409A JP 2006241539 A JP2006241539 A JP 2006241539A JP 2006241539 A JP2006241539 A JP 2006241539A JP 2008063409 A JP2008063409 A JP 2008063409A
Authority
JP
Japan
Prior art keywords
hydrophilic polymer
dispersion
static mixer
monomer
polymer particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006241539A
Other languages
Japanese (ja)
Other versions
JP4833001B2 (en
Inventor
Toshiya Shimada
稔也 島田
Kazuki Naito
一樹 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2006241539A priority Critical patent/JP4833001B2/en
Publication of JP2008063409A publication Critical patent/JP2008063409A/en
Application granted granted Critical
Publication of JP4833001B2 publication Critical patent/JP4833001B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To produce hydrophilic polymer particles having a fine particle diameter by dispersing a mixture finely without using power for a dispersing device. <P>SOLUTION: This method for producing the hydrophilic polymer particles comprises (1) a dispersing process of passing a mixed liquid containing an aqueous component containing a monomer and an oily component in a container 2 through a circulation line 5 installed at the container 2 and installed as mediated with a static mixer 6 by a multiple number of times in terms of the mean numbers of passing through to obtain the dispersion of dispersing the aqueous component in the oily component and (2) a reaction process of polymerizing the monomer contained in the dispersion obtained by the dispersing process. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、親水性ポリマー粒子の製造法に関する。   The present invention relates to a method for producing hydrophilic polymer particles.

現在、様々な産業分野において種々の親水性ポリマーが製造されている。そして、その製造方法として、例えば、逆相懸濁重合法、分散重合法等が用いられている。この逆相懸濁重合法や分散重合法は、モノマー(重合性単量体)成分、架橋剤、重合開始剤を均一に溶解し、必要に応じ水等を添加し、分散剤が均一に溶解または分散した疎水性溶媒中に混合し、重合反応を行うものである。   Currently, various hydrophilic polymers are produced in various industrial fields. And as the manufacturing method, the reverse phase suspension polymerization method, the dispersion polymerization method, etc. are used, for example. In this reverse phase suspension polymerization method or dispersion polymerization method, the monomer (polymerizable monomer) component, the crosslinking agent, and the polymerization initiator are uniformly dissolved, and water or the like is added as necessary to uniformly dissolve the dispersant. Or it mixes in the disperse | distributed hydrophobic solvent and performs a polymerization reaction.

ところで、粒子径の小さなポリマー粒子を得るには、重合前にモノマーを含む混合物の分散物粒子径を小さくしておく必要がある。   By the way, in order to obtain polymer particles having a small particle diameter, it is necessary to reduce the dispersion particle diameter of the mixture containing the monomer before polymerization.

それに関し、特許文献1には回分式高速回転高剪断型分散器を用いてモノマーを含む混合物を分散する方法が開示されている。   In this regard, Patent Document 1 discloses a method for dispersing a monomer-containing mixture using a batch-type high-speed rotation high-shear type disperser.

また、特許文献2には静止型混合器を用いてモノマーを含む混合物を分散する方法が開示されている。
特開2000−191817号公報 特開2003−305360号公報
Patent Document 2 discloses a method of dispersing a mixture containing monomers using a static mixer.
JP 2000-191817 A JP 2003-305360 A

しかしながら、特許文献1に示す動力を用いて混合物の分散を行なう方法は一般に設備費やメンテナンス費用が高価であり、また、均一な粒径が得られにくいという課題がある。   However, the method of dispersing the mixture using the power shown in Patent Document 1 generally has a problem that the equipment cost and the maintenance cost are expensive, and it is difficult to obtain a uniform particle size.

特許文献2に示す静止型混合器を用いて混合物の分散を行なう方法は均一な粒径の粒子は得られ易いものの、得られる体積平均粒子径が5μm以上であり、更に小さな粒径の粒子が得られにくいという課題がある。   Although the method of dispersing the mixture using the static mixer shown in Patent Document 2 is easy to obtain particles having a uniform particle diameter, the obtained volume average particle diameter is 5 μm or more, and particles having a smaller particle diameter are obtained. There is a problem that it is difficult to obtain.

本発明の課題は、分散器に動力を用いずに混合物を微小に分散し、これにより微小な粒径の親水性ポリマー粒子の製造ができるようにすることである。   An object of the present invention is to finely disperse a mixture without using power in a disperser, thereby making it possible to produce hydrophilic polymer particles having a small particle size.

上記の課題を解決する本発明の親水性ポリマー粒子の製造法は、
(1)槽中のモノマーを含む水性成分及び油性成分からなる混合液を、該槽に付設され静止型混合器が介設された循環ラインに平均通過回数で複数回通過させて、油性成分に水性成分が分散した分散液を得る分散工程と、
(2)上記分散工程で得られた分散液に含まれるモノマーを重合させる反応工程と、
を備えるものである。
The method for producing hydrophilic polymer particles of the present invention that solves the above problems is as follows.
(1) A mixed liquid composed of an aqueous component and an oily component containing a monomer in a tank is passed through a circulation line attached to the tank and provided with a static mixer a plurality of times with an average number of passes to obtain an oily component. A dispersion step of obtaining a dispersion in which the aqueous component is dispersed;
(2) a reaction step of polymerizing monomers contained in the dispersion obtained in the dispersion step;
Is provided.

本発明によれば、分散器に動力を用いずに混合物を微小に分散し、これにより微小な粒径の親水性ポリマー粒子を製造することができる。   According to the present invention, it is possible to finely disperse the mixture without using power to the disperser, thereby producing hydrophilic polymer particles having a minute particle size.

以下、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

[親水性ポリマー]
まず、本発明により製造されるの親水性ポリマーとしては、(イ)アミノ基、アンモニウム基、ピリジル基、イミノ基、ベタイン構造等のカチオン性基含有ビニルモノマーやその塩(以下、「カチオン性モノマー」という。);(ロ)ヒドロキシ基、アミド基、エステル基、エーテル基等の親水性の非イオン性基含有ビニルモノマー(以下、「非イオン性モノマー」という。);(ハ)カルボキシ基、スルホン酸基、リン酸基等のアニオン性基含有ビニルモノマーやその塩(以下、「アニオン性モノマー」という。)から選ばれる1種類以上のモノマーから得られるポリマーが挙げられる。これらのうち好適に製造されるのは、1種類以上のカチオン性モノマーと1種類以上の非イオン性モノマーとから得られる親水性ポリマーである。親水性ポリマーを構成する全モノマー中の(イ)〜(ハ)の合計モノマー量は、好ましくは70〜100重量%、更に好ましくは85〜100重量%である。
[Hydrophilic polymer]
First, as the hydrophilic polymer produced according to the present invention, (i) a cationic group-containing vinyl monomer such as an amino group, an ammonium group, a pyridyl group, an imino group, or a betaine structure or a salt thereof (hereinafter referred to as “cationic monomer”). (B) Hydrophilic nonionic group-containing vinyl monomer such as hydroxy group, amide group, ester group, ether group (hereinafter referred to as “nonionic monomer”); (c) Carboxy group, Examples thereof include polymers obtained from one or more types of monomers selected from vinyl monomers containing anionic groups such as sulfonic acid groups and phosphoric acid groups and salts thereof (hereinafter referred to as “anionic monomers”). Among these, a hydrophilic polymer obtained from one or more kinds of cationic monomers and one or more kinds of nonionic monomers is preferably produced. The total amount of monomers (a) to (c) in all monomers constituting the hydrophilic polymer is preferably 70 to 100% by weight, more preferably 85 to 100% by weight.

また、上記親水性ポリマーは、少なくとも2個の反応性不飽和基を分子中に有する架橋性ビニルモノマー(以下、「架橋性モノマー」という。)により架橋構造を有していることが好ましい。その場合、親水性ポリマーを構成する全モノマー中の架橋性モノマー量は、好ましくは0.005〜5重量%、更に好ましくは0.01〜1.0重量%である。   The hydrophilic polymer preferably has a cross-linked structure with a cross-linkable vinyl monomer having at least two reactive unsaturated groups in the molecule (hereinafter referred to as “cross-linkable monomer”). In that case, the amount of the crosslinkable monomer in all the monomers constituting the hydrophilic polymer is preferably 0.005 to 5% by weight, more preferably 0.01 to 1.0% by weight.

さらに、上記親水性ポリマーは、上記(イ)〜(ハ)のモノマーと共重合が可能な他のビニルモノマーが共重合されていてもよい。   Further, the hydrophilic polymer may be copolymerized with other vinyl monomers copolymerizable with the monomers (a) to (c).

<(イ)カチオン性モノマー>
(イ)のカチオン性モノマーとしては、例えば、炭素数2〜44のジアルキルアミノ基を有する(メタ)アクリル酸エステルや(メタ)アクリルアミド;総炭素数2〜44のジアルキルアミノ基を有するスチレン、ビニルピリジン、N−ビニルイミダゾール等のN−ビニル複素環化合物類;ビニルエーテル類;アミノ基を有するモノマーの酸中和物;アミノ基を有するモノマーをハロゲン化アルキル(炭素数1〜22)、ハロゲン化ベンジル、アルキル(炭素数1〜18)スルホン酸、アリール(炭素数6〜24)スルホン酸、硫酸ジアルキル(総炭素数2〜8)等により4級化したもの;ベタイン構造を有するビニルモノマー等が例示される。
<(A) Cationic monomer>
Examples of the cationic monomer (a) include (meth) acrylic acid esters and (meth) acrylamides having a dialkylamino group having 2 to 44 carbon atoms; styrene and vinyl having a dialkylamino group having 2 to 44 carbon atoms in total. N-vinyl heterocyclic compounds such as pyridine and N-vinyl imidazole; vinyl ethers; acid neutralized monomers having amino groups; monomers having amino groups are alkyl halides (1 to 22 carbon atoms), benzyl halides , Quaternized with alkyl (C1-18) sulfonic acid, aryl (C6-24) sulfonic acid, dialkyl sulfate (total C2-8), etc .; vinyl monomer having betaine structure, etc. Is done.

これらのカチオン性モノマーの中では、アミノ基又はアンモニウム基含有モノマーが好ましく、下記の一般式(I)又は(II)で表される化合物から選ばれる少なくとも1種が更に好ましい。   Among these cationic monomers, amino group or ammonium group-containing monomers are preferable, and at least one selected from compounds represented by the following general formula (I) or (II) is more preferable.

Figure 2008063409
Figure 2008063409

[式中、Rは水素原子又はメチル基を示し、R及びRは同一又は異なった炭素数1〜4のアルキル基又はアルケニル基を示し、Rは水素原子又は炭素数1〜4のアルキル基を示し、Yは−O−、−NH−又は−O−CHCH(OH)−基を示し、Zは炭素数1〜4の直鎖又は分岐鎖のアルキレン基を示し、Xは酸の共役塩基、ハロゲン原子又は炭素数1〜4のアルキルサルフェート基を示す。] [Wherein, R 1 represents a hydrogen atom or a methyl group, R 2 and R 3 represent the same or different alkyl group or alkenyl group having 1 to 4 carbon atoms, and R 4 represents a hydrogen atom or 1 to 4 carbon atoms. Y represents an —O—, —NH— or —O—CH 2 CH (OH) — group, Z represents a linear or branched alkylene group having 1 to 4 carbon atoms, and X Represents a conjugate base of an acid, a halogen atom or an alkyl sulfate group having 1 to 4 carbon atoms. ]

Figure 2008063409
Figure 2008063409

[式中、R及びRは同一又は異なり且つそれぞれ水素原子又はメチル基を示し、R及びRは同一又は異なり且つそれぞれ水素原子又は炭素数1〜4のアルキル基を示し、Xは酸の共役塩基を示す。]
上記一般式(I)で表される化合物の具体例としては、例えば、上記で例示したジアルキルアミノ基を有する(メタ)アクリル酸エステル、(メタ)アクリルアミド類を酸で中和した酸中和物や4級化剤で4級化した4級アンモニウム塩等が挙げられる。
[Wherein, R 5 and R 6 are the same or different and each represents a hydrogen atom or a methyl group; R 7 and R 8 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms; Indicates a conjugate base of an acid. ]
Specific examples of the compound represented by the general formula (I) include, for example, a (meth) acrylic acid ester having a dialkylamino group exemplified above, and an acid neutralized product obtained by neutralizing a (meth) acrylamide with an acid. And quaternary ammonium salts quaternized with a quaternizing agent.

上記一般式(II)で表される化合物の具体例としては、例えば、上記で例示したジアリル型4級アンモニウム塩等が挙げられる。   Specific examples of the compound represented by the general formula (II) include, for example, diallyl-type quaternary ammonium salts exemplified above.

上記の酸中和物を得るための好ましい酸としては、例えば、塩酸、硫酸、硝酸、リン酸、総炭素数1〜22の有機酸等が挙げられる。上記4級アンモニウム塩を得るための好ましい4級化剤としては、例えば、炭素数1〜8のハロゲン化アルキル、硫酸ジメチル、硫酸ジエチル、硫酸ジ−n−プロピル等の一般的なアルキル化剤が挙げられる。   Preferred acids for obtaining the above acid neutralized product include, for example, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, organic acids having 1 to 22 carbon atoms in total. Examples of preferable quaternizing agents for obtaining the quaternary ammonium salts include general alkylating agents such as alkyl halides having 1 to 8 carbon atoms, dimethyl sulfate, diethyl sulfate, and di-n-propyl sulfate. Can be mentioned.

上記一般式(I)及び(II)で表される化合物の中で特に好ましいものとしては、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリルアミド、ジエチルアミノプロピル(メタ)アクリルアミドを前記の4級化剤で4級化した4級アンモニウム塩、ジメチルジアリルアンモニウムクロライドが挙げられる。   Among the compounds represented by the general formulas (I) and (II), dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylamide, diethylaminopropyl ( A quaternary ammonium salt obtained by quaternizing (meth) acrylamide with the quaternizing agent described above, and dimethyldiallylammonium chloride are exemplified.

<(ロ)非イオン性モノマー>
(ロ)の非イオン性モノマーとしては、例えば、ビニルアルコール;ヒドロキシアルキル(炭素数1〜8)基を有する(メタ)アクリル酸エステルや(メタ)アクリルアミド;ポリエチレングリコール(メタ)アクリレート(エチレングリコールの重合度が1〜30)等の多価アルコールの(メタ)アクリル酸エステル;(メタ)アクリルアミド;アルキル(炭素数1〜8)(メタ)アクリルアミド;ジアルキル(総炭素数2〜8)(メタ)アクリルアミド;ジアセトン(メタ)アクリルアミド;アルキル(炭素数1〜8)基を有する(メタ)アクリル酸エステル;N−(メタ)アクロイルモルホリン等の環状アミド基を有する(メタ)アクリルアミド等が例示される。
<(B) Nonionic monomer>
Examples of the nonionic monomer (b) include vinyl alcohol; (meth) acrylic acid ester or (meth) acrylamide having a hydroxyalkyl (C 1-8) group; polyethylene glycol (meth) acrylate (ethylene glycol (Meth) acrylic acid esters of polyhydric alcohols having a polymerization degree of 1 to 30); (meth) acrylamide; alkyl (1 to 8 carbon atoms) (meth) acrylamide; dialkyl (2 to 8 carbon atoms in total) (meth) Examples include acrylamide; diacetone (meth) acrylamide; (meth) acrylic acid ester having an alkyl (C 1-8) group; and (meth) acrylamide having a cyclic amide group such as N- (meth) acryloylmorpholine. .

これらの非イオン性モノマーの中では、下記の一般式(III)及び(IV)で表わされる(メタ)アクリルアミド系モノマー、上記のヒドロキシアルキル(炭素数1〜8)基を有する(メタ)アクリル酸エステル、上記の多価アルコールの(メタ)アクリル酸エステルが好ましい。   Among these nonionic monomers, (meth) acrylamide monomers represented by the following general formulas (III) and (IV), and (meth) acrylic acid having the above hydroxyalkyl (C1-8) group Preferred are esters and (meth) acrylic acid esters of the above polyhydric alcohols.

Figure 2008063409
Figure 2008063409

[式中、Rは水素原子又はメチル基を示し、R及びR10は同一又は異なり且つそれぞれ水素原子又は炭素数1〜8の直鎖もしくは分岐鎖であって、ヒドロキシ基を有していてもよい、アルキル基又はアルケニル基を示す。] [Wherein, R 1 represents a hydrogen atom or a methyl group, and R 9 and R 10 are the same or different and each represents a hydrogen atom or a linear or branched chain having 1 to 8 carbon atoms, and has a hydroxy group. An alkyl group or an alkenyl group which may be present is shown. ]

Figure 2008063409
Figure 2008063409

[式中、Rは水素原子又はメチル基を示し、A及びAは同一又は異なり且つそれぞれ式−(CH)−(nは2〜6の整数を示す。)で表される基を示し、Bは−O−又は−CH−基を示す。]
一般式(III)で表されるモノマーとしては、例えば、(メタ)アクリルアミド、N−メチル(メタ)アクリルアミド、N, N−ジメチル(メタ)アクリルアミド、N, N−ジエチル(メタ)アクリルアミド、N−n−プロピル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、N−t−ブチル(メタ)アクリルアミド、N−イソブチル(メタ)アクリルアミド、N−ヒドロキシプロピル(メタ)アクリルアミド等が挙げられる。
[Wherein, R 1 represents a hydrogen atom or a methyl group, A 1 and A 2 are the same or different, and each is represented by the formula — (CH 2 ) n — (n represents an integer of 2 to 6). represents a group, B is -O- or -CH 2 - shows a group. ]
Examples of the monomer represented by the general formula (III) include (meth) acrylamide, N-methyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N- Examples thereof include n-propyl (meth) acrylamide, N-isopropyl (meth) acrylamide, Nt-butyl (meth) acrylamide, N-isobutyl (meth) acrylamide, N-hydroxypropyl (meth) acrylamide and the like.

一般式(IV)で表されるモノマーとしては、例えば、N−(メタ)アクロイルモルホリン等が挙げられる。   Examples of the monomer represented by the general formula (IV) include N- (meth) acryloylmorpholine.

<(ハ)アニオン性モノマー>
(ハ)のアニオン性モノマーとしては、例えば、重合性の不飽和基を有するカルボン酸モノマーやその酸無水物(1つのモノマー中に2つ以上のカルボキシル基を有する場合);重合性の不飽和基を有するスルホン酸モノマー;重合性の不飽和基を有するリン酸モノマー等が例示される。アニオン性基は、塩基性物質により任意の中和度に中和されてもよい。この場合、ポリマー中の全てのアニオン性基又はその一部のアニオン性基は塩を生成することとなる。
<(C) Anionic monomer>
Examples of the anionic monomer (c) include, for example, a carboxylic acid monomer having a polymerizable unsaturated group and an acid anhydride thereof (when two or more carboxyl groups are contained in one monomer); Examples thereof include a sulfonic acid monomer having a group; a phosphoric acid monomer having a polymerizable unsaturated group. The anionic group may be neutralized with a basic substance to an arbitrary degree of neutralization. In this case, all the anionic groups in the polymer or a part of the anionic groups will form a salt.

これらのアニオン性モノマーの中では、上記の重合性の不飽和基を有するカルボン酸モノマーやその酸無水物(但し、1つのモノマー中に2つ以上のカルボキシル基を有する場合)、上記の重合性の不飽和基を有するスルホン酸モノマーが好ましい。   Among these anionic monomers, the above-mentioned polymerizable unsaturated group-containing carboxylic acid monomer and its acid anhydride (provided that one monomer has two or more carboxyl groups), the above-mentioned polymerizable property Of these, sulfonic acid monomers having an unsaturated group are preferred.

<架橋性モノマー>
架橋性モノマーとしては、例えば、多価アルコールの(メタ)アクリル酸エステル類;アクリルアミド類;ジビニル化合物;ポリアリル化合物;不飽和アルコールの(メタ)アクリル酸エステル等が挙げられる。
<Crosslinkable monomer>
Examples of the crosslinkable monomer include (meth) acrylic acid esters of polyhydric alcohols; acrylamides; divinyl compounds; polyallyl compounds; (meth) acrylic acid esters of unsaturated alcohols, and the like.

これらの架橋性モノマーの中では、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジビニルベンゼン、ペンタエリスリトールトリアリルエーテル、ペンタエリスリトールテトラアリルエーテルが好ましい。   Among these crosslinkable monomers, ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, divinylbenzene, pentaerythritol triallyl ether, and pentaerythritol tetraallyl ether are preferable.

<その他のモノマー>
本発明の親水性ポリマーを構成する(イ)〜(ハ)のモノマーと共重合が可能な他のビニルモノマーとしては、例えば、(メタ)アクリル酸誘導体等が挙げられる。
<Other monomers>
Examples of other vinyl monomers that can be copolymerized with the monomers (a) to (c) constituting the hydrophilic polymer of the present invention include (meth) acrylic acid derivatives.

[親水性ポリマーの製造法]
本発明の親水性ポリマーの製造法は、上記の(イ)〜(ハ)のモノマー及び場合により架橋性モノマーを用いて、好ましくはラジカル重合開始剤(例えば下記の過酸化物、又は2,2−アゾビスイソブチロニトリル等のアゾビス系化合物)の存在下、疎水性溶媒を用いた逆相系の懸濁重合法により重合を行う方法である。
[Method for producing hydrophilic polymer]
The method for producing the hydrophilic polymer of the present invention is preferably a radical polymerization initiator (for example, the following peroxide or 2, 2) using the monomers (a) to (c) and optionally a crosslinkable monomer. -Azobis compound such as azobisisobutyronitrile) in the presence of a reverse phase suspension polymerization method using a hydrophobic solvent.

具体的には、まず、反応槽中において、水性成分としてのモノマー及び開始剤を均一に混合した水溶液と油性成分としての疎水性溶媒とを混合して混合液を調整する。このとき必要なら分散剤を用いる。なお、混合液の調整を別の槽で行い、それを反応槽に移してもよい。   Specifically, first, in a reaction tank, an aqueous solution in which a monomer and an initiator as an aqueous component are uniformly mixed and a hydrophobic solvent as an oily component are mixed to prepare a mixed solution. At this time, a dispersant is used if necessary. In addition, adjustment of a liquid mixture may be performed in another tank and it may be moved to a reaction tank.

次に、この混合液を、反応槽に付設されて静止型混合器が介設された循環ラインに平均通過回数で複数回通過させて、反応槽中に疎水性溶媒に水溶液が分散した分散液を得る(分散工程)。   Next, this mixed liquid is passed through a circulation line attached to the reaction tank and provided with a static mixer at a number of average passes, and a dispersion liquid in which an aqueous solution is dispersed in a hydrophobic solvent in the reaction tank Is obtained (dispersing step).

そして、窒素等の不活性ガス下、反応槽を昇温し、反応槽中で分散液に含まれるモノマーを重合させる(重合工程)。モノマーの種類により異なるが、重合開始温度は通常40〜90℃程度であり、反応時間は通常1〜24時間程度である。なお、混合液を循環ラインに平均通過回数で複数回通過させた後に分散液を別の反応槽に回収して重合反応をさせてもよい。   Then, the temperature of the reaction vessel is raised under an inert gas such as nitrogen, and the monomer contained in the dispersion is polymerized in the reaction vessel (polymerization step). Although depending on the type of monomer, the polymerization initiation temperature is usually about 40 to 90 ° C., and the reaction time is usually about 1 to 24 hours. In addition, after allowing the mixed solution to pass through the circulation line a plurality of times with an average number of passages, the dispersion may be recovered in another reaction vessel to cause a polymerization reaction.

重合反応後、疎水性溶媒を留去して親水性ポリマーを得る。なお、このとき、疎水性溶媒の留去を容易にする目的で、あらかじめ脱水を行うことが好ましい。   After the polymerization reaction, the hydrophobic solvent is distilled off to obtain a hydrophilic polymer. At this time, it is preferable to perform dehydration in advance for the purpose of facilitating the distillation of the hydrophobic solvent.

<疎水性溶媒>
本発明の親水性ポリマーの製造法に用いられる疎水性溶媒としては、例えば、ヘキサン、シクロヘキサン、ヘプタン、オクタン、ベンゼン、トルエン、キシレン、エチルベンゼン等の炭化水素系溶媒;四塩化炭素、ジクロルエタン等のハロゲン化炭化水素系溶媒;アイソバー等の鉱油等が挙げられる。
<Hydrophobic solvent>
Examples of the hydrophobic solvent used in the method for producing the hydrophilic polymer of the present invention include hydrocarbon solvents such as hexane, cyclohexane, heptane, octane, benzene, toluene, xylene, and ethylbenzene; halogens such as carbon tetrachloride and dichloroethane. Hydrocarbon solvents; mineral oil such as Isobar.

これらの疎水性溶媒の中では、炭化水素系溶媒が好ましく用いられ、へキサン、シクロヘキサンが更に好ましい。   Of these hydrophobic solvents, hydrocarbon solvents are preferably used, and hexane and cyclohexane are more preferable.

疎水性溶媒の量は、全モノマー量に対して、1〜20重量倍が好ましく、1〜10重量倍が更に好ましい。   The amount of the hydrophobic solvent is preferably 1 to 20 times by weight, more preferably 1 to 10 times by weight based on the total amount of monomers.

<分散剤>
本発明の親水性ポリマーの製造法に用いられる分散剤としては、例えば、ソルビタンモノステアレート、ソルビタンモノパルミテート、ポリビニルアルコール、メチルセルロース、エチルセルロース、ヒドロキシセルロース、カルボキシメチルセルロース、カルボキシルエチルセルロース、ショ糖脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンポリオキシプロピレングリコール、塩化アルキルトリメチルアンモニウム、塩化ジアルキルジメチルアンモニウム、アルキル硫酸塩、ポリオキシエチレンアルキルエーテル硫酸塩等が挙げられる。これらの分散剤は1種又はそれ以上併用してもよい。
<Dispersant>
Examples of the dispersant used in the method for producing the hydrophilic polymer of the present invention include sorbitan monostearate, sorbitan monopalmitate, polyvinyl alcohol, methyl cellulose, ethyl cellulose, hydroxy cellulose, carboxymethyl cellulose, carboxyethyl cellulose, sucrose fatty acid ester, Examples thereof include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene polyoxypropylene glycol, alkyl trimethyl ammonium chloride, dialkyl dimethyl ammonium chloride, alkyl sulfate, polyoxyethylene alkyl ether sulfate and the like. One or more of these dispersants may be used in combination.

これらの分散剤の中では、分散安定性の観点から、ソルビタンモノステアレート、ショ糖脂肪酸エステルが好ましい。   Among these dispersants, sorbitan monostearate and sucrose fatty acid ester are preferable from the viewpoint of dispersion stability.

分散剤の量は、全モノマー100重量部に対して、0.3〜20重量部が好ましく、0.5〜10重量部が更に好ましい。   The amount of the dispersant is preferably 0.3 to 20 parts by weight, and more preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the total monomers.

<重合開始剤>
本発明の親水性ポリマーの製造法に用いられる重合開始剤は、ラジカル重合開始剤が好ましく用いられる。かかる重合開始剤としては、例えば、モノマー成分中で均一に溶解する過酸化物、有機又は無機過酸若しくはその塩、アゾビス系化合物の単独或いは還元剤との組み合わせによるレドックス系のものが挙げられる。
<Polymerization initiator>
As the polymerization initiator used in the method for producing the hydrophilic polymer of the present invention, a radical polymerization initiator is preferably used. Examples of such polymerization initiators include peroxides that are uniformly dissolved in the monomer component, organic or inorganic peracids or salts thereof, redox-based compounds that are azobis compounds alone or in combination with a reducing agent.

これらの重合開始剤の中では、特に、t−ブチルパーオキサイド、ベンゾイルパーオキサイド、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2−アミジノプロパン)二塩酸塩、2,2’−アゾビス(2−(5−メチル−2−イミダゾリン−2−イル)二塩酸塩、過硫酸ナトリウム、過硫酸カリウムや過硫酸アンモニウムの単独、過硫酸カリウムや過硫酸アンモニウムの過硫酸塩とトリエチルアミン、トリエタノールアミン、ジメチルアニリン等の第3級アミンとの組み合わせが好ましい。   Among these polymerization initiators, in particular, t-butyl peroxide, benzoyl peroxide, 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-amidinopropane) dihydrochloride, 2 , 2'-Azobis (2- (5-methyl-2-imidazolin-2-yl) dihydrochloride, sodium persulfate, potassium persulfate or ammonium persulfate alone, potassium persulfate or ammonium persulfate persulfate and triethylamine A combination with a tertiary amine such as triethanolamine or dimethylaniline is preferred.

重合開始剤の量は、主鎖の高分子鎖の重合度を上げ、架橋されない高分子鎖の割合を減少させて水や疎水性溶媒に溶解しにくくし、また重合反応の反応率を上げ、残留モノマー量を減少させる観点から、全モノマー100重量部に対して、0.01〜5重量部が好ましく、0.5〜3重量部が更に好ましく、0.1〜1重量部が特に好ましい。   The amount of the polymerization initiator increases the degree of polymerization of the polymer chain of the main chain, reduces the proportion of polymer chains that are not crosslinked, makes it difficult to dissolve in water and hydrophobic solvents, and increases the reaction rate of the polymerization reaction, From the viewpoint of reducing the residual monomer amount, 0.01 to 5 parts by weight is preferable, 0.5 to 3 parts by weight is more preferable, and 0.1 to 1 part by weight is particularly preferable with respect to 100 parts by weight of the total monomers.

<静止型混合器>
静止型混合器としては、混合性に優れている観点から、例えば、縮流・分割タイプの静止型混合器(株式会社フジキン社製 商品名:分散君)が挙げられる。この静止型混合器は、各々、同一の流路孔の構成を有する複数のユニットを、流路孔が連通するように設けて構成することが可能なものである。
<Static mixer>
As a static mixer, from the viewpoint of excellent mixing properties, for example, a contraction / split type static mixer (trade name: Disperse-kun, manufactured by Fujikin Co., Ltd.) can be used. This static mixer can be configured by providing a plurality of units each having the same flow path hole configuration so that the flow path holes communicate with each other.

流路孔の縮流部流路内径は、0.2〜20mmであることが好ましく、0.5〜10mmであることがより好ましく、0.5〜5mmであることが更に好ましい。   The inner diameter of the flow path constriction portion of the flow path hole is preferably 0.2 to 20 mm, more preferably 0.5 to 10 mm, and further preferably 0.5 to 5 mm.

<分散液の平均粒径>
分散液における水溶液の体積平均粒径は、化粧品等の製品とした際に適度な表面積や感触を持つ観点から1μm以上、5μm未満が好ましく、1.5〜4.8μmが更に好ましく、2〜4.5μmが特に好ましい。これは、レーザー回折散乱式粒度分布測定装置(例えば、ベックマン・コールター社製:LS−230)により測定することができる。
<Average particle size of dispersion>
The volume average particle size of the aqueous solution in the dispersion is preferably from 1 μm to less than 5 μm, more preferably from 1.5 to 4.8 μm, and more preferably from 2 to 4 μm, from the viewpoint of having an appropriate surface area and feel when making a product such as cosmetics. .5 μm is particularly preferable. This can be measured by a laser diffraction / scattering particle size distribution analyzer (for example, LS-230, manufactured by Beckman Coulter, Inc.).

<混合液の静止型混合器平均通過回数>
静止型混合器への混合液の平均通過回数を、微小で且つ均一な粒径のポリマー粒子を製造する観点から3回以上とすることが好ましく、4回以上とすることが更に好ましく、5回以上とすることが特に好ましい。一方、重合のサイクルタイムを短くする観点から30回以下とすることが好ましく、20回以下とすることが更に好ましく、10回以下とすることが特に好ましい。
<Average number of times that the liquid mixture passes through>
The average number of passes of the mixed solution to the static mixer is preferably 3 times or more, more preferably 4 times or more from the viewpoint of producing fine and uniform polymer particles. The above is particularly preferable. On the other hand, from the viewpoint of shortening the cycle time of polymerization, it is preferably 30 times or less, more preferably 20 times or less, and particularly preferably 10 times or less.

なお、平均通過回数N(−)は、反応系の液量をV(L)、循環ポンプの流量をQ(L/分)及び循環時間をT(分)としたときに下記式で求めることができる。   The average number of passages N (−) is obtained by the following equation when the amount of liquid in the reaction system is V (L), the flow rate of the circulation pump is Q (L / min), and the circulation time is T (min). Can do.

平均通過回数N=Q×T/V
<静止型混合器の圧力損失>
静止型混合器が上記のように複数のユニットで構成される場合、静止型混合器の入口と出口との間の1ユニットあたりの圧力損失を、微粒径のポリマー粒子を製造する観点から0.01MPa以上とすることが好ましく、0.02MPa以上とすることが更に好ましい。一方、混合液を循環させる動力を小さくする観点から0.1以下とすることが好ましく、0.08MPa以下とすることが更に好ましい。
Average number of passes N = Q × T / V
<Pressure loss of static mixer>
When the static mixer is composed of a plurality of units as described above, the pressure loss per unit between the inlet and the outlet of the static mixer is reduced from the viewpoint of producing fine polymer particles. The pressure is preferably 0.01 MPa or more, and more preferably 0.02 MPa or more. On the other hand, it is preferably 0.1 or less, more preferably 0.08 MPa or less, from the viewpoint of reducing the power for circulating the mixed liquid.

ここで、静止型混合器の圧力損失と分散液における水溶液の体積平均粒径とは対応関係があり、静止型混合器の入口と出口と間の圧力損失を一定値に設定することにより、分散液における水溶液の体積平均粒径をその圧力損失に対応したものに自在に制御することができる。   Here, there is a correspondence between the pressure loss of the static mixer and the volume average particle diameter of the aqueous solution in the dispersion. By setting the pressure loss between the inlet and outlet of the static mixer to a constant value, the dispersion can be achieved. The volume average particle diameter of the aqueous solution in the liquid can be freely controlled to correspond to the pressure loss.

以下、逆相懸濁重合により親水性ポリマー粒子の製造を行った試験評価について説明する。   Hereinafter, the test evaluation in which hydrophilic polymer particles were produced by reverse phase suspension polymerization will be described.

(実施例)
<重合体製造装置>
図1は、本実施例で用いた重合体製造装置Aを示す。
(Example)
<Polymer production equipment>
FIG. 1 shows a polymer production apparatus A used in this example.

この重合体製造装置Aは、攪拌機、温度計及び冷却機を具備したモノマー水溶液調整用のモノマー槽1と、同じく、攪拌機、温度計及び冷却機を具備した重合反応用の反応槽2とを備えている。   This polymer production apparatus A includes a monomer tank 1 for preparing an aqueous monomer solution equipped with a stirrer, a thermometer and a cooler, and a reaction tank 2 for polymerization reaction equipped with a stirrer, a thermometer and a cooler. ing.

モノマー槽1からは反応槽2に向かってモノマー水溶液供給管3が延びている。   A monomer aqueous solution supply pipe 3 extends from the monomer tank 1 toward the reaction tank 2.

反応槽2には循環ライン4が付設されており、循環ライン4には流体の循環を行なうための循環ポンプ5が設けられている。また、循環ライン4の循環ポンプ5から反応槽2までの間には静止型混合器6(株式会社フジキン社製 商品名:分散君)が介設されている。   The reaction tank 2 is provided with a circulation line 4, and the circulation line 4 is provided with a circulation pump 5 for circulating the fluid. Further, between the circulation pump 5 and the reaction tank 2 in the circulation line 4, a static mixer 6 (trade name: manufactured by Fujikin Co., Ltd., trade name) is interposed.

この静止型混合器6は、縮流・分割タイプのものであって、図2に示すように2枚の円盤状の第1及び第2エレメント21,22で構成されたユニットが5ユニット繋がれたものである。   This static mixer 6 is of a contracted flow / split type, and as shown in FIG. 2, five units composed of two disk-shaped first and second elements 21 and 22 are connected. It is a thing.

第1エレメント21には、図2(a)に示すように、中央部分に、2×2の正方配置された4つの流路孔23が形成されており、一方、第2エレメント22には、図2(b)に示すように、中央部分に、中心に1つとそれを囲うように2×2の正方配置された4つとの合計5つの流路孔23が形成されている。   As shown in FIG. 2A, the first element 21 has four flow passage holes 23 arranged in a square of 2 × 2 at the center portion, while the second element 22 has As shown in FIG. 2 (b), a total of five flow path holes 23 are formed in the central portion, one at the center and four arranged in a square of 2 × 2 so as to surround it.

第1及び第2エレメント21,22の各流路孔23は、図3に示すように、中央部分が流路内径の小さい円筒孔の縮流部を有し、その両側のそれぞれが開口部に向かって円錐台形状に拡径した形状に形成されている。図3において、開孔径は流路孔23の最大孔径d1を、縮流部流路内径は流路孔23の最小孔径d2をそれぞれ表す。   As shown in FIG. 3, each flow path hole 23 of the first and second elements 21 and 22 has a constricted part of a cylindrical hole having a small inner diameter of the flow path at the center part, and each of both sides thereof is an opening. It is formed in a shape that expands in the shape of a truncated cone. In FIG. 3, the opening diameter represents the maximum hole diameter d <b> 1 of the flow path hole 23, and the contraction portion flow path inner diameter represents the minimum hole diameter d <b> 2 of the flow path hole 23.

これらの第1及び第2エレメント21,22は、位置決め部24により位置決めされて、第1エレメント21の各流路孔23と第2エレメント22の3つの流路孔23とが連通し、各々の正方配置された4つの流路孔23を頂点とする正方形の対角線が45°ずれた状態となるように重ね合わされている。   These first and second elements 21 and 22 are positioned by the positioning portion 24 so that the flow passage holes 23 of the first element 21 and the three flow passage holes 23 of the second element 22 communicate with each other. The square diagonal lines having the four channel holes 23 arranged in a square are apposed so as to be shifted by 45 °.

この静止型混合器6では、これにより、第1エレメント21の1つの流路孔23で縮流されて流通した流体が、図4に示すように、第2エレメント22で分割されて別々の流路孔23に流れ、第2エレメント22では、各流路孔23に第1エレメント21の複数の流路孔23からの流体が流れ込んで混合されると共に縮流されて流通し、それが続いて次のユニットの第1エレメント21に供給され、流体が分割と縮流とを繰り返して流動するようになっている。なお、静止型混合器6のユニット数、流路孔数及び流路内径は必要により適宜選択することができる。   In the static mixer 6, as a result, the fluid that has been circulated by being compressed in one flow path hole 23 of the first element 21 is divided by the second element 22 as shown in FIG. In the second element 22, the fluid from the plurality of flow path holes 23 of the first element 21 flows into the flow path holes 23, mixes and contracts and circulates. The fluid is supplied to the first element 21 of the next unit, and the fluid flows by repeating the division and the contraction. Note that the number of units, the number of channel holes, and the channel inner diameter of the static mixer 6 can be selected as appropriate.

<実施例1>
300Lの反応槽2にシクロヘキサン39Kg及び分散剤(ショ糖脂肪酸エステル:三菱化学フーズ(株)製、品名S−770)0.044Kgを仕込んだ。また、100Lのモノマー槽1にジメチルアミノエチルメタクリル酸ジエチル硫酸塩(MOEDES:日東化学工業(株)製)の80%水溶液1.4Kg、N,N−ジメチルアクリルアミド(和光純薬工業(株)製)3.3Kg、ポリエチレングリコールジメタクルレート(NK−9G:新中村化学(株)製)0.001Kg、イオン交換水6.5Kg及び開始剤(和光純薬工業(株)製、品名V−50)0.03Kgを仕込んだ。
<Example 1>
A 300 L reaction vessel 2 was charged with 39 kg of cyclohexane and 0.044 kg of a dispersant (sucrose fatty acid ester: product name S-770, manufactured by Mitsubishi Chemical Foods Co., Ltd.). Further, in a 100 L monomer tank 1, 1.4 kg of an 80% aqueous solution of dimethylaminoethyl methacrylate diethyl sulfate (MOEDES: manufactured by Nitto Chemical Industry Co., Ltd.), N, N-dimethylacrylamide (manufactured by Wako Pure Chemical Industries, Ltd.) ) 3.3 Kg, polyethylene glycol dimethacrylate (NK-9G: manufactured by Shin-Nakamura Chemical Co., Ltd.) 0.001 Kg, ion-exchanged water 6.5 Kg and initiator (manufactured by Wako Pure Chemical Industries, Ltd., product name V-50) ) 0.03 kg was charged.

撹拌している反応槽2に、モノマー槽1から開始剤を含んだモノマー水溶液を移送した後、10分間混合を行なって混合液を得た。   After transferring the monomer aqueous solution containing the initiator from the monomer tank 1 to the stirring reaction tank 2, the mixture was mixed for 10 minutes to obtain a mixed solution.

次に、反応槽2中の混合液を循環ライン4で循環した。循環ライン4には、各々の流路孔23の縮流部流路内径d2が2.0mmである第1及び第2セグメント21,22で各ユニットが構成され、そのユニット5つで構成された静止型混合器6が設けられているが、循環ポンプ5の流量を5L/分としたところ、静止型混合器6の入口と出口との間の圧力損失は0.14MPa(1ユニットあたりの圧力損失0.03MPa)であった。また、静止型混合器6への混合液の平均通過回数を8回とし、循環中の反応槽2中の混合液の温度を30℃に調温した。   Next, the mixed solution in the reaction tank 2 was circulated in the circulation line 4. In the circulation line 4, each unit is constituted by the first and second segments 21 and 22 in which the flow path inner diameter d2 of each flow passage hole 23 is 2.0 mm, and the unit is constituted by five units. Although the static mixer 6 is provided, when the flow rate of the circulation pump 5 is 5 L / min, the pressure loss between the inlet and the outlet of the static mixer 6 is 0.14 MPa (pressure per unit). Loss was 0.03 MPa). Further, the average number of times the liquid mixture passed through the static mixer 6 was 8 times, and the temperature of the liquid mixture in the circulating reaction tank 2 was adjusted to 30 ° C.

混合液の分散終了後、反応槽2の分散液温度を54〜57℃に昇温して40分間重合反応を行なった後、更に分散液温度を70℃に昇温して60分の熟成反応を行なった。   After the dispersion of the mixed liquid is completed, the temperature of the dispersion liquid in the reaction vessel 2 is increased to 54 to 57 ° C. and a polymerization reaction is performed for 40 minutes, and then the temperature of the dispersion liquid is further increased to 70 ° C. Was done.

重合終了後、水を分離した後にシクロヘキサンを留去して親水性ポリマー3.9Kgを得た。   After completion of the polymerization, water was separated and then cyclohexane was distilled off to obtain 3.9 kg of hydrophilic polymer.

得られた親水性ポリマーの体積平均粒径(以下、「平均粒径」と記す。)は4.3μmであった。なお、平均粒径は、レーザー回折散乱式粒度分布測定装置(ベックマン・コールター社製:LS−230)により測定した。   The obtained hydrophilic polymer had a volume average particle size (hereinafter referred to as “average particle size”) of 4.3 μm. In addition, the average particle diameter was measured with the laser diffraction scattering type particle size distribution measuring apparatus (Beckman Coulter company make: LS-230).

<実施例2>
縮流部流路内径d2が1.0mmの静止型混合器6を用い、循環ポンプ5の流量を1.5L/分にして静止型混合器6での圧力損失を0.24MPa(1ユニットあたりの圧力損失0.05MPa)とし、静止型混合器6への混合液の平均通過回数を6回とした以外は実施例1と同様にして親水性ポリマーを得た。
<Example 2>
A static mixer 6 having a contracted flow channel inner diameter d2 of 1.0 mm is used, the flow rate of the circulation pump 5 is 1.5 L / min, and the pressure loss in the static mixer 6 is 0.24 MPa (per unit). And a hydrophilic polymer was obtained in the same manner as in Example 1 except that the average number of times the liquid mixture passed through the static mixer 6 was six.

得られた親水性ポリマーの平均粒径は2.2μmであった。   The average particle size of the obtained hydrophilic polymer was 2.2 μm.

<実施例3>
縮流部流路内径d2が3.5mmの静止型混合器6を用い、循環ポンプ5の流量を11L/分にして静止型混合器6での圧力損失を0.14MPa(1ユニットあたりの圧力損失0.03MPa)とした以外は実施例1と同様にして親水性ポリマーを得た。
<Example 3>
Using a static mixer 6 with a constricted flow passage inner diameter d2 of 3.5 mm, the flow rate of the circulation pump 5 is 11 L / min, and the pressure loss in the static mixer 6 is 0.14 MPa (pressure per unit). A hydrophilic polymer was obtained in the same manner as in Example 1 except that the loss was 0.03 MPa.

得られた親水性ポリマーの平均粒径は4.4μmであった。   The average particle size of the obtained hydrophilic polymer was 4.4 μm.

<実施例4>
循環ポンプ5の流量を2L/分にして静止型混合器6での圧力損失を0.4MPa(1ユニットあたりの圧力損失0.08MPa)とした以外は実施例2と同様にして親水性ポリマーを得た。
<Example 4>
The hydrophilic polymer was obtained in the same manner as in Example 2 except that the flow rate of the circulation pump 5 was 2 L / min and the pressure loss in the static mixer 6 was 0.4 MPa (pressure loss per unit: 0.08 MPa). Obtained.

得られた親水性ポリマーの平均粒径は2.1μmであった。   The average particle size of the obtained hydrophilic polymer was 2.1 μm.

(比較例)
以下の比較例1〜3においては、反応槽2中の混合液を循環ライン4で循環せずに分散を行った。すなわち循環ポンプ5を用いて反応槽2中の混合液を静止型混合器6に送り、静止型混合器6で分散された分散液を反応槽2に戻さずに別の受槽(図示せず)で受けた。そして、反応槽2中の混合液全量を送り終えた後に、受槽中の分散液を再び反応槽に戻して重合を行った。
(Comparative example)
In Comparative Examples 1 to 3 below, the mixed liquid in the reaction tank 2 was dispersed without being circulated in the circulation line 4. That is, the mixed liquid in the reaction tank 2 is sent to the static mixer 6 using the circulation pump 5, and the dispersion liquid dispersed in the static mixer 6 is not returned to the reaction tank 2, but another receiving tank (not shown). I received it. Then, after the total amount of the mixed liquid in the reaction tank 2 had been sent, the dispersion in the receiving tank was returned to the reaction tank again for polymerization.

<比較例1>
混合液を静止型混合器6に1回だけしか通過させていない点を除いて実施例1と同様にして親水性ポリマーを得た。
<Comparative Example 1>
A hydrophilic polymer was obtained in the same manner as in Example 1 except that the liquid mixture was passed through the static mixer 6 only once.

得られた親水性ポリマーの平均粒径は8.1μmであった。   The average particle size of the obtained hydrophilic polymer was 8.1 μm.

<比較例2>
混合液を静止型混合器6に1回だけしか通過させていない点を除いて実施例3と同様にして親水性ポリマーを得た。
<Comparative example 2>
A hydrophilic polymer was obtained in the same manner as in Example 3 except that the liquid mixture was passed through the static mixer 6 only once.

得られた親水性ポリマーの平均粒径は6.1μmであった。   The average particle diameter of the obtained hydrophilic polymer was 6.1 μm.

<比較例3>
混合液を静止型混合器6に1回だけしか通過させていない点を除いて実施例4と同様にして親水性ポリマーを得た。なお、静止型混合器6での圧力損失は0.55MPa(1ユニットあたりの圧力損失0.11MPa)であった。
<Comparative Example 3>
A hydrophilic polymer was obtained in the same manner as in Example 4 except that the liquid mixture was passed only once through the static mixer 6. The pressure loss in the static mixer 6 was 0.55 MPa (pressure loss per unit 0.11 MPa).

得られた親水性ポリマーの平均粒径は6.7μmであった。   The average particle diameter of the obtained hydrophilic polymer was 6.7 μm.

Figure 2008063409
Figure 2008063409

以上に説明したように、本発明は、微粒化した親水性ポリマーの製造に有用である。   As described above, the present invention is useful for producing a micronized hydrophilic polymer.

重合体製造装置の構成を示す説明図である。It is explanatory drawing which shows the structure of a polymer manufacturing apparatus. (a)は静止型混合器の1ユニットの第1エレメントの平面図であり、(b)は第2エレメントの平面図である。(A) is a top view of the 1st element of 1 unit of a static mixer, (b) is a top view of a 2nd element. 流路孔の形状を示す図である。It is a figure which shows the shape of a flow-path hole. 静止型混合器内での流体の縮流及び分割を示す説明図である。It is explanatory drawing which shows the contraction flow and division | segmentation of the fluid in a static mixer.

符号の説明Explanation of symbols

2 反応槽
4 循環ライン
6 静止型混合器
23 流路孔
2 Reaction tank 4 Circulation line 6 Static mixer 23 Channel hole

Claims (5)

(1)槽中のモノマーを含む水性成分及び油性成分からなる混合液を、該槽に付設され静止型混合器が介設された循環ラインに平均通過回数で複数回通過させて、油性成分に水性成分が分散した分散液を得る分散工程と、
(2)上記分散工程で得られた分散液に含まれるモノマーを重合させる反応工程と、
を備えた親水性ポリマー粒子の製造法。
(1) A mixed liquid composed of an aqueous component and an oily component containing a monomer in a tank is passed through a circulation line attached to the tank and provided with a static mixer a plurality of times with an average number of passes to obtain an oily component. A dispersion step of obtaining a dispersion in which the aqueous component is dispersed;
(2) a reaction step of polymerizing monomers contained in the dispersion obtained in the dispersion step;
A method for producing hydrophilic polymer particles comprising:
分散液における水性成分の体積平均粒径が1μm以上、5μm未満である、請求項1に記載の親水性ポリマー粒子の製造法。   The method for producing hydrophilic polymer particles according to claim 1, wherein the volume average particle size of the aqueous component in the dispersion is 1 μm or more and less than 5 μm. 上記分散工程において、上記循環ラインへの混合液の平均通過回数を3回以上とする、請求項1又は2に記載の親水性ポリマー粒子の製造法。   The method for producing hydrophilic polymer particles according to claim 1 or 2, wherein, in the dispersion step, the average number of times the mixed solution passes through the circulation line is 3 or more. 上記静止型混合器は、各々、同一の流路孔の構成を有する複数のユニットが、流路孔が連通するように設けられて構成されており、
上記分散工程において、上記静止型混合器の入口と出口との間の1ユニットあたりの圧力損失を0.01〜0.1MPaとする、請求項1〜3のいずれかに記載の親水性ポリマー粒子の製造法。
The static mixer is configured such that a plurality of units each having the same flow path hole configuration are provided so that the flow path holes communicate with each other.
The hydrophilic polymer particles according to any one of claims 1 to 3, wherein in the dispersion step, a pressure loss per unit between an inlet and an outlet of the static mixer is 0.01 to 0.1 MPa. Manufacturing method.
上記分散工程において、上記静止型混合器の入口と出口と間の圧力損失を一定値に設定して、分散液における水性成分の体積平均粒径をその圧力損失に対応したものに制御する、請求項1〜4のいずれかに記載の親水性ポリマー粒子の製造法。   In the dispersion step, the pressure loss between the inlet and the outlet of the static mixer is set to a constant value, and the volume average particle size of the aqueous component in the dispersion is controlled to correspond to the pressure loss. Item 5. A method for producing hydrophilic polymer particles according to any one of Items 1 to 4.
JP2006241539A 2006-09-06 2006-09-06 Method for producing hydrophilic polymer particles Active JP4833001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006241539A JP4833001B2 (en) 2006-09-06 2006-09-06 Method for producing hydrophilic polymer particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006241539A JP4833001B2 (en) 2006-09-06 2006-09-06 Method for producing hydrophilic polymer particles

Publications (2)

Publication Number Publication Date
JP2008063409A true JP2008063409A (en) 2008-03-21
JP4833001B2 JP4833001B2 (en) 2011-12-07

Family

ID=39286397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006241539A Active JP4833001B2 (en) 2006-09-06 2006-09-06 Method for producing hydrophilic polymer particles

Country Status (1)

Country Link
JP (1) JP4833001B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114335A (en) * 2007-11-07 2009-05-28 Kao Corp Method for producing polymer fine particle
JP2009114334A (en) * 2007-11-07 2009-05-28 Kao Corp Method for producing polymer fine particle
WO2009096301A1 (en) * 2008-02-01 2009-08-06 Toagosei Co., Ltd. Process for the production of polymer microparticles
WO2009096268A1 (en) * 2008-02-01 2009-08-06 Toagosei Co., Ltd. Process for the production of polymer microparticles
JP2010138301A (en) * 2008-12-12 2010-06-24 Kao Corp Method for producing hydrophilic polymeric particle
JP2010150327A (en) * 2008-12-24 2010-07-08 Kao Corp Method for producing carboxylic acid-based polymer
JP2011026381A (en) * 2009-07-22 2011-02-10 Kao Corp Method for producing hydrophilic polymer particle
US9598521B2 (en) 2012-08-22 2017-03-21 Kao Corporation Method for manufacturing hydrophilic polymer particle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718008A (en) * 1993-07-05 1995-01-20 Res Inst For Prod Dev Production of fine spherical resin particles
JP2003252911A (en) * 2001-12-28 2003-09-10 Kao Corp Method for producing carboxylic acid based polymer
JP2003305360A (en) * 2002-04-11 2003-10-28 Sekisui Chem Co Ltd Method for producing thermally expansive microcapsule
JP2004307419A (en) * 2003-04-09 2004-11-04 Kao Corp Touch improver composition
JP2005146153A (en) * 2003-11-17 2005-06-09 Nippon Shokubai Co Ltd Production method of emulsion for thermal storage medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718008A (en) * 1993-07-05 1995-01-20 Res Inst For Prod Dev Production of fine spherical resin particles
JP2003252911A (en) * 2001-12-28 2003-09-10 Kao Corp Method for producing carboxylic acid based polymer
JP2003305360A (en) * 2002-04-11 2003-10-28 Sekisui Chem Co Ltd Method for producing thermally expansive microcapsule
JP2004307419A (en) * 2003-04-09 2004-11-04 Kao Corp Touch improver composition
JP2005146153A (en) * 2003-11-17 2005-06-09 Nippon Shokubai Co Ltd Production method of emulsion for thermal storage medium

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114335A (en) * 2007-11-07 2009-05-28 Kao Corp Method for producing polymer fine particle
JP2009114334A (en) * 2007-11-07 2009-05-28 Kao Corp Method for producing polymer fine particle
US8362165B2 (en) 2008-02-01 2013-01-29 Toagosei Co., Ltd. Process for the production of polymer microparticles
WO2009096268A1 (en) * 2008-02-01 2009-08-06 Toagosei Co., Ltd. Process for the production of polymer microparticles
JPWO2009096301A1 (en) * 2008-02-01 2011-05-26 東亞合成株式会社 Method for producing polymer fine particles
US8058370B2 (en) 2008-02-01 2011-11-15 Toagosei Co., Ltd. Process for the production of polymer microparticles
WO2009096301A1 (en) * 2008-02-01 2009-08-06 Toagosei Co., Ltd. Process for the production of polymer microparticles
JP5251886B2 (en) * 2008-02-01 2013-07-31 東亞合成株式会社 Method for producing polymer fine particles
JP5499712B2 (en) * 2008-02-01 2014-05-21 東亞合成株式会社 Method for producing polymer fine particles
JP2010138301A (en) * 2008-12-12 2010-06-24 Kao Corp Method for producing hydrophilic polymeric particle
JP2010150327A (en) * 2008-12-24 2010-07-08 Kao Corp Method for producing carboxylic acid-based polymer
JP2011026381A (en) * 2009-07-22 2011-02-10 Kao Corp Method for producing hydrophilic polymer particle
US9598521B2 (en) 2012-08-22 2017-03-21 Kao Corporation Method for manufacturing hydrophilic polymer particle

Also Published As

Publication number Publication date
JP4833001B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
JP4833001B2 (en) Method for producing hydrophilic polymer particles
KR100309053B1 (en) Aqueous stable dispersions based on water-soluble polymers containing a cationic dispersant comprising hydrophobic units
CN106660006A (en) Synthesis of an acrylic polymer in flow reactor
RU2678304C2 (en) Continuous method for obtaining highly branched polymers based on monoethylene unsaturated mono- or dicarbonic acid containing from 3 to 8 carbon atoms, or anhydrides and salts thereof
JPS62232413A (en) Production and use of fine powdery crosslinked copolymer
CA2865460A1 (en) Continuous process for the synthesis of graft polymers based on polyethers
AU2014298551A1 (en) Reverse-phase polymerisation process
JPS63256605A (en) Production of granular polymer from water-soluble ethylenic unsaturated monomer
EP2341081A1 (en) Process for making uniform polymer beads
KR20010012378A (en) Polymerisation reactions under miniemulsion conditions
JP5541481B2 (en) Method for producing radical polymer
US9068023B2 (en) Continuous process for the synthesis of graft polymers based on polyethers
US4618647A (en) Process for producing a polymer water-in-oil emulsion
JPS59170103A (en) Improved manufacture of water-in-oil emulsion of polymer
JP5559494B2 (en) Method for producing hydrophilic polymer particles
CA2063656A1 (en) Method of preparing acrylamide/diallyl dimethyl ammonium chloride copolymers
JP2004149793A (en) Continuous production of crosslinked polymer nanoparticle
JP4230817B2 (en) Cationic polymer emulsion and method for producing the same
KR910005672B1 (en) Polymerization process
JP2002114809A (en) Water-in-oil type emulsion and method for using the same
JP4384108B2 (en) Method for producing polymer
JP2002332358A (en) Method for adjusting solubility of water-in-oil emulsion
Borzenkov et al. Polymerization Behavior of Surface-Active Monomers
JP2010248498A (en) Method of producing radically polymerized polymer
TWI589598B (en) Method for producing hydrophilic polymer particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110921

R151 Written notification of patent or utility model registration

Ref document number: 4833001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250