JP2008062489A - Splitting method for brittle material, and splitting apparatus for brittle material - Google Patents

Splitting method for brittle material, and splitting apparatus for brittle material Download PDF

Info

Publication number
JP2008062489A
JP2008062489A JP2006242276A JP2006242276A JP2008062489A JP 2008062489 A JP2008062489 A JP 2008062489A JP 2006242276 A JP2006242276 A JP 2006242276A JP 2006242276 A JP2006242276 A JP 2006242276A JP 2008062489 A JP2008062489 A JP 2008062489A
Authority
JP
Japan
Prior art keywords
brittle material
cleaving
temperature
laser beam
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006242276A
Other languages
Japanese (ja)
Inventor
Noboru Matsuo
昇 松尾
Jiro Kawahara
治郎 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SYSTEC INOUE CORP
Original Assignee
SYSTEC INOUE CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SYSTEC INOUE CORP filed Critical SYSTEC INOUE CORP
Priority to JP2006242276A priority Critical patent/JP2008062489A/en
Publication of JP2008062489A publication Critical patent/JP2008062489A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser splitting apparatus and a method for reducing a large amount of time and materials consumed for finding the optimal conditions different by materials to enable stable splitting operation. <P>SOLUTION: The temperatures of a laser beam irradiation point and a vicinity of the distal end of a crack are measured by a non-contact type thermometer, and whether the temperatures are in a temperature zone in which splitting is possible or not. Then, by controlling a laser output, a material feeding speed, a cooling amount and a laser beam diameter, optimal conditions for the splitting of a brittle material are automatically set. A cooling material is jetted from a nozzle in an enclosed space (constant temperature bath) which keeps the temperature uniform, and the stream of the cooling material is guided by the stream of a gas, and the vicinity of the distal end is cooled, but the front area in the laser beam scanning direction is not cooled, and thus, the maintenance of the temperature zone to make the splitting possible is facilitated. The dispersion of heat is prevented from occurring by making the brittle material come into contact on a point or a line, and the splitting is accelerated without restraining the material. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はレーザによる脆性材料の割断方法および割断装置に関する。   The present invention relates to a cleaving method and a cleaving apparatus for a brittle material using a laser.

レーザビームによる熱応力を利用した脆性材料の割断は従来のブレードによるダイシングに比べ以下の利点がある。
・高速加工が可能(送り速度100mm/s以上が可能)
・高精度な加工が可能(切り代がない)
・断面のダメージが少ない(マイクロクラックや熱変化が少ない)
・クリーンな加工が可能(廃棄物がない、後洗浄が不要)
特許第1651809号公報、特許第1942282号、特許第2700136号、特許第3210934号、特許第3751121号、特許第3751122号、特願平9−168479
The cleaving of the brittle material using the thermal stress by the laser beam has the following advantages over the conventional blade dicing.
・ High-speed machining is possible (feed speed of 100mm / s or more is possible)
・ High precision machining is possible (no cutting allowance)
・ Small cross-section damage (less micro-cracking and thermal change)
・ Clean processing is possible (no waste, no post-cleaning required)
Japanese Patent No. 1651809, Japanese Patent No. 1942282, Japanese Patent No. 2700136, Japanese Patent No. 3210934, Japanese Patent No. 3751211, Japanese Patent No. 3751122, Japanese Patent Application No. 9-168479

脆性材料を割断予定線に沿って安定して割断するためには、熱を印加するためのレーザビーム走査直後の加熱部分の温度と、レーザビーム走査後の亀裂の先端近傍の温度を、割断が可能となるための温度差を確保しなければ割断が止まったり、逸れたり、進まない不具合が生じる。
従って、割断部を割断可能な温度領域に維持することが必要となる。
そのためには、脆性材料の材質やサイズ、厚さ等によって、レーザ出力、材料送り速度、冷却量、レーザビーム径を変えることが必要となる。
上記条件の中から最適な組合せを見つけるためには、多大な経験や時間と、多くの実験材料や電力量を費やしてしまう欠点があった。
In order to stably break the brittle material along the planned breaking line, the temperature of the heated part immediately after the laser beam scanning for applying heat and the temperature near the tip of the crack after the laser beam scanning are divided. Failure to secure a temperature difference to enable it will result in failure to break, deviate or not proceed.
Therefore, it is necessary to maintain the cleaved portion in a temperature region where cleaving is possible.
For this purpose, it is necessary to change the laser output, the material feed rate, the cooling amount, and the laser beam diameter depending on the material, size, thickness, and the like of the brittle material.
In order to find the optimum combination from the above conditions, there is a drawback that a great deal of experience and time, and a lot of experimental materials and electric energy are consumed.

なお、脆性材料の割断予定線に沿って、大容量のレーザビームを走査による加熱部分の温度を上げて亀裂の先端部の自然冷却方法もあるが、割断の精度の悪化や脆性材料のダメージが大きくなってしまう欠点があった。
更に加熱温度を上げた場合は、脆性材料の表面に溶け飛び散った破片が残り無数のクラックが発生する等の不具合もあった。
Although there is a natural cooling method of the tip of the crack by raising the temperature of the heated part by scanning a large-capacity laser beam along the planned cutting line of the brittle material, degradation of the cracking accuracy and damage of the brittle material may occur. There was a drawback that would increase.
Further, when the heating temperature was raised, there were also problems such as innumerable cracks remaining, such as fragments remaining on the surface of the brittle material.

また、脆性材料の割断予定線に沿ってレーザビームを走査又は、脆性材料の移動で割断を行なう場合、上記レーザビームを走査加熱では、前記レーザビームの走査より割断が進みレーザビームが後追いの形となって制御不能となって暴走してしまうこともあった。   Further, when the laser beam is scanned along the planned fracture line of the brittle material or when the fracture is performed by moving the brittle material, the laser beam is cleaved by scanning the laser beam, and the laser beam follows the shape of the laser beam. It became out of control and sometimes went out of control.

一方、熱を印加するためのレーザビーム走査後に、脆性材料の亀裂の先端付近で、割断が可能となるための温度差を確保しながら、割断可能な温度領域を維持するには自然冷却より冷却材を噴射する強制冷却の方が容易であるが、冷却材を噴射することで、レーザビーム走査方向前方を冷却してしまい、割断可能な温度領域を維持することが困難となる欠点があった。   On the other hand, after scanning the laser beam to apply heat, it is cooler than natural cooling in order to maintain the temperature range that can be cleaved while ensuring the temperature difference for cleaving near the tip of the crack in the brittle material. Forced cooling that injects the material is easier, but by injecting the coolant, there is a drawback that it becomes difficult to maintain the temperature region that can be cleaved because the front of the laser beam scanning direction is cooled. .

加えて、脆性材料を支えるために裏面側に保持部を設けると、脆性材料と保持部の接触面積が増大し、脆性材料と保持部の接触面から熱の伝達が行われて、割断が可能となるための一定温度領域を維持するのが困難であった。
一方、保持部の構造が材料を拘束すると割断を阻害してしまい割断方向を妨げることで精度が悪くなる欠点もあった。
In addition, if a holding part is provided on the back side to support the brittle material, the contact area between the brittle material and the holding part will increase, and heat will be transferred from the contact surface between the brittle material and the holding part, allowing cleaving. It was difficult to maintain a constant temperature region for
On the other hand, when the structure of the holding part constrains the material, there is also a drawback that the cleaving is hindered and the accuracy is deteriorated by hindering the cleaving direction.

課題を解決する為に、本発明では、割断予定線に沿って脆性材料にレーザビームを照射する加熱工程と、 該加熱工程で加熱された加熱部分を冷却する割断工程からなる脆性材料の割断方法において、前記加熱工程で加熱された部分の温度を計測する第一計測工程と、前記割断工程の割断予定箇所近傍の冷却部温度を計測する第二計測工程と、前記加熱工程と前記割断工程とを行なう加工空間の温度を計測する第三計測工程のうち、少なくとも二つ以上の前記計測工程から得られた各温度計測値を、前記脆性材料の種類に応じて予め定められた各温度演算値と比較し、上記脆性材料が割断するか否か比較判定することを特徴とする脆性材料の割断方法であって、上記加熱工程において、脆性材料の送り速度、レーザビーム出力、レーザビーム送り速度、レーザビーム径のうち少なくとも1つ以上組み合わせて制御すると共に、上記割断工程においては、冷却ノズルの冷却量を制御することを特徴とする脆性材料の割断方法とした。
更に、上記割断工程においては、上記二つ以上の計測工程から得られた各温度測定値が、上記脆性材料の種類に応じて予め演算した各演算予測温度に一致するように、上記のレーザビーム出力、脆性材料の送り速度、レーザビーム送り速度、レーザビーム径を少なくとも1つ以上組み合わせて自動条件設定を行なうことを特徴とする脆性材料の割断方法である。
また、上記加熱工程と上記割断工程とを行なう加工空間の温度を一定に保持することを特徴とする脆性材料の割断方法でもある。
また、本発明では、割断予定線に沿って脆性材料にレーザビームを照射する加熱機構と、該加熱機構で加熱された前記脆性材料の加熱部を冷却する割断機構と、前記加熱機構で加熱された部分の温度を計測する第一計測手段と、前記加熱機構で冷却されて割断した脆性材料の亀裂の先端部の冷却部の温度を計測する第二計測手段と、前記で加熱と割断とを行なう加工空間の温度を計測する第三計測手段のうち、少なくとも二つ以上の前記計測手段から得られた各温度計測値を、前記脆性材料の種類に応じて予め演算した演算値と比較判定する演算・比較判定する機構を具備してなることを特徴とする脆性材料の割断装置で、前記割断機構に冷却ガイドや上記脆性材料の裏面を点または線で接触する保持手段を設けた。
In order to solve the problem, in the present invention, a brittle material cleaving method comprising a heating step of irradiating a brittle material with a laser beam along a planned cutting line and a cleaving step of cooling a heated portion heated in the heating step. In the first measurement step of measuring the temperature of the part heated in the heating step, the second measurement step of measuring the cooling part temperature in the vicinity of the cleaving planned location of the cleaving step, the heating step and the cleaving step, Among the third measurement steps for measuring the temperature of the processing space for performing each temperature measurement value obtained from at least two of the measurement steps, each temperature calculation value predetermined according to the type of the brittle material The brittle material cleaving method is characterized by comparing whether or not the brittle material is cleaved in comparison with the above, and in the heating step, the brittle material feed speed, laser beam output, laser beam feed, The brittle material cleaving method is characterized in that at least one of the cutting speed and the laser beam diameter is controlled in combination, and in the cleaving step, the cooling amount of the cooling nozzle is controlled.
Further, in the cleaving step, the laser beam is adjusted so that each temperature measurement value obtained from the two or more measurement steps matches each calculation predicted temperature calculated in advance according to the type of the brittle material. A brittle material cleaving method characterized in that automatic condition setting is performed by combining at least one of output, brittle material feed rate, laser beam feed rate, and laser beam diameter.
Further, the present invention is also a brittle material cleaving method characterized in that the temperature of the working space for performing the heating step and the cleaving step is kept constant.
Further, in the present invention, a heating mechanism that irradiates the brittle material with a laser beam along the planned cutting line, a cleaving mechanism that cools the heating portion of the brittle material heated by the heating mechanism, and the heating mechanism that is heated. First measuring means for measuring the temperature of the part, second measuring means for measuring the temperature of the cooling part at the tip of the crack of the brittle material that has been cooled and cleaved by the heating mechanism, and heating and cleaving as described above. Of the third measuring means for measuring the temperature of the working space to be performed, each temperature measurement value obtained from at least two of the measuring means is compared with a calculated value calculated in advance according to the type of the brittle material. A brittle material cleaving apparatus comprising a calculation / comparison determination mechanism, wherein the cleaving mechanism is provided with a cooling guide and holding means for contacting the back surface of the brittle material with dots or lines.

請求項1に記載の構成により、脆性材料を割断予定線に沿って安定して割断するか否か比較判定することが可能になり、請求項2から請求項5に記載の脆性材料の割断方法により、亀裂を割断脆性材料の割断予定線に沿って割断速度を増加可能とし、高精度の割断加工を進行させることができた。
また、請求項6に記載の脆性材料の割断装置に、請求項7に記載の冷却ガイドを設けたことにより、レーザ発信器の出力を異常に増大させることなく冷却を的確に制御することにより、常にレーザビームの走査より割断が進みレーザビームが後追いの形を防止でき、制御不能となって割断が暴走したり、割断が逸れたり、進まない等の不具合もなくなった。
更に、請求項8に記載の割断機構に、脆性材料の裏面を点または線で接触する保持手段を設けたことにより、保持部へ熱の伝導が少なくなり、割断可能な一定温度領域が維持可能となり、割断方向を妨げることなく高精度の割断加工が可能になった。
従来のように、多大な経験や時間と、多くの実験材料の必要もなくなった。
また、割断の精度も向上し、脆性材料のダメージも低減した。更に、加熱温度を上げた場合に、脆性材料の表面が溶けることなく、従来のように、脆性材料の表面が溶けて飛び散った破片が残り無数のクラックが発生する等の不具合も解消された。
The structure according to claim 1 makes it possible to make a comparative determination as to whether or not the brittle material is to be stably cleaved along the planned cleaving line, and the method for cleaving the brittle material according to claim 2. As a result, it was possible to increase the cleaving speed along the planned cleaving line of the brittle material cleaving the crack, and to proceed the cleaving with high accuracy.
Further, by providing the brittle material cleaving device according to claim 6 with the cooling guide according to claim 7, by accurately controlling the cooling without abnormally increasing the output of the laser transmitter, The laser beam was always more severely scanned than the laser beam scan, and the laser beam could be prevented from following up, and it was no longer possible to control it, causing problems such as the runaway, broken or misaligned.
Furthermore, by providing the cleaving mechanism according to claim 8 with a holding means for contacting the back surface of the brittle material with a dot or a line, heat conduction to the holding portion is reduced, and a constant temperature region capable of cleaving can be maintained. Thus, high-precision cleaving can be performed without disturbing the cleaving direction.
As in the past, a great deal of experience and time and a lot of experimental materials are no longer required.
In addition, the accuracy of cleaving was improved and the damage to brittle materials was reduced. Further, when the heating temperature is increased, the surface of the brittle material is not melted, and the problem that the surface of the brittle material melts and the scattered pieces remain and the innumerable cracks are generated as in the prior art.

図2は、本発明におけるレーザ割断装置の動作の簡単なフローを示すチャートである。   FIG. 2 is a chart showing a simple flow of the operation of the laser cleaving apparatus according to the present invention.

図3は、本発明における割断装置で脆性材料の割断予定線へレーザビーム照射による温度関係を示したものである。   FIG. 3 shows a temperature relationship by laser beam irradiation to a planned cutting line of a brittle material with the cutting apparatus according to the present invention.

本発明に係るレーザ割断装置は、割断脆性材料の上にレーザビームを照射して加熱(照射点)を形成する加熱手段と、冷却材を噴射して前記脆性材料の表面上に冷却部(冷却点)を形成する割断手段と、前記脆性材料の亀裂の先端近傍の温度とレーザビームを走査による加熱部分の温度を計測する温度検出手段と、前記脆性材料の加工空間の温度を計測する温度検出手段と亀裂の先端が割断予定線に沿って進行するように移動させる手段を備え、二つ以上の計測手段から得られた計測値を、予測する演算処理手段と前記脆性材料の種類に応じたデータで比較否判定する制御手段を備えて、亀裂の先端が割断予定線に沿って進行するように前記冷却及び移動させる手段、レーザビームの出力の少なくとも一方を制御した。   The laser cleaving apparatus according to the present invention includes a heating means for irradiating a cleaved brittle material with a laser beam to form a heating (irradiation point), and a cooling unit (cooling) on the surface of the brittle material by injecting a coolant. A temperature detection means for measuring the temperature in the vicinity of the tip of the crack of the brittle material and the temperature of the heated portion by scanning a laser beam, and a temperature detection for measuring the temperature of the processing space of the brittle material. Means and a means for moving the crack tip so as to advance along the planned cutting line, and the measured values obtained from two or more measuring means are calculated according to the type of the arithmetic processing means and the brittle material Control means for determining whether to compare or not by data was provided, and at least one of the cooling and moving means and the output of the laser beam was controlled so that the tip of the crack progressed along the planned cutting line.

上記のレーザ割断装置によれば、脆性材料にレーザビームを照射することにより、レーザビーム照射点が高温となり、一方冷却材を噴射することにより、冷却点が低温となった。
レーザビーム照射点と冷却点とを割断予定線にそって移動することにより、レーザビーム照射点と冷却点の間に温度勾配が形成され、温度勾配に起因する応力によって脆性材料の亀裂が進行した。
このレーザビーム照射点と亀裂の先端の冷却点を温度計測により検出し割断予定線に沿って冷却手段や移動させる手段の少なくとも一方を制御することにより、亀裂を割断予定線に沿って進行させることができた。
According to the above laser cleaving apparatus, the laser beam irradiation point became high temperature by irradiating the brittle material with the laser beam, while the cooling point became low temperature by spraying the coolant.
By moving the laser beam irradiation point and the cooling point along the planned cutting line, a temperature gradient was formed between the laser beam irradiation point and the cooling point, and the crack of the brittle material progressed due to the stress caused by the temperature gradient. .
By detecting the laser beam irradiation point and the cooling point at the tip of the crack by temperature measurement and controlling at least one of the cooling means and the moving means along the planned cutting line, the crack can be advanced along the planned cutting line. I was able to.

上記のレーザ割断装置では、制御手段は前記レーザビーム照射点の移動速度を制御した。
レーザビーム照射点の計測温度が予測する演算処理手段で得られたデータと比較して低い場合は、移動速度を低下させるように制御した。
In the above laser cleaving apparatus, the control means controls the moving speed of the laser beam irradiation point.
When the measured temperature at the laser beam irradiation point was lower than the data obtained by the calculation processing means to predict, the moving speed was controlled to decrease.

レーザビーム照射点の移動速度を低下させることにより、レーザビーム照射点の温度が上昇するとともに、レーザビームを照射点と亀裂の先端との距離が短くなるので割断の方向性が良くなり、割断予定線に沿って亀裂を進行させることができた。   Lowering the moving speed of the laser beam irradiation point raises the temperature of the laser beam irradiation point and shortens the distance between the laser beam irradiation point and the tip of the crack, improving the direction of cleaving. The crack could be advanced along the line.

レーザビーム照射点の計測温度が予測する演算処理手段で得られたデータと比較して高い場合は、移動速度を増加させるように制御した。
レーザビームを照射点の移動速度を増加させることにより、レーザビーム照射点の温度が低下するとともに、レーザビームを照射点と亀裂の先端との距離が長くなるので割断の速度が速くなり割断速度を増加できた。
When the measured temperature at the laser beam irradiation point was higher than the data obtained by the calculation processing means to predict, the moving speed was controlled to increase.
By increasing the moving speed of the laser beam irradiation point, the temperature of the laser beam irradiation point decreases, and the distance between the laser beam irradiation point and the tip of the crack increases, so the cleaving speed increases and the cleaving speed increases. I was able to increase.

上記のレーザ割断装置では、前記脆性材料の保持を点または線の保持材を用いた構造とすることにより、保持部へ熱の伝導を少なくできた。
上記の保持部は、前記脆性材料を拘束しない形状とすることにより、亀裂を割断予定線に沿って進行させることができた。
前記脆性材料の加工空間の温度を計測する計測温度が前記脆性材料の温度上昇することにより、予測する演算処理温度値が変わり、上記加工空間の温度を計測する温度を補正値として使用することにより、前記脆性材料の割断予定線に沿った割断の加工精度を高めることができた。
In the laser cleaving apparatus described above, the brittle material can be held by a structure using a point or line holding material, so that heat conduction to the holding portion can be reduced.
By making the holding part into a shape that does not restrain the brittle material, it was possible to advance the crack along the planned cutting line.
When the measurement temperature for measuring the temperature of the processing space of the brittle material rises in temperature of the brittle material, the predicted processing temperature value changes, and the temperature for measuring the temperature of the processing space is used as a correction value. The processing accuracy of the cleaving along the planned cutting line of the brittle material could be improved.

上記のレーザ割断装置では、さらに制御手段の脆性材料の表面上に冷却部を形成する冷却手段でレーザビーム照射点の計測温度が予測する演算処理手段で得られたデータと比較して低い場合は、冷却材の噴射を増加することにより、レーザビーム照射点と冷却点の間に温度勾配を増加させると共に、レーザビームを照射点と亀裂の先端との距離が短くなるので割断の方向性が良くなり、割断予定線に沿って亀裂を進行させることができた。   In the above laser cleaving apparatus, if the temperature measured at the laser beam irradiation point is lower than the data obtained by the arithmetic processing means by the cooling means that forms the cooling part on the surface of the brittle material of the control means, By increasing the injection of coolant, the temperature gradient is increased between the laser beam irradiation point and the cooling point, and the distance between the laser beam irradiation point and the crack tip is shortened, so the directionality of cleaving is good As a result, the crack was able to advance along the planned cutting line.

上記脆性材料の表面上に冷却部を形成する冷却手段でレーザビーム照射点の計測温度が予測する演算処理手段で得られたデータと比較して高い場合は、冷却材の噴射を減少してレーザビーム照射点と冷却点の間に温度勾配を減少させることにより、レーザビームを照射点と亀裂の先端との距離が長くなるので割断の、速度が速くなり、割断予定線に沿って亀裂を進行させることができた。   If the measurement temperature at the laser beam irradiation point is higher than the data obtained by the calculation processing means that predicts the measurement temperature of the laser beam irradiation point in the cooling means that forms the cooling part on the surface of the brittle material, the injection of the coolant is reduced and the laser is reduced. By reducing the temperature gradient between the beam irradiation point and the cooling point, the distance between the irradiation point of the laser beam and the tip of the crack becomes longer, so the cleaving speed increases and the crack progresses along the planned cutting line. I was able to.

上記冷却手段は、前記脆性材料の表面上に冷却点を的確に実施するための冷却ガイドを備えることで、レーザビームの照射点を冷却しない機構により温度勾配を大きくすることができた。   The cooling means includes a cooling guide for accurately carrying out the cooling point on the surface of the brittle material, thereby increasing the temperature gradient by a mechanism that does not cool the irradiation point of the laser beam.

前記の制御手段において十分効果が得られない時、レーザビーム照射点の計測温度が予測する演算処理手段で得られたデータと比較して低い場合は、レーザ発信器の出力を増加させた。   When a sufficient effect was not obtained in the control means, the output of the laser transmitter was increased if the measured temperature at the laser beam irradiation point was lower than the data obtained by the arithmetic processing means to predict.

上記のレーザ割断装置では、前記脆性材料にレーザビーム照射点の計測温度と冷却材を噴射した前記脆性材料の冷却点の計測温度とを計測して温度勾配を演算処理手段で得られたデータと比較制御することにより、常にレーザビームの走査より割断が進みレーザビームが後追いの形を防止できた。   In the above laser cleaving apparatus, the temperature obtained by calculating the temperature gradient by measuring the temperature measured at the laser beam irradiation point on the brittle material and the temperature measured at the cooling point of the brittle material by injecting the coolant into the brittle material; By carrying out the comparison control, the cutting was always advanced from the scanning of the laser beam, and the shape of the laser beam could be prevented.

上記のレーザ割断装置では、レーザ割断処理中に得られる前記移動させる手段の速度及び前記冷却手段の制御量を記憶する記憶手段を備え、次回のレーザ割断処理において過去に前記記憶手段に記憶された制御量に基づき前記移動及び前記冷却、レーザビームの少なくとも一方を制御した。   The above laser cleaving apparatus includes storage means for storing the speed of the moving means and the control amount of the cooling means obtained during the laser cleaving process, and stored in the storage means in the past in the next laser cleaving process. Based on the control amount, at least one of the movement, the cooling and the laser beam was controlled.

レーザ割断処理が行なわれる度に移動させる手段の速度及び前記冷却手段の制御量、レーザビームの状態が記憶手段に蓄積されて、次のレーザ割断処理時には、記憶手段に蓄積された制御量に基づき制御出来るので、割断の加工精度を高めることができた。
上述した制御を記憶手段に蓄積することを繰り返すことにより適切な制御量が蓄積されるので亀裂先端が割断予定線に沿って移動するように移動させる手段の速度及び前記冷却手段の制御することが可能となった。
Each time the laser cleaving process is performed, the speed of the moving means, the control amount of the cooling means, and the state of the laser beam are accumulated in the storage means, and the next laser cleaving process is based on the control amount accumulated in the storage means. Since it can be controlled, the cutting accuracy can be improved.
By repeating the accumulation of the above-described control in the storage means, an appropriate control amount is accumulated, so that the speed of the means for moving the crack tip to move along the planned cutting line and the control of the cooling means can be controlled. It has become possible.

本発明のレーザ割断方法は、レーザビームを照射して脆性材料の表面上にレーザ照射点を形成するレーザ発信器と、冷却材を噴射して前記脆性材料の表面上に冷却点を形成する割断工程と、前記脆性材料の亀裂の先端部とレーザビームを走査による加熱部分の温度を計測する温度検出工程と、前記脆性材料の加工空間の温度を計測する温度検出工程と亀裂の先端が割断予定線に沿って進行するように移動させる工程を備え、二つ以上の計測手段から得られた計測値を、予測する演算処理手段と前記脆性材料の種類に応じたデータで比較否判定する制御手段を備えて、亀裂の先端が割断予定線に沿って進行するように前記冷却及び移動させる手段、レーザ発信器の出力の少なくとも一方を制御した。   The laser cleaving method of the present invention includes a laser transmitter that irradiates a laser beam to form a laser irradiation point on the surface of the brittle material, and a cleaving that injects a coolant to form a cooling point on the surface of the brittle material. A temperature detection step of measuring the temperature of the cracked portion of the brittle material and a heated portion by scanning with a laser beam; a temperature detection step of measuring the temperature of the processing space of the brittle material; A control means comprising a step of moving so as to proceed along the line, and comparing the determination of the measurement values obtained from two or more measurement means with data corresponding to the type of the brittle material And controlling at least one of the cooling and moving means and the output of the laser transmitter so that the tip of the crack advances along the planned cutting line.

上記のレーザ割断方法によれば、脆性材料にレーザビームを照射することにより、レーザビーム照射点が高温となり、一方冷却材を噴射することにより冷却点が低温となる。
レーザビーム照射点と冷却点とを割断予定線にそって移動することにより、レーザビーム照射点と冷却点の間に温度勾配が形成され温度勾配に起因する応力によって脆性材料の亀裂が進行する。
この亀裂の先端を温度計測により検出し割断予定線に沿って冷却手段や移動させる手段の少なくとも一方を制御することにより、亀裂を割断予定線に沿って進行させることができた。
According to the above laser cleaving method, the laser beam irradiation point becomes high temperature by irradiating the brittle material with the laser beam, while the cooling point becomes low temperature by spraying the coolant.
By moving the laser beam irradiation point and the cooling point along the planned cutting line, a temperature gradient is formed between the laser beam irradiation point and the cooling point, and the crack of the brittle material proceeds due to the stress caused by the temperature gradient.
By detecting the tip of the crack by temperature measurement and controlling at least one of the cooling means and the moving means along the planned cutting line, the crack could be advanced along the planned cutting line.

上記のレーザ割断方法では、制御工程は前記レーザビーム照射点の移動速度を制御した。
レーザビーム照射点の計測温度が予測する演算処理手段で得られたデータと比較して低い場合は、移動速度を低下させるように制御した。
In the laser cleaving method, the control step controls the moving speed of the laser beam irradiation point.
When the measured temperature at the laser beam irradiation point was lower than the data obtained by the calculation processing means to predict, the moving speed was controlled to decrease.

従って、レーザビームを照射点の移動速度を低下させることにより、レーザビーム照射点の温度が上昇するとともに、レーザビームを照射点と亀裂の先端との距離が短くなるので割断の方向性が良くなり、割断予定線に沿って亀裂を進行させることができた。   Therefore, by lowering the moving speed of the laser beam irradiation point, the temperature of the laser beam irradiation point increases, and the distance between the laser beam irradiation point and the crack tip is shortened, so that the directionality of cleavage is improved. The crack was able to advance along the planned cutting line.

レーザビーム照射点の計測温度が予測する演算処理手段で得られたデータと比較して高い場合は、移動速度を増加させるように制御した。レーザビームを照射点の移動速度を増加させることにより、レーザビーム照射点の温度が低下するとともに、レーザビームを照射点と亀裂の先端との距離が長くなるので割断の速度が速くなり、割断速度を増加できた。   When the measured temperature at the laser beam irradiation point was higher than the data obtained by the calculation processing means to predict, the moving speed was controlled to increase. By increasing the moving speed of the laser beam irradiation point, the temperature of the laser beam irradiation point decreases, and the distance between the laser beam irradiation point and the tip of the crack increases, so the cleaving speed increases and the cleaving speed increases. Could be increased.

上記レーザ割断方法では、前記脆性材料の保持を点または線の保持材とすることにより、保持部へ熱の伝導を少なくできた。上記の保持部は、前記脆性材料を拘束しない形状とすることにより、亀裂を割断予定線に沿って進行させることができた。前記脆性材料の加工空間の温度を計測する計測温度が前記脆性材料の温度上昇することにより、予測する演算処理温度値が変わる。
上記加工空間の温度を計測する温度を補正値として使用することにより、前記脆性材料の割断予定線に沿った割断の加工精度を高めることができた。
In the laser cleaving method, heat conduction to the holding portion can be reduced by holding the brittle material as a point or line holding material. By making the holding part into a shape that does not restrain the brittle material, it was possible to advance the crack along the planned cutting line. As the measurement temperature for measuring the temperature of the processing space of the brittle material rises, the predicted processing temperature value changes.
By using the temperature for measuring the temperature of the processing space as a correction value, it was possible to improve the processing accuracy of the cleaving along the planned cutting line of the brittle material.

上記のレーザ割断方法では、さらに制御手段の脆性材料の表面上に冷却部を形成する冷却手段でレーザビーム照射点の計測温度が予測する演算処理手段で得られたデータと比較して低い場合は、冷却材を噴射してレーザビーム照射点と冷却点の間に温度勾配を増加させることにより、レーザビームを照射点と亀裂の先端との距離が短くなるので割断の方向性が良くなり、割断予定線に沿って亀裂を進行させることができた。   In the laser cleaving method described above, if the measurement temperature of the laser beam irradiation point is lower than the data obtained by the arithmetic processing means predicted by the cooling means that forms the cooling part on the surface of the brittle material of the control means, By injecting coolant and increasing the temperature gradient between the laser beam irradiation point and the cooling point, the distance between the laser beam irradiation point and the tip of the crack is shortened, so that the direction of cleaving is improved and cleaving The crack could be advanced along the planned line.

脆性材料の表面上に冷却部を形成する冷却工程でレーザビーム照射点の計測温度が予測する演算処理手段で得られたデータと比較して高い場合は、冷却材の噴射を減少してレーザビーム照射点と冷却点の間に温度勾配を減少させることにより、レーザビームを照射点と亀裂の先端との距離が長くなるので割断の、速度が速くなり、割断予定線に沿って亀裂を進行させることができた。   If the measured temperature at the laser beam irradiation point is higher than the data obtained by the calculation processing means that predicts the measurement temperature of the laser beam irradiation point in the cooling process for forming the cooling part on the surface of the brittle material, the injection of the coolant is reduced and the laser beam is reduced. By reducing the temperature gradient between the irradiation point and the cooling point, the distance between the irradiation point of the laser beam and the tip of the crack becomes longer, so the cleaving speed becomes faster and the crack progresses along the planned cutting line. I was able to.

上記冷却方法は、前記脆性材料の表面上に冷却点を的確に実施するためのガイドを備えることで、レーザビームの照射点を冷却しない機構により温度勾配を大きくできた。   In the cooling method, a temperature gradient can be increased by a mechanism that does not cool the irradiation point of the laser beam by providing a guide for accurately performing the cooling point on the surface of the brittle material.

前記の制御手段において効果がない時、レーザビーム照射点の計測温度が予測する演算処理手段で得られたデータと比較して低い場合は、レーザ発信器の出力を増加させる制御をした。
レーザビームを走査による加熱部分の温度を計測する測定値を演算処理手段で得られたデータと比較により高温を防止できた。
When the control means is not effective, control is performed to increase the output of the laser transmitter when the measured temperature at the laser beam irradiation point is lower than the data obtained by the predictive processing means.
The measured value for measuring the temperature of the heated part by scanning the laser beam was compared with the data obtained by the arithmetic processing means, thereby preventing high temperature.

上記のレーザ割断方法では、前記脆性材料にレーザビーム照射点の計測温度と冷却材を噴射して前記脆性材料の冷却点の計測温度とを計測して温度勾配を演算処理手段で得られたデータと比較制御することにより、常にレーザビームの走査より割断が進みレーザビームが後追いの形を防止できた。   In the above laser cleaving method, data obtained by calculating the temperature gradient by measuring the measurement temperature of the laser beam irradiation point and the coolant at the measurement temperature of the cooling point of the brittle material by injecting the brittle material to the brittle material By controlling the comparison with, the cutting always progressed more than the scanning of the laser beam, and the shape of the laser beam could be prevented.

上記のレーザ割断方法では、レーザ割断処理中に得られる前記移動させる手段の速度及び前記冷却手段の制御量を記憶する記憶手段を備え、次回のレーザ割断処理において過去に前記記憶手段に記憶された制御量に基づき前記移動及び前記冷却、レーザビームの少なくとも一方を制御した。   The laser cleaving method includes a storage unit that stores the speed of the moving unit and the control amount of the cooling unit obtained during the laser cleaving process, and is stored in the storage unit in the past in the next laser cleaving process. Based on the control amount, at least one of the movement, the cooling and the laser beam was controlled.

図1は、本発明の割断装置の最良の形態を示した基本構成図である。図1において加熱源となるレーザ発振器1からレーザビームを照射して脆性材料10を、割断予定線に沿ってX方向に移動させることによって 割断予定線に沿ってレーザビーム照射点が移動した。
また、割断予定線に沿ってレーザビームの後方(亀裂の先端付近の温度を冷却する位置に取り付けられ)から冷却ユニット30で冷却された冷却材を冷却ノズル31から噴射することで冷却点を形成した。
この冷却点は割断進行点(亀裂の先端)より少し後方となる位置するのが良いとされるが、脆性材料の種類に応じて位置が変わっても良い。
例えば、冷却材は純水を窒素で加圧しても、一般水又はアルコールと水の混合を空気で加圧して冷却しても良い。圧電素子を装着したキャピラリーを用いても良い。
冷却ノズル31から噴射する冷却材は、レーザビーム照射点へ入らないように冷却ガイド32(エアーカーテンノズル)で遮断した。
この冷却ガイド32(エアーカーテンノズル)では、脆性材料の割断部以外を冷却(ダメージを少なくする)する効果も併用できた。
脆性材料10を移動させるX-Y-Z-回転ステージ20は、割断移動に適した外部から速度制御ができるものでリニアモータのXYZに回転のダイレクトドライブモータかサーボモータを使用するが、割断移動に適した仕様で外部から制御できるもので良い。
このステージ20には、脆性材料10を保持する熱の伝導を少なくできて、且つ、前記脆性材料を拘束しない形状とすることにより割断予定線に沿ってずれることなく偏差(誤差)を少なくすることができた。
レーザビーム照射点が加熱されて高温になるのに対し、冷却点は冷却されるのでこの2点間に温度勾配が形成されて割断が進行した。
ビーム走査直後の加熱部分の温度を測定する非接触式スポット温度計41、亀裂の先端部の温度を測定する非接触式スポット温度計42、材料保持部がある加工空間の温度を測定する非接触式スポット温度計43で温度を計測することにより、上記2点間の温度勾配を割断の最適値にするようにレーザビームのパワーや移動や冷却量を制御したので、制御コンピュータへ脆性材料の種類に応じて予め登録した割断条件(レーザパワー、移動速度、冷却量)で演算した値を比較して容易な制御量を得ることができた。
FIG. 1 is a basic configuration diagram showing the best mode of the cleaving apparatus of the present invention. In FIG. 1, the laser beam irradiation point moved along the planned cutting line by irradiating the brittle material 10 in the X direction along the planned cutting line by irradiating a laser beam from the laser oscillator 1 serving as a heating source.
In addition, a cooling point is formed by injecting the coolant cooled by the cooling unit 30 from the cooling nozzle 31 from behind the laser beam (attached to the position where the temperature near the tip of the crack is cooled) along the planned cutting line. did.
The cooling point is preferably located slightly behind the breaking progress point (crack tip), but the position may be changed depending on the type of brittle material.
For example, the coolant may be cooled by pressurizing pure water with nitrogen or by compressing ordinary water or a mixture of alcohol and water with air. A capillary equipped with a piezoelectric element may be used.
The coolant sprayed from the cooling nozzle 31 was blocked by a cooling guide 32 (air curtain nozzle) so as not to enter the laser beam irradiation point.
In this cooling guide 32 (air curtain nozzle), the effect of cooling (reducing damage) other than the cleaved portion of the brittle material could be used in combination.
The XYZ-rotation stage 20 that moves the brittle material 10 can be controlled from the outside suitable for cleaving movement. A linear direct drive motor or servo motor is used for the XYZ of the linear motor, but the specifications are suitable for cleaving movement. Can be controlled from the outside.
In this stage 20, heat conduction for holding the brittle material 10 can be reduced, and by making the brittle material unconstrained, deviation (error) can be reduced without shifting along the planned cutting line. I was able to.
While the laser beam irradiation point was heated to a high temperature, the cooling point was cooled, so a temperature gradient was formed between the two points, and the cleaving proceeded.
Non-contact spot thermometer 41 that measures the temperature of the heated portion immediately after beam scanning, non-contact spot thermometer 42 that measures the temperature of the tip of the crack, and non-contact that measures the temperature of the processing space where the material holding portion is located Since the laser beam power, movement, and cooling amount were controlled so that the temperature gradient between the two points was adjusted to the optimum value for cleaving by measuring the temperature with the spot type thermometer 43, the type of brittle material was transferred to the control computer. By comparing the values calculated according to the cleaving conditions (laser power, moving speed, cooling amount) registered in advance, an easy control amount can be obtained.

本発明に係る動作例を図1と図2と図3を参照して以下説明する。本実施例では、脆性材料10を割断開始位置(脆性材料の端面)へ移動させた後レーザ発振器1から出射されたレーザビーム照射で加熱を、ビーム走査直後の加熱部分の温度を測定する非接触式スポット温度計41で計測をしながら、熱応力により亀裂(初亀裂)を発生させる温度になるまで停止させたが、脆性材料の種類によっては遅い速度の移動でも良い。亀裂が進展を開始する温度は、制御コンピュータ50へ予め登録(脆性材料の種類に応じた代表値)してある。
この登録温度値と測定温度を比較することにより、脆性材料10を移動(開始)させる条件とした。移動開始条件が成立することによって、割断予定線に沿って脆性材料10を移動させるX-Y-Z-回転ステージ20へ遅い速度の移動を開始させた。
脆性材料10へのレーザビーム照射点が移動するのにともなって、加熱部分の温度も移動するので温度を測定する非接触式スポット温度計41で温度計測した値が減少した。
亀裂の先端部の温度を測定する非接触式スポット温度計42の測定位置が照射ビーム走査後の加熱部分へ達した時の測定値を制御コンピュータへ取り込みレーザビーム照射点の温度計41の温度測定値と温度計42温度測定値で温度勾配を演算すれば冷却の冷却量がわかった。
冷却ノズル31から噴射する冷却材の冷却量は、制御コンピュータへ予め登録(脆性材料の種類に応じた代表値)で開始制御すればよい。
上記温度勾配が増加すると脆性材料10を移動させるX-Y-Z-回転ステージ20の移動を高速へ切り替える制御をした。随時速度制御でも良い。
脆性材料10へのレーザビーム照射点の移動速度が上がるのにともない亀裂の先端部の温度を測定する非接触式スポット温度計42の測定温度は低下するので、上記冷却量の制御は少しでよい。これ等の制御で脆性材料の端面(終端)へ至った場合は、レーザビーム照射点の温度計41の温度測定値が急激に下がり、亀裂の先端部の温度を測定する非接触式スポット温度計42の測定温度は変わらないので端面と判断できることにより割断予定線に沿って割断が終了するが、前記レーザビーム照射点と前記冷却点の距離だけ脆性材料10を移動して終了させた。
An example of the operation according to the present invention will be described below with reference to FIGS. In this embodiment, the brittle material 10 is moved to the cleaving start position (end face of the brittle material) and then heated by irradiation with the laser beam emitted from the laser oscillator 1, and the temperature of the heated portion immediately after the beam scanning is measured without contact. While measurement was performed with a spot thermometer 41, the temperature was stopped until the temperature at which a crack (initial crack) was generated due to thermal stress, but depending on the type of brittle material, movement at a low speed may be used. The temperature at which the crack starts to progress is registered in advance in the control computer 50 (representative value corresponding to the type of brittle material).
By comparing this registered temperature value with the measured temperature, the brittle material 10 was moved (started). When the movement start condition is satisfied, the movement at a low speed is started to the XYZ-rotation stage 20 that moves the brittle material 10 along the planned cutting line.
As the laser beam irradiation point on the brittle material 10 moves, the temperature of the heated portion also moves, so the value measured by the non-contact spot thermometer 41 that measures the temperature decreases.
The measured value when the measurement position of the non-contact type spot thermometer 42 for measuring the temperature at the tip of the crack reaches the heated portion after scanning the irradiation beam is taken into the control computer, and the temperature measurement of the thermometer 41 at the laser beam irradiation point is performed. If the temperature gradient was calculated from the measured value and the temperature measured value of the thermometer 42, the cooling amount of cooling was found.
The cooling amount of the coolant sprayed from the cooling nozzle 31 may be controlled in advance by being registered in advance in the control computer (representative value corresponding to the type of brittle material).
Control was performed to switch the movement of the XYZ-rotating stage 20 that moves the brittle material 10 to high speed when the temperature gradient increases. Speed control may be performed at any time.
As the moving speed of the laser beam irradiation point to the brittle material 10 increases, the measurement temperature of the non-contact type spot thermometer 42 that measures the temperature at the tip of the crack decreases, so the amount of cooling may be controlled slightly. . When reaching the end face (termination) of the brittle material by such control, the temperature measurement value of the thermometer 41 at the laser beam irradiation point suddenly decreases, and the non-contact type spot thermometer for measuring the temperature at the tip of the crack Since the measurement temperature of 42 does not change, it can be judged as an end face, so that the cutting is completed along the planned cutting line. However, the brittle material 10 is moved by the distance between the laser beam irradiation point and the cooling point.

割断可能な温度勾配が一定温度領域になく低い場合、20:X-Y-Z-回転ステージ送りをてレーザビーム走査し加熱部分の温度を上昇させる方法とステージ送りを遅くしてレーザビームの出力を増す方法を選んだ。
時間の増加で温度上昇をおこなうことができるレーザビーム径の変更でも良い。割断可能な温度勾配が一定温度領域になく高い場合、20:X-Y-Z-回転ステージ20の送りを速めてレーザビーム走査し加熱部分の温度を下降させる方法とレーザビームの出力を減少させる方法を選ぶ。
割断可能な温度勾配が一定温度領域になった時に割断制御は、脆性材料の移動速度一定で非接触式スポット温度計41,42,43を測定して、冷却ノズル31の冷却量を変えても良いし、レーザ発信器1のレーザ出力を変えても良い。
レーザビーム径や冷却ノズル31の冷却量、X-Y-Z-回転ステージ20の少なくとも1つ以上組合せて制御しても良いし、レーザ走査中も一定温度領域を維持する最適条件をシステム制御コンピュータで演算させても良い。
最適温度条件範囲は、厚み500μmの鏡面仕上げのシリコンウェーハで約140℃〜70℃となるが、脆性材料の種類毎に異なる割断温度条件となる。
X-Y-Z-回転ステージ20の移動速度は、厚み500μmの鏡面仕上げのシリコンウェーハで100mm/s以上とした。
If the temperature gradient that can be cleaved is low in the constant temperature range, 20: XYZ-feeding the rotating stage and scanning the laser beam to raise the temperature of the heated part and slowing the stage feed and increasing the laser beam output I chose.
The laser beam diameter may be changed so that the temperature can be increased by increasing the time. When the temperature gradient that can be cleaved is not in a certain temperature range and is high, 20: XYZ-rotation stage 20 feed is accelerated to scan the laser beam to lower the temperature of the heated portion, and to reduce the laser beam output.
When the cleaving temperature gradient reaches a certain temperature range, cleaving control is performed even if the cooling speed of the cooling nozzle 31 is changed by measuring the non-contact type spot thermometers 41, 42, 43 with the moving speed of the brittle material constant. The laser output of the laser transmitter 1 may be changed.
The laser beam diameter, the cooling amount of the cooling nozzle 31 and at least one of the XYZ-rotation stages 20 may be combined and controlled, and the optimum condition for maintaining a constant temperature region during laser scanning is calculated by a system control computer. Also good.
The optimum temperature condition range is about 140 ° C. to 70 ° C. for a mirror-finished silicon wafer having a thickness of 500 μm, but the cutting temperature condition varies depending on the type of brittle material.
The moving speed of the XYZ-rotating stage 20 was set to 100 mm / s or more for a mirror-finished silicon wafer having a thickness of 500 μm.

構成例Configuration example

レーザ発振器1は、シリコンウェーハでは最適波長のYAGレーザを用いているが、脆性材料の種類によっては、CO2レーザ、エキシマレーザ、He-Cdレーザ等を用いることもできる。
レーザビームスポット径は割断可能な温度が発生できる直径で有れば良い。
脆性材料10は、厚み500μmの鏡面仕上げのシリコンウェーハであるがレーザ波長に適した脆性材料のウェーハであれば良い。
X-Y-Z-回転ステージ20は、リニアモータのXYZに回転のダイレクトドライブモータで外部からコントロールできるものであるがサーボモータを使用しても良い。
割断移動に適した仕様であれば良い。
このステージには、脆性材料を熱の分散を防止する点または線で接触させる保持部を取り付けた。
円弧型、剣山型、山型の接触面が少ない形状が望ましい。
冷却ユニット30は、冷却材を一次蓄える機構と気体を一次蓄える機構とそれぞれのノズル31、32へ取り付けられた電動マイクロバルブを有している。
冷却ノズル31は、亀裂の先端付近の温度を冷却する位置に取り付けられ、冷却材は純水を用いたが一般水又はアルコールと水の混合でも良い。
レーザのスポット径を冷却可能な大きさであって、ビーム加熱部を冷やさない向きの形状とした。
カーテンノズル32は、窒素を用いてレーザの加熱部へ入らないカーテンとしたが、冷却ノズル31と一体構造の中心が冷却材で周囲が加圧気体方式でも良い。
この部分は脆性材料の割断部以外を冷却(ダメージを少なくする)効果も併用できる。
非接触式スポット温度計41は非接触サーモパイル式のスポット径1mmとするがレーザのスポット径であれば良い。
非接触式スポット温度計42は非接触サーモパイル式のスポット径2mmとするが亀裂の先端部が確実に測定できれば良い。
非接触式スポット温度計43は非接触サーモパイル式の径50mmとするが同等の機能があれば良い。
これらの温度計は、レーザビームを感知しない高速温度応答を有し測定データをシステム制御コンピュータへ送る出力があれば良い。
非接触式スポット温度計41は、サーモパイル式の応答速度100msであるが速度とスポット径の仕様を満たせば、放射温度計式、非接触光電素子でも良い。
温度計の応答速度(μs)でシステム制御コンピュータへ取り込み速度(μs)の場合は1000以上の速度可変も可能となる。
本発明の制御は、複数の温度測定を高速で取り込み割断最適条件判断をするためにIOボードを備え、且つデータべースを保存している記憶(ハードディスク)を持つシステム制御コンピュータ50に取り込み、得られた温度データを、脆性材料の種類毎に異なる温度に関する過去の割断実測データと比較して予測演算データを得るソフトウェアで演算する。演算は、近似曲線方式としたが補完式でも良い。
予測演算データは高速に割断の可否判定を行なった。
高速制御機能を有するのでX-Y-Z-回転ステージ20の速度と冷却ノズル31冷却量の一方を制御しても、両方制御しても良い。
データ形式は、タイトルにレーザ出力値を縦軸に割断温度条件、横軸にX-Y-Z-回転ステージ20の移動速度を表形式で纏めたものであるが、タイトルにレーザビーム径で縦軸に冷却量と横軸にレーザビーム移動速度でも良い。
The laser oscillator 1 uses a YAG laser having an optimum wavelength for a silicon wafer, but a CO 2 laser, an excimer laser, a He—Cd laser, or the like may be used depending on the type of brittle material.
The laser beam spot diameter may be a diameter that can generate a cleaving temperature.
The brittle material 10 is a mirror-finished silicon wafer having a thickness of 500 μm, but may be a brittle material wafer suitable for the laser wavelength.
The XYZ-rotation stage 20 can be controlled from the outside by a direct drive motor that rotates the XYZ of the linear motor, but a servo motor may be used.
Any specification suitable for cleaving movement may be used.
This stage was equipped with a holding part for bringing the brittle material into contact with a point or line for preventing heat dispersion.
An arc shape, a sword mountain shape, or a mountain shape with few contact surfaces is desirable.
The cooling unit 30 includes a mechanism that primarily stores coolant, a mechanism that primarily stores gas, and electric microvalves attached to the respective nozzles 31 and 32.
The cooling nozzle 31 is attached at a position for cooling the temperature near the tip of the crack, and pure water is used as the coolant, but general water or a mixture of alcohol and water may be used.
The laser spot diameter is sized so that it can be cooled, and the beam heating section is oriented so as not to be cooled.
The curtain nozzle 32 is a curtain that does not enter the laser heating unit using nitrogen, but the center of the structure integrally with the cooling nozzle 31 may be a coolant and the surrounding may be a pressurized gas system.
This part can be used in combination with an effect of cooling (reducing damage) other than the cleaved portion of the brittle material.
The non-contact type spot thermometer 41 has a non-contact thermopile type spot diameter of 1 mm.
The non-contact type spot thermometer 42 has a non-contact thermopile type spot diameter of 2 mm, as long as the tip of the crack can be reliably measured.
The non-contact type spot thermometer 43 has a non-contact thermopile type diameter of 50 mm, but may have an equivalent function.
These thermometers have a fast temperature response that does not sense the laser beam and need only have an output to send measurement data to the system control computer.
The non-contact type spot thermometer 41 has a thermopile type response speed of 100 ms, but may be a radiation thermometer type or non-contact photoelectric element as long as the specifications of the speed and the spot diameter are satisfied.
If the response speed (μs) of the thermometer is taken into the system control computer (μs), the speed can be changed by 1000 or more.
The control of the present invention takes in a plurality of temperature measurements at a high speed and takes in a system control computer 50 having a memory (hard disk) that has an IO board and stores the database in order to determine the optimum condition for cleavage. The obtained temperature data is calculated by software that obtains predicted calculation data by comparing with past cleaved measurement data relating to different temperatures for each type of brittle material. The calculation is an approximate curve method, but may be a complementary equation.
Predictive calculation data was judged to be cleaved at high speed.
Since it has a high-speed control function, either the speed of the XYZ-rotating stage 20 or the cooling amount of the cooling nozzle 31 may be controlled or both may be controlled.
The data format is a table in which the laser output value is plotted on the vertical axis and the cutting temperature condition is plotted on the vertical axis, and the moving speed of the XYZ-rotating stage 20 is plotted on the horizontal axis. The horizontal axis may be the laser beam moving speed.

ガラス加工:自動車のガラス、ミラー、建築用窓ガラス、FDPガラス、携帯表示器
セラミック加工:車両用セラミック基板、工具、半導体用基板
太陽電池加工:アモルファスガラス基板、単結晶半導体基板、多結晶半導体基板
半導体製造工場:Siウェーハ、SiCウェーハ、ガリウム砒素ウェーハ、ガリウム燐ウェーハ、インジュム燐ウェーハ、サファイア
Glass processing: automotive glass, mirror, architectural window glass, FDP glass, portable display Ceramic processing: vehicle ceramic substrate, tool, semiconductor substrate Solar cell processing: amorphous glass substrate, single crystal semiconductor substrate, polycrystalline semiconductor substrate Semiconductor manufacturing plant: Si wafer, SiC wafer, gallium arsenide wafer, gallium phosphide wafer, indium phosphide wafer, sapphire

本発明における、レーザ割断装置の概略図である。It is the schematic of the laser cleaving apparatus in this invention. 本発明における、レーザ割断装置の動作フローチャートである。It is an operation | movement flowchart of the laser cleaving apparatus in this invention. 本発明における、材料の割断予定線、加熱部、冷却部の説明と温度分布線図。In the present invention, the material cutting schedule line, the explanation of the heating part, the cooling part and the temperature distribution diagram.

符号の説明Explanation of symbols

1:レーザ発振器
10:脆性材料
20:X-Y-Z-回転ステージ
21:保持部
30:冷却ユニット
31:冷却ノズル
32:カーテンノズル
41:加熱部の非接触式スポット温度計1
42:冷却部の非接触式スポット温度計2
43:環境温度を非接触式スポット温度計3
50:システム制御コンピュータ
60:ステージ駆動ドライバ
1: Laser oscillator
10: Brittle material 20: XYZ-rotation stage 21: Holding part 30: Cooling unit
31: Cooling nozzle 32: Curtain nozzle 41: Non-contact spot thermometer 1 of heating part
42: Non-contact spot thermometer 2 in the cooling section
43: Non-contact spot thermometer 3 for ambient temperature
50: System control computer
60: Stage drive driver

Claims (8)

割断予定線に沿って脆性材料にレーザビームを照射する加熱工程と、 該加熱工程で加熱された加熱部分を冷却する割断工程からなる脆性材料の割断方法において、前記加熱工程で加熱された部分の温度を計測する第一計測工程と、前記割断工程の割断予定箇所近傍の冷却部温度を計測する第二計測工程と、前記加熱工程と前記割断工程とを行なう加工空間の温度を計測する第三計測工程のうち、少なくとも二つ以上の前記計測工程から得られた各温度計測値を、前記脆性材料の種類に応じて予め定められた各温度演算値と比較し、上記脆性材料が割断するか否か比較判定することを特徴とする脆性材料の割断方法。   A brittle material cleaving method comprising: a heating step of irradiating a brittle material with a laser beam along a planned cutting line; and a cleaving step of cooling a heated portion heated in the heating step. A first measurement step for measuring the temperature, a second measurement step for measuring the temperature of the cooling part in the vicinity of the planned cutting position of the cleaving step, and a third for measuring the temperature of the working space for performing the heating step and the cleaving step. Of the measurement steps, each temperature measurement value obtained from at least two of the measurement steps is compared with each temperature calculation value predetermined according to the type of the brittle material, and whether the brittle material cleaves. A method for cleaving a brittle material, characterized in that a comparison is made. 上記加熱工程において、脆性材料の送り速度、レーザビーム出力、レーザビーム送り速度、レーザビーム径のうち少なくとも1つ以上組み合わせて制御することを特徴とする請求項1に記載の脆性材料の割断方法。   2. The brittle material cleaving method according to claim 1, wherein in the heating step, the brittle material is controlled by combining at least one of a brittle material feed rate, laser beam output, laser beam feed rate, and laser beam diameter. 上記割断工程において、冷却ノズルの冷却量を制御することを特徴とする請求項1、若しくは、請求項2に記載の脆性材料の割断方法。   The brittle material cleaving method according to claim 1, wherein the cooling amount of the cooling nozzle is controlled in the cleaving step. 上記割断工程において、上記二つ以上の計測工程から得られた各温度測定値が、上記脆性材料の種類に応じて予め演算した各演算予測温度に一致するように、上記レーザビーム出力、脆性材料の送り速度、レーザビーム送り速度、レーザビーム径を少なくとも1つ以上組合わせて自動条件設定を行なうことを特徴とする請求項3に記載の脆性材料の割断方法。   In the cleaving step, the laser beam output and the brittle material so that each temperature measurement value obtained from the two or more measurement steps coincides with each calculated predicted temperature calculated in advance according to the type of the brittle material. The brittle material cleaving method according to claim 3, wherein automatic condition setting is performed by combining at least one of a feed rate, a laser beam feed rate, and a laser beam diameter. 上記加熱工程と上記割断工程とを行なう加工空間の温度を一定に保持することを特徴とする請求項1に記載の脆性材料の割断方法。   The method for cleaving a brittle material according to claim 1, wherein the temperature of a working space for performing the heating step and the cleaving step is kept constant. 割断予定線に沿って脆性材料にレーザビームを照射する加熱機構と、該加熱機構で加熱された加熱部分を冷却する割断機構と前記加熱機構で加熱された部分の温度を計測する第一計測手段と、前記割断機構の割断予定箇所近傍の冷却部温度を計測する第二計測手段と、前記加熱機構と前期割断機構がある加工空間の温度を計測する第三計測手段のうち、少なくとも二つ以上の前記計測手段から得られた各温度計測値を、前記脆性材料の種類に応じて予め定められた演算値と比較判定する演算・比較判定機構とを具備してなることを特徴とする脆性材料の割断装置。   A heating mechanism for irradiating a brittle material with a laser beam along a planned cutting line, a cleaving mechanism for cooling a heated part heated by the heating mechanism, and a first measuring means for measuring the temperature of the part heated by the heating mechanism And at least two or more of second measuring means for measuring the temperature of the cooling part near the planned cutting position of the cleaving mechanism, and third measuring means for measuring the temperature of the processing space where the heating mechanism and the previous cleaving mechanism are located. A brittle material comprising: a calculation / comparison determination mechanism that compares each temperature measurement value obtained from the measurement means with a predetermined calculation value according to the type of the brittle material. Cleaving device. 前記割断機構に冷却ガイドを設けたことを特徴とする請求項6に記載の脆性材料の割断装置。   The brittle material cleaving apparatus according to claim 6, wherein a cooling guide is provided in the cleaving mechanism. 前記割断機構に、上記脆性材料の裏面を点または線で接触する保持手段を設けたことを特徴とする請求項6、若しくは、請求項7に記載の脆性材料の割断装置。   The brittle material cleaving apparatus according to claim 6 or 7, wherein the cleaving mechanism is provided with holding means for contacting the back surface of the brittle material with dots or lines.
JP2006242276A 2006-09-07 2006-09-07 Splitting method for brittle material, and splitting apparatus for brittle material Pending JP2008062489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006242276A JP2008062489A (en) 2006-09-07 2006-09-07 Splitting method for brittle material, and splitting apparatus for brittle material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006242276A JP2008062489A (en) 2006-09-07 2006-09-07 Splitting method for brittle material, and splitting apparatus for brittle material

Publications (1)

Publication Number Publication Date
JP2008062489A true JP2008062489A (en) 2008-03-21

Family

ID=39285611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006242276A Pending JP2008062489A (en) 2006-09-07 2006-09-07 Splitting method for brittle material, and splitting apparatus for brittle material

Country Status (1)

Country Link
JP (1) JP2008062489A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128219A1 (en) * 2008-04-15 2009-10-22 株式会社リンクスタージャパン Brittle material substrate processing apparatus and brittle material substrate cutting method
KR100990519B1 (en) 2008-08-07 2010-10-29 (주)하드램 Apparatus for cutting substrate using a laser and method for cutting
JP2015071533A (en) * 2009-05-21 2015-04-16 コーニング インコーポレイテッド Thin substrates having mechanically durable edges
KR101549721B1 (en) 2009-05-27 2015-09-02 코닝 인코포레이티드 Laser scoring of glass at elevated temperatures
CN105082378A (en) * 2014-05-06 2015-11-25 黄海沔 Intelligent jewel cutting machine
CN113432749A (en) * 2021-08-26 2021-09-24 深圳市诺亚云谷科技有限公司 Laser ablation molten metal bath temperature measuring device
JP2023525241A (en) * 2020-04-28 2023-06-15 アイティーアイ カンパニー リミテッド Ceramic cutting method and equipment

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128219A1 (en) * 2008-04-15 2009-10-22 株式会社リンクスタージャパン Brittle material substrate processing apparatus and brittle material substrate cutting method
KR100990519B1 (en) 2008-08-07 2010-10-29 (주)하드램 Apparatus for cutting substrate using a laser and method for cutting
JP2015071533A (en) * 2009-05-21 2015-04-16 コーニング インコーポレイテッド Thin substrates having mechanically durable edges
JP2016128376A (en) * 2009-05-21 2016-07-14 コーニング インコーポレイテッド Thin substrates having mechanically durable edges
US9422188B2 (en) 2009-05-21 2016-08-23 Corning Incorporated Thin substrates having mechanically durable edges
KR101549721B1 (en) 2009-05-27 2015-09-02 코닝 인코포레이티드 Laser scoring of glass at elevated temperatures
CN105082378A (en) * 2014-05-06 2015-11-25 黄海沔 Intelligent jewel cutting machine
JP2023525241A (en) * 2020-04-28 2023-06-15 アイティーアイ カンパニー リミテッド Ceramic cutting method and equipment
CN113432749A (en) * 2021-08-26 2021-09-24 深圳市诺亚云谷科技有限公司 Laser ablation molten metal bath temperature measuring device

Similar Documents

Publication Publication Date Title
JP2008062489A (en) Splitting method for brittle material, and splitting apparatus for brittle material
EP1500484B1 (en) Method and system for machining fragile material
KR101069621B1 (en) Cutting method
JP5325209B2 (en) Processing method of brittle material substrate
JP5314674B2 (en) Processing method of brittle material substrate
JPH0929472A (en) Method and device for splitting and chip material
JP2012109341A (en) Slicing method and slicing device of semiconductor material
WO2009128316A1 (en) Method for processing fragile material substrate
JP2007090860A (en) System and method for cutting and working fragile material
KR101200789B1 (en) Method for dividing brittle material substrate
JP2011230940A (en) Cutting method for brittle material substrate
JP2010264471A (en) Thermal stress cracking for brittle material by wide region non-uniform temperature distribution
JP2000281375A (en) Method for cracking glass substrate md cracking device therefor
WO2003008352A1 (en) Device and method for scribing fragile material substrate
JP2005212364A (en) Fracturing system of brittle material and method thereof
JP2008050219A (en) Scribing groove forming apparatus, cutting apparatus and scribing groove forming method
JP2003034545A (en) Laser cutting device and method used for the same, method for cutting electroptical panel
JP2007260749A (en) Laser beam machining method and apparatus, and machined product of brittle material
JP2004042423A (en) Scribing apparatus
WO2009128315A1 (en) Method for processing fragile material substrate
JP5590642B2 (en) Scribing apparatus and scribing method
EP1498243A1 (en) Method and device for processing fragile material
JP2009012038A (en) Laser cutting apparatus and manufacturing method of substrate
JP2009107304A (en) Thermal stress cutting method for brittle material
JP2005263578A (en) System and method of cleaving brittle material