JP2010150327A - Method for producing carboxylic acid-based polymer - Google Patents

Method for producing carboxylic acid-based polymer Download PDF

Info

Publication number
JP2010150327A
JP2010150327A JP2008327832A JP2008327832A JP2010150327A JP 2010150327 A JP2010150327 A JP 2010150327A JP 2008327832 A JP2008327832 A JP 2008327832A JP 2008327832 A JP2008327832 A JP 2008327832A JP 2010150327 A JP2010150327 A JP 2010150327A
Authority
JP
Japan
Prior art keywords
reaction
monomer
carboxylic acid
liquid
circulation line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008327832A
Other languages
Japanese (ja)
Other versions
JP5373386B2 (en
Inventor
Kazuki Naito
一樹 内藤
Fumio Okazaki
史雄 岡崎
Shuichi Kaku
周一 賀來
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2008327832A priority Critical patent/JP5373386B2/en
Publication of JP2010150327A publication Critical patent/JP2010150327A/en
Application granted granted Critical
Publication of JP5373386B2 publication Critical patent/JP5373386B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polymerisation Methods In General (AREA)
  • Polymerization Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stably and efficiently produce a polymer having high purity, whose molecular weight and distribution thereof are suitable for a detergent builder, a dispersant, a scale preventive and the like. <P>SOLUTION: The method for producing a carboxylic acid-based polymer employs a reactor 10 including a reaction tank 11, an external circulating line 12, a monomer feeding means 19, and polymerization initiator feeding means 14, 15. While a reaction solution in the reaction tank 11 is circulated through the external circulating line 12, a monomer is continuously fed from the monomer feeding means 19 to the reaction solution, and a redox initiator is also continuously fed from the polymerization initiator feeding means 14, 15, then the monomer is redox-polymerized to produce a carboxylic acid-based polymer through a semibatch operation. The reaction solution is circulated through the external circulating line 12 at least 17 times during the monomer feeding period. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、カルボン酸系重合体の半回分操作での製造方法に関する。更に詳しくは、洗剤用ビルダー、分散剤、スケール防止剤等として好適に使用しうるカルボン酸系重合体の半回分操作での製造方法に関する。   The present invention relates to a method for producing a carboxylic acid polymer by semi-batch operation. More specifically, the present invention relates to a method for producing a carboxylic acid polymer that can be suitably used as a detergent builder, a dispersant, a scale inhibitor, etc., in a semi-batch operation.

亜硫酸水素塩と酸素のレドックス開始剤存在下で重合を行うカルボン酸系重合体の製造法としては、攪拌槽型反応器で滴下方式により重合反応を行う方法(例えば、特許文献1参照)及び反応管内に薄膜流を形成させて重合反応を行う方法(例えば、特許文献2参照)が知られている。   As a method for producing a carboxylic acid polymer that is polymerized in the presence of a bisulfite and oxygen redox initiator, a method in which a polymerization reaction is carried out by a dropping method in a stirred tank reactor (see, for example, Patent Document 1) and reaction A method of performing a polymerization reaction by forming a thin film flow in a tube (for example, see Patent Document 2) is known.

上記以外の重合法として、スタティック・ミキサーでモノマー及びレドックス開始剤の連続混合を行った後、適当な重合器に供給するという方法(例えば、特許文献3参照)が知られている。   As a polymerization method other than the above, a method is known in which a monomer and a redox initiator are continuously mixed with a static mixer and then supplied to an appropriate polymerization vessel (for example, see Patent Document 3).

また、連続的にアクリル酸塩系重合体を製造する方法として、静止型混合器を備えたループ型反応器を用いて製造する方法(例えば、特許文献4参照)、流通式混合器を備えた第1重合工程と第2重合反応工程により製造する方法(例えば、特許文献5参照)、及び静止型混合器とリサイクルタンクを備えたループ型反応器により製造する方法(例えば、特許文献6参照)が知られている。
特公昭60−24806号公報 特公平02−24283号公報 特公昭60−8001号公報 特開昭60−28409号公報 特許第3730615号公報 特開2001−98001号公報
Moreover, as a method of continuously producing an acrylate polymer, a method of producing using a loop reactor equipped with a static mixer (for example, see Patent Document 4), a flow mixer was provided. A method of producing by a first polymerization step and a second polymerization reaction step (see, for example, Patent Document 5) and a method of producing by a loop reactor having a static mixer and a recycling tank (for example, see Patent Document 6) It has been known.
Japanese Patent Publication No. 60-24806 Japanese Patent Publication No. 02-24283 Japanese Patent Publication No. 60-8001 JP 60-28409 A Japanese Patent No. 3730615 JP 2001-98001 A

しかしながら、特許文献1に記載された方法では、スケールを増大させる場合に、気泡径の制御が難しくなるので、固形分濃度を下げる必要があり、また、低分子量の重合体を得る場合に、開始剤を増量する必要がある。したがって、その方法には、生産性が低下したり、不純物の生成割合が増大するという欠点がある。   However, in the method described in Patent Document 1, since it is difficult to control the bubble diameter when the scale is increased, it is necessary to reduce the solid content concentration, and when the low molecular weight polymer is obtained, the process is started. The dose should be increased. Therefore, this method has the disadvantages that productivity is reduced and the generation rate of impurities is increased.

特許文献2に記載された方法では、反応管内に薄膜流を形成するために膨大な量のガスが必要となるという欠点がある。   The method described in Patent Document 2 has a drawback that an enormous amount of gas is required to form a thin film flow in the reaction tube.

特許文献3に記載された方法では、レドックス開始剤が混合器に導入される段階で液状である必要があり、開始反応速度が大きく、閉塞の防止のため混合器の仕様及び開始剤の供給方法に制約があるという欠点がある。   In the method described in Patent Document 3, the redox initiator needs to be liquid at the stage of introduction into the mixer, the initiation reaction rate is high, and the mixer specifications and initiator supply method are used to prevent clogging. There is a disadvantage that there is a restriction.

特許文献4に記載された方法では、生産性が低く、また気液系を取り扱う場合には、ガスの分離機構が不十分なため、循環ができなくなるという欠点がある。   In the method described in Patent Document 4, productivity is low, and when a gas-liquid system is handled, the gas separation mechanism is insufficient, and thus there is a disadvantage that circulation cannot be performed.

特許文献5に記載された方法では、生産性は高いが製造設備の建設費が高く、また設備のメンテナンスに時間と費用がかかるという欠点がある。   The method described in Patent Document 5 has the disadvantages that the productivity is high but the construction equipment construction cost is high, and that the maintenance of the equipment takes time and money.

特許文献6に記載された方法では、亜硫酸水素塩及び酸素をレドックス開始剤として用いた場合、これらの開始剤及びモノマーをループ内に直接供給され、水溶性粘性の高い重合体が循環している状態で開始反応を行うこととなる。その結果、開始剤効率の高い重合反応を行うことができず、不純物の量が増大する。そこで、開始剤効率を高めるために水溶性重合体の粘度を下げるべく開始剤を増量し、分子量を下げた場合には、やはり開始剤由来の不純物の量が増大し、また水溶性重合体の濃度を下げた場合には、生産性が低下するという欠点がある。   In the method described in Patent Document 6, when bisulfite and oxygen are used as a redox initiator, these initiator and monomer are directly fed into the loop, and a polymer having a high water-soluble viscosity circulates. The starting reaction will be performed in the state. As a result, a polymerization reaction with high initiator efficiency cannot be performed, and the amount of impurities increases. Therefore, when the initiator is increased to reduce the viscosity of the water-soluble polymer in order to increase the initiator efficiency and the molecular weight is decreased, the amount of impurities derived from the initiator also increases, and the water-soluble polymer When the concentration is lowered, there is a disadvantage that productivity is lowered.

本発明は、亜硫酸水素塩と酸素をレドックス開始剤としたカルボン酸系重合体の半回分操作での製造方法において、純度が高く、しかも、分子量及びその分布が、洗剤用ビルダー、分散剤、スケール防止剤等に好適なカルボン酸系重合体を安定に且つ生産性よく製造することを課題とする。   The present invention relates to a method for producing a carboxylic acid polymer using bisulfite and oxygen as a redox initiator in a semi-batch operation, and has high purity, and the molecular weight and distribution thereof are a builder for detergent, a dispersant, a scale. It is an object of the present invention to produce a carboxylic acid polymer suitable for an inhibitor and the like stably and with high productivity.

本発明は、反応槽と、該反応槽に両端が接続された外部循環ラインと、α−不飽和カルボン酸及び/又はその塩を含むモノマーを供給するモノマー供給手段と、レドックス開始剤を供給する重合開始剤供給手段と、を備えた反応装置を用い、上記反応槽内の反応液を上記外部循環ラインに循環させながら、該反応液に対して、上記モノマー供給手段からモノマーを連続供給すると共に、上記重合開始剤供給手段からレドックス開始剤を連続供給することにより、モノマーをレドックス重合させて半回分操作によりカルボン酸系重合体を製造する方法であって、
上記反応液を、モノマー供給時間中に上記外部循環ラインに17回以上循環させるものである。
The present invention supplies a reaction vessel, an external circulation line having both ends connected to the reaction vessel, a monomer supply means for supplying a monomer containing an α-unsaturated carboxylic acid and / or a salt thereof, and a redox initiator. A polymerization initiator supply means, and continuously supplying the monomer from the monomer supply means to the reaction liquid while circulating the reaction liquid in the reaction tank to the external circulation line. , By continuously supplying a redox initiator from the polymerization initiator supply means, the monomer is redox polymerized to produce a carboxylic acid polymer by semi-batch operation,
The reaction solution is circulated 17 times or more in the external circulation line during the monomer supply time.

また、本発明は、反応液を貯めるための反応槽と、
上記反応槽に両端が接続された外部循環ラインと、
上記外部循環ラインに介設され上記反応槽内の反応液を該外部循環ラインに循環させるための送液手段と、
反応液に対してα−不飽和カルボン酸及び/又はその塩を含むモノマーを供給するためのモノマー供給手段と、
反応液に対してレドックス開始剤を供給するための重合開始剤供給手段と、
を備え、モノマーをレドックス重合させて半回分操作によりカルボン酸系重合体を製造するように構成された反応装置である。
The present invention also includes a reaction tank for storing a reaction solution,
An external circulation line having both ends connected to the reaction vessel;
Liquid feeding means for circulating the reaction liquid in the reaction tank interposed in the external circulation line to the external circulation line;
Monomer supply means for supplying a monomer containing an α-unsaturated carboxylic acid and / or a salt thereof to the reaction solution;
A polymerization initiator supply means for supplying a redox initiator to the reaction solution;
And a reactor configured to redox polymerize the monomer and produce a carboxylic acid polymer by semi-batch operation.

本発明によれば、純度が高く、しかも、分子量及びその分布が、洗剤用ビルダー、分散剤、スケール防止剤等に好適なカルボン酸系重合体を安定に且つ生産性よく製造することができる。   According to the present invention, a carboxylic acid polymer having high purity and having a molecular weight and distribution suitable for detergent builders, dispersants, scale inhibitors and the like can be produced stably and with high productivity.

以下、実施形態について詳細に説明する。   Hereinafter, embodiments will be described in detail.

(反応装置)
図1は本実施形態に係る反応装置10を示す。なお、本実施形態は、亜硫酸水素塩と酸素を含むガスとからなるレドックス開始剤を用いる場合を例示するが、特にこれに限定されるものではない。
(Reactor)
FIG. 1 shows a reaction apparatus 10 according to this embodiment. In addition, although this embodiment illustrates the case where the redox initiator which consists of hydrogen sulfite and the gas containing oxygen is illustrated, it is not specifically limited to this.

本実施形態に係る反応装置10は、攪拌機能及び温調機能を有する容量が例えば10〜30000Lの反応槽11を備え、この反応槽11に反応液が貯められる。   The reaction apparatus 10 according to the present embodiment includes a reaction tank 11 having a capacity of, for example, 10 to 30000 L having a stirring function and a temperature control function, and the reaction liquid is stored in the reaction tank 11.

反応槽11には、一端が槽下部に及び他端が槽上部にそれぞれ接続された外部循環ライン12が設けられている。外部循環ライン12は、例えば、流路長が1〜50m、流路径が20〜500mmである。   The reaction tank 11 is provided with an external circulation line 12 having one end connected to the lower part of the tank and the other end connected to the upper part of the tank. The external circulation line 12 has, for example, a channel length of 1 to 50 m and a channel diameter of 20 to 500 mm.

外部循環ライン12には循環ポンプ13(送液手段)が介設され、この循環ポンプ13が反応槽11内の反応液を槽下部から槽上部に向かって外部循環ライン12を送液することにより外部循環ライン12に循環させる。   The external circulation line 12 is provided with a circulation pump 13 (liquid feeding means). The circulation pump 13 feeds the reaction liquid in the reaction tank 11 from the lower part of the tank toward the upper part of the tank. Circulate to the external circulation line 12.

外部循環ライン12には、循環ポンプ13の下流側に、亜硫酸水素塩供給源から延びた亜硫酸水素塩供給管14及び酸素含有ガス供給源(例えば、コンプレッサーやブロアー設備等)から延びた酸素含有ガス供給管15がそれぞれ接続されている。この亜硫酸水素塩供給管14が反応液に対して亜硫酸水素塩を溶解した水溶液(以下、「亜硫酸水素塩水溶液」という。)を供給すると共に酸素含有ガス供給管15が反応液に対して酸素を含有するガス(以下、「酸素含有ガス」という。)を供給することにより、反応液に対して亜硫酸水素塩と酸素とからなるレドックス開始剤を供給する。従って、これらの亜硫酸水素塩供給管14及び酸素含有ガス供給管15が重合開始剤供給手段を構成する。なお、亜硫酸水素塩供給管14及び酸素含有ガス供給管15がそれぞれ外部循環ライン12に接続された構成ではなく、亜硫酸水素塩供給管14と酸素含有ガス供給管15とが接続され、それらの合流管が外部循環ライン12に接続された構成であってもよい。   In the external circulation line 12, an oxygen-containing gas extending from a bisulfite supply pipe 14 extending from a bisulfite supply source and an oxygen-containing gas supply source (for example, a compressor or a blower facility) downstream of the circulation pump 13. Supply pipes 15 are connected to each other. The bisulfite supply pipe 14 supplies an aqueous solution (hereinafter referred to as “bisulfite aqueous solution”) in which bisulfite is dissolved to the reaction liquid, and the oxygen-containing gas supply pipe 15 supplies oxygen to the reaction liquid. By supplying the contained gas (hereinafter referred to as “oxygen-containing gas”), a redox initiator composed of bisulfite and oxygen is supplied to the reaction solution. Therefore, these bisulfite supply pipe 14 and oxygen-containing gas supply pipe 15 constitute a polymerization initiator supply means. The bisulfite supply pipe 14 and the oxygen-containing gas supply pipe 15 are not connected to the external circulation line 12, but the bisulfite supply pipe 14 and the oxygen-containing gas supply pipe 15 are connected to join them. The structure in which the pipe | tube was connected to the external circulation line 12 may be sufficient.

外部循環ライン12には、亜硫酸水素塩供給管14及び酸素含有ガス供給管15の接続部が上流側に配置されるように流通式混合器16が介設されている。この流通式混合器16が外部循環ライン12を流通する反応液と酸素含有ガスとの気液混合を行う。このように流通式混合器16の上流側に酸素含有ガス供給管15の接続部が配置されていることにより、気液の分散性を高めると共に循環する反応液への酸素の溶解性を高めることができる。   A circulation mixer 16 is interposed in the external circulation line 12 so that the connecting portion of the bisulfite supply pipe 14 and the oxygen-containing gas supply pipe 15 is arranged on the upstream side. The flow mixer 16 performs gas-liquid mixing of the reaction liquid flowing through the external circulation line 12 and the oxygen-containing gas. As described above, the connection part of the oxygen-containing gas supply pipe 15 is arranged on the upstream side of the flow mixer 16, thereby improving the dispersibility of the gas and liquid and the solubility of oxygen in the circulating reaction liquid. Can do.

流通式混合器16としては、例えば、スタティック・ミキサー、オリフィスミキサー等の静止型混合器;エジェクター等の噴流ノズル;ラインミキサー等の管路攪拌機等が挙げられる。これらの中では、少ないガス量においても高い混合性能を発揮させることができる観点及び設備の耐久性、メンテナンス等の観点から、静止型混合器が好ましい。静止型混合器としては例えば「分散君」(株式会社フジキン社製)を好ましく用いることができる。   Examples of the flow mixer 16 include a static mixer such as a static mixer or an orifice mixer; a jet nozzle such as an ejector; a pipe stirrer such as a line mixer. Among these, a static mixer is preferable from the viewpoints of exhibiting high mixing performance even with a small amount of gas, as well as durability of equipment, maintenance, and the like. As the static mixer, for example, “Dispersion-kun” (manufactured by Fujikin Co., Ltd.) can be preferably used.

外部循環ライン12には、流通式混合器16の下流側の部分に、熱交換器17が設けられている。この熱交換器17が外部循環ライン12における流通式混合器16よりも下流側の部分を流通する気液混合流体の温調を行う。   In the external circulation line 12, a heat exchanger 17 is provided on the downstream side of the flow mixer 16. The heat exchanger 17 regulates the temperature of the gas-liquid mixed fluid that flows through a portion of the external circulation line 12 downstream of the flow mixer 16.

外部循環ライン12には、流通式混合器16の下流側に、コントロールバルブ18が設けられている。このコントロールバルブ18が外部循環ライン12における流通式混合器16よりも下流側の部分を流通する気液混合流体の流量を調節することにより、気液混合流体にかける循環ライン戻り部圧力を設定する。   A control valve 18 is provided on the external circulation line 12 on the downstream side of the flow mixer 16. The control valve 18 adjusts the flow rate of the gas-liquid mixed fluid flowing through the portion of the external circulation line 12 downstream of the flow-type mixer 16, thereby setting the pressure of the circulation line return portion applied to the gas-liquid mixed fluid. .

反応槽11には、その槽上部に、モノマー供給源から延びたモノマー供給管19が接続されている。このモノマー供給管19が反応槽11内の反応液に対してモノマーを供給する。従って、このモノマー供給管19がモノマー供給手段を構成する。なお、モノマー供給管19が反応槽11に接続された構成ではなく、外部循環ライン12に接続された構成であってもよい。   A monomer supply pipe 19 extending from the monomer supply source is connected to the reaction tank 11 at the top of the tank. The monomer supply pipe 19 supplies monomer to the reaction solution in the reaction tank 11. Therefore, the monomer supply pipe 19 constitutes a monomer supply means. Note that the monomer supply pipe 19 may be connected to the external circulation line 12 instead of being connected to the reaction tank 11.

また、反応槽11や外部循環ライン12には、モノマーを中和するための中和剤供給ラインを設置してもよい。   Moreover, you may install in the reaction tank 11 and the external circulation line 12 the neutralizing agent supply line for neutralizing a monomer.

(重合体の製造方法)
本実施形態に係るカルボン酸系重合体(以下、「重合体」という。)の製造方法は、上記反応装置10を用い、反応槽11内の反応液を外部循環ライン12に循環させながら、反応液に対して、モノマー供給管19からモノマーを連続供給すると共に、亜硫酸水素塩供給管14及び酸素含有ガス供給管15から亜硫酸水素塩と酸素とからなるレドックス開始剤を連続供給することにより、モノマーをレドックス重合させて半回分操作により重合体を製造するものである。そして、反応液を、モノマー供給時間中に外部循環ライン12に17回以上循環させる。
(Method for producing polymer)
The method for producing a carboxylic acid-based polymer (hereinafter referred to as “polymer”) according to the present embodiment uses the reaction apparatus 10 to react while circulating the reaction liquid in the reaction tank 11 to the external circulation line 12. The monomer is continuously supplied from the monomer supply pipe 19 to the liquid, and the redox initiator composed of hydrogen sulfite and oxygen is continuously supplied from the hydrogen sulfite supply pipe 14 and the oxygen-containing gas supply pipe 15 to thereby provide the monomer. Is polymerized by a half-batch operation. Then, the reaction solution is circulated 17 times or more in the external circulation line 12 during the monomer supply time.

このようにすることにより、純度が高く、しかも、分子量及びその分布が、洗剤用ビルダー、分散剤、スケール防止剤等に好適な重合体を安定に且つ生産性よく製造することができる。   By doing so, a polymer having high purity and having a molecular weight and distribution suitable for detergent builders, dispersants, scale inhibitors and the like can be produced stably and with high productivity.

<モノマー>
α−不飽和カルボン酸又はその塩は、反応原料のモノマーとして用いられる。α−不飽和カルボン酸又はその塩の中では、アクリル酸又はその塩を必須成分とするモノマーは、単独重合又は共重合に適しているので好ましい。アクリル酸は、無水アクリル酸又はアクリル酸60質量%以上を含有するアクリル酸水溶液として用いることができる。このアクリル酸水溶液は、一部ないし全部を中和したアクリル酸アルカリ金属塩の水溶液、例えば、アクリル酸ナトリウム水溶液、アクリル酸カリウム水溶液等であってもよい。
<Monomer>
The α-unsaturated carboxylic acid or a salt thereof is used as a monomer for the reaction raw material. Among the α-unsaturated carboxylic acids or salts thereof, a monomer containing acrylic acid or a salt thereof as an essential component is preferable because it is suitable for homopolymerization or copolymerization. Acrylic acid can be used as an acrylic acid aqueous solution containing 60% by mass or more of acrylic acid anhydride or acrylic acid. The aqueous acrylic acid solution may be an aqueous solution of an alkali metal acrylate that is partially or wholly neutralized, such as an aqueous sodium acrylate solution or an aqueous potassium acrylate solution.

モノマーには、α−不飽和カルボン酸又はその塩と共重合可能な親水性モノマー、例えば、マレイン酸、アクリルアミド、アクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシエチル等が含有されていてもよい。モノマーにおける親水性モノマーの含有量は、重合反応速度を高めるとともに、分子量の制御を容易にする観点から、0〜30モル%が好ましい。   The monomer may contain a hydrophilic monomer copolymerizable with an α-unsaturated carboxylic acid or a salt thereof, such as maleic acid, acrylamide, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, and the like. . The content of the hydrophilic monomer in the monomer is preferably 0 to 30 mol% from the viewpoint of increasing the polymerization reaction rate and facilitating the control of the molecular weight.

モノマーを水溶液として供給する場合、モノマー水溶液の温度は、水溶液として取り扱う観点から5℃以上、また反応開始前のモノマーの重合を抑制する観点から30℃以下が好ましい。これらの観点から、モノマー水溶液の温度は、5〜30℃が好ましい。なお、マレイン酸を共重合させる場合、マレイン酸塩を水溶液として用いるときには、そのマレイン酸塩水溶液の温度は、50〜90℃が好ましい。   When the monomer is supplied as an aqueous solution, the temperature of the aqueous monomer solution is preferably 5 ° C. or higher from the viewpoint of handling as an aqueous solution, and 30 ° C. or lower from the viewpoint of suppressing polymerization of the monomer before starting the reaction. From these viewpoints, the temperature of the aqueous monomer solution is preferably 5 to 30 ° C. When maleic acid is copolymerized, when maleate is used as an aqueous solution, the temperature of the maleate aqueous solution is preferably 50 to 90 ° C.

<レドックス開始剤>
レドックス開始剤としては、亜硫酸水素塩と酸素とからなるものが好適に用いられる。
<Redox initiator>
As the redox initiator, those composed of bisulfite and oxygen are preferably used.

亜硫酸水素塩としては、例えば、亜硫酸水素ナトリウム、亜硫酸水素カリウム、亜硫酸水素マグネシウム等が挙げられる。これらの中では、還元作用の強い亜硫酸水素ナトリウムが好ましい。   Examples of the bisulfite include sodium bisulfite, potassium bisulfite, magnesium bisulfite and the like. Among these, sodium bisulfite having a strong reducing action is preferable.

亜硫酸水素塩は反応液に対して亜硫酸水素塩水溶液として供給するが、その濃度は、生産性の観点から、好ましくは1〜40質量%、より好ましくは20〜40質量%である。   Bisulfite is supplied to the reaction solution as a bisulfite aqueous solution, and the concentration thereof is preferably 1 to 40% by mass, more preferably 20 to 40% by mass, from the viewpoint of productivity.

亜硫酸水素塩の供給量は、使用用途に適した分子量の制御を容易にするとともに、亜硫酸水素塩と、α−不飽和カルボン酸又はその塩との付加反応物質(以下、「付加物」という。)の生成を抑制する観点から、モノマー1モルに対して0.008〜0.1 モルであることが好ましい。   The supply amount of bisulfite facilitates control of the molecular weight suitable for the intended use, and is an addition reaction substance (hereinafter referred to as “adduct”) of bisulfite and α-unsaturated carboxylic acid or a salt thereof. ) Is preferably 0.008 to 0.1 mol with respect to 1 mol of the monomer.

また、酸素は反応液に対して酸素含有ガスとして供給するが、一般的に空気が用いられ、純酸素や純酸素を不活性ガスで希釈したガスであってもよい。酸素含有ガスにおける酸素濃度は、亜硫酸水素塩との反応性の観点から、好ましくは10容量%以上、より好ましくは20容量%以上である。反応を安定化させる観点から、酸素含有ガスを定圧かつ定容量で供給することが好ましい。   Oxygen is supplied as an oxygen-containing gas to the reaction solution, but air is generally used, and pure oxygen or a gas obtained by diluting pure oxygen with an inert gas may be used. The oxygen concentration in the oxygen-containing gas is preferably 10% by volume or more, more preferably 20% by volume or more, from the viewpoint of reactivity with bisulfite. From the viewpoint of stabilizing the reaction, it is preferable to supply the oxygen-containing gas at a constant pressure and a constant volume.

流通式混合器16に導入される気液混合流体における単位時間当たりの反応液流量に対する酸素含有ガス流量の比(酸素含有ガスの標準状態(273K、101.3kPa)の体積を反応液の体積で除した値。以下、「液ガス比」という。)は、反応液に対する酸素含有ガスの溶解度を高め、開始剤効率の高い重合反応を行う観点から、0.1以上、より好ましくは0.5以上であり、混合部における圧力損失を低減させるとともに酸素含有ガスを供給するコンプレッサー等の酸素含有ガス供給源の負荷を低減する観点から、好ましくは50以下、より好ましくは20以下である。これらの観点から、液ガス比は、好ましくは0.1〜50 、より好ましくは0.5〜20 である。   The ratio of the oxygen-containing gas flow rate to the reaction solution flow rate per unit time in the gas-liquid mixed fluid introduced into the flow mixer 16 (the volume of the oxygen-containing gas standard state (273K, 101.3 kPa) is the volume of the reaction solution) The value obtained by dividing (hereinafter referred to as “liquid-gas ratio”) is 0.1 or more, more preferably 0.5 from the viewpoint of increasing the solubility of the oxygen-containing gas in the reaction liquid and performing a polymerization reaction with high initiator efficiency. From the viewpoint of reducing the pressure loss in the mixing section and reducing the load of an oxygen-containing gas supply source such as a compressor that supplies the oxygen-containing gas, it is preferably 50 or less, more preferably 20 or less. From these viewpoints, the liquid gas ratio is preferably 0.1 to 50, more preferably 0.5 to 20.

<モノマー供給時間>
モノマー供給時間は、反応による発熱制御の観点から、0.5時間以上が好ましく、1時間以上がより好ましい。また生産性の観点から、50時間以下が好ましく、30時間以下がより好ましい。
<Monomer supply time>
The monomer supply time is preferably 0.5 hours or more, more preferably 1 hour or more, from the viewpoint of heat generation control by reaction. Moreover, from a viewpoint of productivity, 50 hours or less are preferable and 30 hours or less are more preferable.

<熟成時間>
熟成時間には特に制限はなく、反応液の残存モノマーが所定の値以下になるように設定すればよい。例えば1〜10時間である。
<Aging time>
The aging time is not particularly limited, and may be set so that the residual monomer in the reaction solution becomes a predetermined value or less. For example, it is 1 to 10 hours.

<外部循環ラインでの反応液循環回数>
外部循環ライン12での反応液循環回数とは、モノマー供給時間中に反応液が外部循環ライン12に循環した回数をいう。具体的には下記により求めることができる。
<Number of reaction liquid circulation in external circulation line>
The number of times the reaction liquid is circulated in the external circulation line 12 refers to the number of times that the reaction liquid is circulated to the external circulation line 12 during the monomer supply time. Specifically, it can be determined by the following.

単位時間あたりの循環する反応液流量をQ[L/h]、反応液の全液量(原料供給により経時的に増加するのでモノマー供給時間中の平均値)をV[L]とすると、単位時間あたりの平均循環回数N[回/h]は、
N[回/h]=Q[L/h]/V[L]
となる。
When the flow rate of the reaction liquid circulated per unit time is Q [L / h], and the total amount of the reaction liquid (average value during the monomer supply time because it increases with the supply of raw materials over time) is V [L], the unit The average number of circulations per hour N [times / h] is
N [times / h] = Q [L / h] / V [L]
It becomes.

また、このNにモノマー供給時間T[h]をかけるとモノマー供給時間中の平均循環回数[回]が求まる。すなわち、
モノマー供給時間中の平均循環回数[回]=N[回/h]×T[h]
である。
Further, when this N is multiplied by the monomer supply time T [h], the average number of circulations [times] during the monomer supply time can be obtained. That is,
Average number of circulations during monomer supply time [times] = N [times / h] × T [h]
It is.

モノマー供給時間中の平均循環回数は、モノマーとレドックス開始剤との接触を良くする観点から、17回以上が好ましく、18回以上がより好ましい。また循環ポンプ13の負荷を低減する観点から、100回以下が好ましく、80回以下がより好ましい。   From the viewpoint of improving the contact between the monomer and the redox initiator, the average number of circulation during the monomer supply time is preferably 17 times or more, and more preferably 18 times or more. Also, from the viewpoint of reducing the load on the circulation pump 13, it is preferably 100 times or less, and more preferably 80 times or less.

<反応温度>
反応温度は、重合体の分子鎖の分岐や色相劣化を抑制するとともに、付加物の生成を抑制する観点から、好ましくは80℃以下、より好ましくは60℃以下であり、得られる反応生成物は重合体水溶液として取扱う観点から、好ましくは5℃以上、より好ましくは10℃以上である。これらの観点から、反応温度は、好ましくは5〜80℃、より好ましくは10〜60℃である。
<Reaction temperature>
The reaction temperature is preferably 80 ° C. or lower, more preferably 60 ° C. or lower, from the viewpoint of suppressing the molecular chain branching and hue deterioration of the polymer and suppressing the formation of adducts. From the viewpoint of handling as a polymer aqueous solution, it is preferably 5 ° C or higher, more preferably 10 ° C or higher. From these viewpoints, the reaction temperature is preferably 5 to 80 ° C, more preferably 10 to 60 ° C.

<循環ライン戻り部圧力>
重合反応において外部循環ライン12に反応液を循環する際は、循環する反応液への酸素含有ガス中の酸素の溶解性を高める観点から、循環ライン戻り部圧力(ゲージ圧力)を0.05MPa以上に加圧することが好ましく、0.1MPa以上に加圧することがより好ましい。また循環ポンプ13の負荷を低減する観点から、循環ライン戻り部圧力を1MPa以下とすることが好ましく、0.5MPa以下とすることがより好ましい。なお、この循環ライン戻り部圧力の圧力設定はコントロールバルブ18の調節により行うことができる。
<Circulation line return pressure>
When the reaction solution is circulated in the external circulation line 12 in the polymerization reaction, the circulation line return portion pressure (gauge pressure) is set to 0.05 MPa or more from the viewpoint of enhancing the solubility of oxygen in the oxygen-containing gas in the circulated reaction solution. It is preferable to pressurize at a pressure of 0.1 MPa or more. From the viewpoint of reducing the load on the circulation pump 13, the circulation line return portion pressure is preferably 1 MPa or less, and more preferably 0.5 MPa or less. The pressure of the circulation line return portion pressure can be set by adjusting the control valve 18.

<原料供給方法>
モノマー及び/又はレドックス開始剤の反応原料は、反応液へ一定の供給速度で供給してもよく、また、半回分式重合では反応後期に反応液が増粘してガス中の酸素の反応液への溶解速度が低下し、反応液中のモノマー濃度が増加する場合があるため、途中で供給速度を変更してもよい。反応原料の供給速度を途中で変更する場合は、反応初期から段階的に供給速度を低下する方法が好ましい。
<Raw material supply method>
The reaction raw material of the monomer and / or redox initiator may be supplied to the reaction solution at a constant supply rate. In the semi-batch polymerization, the reaction solution is thickened in the later stage of the reaction, and the reaction solution of oxygen in the gas Since the dissolution rate in water may decrease and the monomer concentration in the reaction solution may increase, the supply rate may be changed during the process. When changing the supply rate of the reaction raw material in the middle, a method of gradually decreasing the supply rate from the initial stage of the reaction is preferable.

<重合体>
品質を向上させる観点から、重合反応工程での重合率が98%以上となるまで反応を継続することが好ましく、重合率をより一層高める観点から、未反応モノマーの低減を行う熟成操作を行うことがより好ましい。
<Polymer>
From the viewpoint of improving quality, it is preferable to continue the reaction until the polymerization rate in the polymerization reaction step reaches 98% or more, and from the viewpoint of further increasing the polymerization rate, an aging operation for reducing unreacted monomers is performed. Is more preferable.

なお、重合体中の未反応モノマーの含有量は、品質及び収率を高める観点から、重合体固形分に対して、好ましくは1.5 質量%以下、より好ましくは1.0 質量%以下である。   The content of the unreacted monomer in the polymer is preferably 1.5% by mass or less, more preferably 1.0% by mass or less, based on the polymer solid content, from the viewpoint of improving the quality and yield. is there.

付加物の含有量は、品質及び収率を高める観点から、重合体固形分に対して、好ましくは4.0質量%以下である。   The content of the adduct is preferably 4.0% by mass or less with respect to the polymer solid content from the viewpoint of improving the quality and yield.

重合体の重量平均分子量(Mw)は、分散性及び吸着性を高める観点から、通常、1000〜100000であることが好ましく、重合体を洗剤用ビルダー、分散剤、スケール防止剤等に用いる場合には、その重量平均分子量(Mw)は2000〜30000 であることが好ましい。また、分子量分布の指標となる重量平均分子量(Mw)を数平均分子量(Mn)で除した値(Mw/Mn、以下、「分散指数」という。)は、好ましくは7以下、より好ましくは5以下である。   The weight average molecular weight (Mw) of the polymer is usually preferably from 1,000 to 100,000 from the viewpoint of enhancing dispersibility and adsorptivity, and when the polymer is used for a builder for detergent, a dispersant, a scale inhibitor or the like. The weight average molecular weight (Mw) is preferably 2000 to 30000. Further, the value (Mw / Mn, hereinafter referred to as “dispersion index”) obtained by dividing the weight average molecular weight (Mw) as an index of the molecular weight distribution by the number average molecular weight (Mn) is preferably 7 or less, more preferably 5 It is as follows.

実施例及び比較例で得られた重合体に関する物性は以下の方法で測定した。   The physical properties of the polymers obtained in Examples and Comparative Examples were measured by the following methods.

(1)未反応モノマー量及び付加物量の測定と重合率の算出
未反応モノマー量及び付加物量は、HPLC(高速液体クロマトグラフィー)による測定を行うとともに、既知濃度の未反応モノマー量及び付加物量の検量線により、それぞれ重合体水溶液中の濃度を算出した。
(1) Measurement of unreacted monomer amount and adduct amount and calculation of polymerization rate The unreacted monomer amount and adduct amount are measured by HPLC (high performance liquid chromatography) and the unreacted monomer amount and adduct amount at a known concentration are measured. The concentration in the polymer aqueous solution was calculated from the calibration curve.

また、重合率は、反応前後における未反応モノマー量及び付加物に転化したモノマー量から下式に基づいて算出した。   Further, the polymerization rate was calculated based on the following formula from the amount of unreacted monomer before and after the reaction and the amount of monomer converted to an adduct.

Figure 2010150327
Figure 2010150327

なお、標準となる付加物(3-スルホプロピオン酸二ナトリウム) に関しては、Schenck, R.T.E. and Danishefski, I., J. Org. Chem., 16, 1683 (1951)と同様にして合成し、前記HPLCにより未反応モノマー量を、またH−NMR(プロトン核磁気共鳴法)により重合体の量を測定し、標準となる付加物の純度を求めた。 The standard adduct (3-sulfopropionic acid disodium salt) was synthesized in the same manner as Schenck, RTE and Danishefski, I., J. Org. Chem., 16, 1683 (1951) The amount of the unreacted monomer was measured by 1 and the amount of the polymer was measured by 1 H-NMR (proton nuclear magnetic resonance method) to determine the purity of the standard adduct.

以下にHPLCの測定条件を示す。
・カラム:東ソー(株)製、商品名:TSK-GEL ODS-80TS
・移動相:0.02mol/Lリン二水素カリウムにリン酸を加えてpHを2.5に調整した水溶液
・検出器:紫外線検出器(波長:210nm)
・カラム温度:30℃
・流速:1.0mL/min
・試料:固形分0.8gを含む重合体水溶液にイオン交換水を添加し、総液量が200mLとなるように調製し、この調製液から10μLを分取してカラムに注入する。
The HPLC measurement conditions are shown below.
・ Column: Tosoh Corporation, trade name: TSK-GEL ODS-80TS
-Mobile phase: 0.02 mol / L aqueous solution prepared by adding phosphoric acid to potassium dihydrogen phosphate to adjust pH to 2.5-Detector: UV detector (wavelength: 210 nm)
-Column temperature: 30 ° C
・ Flow rate: 1.0 mL / min
Sample: Ion exchange water is added to a polymer aqueous solution containing a solid content of 0.8 g to prepare a total liquid volume of 200 mL, and 10 μL is taken from this prepared liquid and injected into a column.

(2)分子量の測定と分散指数の算出
分子量はGPC(ゲル浸透クロマトグラフィー)により測定を行い、換算標準物質により重量平均分子量(Mw)及び数平均分子量(Mn)を求めた。また、分散指数は重量平均分子量(Mw)及び数平均分子量(Mn)から下式に基づいて算出した。
(2) Measurement of molecular weight and calculation of dispersion index The molecular weight was measured by GPC (gel permeation chromatography), and the weight average molecular weight (Mw) and the number average molecular weight (Mn) were determined from the converted standard substance. The dispersion index was calculated based on the following formula from the weight average molecular weight (Mw) and the number average molecular weight (Mn).

Figure 2010150327
Figure 2010150327

以下に、GPCの測定条件を示す。
・カラム:東ソー(株)製、商品名:TSK-GEL guard PWXL
東ソー(株)製、商品名:TSK-GEL G4000 PWXL
東ソー(株)製、商品名:TSK-GEL G2500 PWXL
・移動相:0.1mol/Lリン二水素カリウム及び0.1mol/Lリン酸二水素ナトリウムの水溶液/アセトニトリル=90/10(体積比)
・検出器:示差屈折率検出器
・カラム温度:40℃
・流速:1.0mL/min
・換算標準物質:ポリアクリル酸〔アメリカン・スタンダード・コーポレーション(AMERICAN STANDARD CORP)社製〕
・試料:固形分0.8gを含む重合体水溶液にイオン交換水を添加し、総液量が200mLとなるように調製し、この調製液から10μLを分取してカラムに注入する。
The GPC measurement conditions are shown below.
・ Column: Tosoh Corporation, trade name: TSK-GEL guard PWXL
Product name: TSK-GEL G4000 PWXL, manufactured by Tosoh Corporation
Product name: TSK-GEL G2500 PWXL, manufactured by Tosoh Corporation
Mobile phase: 0.1 mol / L potassium dihydrogen phosphate and 0.1 mol / L sodium dihydrogen phosphate in water / acetonitrile = 90/10 (volume ratio)
-Detector: Differential refractive index detector-Column temperature: 40 ° C
・ Flow rate: 1.0 mL / min
・ Conversion standard material: Polyacrylic acid [American Standard Corporation (manufactured by AMERICAN STANDARD CORP)]
Sample: Ion exchange water is added to a polymer aqueous solution containing a solid content of 0.8 g to prepare a total liquid volume of 200 mL, and 10 μL is taken from this prepared liquid and injected into a column.

<実施例1>
外部循環ラインの付帯した300LのSUS304製の反応槽を備えた図1と同様の構成の反応装置を用いた。外部循環ラインには液の流れ方向に順に、循環ポンプ、静止型混合器(株式会社フジキン社製、商品名:分散君15D型、流路孔の縮流部流路内径3mm、2ユニット)及び熱交換器を付帯した。また反応槽には傾斜パドル撹拌翼が付帯していた。
<Example 1>
A reaction apparatus having the same configuration as that shown in FIG. 1 and equipped with a 300 L SUS304 reaction vessel with an external circulation line was used. In the external circulation line, in the order of the liquid flow, a circulation pump, a static mixer (manufactured by Fujikin Co., Ltd., trade name: Dispersion Kim 15D type, flow path constriction part flow path inner diameter 3 mm, 2 units) and A heat exchanger was attached. The reaction tank was accompanied by an inclined paddle stirring blade.

反応槽にイオン交換水106kgを初期仕込みした。反応槽の傾斜パドル撹拌翼の撹拌回転数を135rpmに、また循環する反応液流量Qを400L/hとし、槽内の液温を35℃に調整した。   The reaction tank was initially charged with 106 kg of ion exchange water. The stirring rotation speed of the inclined paddle stirring blade of the reaction tank was set to 135 rpm, the circulating reaction liquid flow rate Q was set to 400 L / h, and the liquid temperature in the tank was adjusted to 35 ° C.

反応槽に濃度98質量%のアクリル酸を6.0kg/hで、また濃度48質量%の苛性ソーダを6.6kg/hでそれぞれ一定速度で供給した。同時に外部循環ラインに35質量%亜硫酸水素ナトリウム水溶液を1.45kg/hで、また酸素含有ガスとして空気を2,200N-L/hでそれぞれ一定速度で供給し、モノマー供給時間Tを14hとして重合反応を行った。液ガス比は5.5であった。循環ライン戻り部圧力による気液混合流体への加圧は行わなかった。この間、槽内の液温は35℃に制御した。   Acrylic acid having a concentration of 98% by mass was supplied to the reaction vessel at a constant rate of 6.0 kg / h and caustic soda having a concentration of 48% by mass at 6.6 kg / h. At the same time, 35 mass% sodium hydrogen sulfite aqueous solution was supplied to the external circulation line at 1.45 kg / h, and air was supplied as an oxygen-containing gas at a constant rate of 2,200 N-L / h, and the monomer supply time T was set to 14 h for polymerization. Reaction was performed. The liquid gas ratio was 5.5. The gas-liquid mixed fluid was not pressurized with the circulation line return section pressure. During this time, the liquid temperature in the tank was controlled at 35 ° C.

続いて同じ35℃の温度で2hの熟成反応を行ない重合反応を終了した。反応液の全液量V(モノマー供給時間中の平均値)は167Lであったことから、平均循環回数Nは2.4回/hであり、従って、モノマー供給時間における反応液の平均循環回数は34回であった。   Subsequently, a ripening reaction was carried out at the same temperature of 35 ° C. for 2 hours to complete the polymerization reaction. Since the total amount V (average value during the monomer supply time) of the reaction liquid was 167 L, the average circulation number N was 2.4 times / h. Therefore, the average circulation number of the reaction liquid during the monomer supply time was Was 34 times.

重合物を分析した結果、表1に示すように、重合体中の残存モノマーは1,435mg/kg、重合体中の付加物は36,075mg/kg、重合率は99.5%、重合体の重量平均分子量(Mw)は13,300、及び重合体の分散指数(Mw/Mn)は3.7であった。   As a result of analyzing the polymer, as shown in Table 1, the residual monomer in the polymer was 1,435 mg / kg, the adduct in the polymer was 36,075 mg / kg, the polymerization rate was 99.5%, the polymer The weight average molecular weight (Mw) of the polymer was 13,300, and the dispersion index (Mw / Mn) of the polymer was 3.7.

<実施例2>
実施例1と同一の反応装置を用い、反応槽にイオン交換水109kgを初期仕込みした。反応槽の傾斜パドル撹拌翼の撹拌回転数を135rpmに、また循環する反応液流量Qを400L/hとし、槽内の液温を35℃に調整した。
<Example 2>
Using the same reactor as in Example 1, 109 kg of ion-exchanged water was initially charged in the reaction tank. The stirring rotation speed of the inclined paddle stirring blade of the reaction tank was set to 135 rpm, the circulating reaction liquid flow rate Q was set to 400 L / h, and the liquid temperature in the tank was adjusted to 35 ° C.

反応槽に濃度98質量%のアクリル酸を6.1kg/hで、また濃度48質量%の苛性ソーダを6.7kg/hでそれぞれ一定速度で供給した。同時に外部循環ラインに35質量%亜硫酸水素ナトリウム水溶液を1.24kg/hで、また酸素含有ガスとして空気を800N-L/hでそれぞれ一定速度で供給し、モノマー供給時間Tを14hとして重合反応を行った。液ガス比は2.0であった。循環ライン戻り部圧力による気液混合流体への加圧は行わなかった。この間、槽内の液温は35℃に制御した。   Acrylic acid having a concentration of 98% by mass and 6.1% caustic soda at a concentration of 48% by mass were respectively supplied to the reaction tank at a constant rate. At the same time, 35 mass% sodium hydrogen sulfite aqueous solution was supplied to the external circulation line at 1.24 kg / h and air was supplied as oxygen-containing gas at a constant rate of 800 N-L / h. went. The liquid gas ratio was 2.0. The gas-liquid mixed fluid was not pressurized with the circulation line return section pressure. During this time, the temperature of the liquid in the tank was controlled at 35 ° C.

続いて同じ35℃の温度で2hの熟成反応を行ない重合反応を終了した。反応液の全液量V(モノマー供給時間中の平均値)は168Lであったことから、平均循環回数Nは2.4回/hであり、従って、モノマー供給時間における反応液の平均循環回数は34回であった。   Subsequently, a ripening reaction was carried out at the same temperature of 35 ° C. for 2 hours to complete the polymerization reaction. Since the total liquid volume V (average value during the monomer supply time) of the reaction liquid was 168 L, the average circulation number N was 2.4 times / h. Therefore, the average circulation number of the reaction liquid during the monomer supply time Was 34 times.

重合物を分析した結果、表1に示すように、重合体中の残存モノマーは1,386mg/kg、重合体中の付加物は24,475mg/kg、重合率は99.5%、重合体の重量平均分子量(Mw)は12,890、及び重合体の分散指数(Mw/Mn)は3.7であった。   As a result of analyzing the polymer, as shown in Table 1, the residual monomer in the polymer was 1,386 mg / kg, the adduct in the polymer was 24,475 mg / kg, the polymerization rate was 99.5%, the polymer The weight average molecular weight (Mw) of the polymer was 12,890, and the polymer dispersion index (Mw / Mn) was 3.7.

<実施例3>
実施例1と同一の反応装置を用い、反応槽にイオン交換水106kgを初期仕込みした。反応槽の傾斜パドル撹拌翼の撹拌回転数を135rpmに、また循環する反応液流量Qを400L/hとし、槽内の液温を35℃に調整した。
<Example 3>
Using the same reactor as in Example 1, 106 kg of ion-exchanged water was initially charged in the reaction tank. The stirring rotation speed of the inclined paddle stirring blade of the reaction tank was set to 135 rpm, the circulating reaction liquid flow rate Q was set to 400 L / h, and the liquid temperature in the tank was adjusted to 35 ° C.

反応槽に濃度98質量%のアクリル酸を6.0kg/hで、また濃度48質量%の苛性ソーダを6.6kg/hでそれぞれ一定速度で供給した。同時に外部循環ラインに35質量%亜硫酸水素ナトリウム水溶液を1.45kg/hで、また酸素含有ガスとして空気を800N-L/hでそれぞれ一定速度で供給し、モノマー供給時間Tを14hとして重合反応を行った。液ガス比は2.0であった。流量調整により循環ライン戻り部圧力0.2MPa(ゲージ圧)の気液混合流体への加圧を行った。この間、槽内の液温は35℃に制御した。   Acrylic acid having a concentration of 98% by mass was supplied to the reaction vessel at a constant rate of 6.0 kg / h and caustic soda having a concentration of 48% by mass at 6.6 kg / h. At the same time, 35 mass% sodium bisulfite aqueous solution was supplied to the external circulation line at 1.45 kg / h, and air was supplied as oxygen-containing gas at a constant rate of 800 N-L / h, respectively, and the monomer supply time T was set to 14 h. went. The liquid gas ratio was 2.0. By adjusting the flow rate, pressurization was performed on the gas-liquid mixed fluid having a circulation line return portion pressure of 0.2 MPa (gauge pressure). During this time, the liquid temperature in the tank was controlled at 35 ° C.

続いて同じ35℃の温度で2hの熟成反応を行ない重合反応を終了した。反応液の全液量(モノマー供給時間中の平均値)Vは167Lであったことから、平均循環回数Nは2.4回/hであり、従って、モノマー供給時間における反応液の平均循環回数は34回であった。   Subsequently, a ripening reaction was carried out at the same temperature of 35 ° C. for 2 hours to complete the polymerization reaction. Since the total amount of the reaction solution (average value during the monomer supply time) V was 167 L, the average circulation number N was 2.4 times / h. Therefore, the average circulation number of the reaction solution during the monomer supply time was Was 34 times.

重合物を分析した結果、表1に示すように、重合体中の残存モノマーは962mg/kg、重合体中の付加物は30,427mg/kg、重合率は99.6%、重合体の重量平均分子量(Mw)は10,710、及び重合体の分散指数(Mw/Mn)は3.4であった。   As a result of analyzing the polymer, as shown in Table 1, the residual monomer in the polymer was 962 mg / kg, the adduct in the polymer was 30,427 mg / kg, the polymerization rate was 99.6%, the weight of the polymer The average molecular weight (Mw) was 10,710, and the polymer dispersion index (Mw / Mn) was 3.4.

<実施例4>
実施例1と同一の反応装置を用い、反応槽にイオン交換水97kgを初期仕込みした。反応槽の傾斜パドル撹拌翼の撹拌回転数を135rpmに、また循環する反応液流量Qを400L/hとし、槽内の液温を35℃に調整した。
<Example 4>
Using the same reaction apparatus as in Example 1, 97 kg of ion-exchanged water was initially charged in the reaction tank. The stirring rotation speed of the inclined paddle stirring blade of the reaction tank was set to 135 rpm, the circulating reaction liquid flow rate Q was set to 400 L / h, and the liquid temperature in the tank was adjusted to 35 ° C.

反応槽に濃度98質量%のアクリル酸を11.9kg/hで、また濃度48質量%の苛性ソーダを13.1kg/hでそれぞれ供給を開始した。同時に外部循環ラインに35質量%亜硫酸水素ナトリウム水溶液を2.89kg/hで、また酸素含有ガスとして空気を2200N-L/hでそれぞれ供給を開始した。1.4h後に、表2に示す条件に原料の供給速度を減量し、以後表2に示すように段階的に原料の供給速度を減量し、モノマー供給時間Tを8hとした重合反応を行った。モノマー供給時間T平均の液ガス比は5.5であった。循環ライン戻り部圧力による気液混合流体への加圧は行わなかった。この間、槽内の液温は35℃に制御した。   Supply of acrylic acid with a concentration of 98% by mass to the reaction tank at 11.9 kg / h and caustic soda with a concentration of 48% by mass was started at 13.1 kg / h. At the same time, supply of 35% by mass sodium hydrogen sulfite aqueous solution to the external circulation line at 2.89 kg / h and air as oxygen-containing gas at 2200 N-L / h were started. After 1.4 hours, the raw material supply rate was reduced to the conditions shown in Table 2, and thereafter, the raw material supply rate was reduced stepwise as shown in Table 2 to carry out the polymerization reaction with the monomer supply time T being 8 hours. . The liquid gas ratio of the monomer supply time T average was 5.5. The gas-liquid mixed fluid was not pressurized with the circulation line return section pressure. During this time, the liquid temperature in the tank was controlled at 35 ° C.

続いて同じ35℃の温度で4hの熟成反応を行ない重合反応を終了した。反応液の全液量V(モノマー供給時間中の平均値)は159Lであったことから、平均循環回数Nは2.5回/hであり、従って、モノマー供給時間における反応液の平均循環回数は20回であった。   Subsequently, a ripening reaction was carried out at the same temperature of 35 ° C. for 4 hours to complete the polymerization reaction. Since the total liquid volume V (average value during the monomer supply time) of the reaction liquid was 159 L, the average circulation number N was 2.5 times / h. Therefore, the average circulation time of the reaction liquid during the monomer supply time Was 20 times.

重合物を分析した結果、表1に示すように、重合体中の残存モノマーは985mg/kg、重合体中の付加物は38,008mg/kg、重合率は99.6%、重合体の重量平均分子量(Mw)は14,323、及び重合体の分散指数(Mw/Mn)は3.9であった。   As a result of analyzing the polymer, as shown in Table 1, the residual monomer in the polymer was 985 mg / kg, the adduct in the polymer was 38,008 mg / kg, the polymerization rate was 99.6%, the weight of the polymer The average molecular weight (Mw) was 14,323, and the dispersion index (Mw / Mn) of the polymer was 3.9.

<比較例1>
実施例1と同一の反応装置を用い、反応槽にイオン交換水55kgを初期仕込みした。反応槽の傾斜パドル撹拌翼の撹拌回転数を135rpmに、また循環する反応液流量Qを550L/hとし、槽内の液温を35℃に調整した。
<Comparative Example 1>
Using the same reaction apparatus as in Example 1, 55 kg of ion-exchanged water was initially charged in the reaction tank. The stirring rotation speed of the inclined paddle stirring blade of the reaction tank was set to 135 rpm, the circulating reaction liquid flow rate Q was set to 550 L / h, and the liquid temperature in the tank was adjusted to 35 ° C.

反応槽に濃度98質量%のアクリル酸を18.5kg/hで、また濃度48質量%の苛性ソーダを20.3kg/hでそれぞれ一定速度で供給した。同時に外部循環ラインに35質量%亜硫酸水素ナトリウム水溶液を4.49kg/hで、また酸素含有ガスとして空気を1200N-L/hでそれぞれ一定速度で供給し、モノマー供給時間Tを3hとして重合反応を行った。液ガス比は2.2であった。循環ライン戻り部圧力による気液混合流体への加圧は行わなかった。この間、槽内の液温は35℃に制御した。   Acrylic acid having a concentration of 98% by mass was supplied to the reaction tank at a constant rate of 18.5 kg / h and caustic soda having a concentration of 48% by mass at 20.3 kg / h. At the same time, a 35 mass% sodium hydrogen sulfite aqueous solution was supplied to the external circulation line at 4.49 kg / h, and air as an oxygen-containing gas was supplied at a constant rate of 1200 N-L / h. went. The liquid gas ratio was 2.2. The gas-liquid mixed fluid was not pressurized with the circulation line return section pressure. During this time, the temperature of the liquid in the tank was controlled at 35 ° C.

続いて同じ35℃の温度で0.5hの熟成反応を行ない重合反応を終了した。反応液の全液量V(モノマー供給時間中の平均値)は105Lであったことから、平均循環回数Nは5.2回/hであり、従って、モノマー供給時間における反応液の平均循環回数は16回であった。   Subsequently, an aging reaction for 0.5 h was performed at the same temperature of 35 ° C. to complete the polymerization reaction. Since the total liquid volume V (average value during the monomer supply time) of the reaction liquid was 105 L, the average circulation number N was 5.2 times / h. Therefore, the average circulation number of the reaction liquid during the monomer supply time Was 16 times.

重合物を分析した結果、表1に示すように、重合体中の残存モノマーは7,980mg/kg、重合体中の付加物は43,828mg/kg、重合率は97.3%、重合体の重量平均分子量(Mw)は41,190、及び重合体の分散指数(Mw/Mn)は9.7であった。   As a result of analyzing the polymer, as shown in Table 1, the residual monomer in the polymer was 7,980 mg / kg, the adduct in the polymer was 43,828 mg / kg, the polymerization rate was 97.3%, the polymer The weight average molecular weight (Mw) of the polymer was 41,190, and the dispersion index (Mw / Mn) of the polymer was 9.7.

<比較例2>
実施例1と同一の反応装置を用い、反応槽にイオン交換水88kgを初期仕込みした。反応槽の傾斜パドル撹拌翼の撹拌回転数を135rpmに、また循環する反応液流量Qを250L/hとし、槽内の液温を35℃に調整した。
<Comparative example 2>
Using the same reaction apparatus as in Example 1, 88 kg of ion-exchanged water was initially charged in the reaction tank. The stirring rotation speed of the inclined paddle stirring blade of the reaction tank was 135 rpm, the circulating reaction liquid flow rate Q was 250 L / h, and the liquid temperature in the tank was adjusted to 35 ° C.

反応槽に濃度98質量%のアクリル酸を8.9kg/hで、また濃度48質量%の苛性ソーダを9.8kg/hでそれぞれ一定速度で供給した。同時に外部循環ラインに35質量%亜硫酸水素ナトリウム水溶液を2.15kg/hで、また酸素含有ガスとして空気を1320N-L/hでそれぞれ一定速度で供給し、モノマー供給時間Tを9hとして重合反応を行った。液ガス比は5.3であった。循環ライン戻り部圧力による気液混合流体への加圧は行わなかった。この間、槽内の液温は35℃に制御した。   Acrylic acid having a concentration of 98% by mass was fed to the reaction tank at a constant rate of 8.9 kg / h and caustic soda having a concentration of 48% by mass at 9.8 kg / h, respectively. At the same time, a 35 mass% sodium hydrogen sulfite aqueous solution was supplied to the external circulation line at 2.15 kg / h, and air was supplied as an oxygen-containing gas at a constant rate of 1320 N-L / h. went. The liquid gas ratio was 5.3. The gas-liquid mixed fluid was not pressurized with the circulation line return section pressure. During this time, the liquid temperature in the tank was controlled at 35 ° C.

続いて同じ35℃の温度で1hの熟成反応を行ない重合反応を終了した。反応液の全液量V(モノマー供給時間中の平均値)は164Lであったことから、平均循環回数Nは1.5回/hであり、従って、モノマー供給時間における反応液の平均循環回数は14回であった。   Subsequently, an aging reaction was performed for 1 h at the same temperature of 35 ° C. to complete the polymerization reaction. Since the total liquid volume V (average value during the monomer supply time) of the reaction liquid was 164 L, the average circulation number N was 1.5 times / h. Therefore, the average circulation number of the reaction liquid during the monomer supply time Was 14 times.

重合物を分析した結果、表1に示すように、重合体中の残存モノマーは2,913mg/kg、重合体中の付加物は41,675mg/kg、重合率は99.0%、重合体の重量平均分子量(Mw)は40,650、及び重合体の分散指数(Mw/Mn)は6.8であった。   As a result of analyzing the polymer, as shown in Table 1, the residual monomer in the polymer was 2,913 mg / kg, the adduct in the polymer was 41,675 mg / kg, the polymerization rate was 99.0%, the polymer The weight average molecular weight (Mw) was 40,650, and the dispersion index (Mw / Mn) of the polymer was 6.8.

Figure 2010150327
Figure 2010150327

Figure 2010150327
Figure 2010150327

本発明は、洗剤用ビルダー、分散剤、スケール防止剤等として好適に使用しうる重合体の半回分操作での製造方法について有用である。   INDUSTRIAL APPLICATION This invention is useful about the manufacturing method by the semibatch operation of the polymer which can be used conveniently as a builder for detergents, a dispersing agent, a scale inhibitor, etc.

実施形態に係る反応装置を示す図である。It is a figure which shows the reaction apparatus which concerns on embodiment.

符号の説明Explanation of symbols

10 反応装置
11 反応槽
12 外部循環ライン
13 循環ポンプ
14 亜硫酸水素塩供給管
15 酸素含有ガス供給管
16 流通式混合器
17 熱交換器
18 コントロールバルブ
19 モノマー供給管
DESCRIPTION OF SYMBOLS 10 Reactor 11 Reaction tank 12 External circulation line 13 Circulation pump 14 Bisulfite supply pipe 15 Oxygen-containing gas supply pipe 16 Flow mixer 17 Heat exchanger 18 Control valve 19 Monomer supply pipe

Claims (9)

反応槽と、該反応槽に両端が接続された外部循環ラインと、α−不飽和カルボン酸及び/又はその塩を含むモノマーを供給するモノマー供給手段と、レドックス開始剤を供給する重合開始剤供給手段と、を備えた反応装置を用い、上記反応槽内の反応液を上記外部循環ラインに循環させながら、該反応液に対して、上記モノマー供給手段からモノマーを連続供給すると共に、上記重合開始剤供給手段からレドックス開始剤を連続供給することにより、モノマーをレドックス重合させて半回分操作によりカルボン酸系重合体を製造する方法であって、
上記反応液を、モノマー供給時間中に上記外部循環ラインに17回以上循環させるカルボン酸系重合体の製造方法。
A reaction tank, an external circulation line having both ends connected to the reaction tank, a monomer supply means for supplying a monomer containing an α-unsaturated carboxylic acid and / or a salt thereof, and a polymerization initiator supply for supplying a redox initiator And continuously supplying the monomer from the monomer supply means to the reaction liquid while circulating the reaction liquid in the reaction tank to the external circulation line and starting the polymerization. A method for producing a carboxylic acid polymer by semi-batch operation by redox polymerization of a monomer by continuously supplying a redox initiator from an agent supply means,
A method for producing a carboxylic acid polymer, wherein the reaction solution is circulated 17 times or more in the external circulation line during a monomer supply time.
レドックス開始剤が亜硫酸水素塩と酸素とからなる請求項1に記載されたカルボン酸系重合体の製造方法。   The method for producing a carboxylic acid polymer according to claim 1, wherein the redox initiator comprises bisulfite and oxygen. 上記外部循環ラインには流通式混合器が介設されている請求項1又は2に記載されたカルボン酸系重合体の製造方法。   The method for producing a carboxylic acid polymer according to claim 1 or 2, wherein a flow mixer is interposed in the external circulation line. 上記重合開始剤供給手段は、各々、上記外部循環ラインにおける上記流通式混合器よりも上流側の部分に接続された、反応液に対して亜硫酸水素塩水溶液を供給する亜硫酸水素塩供給管及び反応液に対して酸素を含有するガスを供給する酸素含有ガス供給管で構成されている請求項3に記載されたカルボン酸系重合体の製造方法。   The polymerization initiator supply means is connected to a portion upstream of the flow mixer in the external circulation line, and supplies a bisulfite supply pipe for supplying a bisulfite aqueous solution to the reaction liquid and a reaction. The method for producing a carboxylic acid-based polymer according to claim 3, comprising an oxygen-containing gas supply pipe for supplying a gas containing oxygen to the liquid. 上記流通式混合器に導入される気液混合流体における単位時間当たりの反応液流量に対する酸素含有ガス流量の比である液ガス比を0.1〜50とする請求項4に記載されたカルボン酸系重合体の製造方法。   The carboxylic acid according to claim 4, wherein a liquid gas ratio, which is a ratio of an oxygen-containing gas flow rate to a reaction liquid flow rate per unit time in a gas-liquid mixed fluid introduced into the flow mixer, is 0.1 to 50. A method for producing a polymer. 上記外部循環ラインにおける上記流通式混合器よりも下流側の部分を流通する反応液をゲージ圧力で0.05MPa以上に加圧する請求項3乃至5のいずれかに記載されたカルボン酸系重合体の製造方法。   The carboxylic acid polymer according to any one of claims 3 to 5, wherein a reaction liquid flowing through a portion downstream from the flow mixer in the external circulation line is pressurized to 0.05 MPa or more by a gauge pressure. Production method. モノマー供給時間を0.5〜50時間とする請求項1乃至6のいずれかに記載されたカルボン酸系重合体の製造方法。   The method for producing a carboxylic acid polymer according to any one of claims 1 to 6, wherein the monomer supply time is 0.5 to 50 hours. 上記モノマー供給手段から反応液に対するモノマー供給速度及び/又は上記重合開始剤供給手段から反応液へのレドックス開始剤供給速度を途中で変更する請求項1乃至7のいずれかに記載されたカルボン酸系重合体の製造方法。   The carboxylic acid system according to any one of claims 1 to 7, wherein the monomer supply rate to the reaction liquid from the monomer supply means and / or the redox initiator supply speed from the polymerization initiator supply means to the reaction liquid is changed in the middle. A method for producing a polymer. 反応液を貯めるための反応槽と、
上記反応槽に両端が接続された外部循環ラインと、
上記外部循環ラインに介設され上記反応槽内の反応液を該外部循環ラインに循環させるための送液手段と、
反応液に対してα−不飽和カルボン酸及び/又はその塩を含むモノマーを供給するためのモノマー供給手段と、
反応液に対してレドックス開始剤を供給するための重合開始剤供給手段と、
を備え、モノマーをレドックス重合させて半回分操作によりカルボン酸系重合体を製造するように構成された反応装置。
A reaction tank for storing the reaction liquid;
An external circulation line having both ends connected to the reaction vessel;
Liquid feeding means for circulating the reaction liquid in the reaction tank interposed in the external circulation line to the external circulation line;
Monomer supply means for supplying a monomer containing an α-unsaturated carboxylic acid and / or a salt thereof to the reaction solution;
A polymerization initiator supply means for supplying a redox initiator to the reaction solution;
And a reactor configured to redox polymerize the monomer and produce a carboxylic acid polymer by semi-batch operation.
JP2008327832A 2008-12-24 2008-12-24 Method for producing carboxylic acid polymer Active JP5373386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008327832A JP5373386B2 (en) 2008-12-24 2008-12-24 Method for producing carboxylic acid polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008327832A JP5373386B2 (en) 2008-12-24 2008-12-24 Method for producing carboxylic acid polymer

Publications (2)

Publication Number Publication Date
JP2010150327A true JP2010150327A (en) 2010-07-08
JP5373386B2 JP5373386B2 (en) 2013-12-18

Family

ID=42569767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008327832A Active JP5373386B2 (en) 2008-12-24 2008-12-24 Method for producing carboxylic acid polymer

Country Status (1)

Country Link
JP (1) JP5373386B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2889314A4 (en) * 2012-08-22 2016-03-16 Kao Corp Method for manufacturing hydrophilic polymer particle
KR20160036570A (en) * 2013-07-31 2016-04-04 다우 글로벌 테크놀로지스 엘엘씨 Process to produce polycarbamate using a gradient feed of urea
KR20160036569A (en) * 2013-07-31 2016-04-04 다우 글로벌 테크놀로지스 엘엘씨 Process for preparing polycarbamate and reaction product thereof
JP2018044107A (en) * 2016-09-16 2018-03-22 竹本油脂株式会社 Method for producing vinyl polymer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3730615B2 (en) * 2001-12-28 2006-01-05 花王株式会社 Method for producing carboxylic acid polymer
JP2008063409A (en) * 2006-09-06 2008-03-21 Kao Corp Method for producing hydrophilic polymer particle
JP2008214373A (en) * 2007-02-28 2008-09-18 Nippon Shokubai Co Ltd Apparatus for producing water-soluble polymer and method for continuously producing water-soluble polymer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3730615B2 (en) * 2001-12-28 2006-01-05 花王株式会社 Method for producing carboxylic acid polymer
JP2008063409A (en) * 2006-09-06 2008-03-21 Kao Corp Method for producing hydrophilic polymer particle
JP2008214373A (en) * 2007-02-28 2008-09-18 Nippon Shokubai Co Ltd Apparatus for producing water-soluble polymer and method for continuously producing water-soluble polymer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2889314A4 (en) * 2012-08-22 2016-03-16 Kao Corp Method for manufacturing hydrophilic polymer particle
US9598521B2 (en) 2012-08-22 2017-03-21 Kao Corporation Method for manufacturing hydrophilic polymer particle
KR20160036570A (en) * 2013-07-31 2016-04-04 다우 글로벌 테크놀로지스 엘엘씨 Process to produce polycarbamate using a gradient feed of urea
KR20160036569A (en) * 2013-07-31 2016-04-04 다우 글로벌 테크놀로지스 엘엘씨 Process for preparing polycarbamate and reaction product thereof
JP2016530367A (en) * 2013-07-31 2016-09-29 ダウ グローバル テクノロジーズ エルエルシー Process for producing polycarbamates using urea gradient feed
KR102223326B1 (en) 2013-07-31 2021-03-04 다우 글로벌 테크놀로지스 엘엘씨 Process to produce polycarbamate using a gradient feed of urea
KR102223325B1 (en) 2013-07-31 2021-03-04 다우 글로벌 테크놀로지스 엘엘씨 Process for preparing polycarbamate and reaction product thereof
JP2018044107A (en) * 2016-09-16 2018-03-22 竹本油脂株式会社 Method for producing vinyl polymer

Also Published As

Publication number Publication date
JP5373386B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
JP5373386B2 (en) Method for producing carboxylic acid polymer
JP5553467B2 (en) Method for continuous production of water-soluble polymer and water-soluble polymer
US6943222B2 (en) Temperature-controlled process of producing polymer
US7951886B2 (en) Continuous production method of water-soluble polymer and water-soluble polymer
EP2986648A1 (en) Continuous process for the manufacture of highly-branched polymers based on c3-c8 monoethylenically unsaturated mono- or dicarboxylic acid or on the anhydrides and salts thereof
JP3775246B2 (en) Continuous production method of polyacrylate aqueous solution
JP5214155B2 (en) Water-soluble polymer production apparatus and continuous production method of water-soluble polymer
JP3730615B2 (en) Method for producing carboxylic acid polymer
JP5698961B2 (en) Method for producing carboxylic acid polymer
JP5506175B2 (en) Method for producing (meth) acrylic acid polymer
JP3843774B2 (en) Continuous production method of water-soluble acrylic polymer
JP5199589B2 (en) Continuous production method of water-soluble polymer
JP4031657B2 (en) Apparatus for producing water-soluble polymer composition
JP5450928B2 (en) Water-soluble polymer production apparatus and continuous production method of water-soluble polymer
JP4866709B2 (en) Method for producing carboxylic acid polymer
JPS6291506A (en) Production of carboxylic acid polymer
JP2011038043A (en) Method for neutralizing polymer and method for producing polymer
EP1466927B1 (en) Process for production of carboxylic acid polymers
JP2008214371A (en) Apparatus for producing water-soluble polymer and method for continuously producing water-soluble polymer
CN100413892C (en) Temperature-controlled process of producing polymer
JP6500659B2 (en) Method for producing acrylic acid based polymer salt aqueous solution
JPH10147620A (en) Continuous production of copolymer
JPS6281406A (en) Production of carboxylic acid polymer
JPH11246604A (en) Production of water-soluble copolymer
JP2002179705A (en) Method and apparatus for producing polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110906

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130919

R151 Written notification of patent or utility model registration

Ref document number: 5373386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250