JP2008062387A - Mold - Google Patents

Mold Download PDF

Info

Publication number
JP2008062387A
JP2008062387A JP2006239180A JP2006239180A JP2008062387A JP 2008062387 A JP2008062387 A JP 2008062387A JP 2006239180 A JP2006239180 A JP 2006239180A JP 2006239180 A JP2006239180 A JP 2006239180A JP 2008062387 A JP2008062387 A JP 2008062387A
Authority
JP
Japan
Prior art keywords
mold part
molding die
outer mold
peripheral surface
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006239180A
Other languages
Japanese (ja)
Other versions
JP4884890B2 (en
Inventor
Tatsuya Hayashi
林  達也
Yutaka Kondo
豊 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006239180A priority Critical patent/JP4884890B2/en
Publication of JP2008062387A publication Critical patent/JP2008062387A/en
Application granted granted Critical
Publication of JP4884890B2 publication Critical patent/JP4884890B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mold which still micronizes the relative moving quantity of an inner mold part and an outer mold part and sets the coaxial degree between the inner and outer peripheral surfaces of a molded product with higher precision. <P>SOLUTION: A cylindrical mold comprises the outer mold part 3 and the inner mold part 4, both of which form a cavity 6 and an adjusting mechanism 5 for adjusting the position in the radial direction of the outer mold part 3 with respect to the inner mold part 4. The adjusting mechanism 5 is equipped with a first pressure member 51 for pressurizing the outer mold part 3 in an x-direction. The first pressure member 51 has a first taper surface A for guiding the outer mold part 3 in the x-direction. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は成形金型、特に小型の部材成形に好適な成形金型に関するものである。   The present invention relates to a molding die, particularly a molding die suitable for molding a small member.

例えば、流体軸受装置に組み込まれる樹脂製ハウジングの成形金型として、ハウジングの内周面と外周面の間の同軸度を高める目的で、キャビティを形成する内型部と外型部を半径方向に相対移動可能としたものが知られている。この成形金型における内型部と外型部の半径方向の相対移動は、微小な進退動作が可能な送り手段を、断面矩形状をなす外型部の外壁の二面に当接させ、これらを調整することにより行われる(例えば、特許文献1参照)。
特開2005−88427号公報
For example, as a molding die for a resin housing incorporated in a hydrodynamic bearing device, an inner mold portion and an outer mold portion that form a cavity are arranged in the radial direction in order to increase the coaxiality between the inner peripheral surface and the outer peripheral surface of the housing. Those which are capable of relative movement are known. The relative movement in the radial direction of the inner mold part and the outer mold part in this molding die is caused by bringing a feeding means capable of minute advancement and retraction into contact with two surfaces of the outer wall of the outer mold part having a rectangular cross section. (For example, refer patent document 1).
JP 2005-88427 A

ところで一般に、部材寸法が小さくなるにつれて、成形すべき部材に求められる各種精度(同軸度、平行度等)のオーダーは小さくなる。例えば、近年、上記の流体軸受装置においては、一層の小型化、高速回転化、高回転精度化等の要請が厳しさを増してきているが、上記のようにマイクロメーターヘッドの進退量と外型部の移動量とが同期した構成では、求められる同軸度を満足できないケースが増加しつつある。   By the way, in general, as the member size becomes smaller, the order of various precisions (coaxiality, parallelism, etc.) required for the member to be molded becomes smaller. For example, in recent years, demands for further miniaturization, higher speed rotation, higher rotation accuracy, etc. have been increasing in the above-described hydrodynamic bearing devices. In the configuration in which the amount of movement of the mold part is synchronized, the number of cases where the required coaxiality cannot be satisfied is increasing.

本発明の課題は、内型部と外型部の相対移動量を一層微小なものとすることができ、これにより成形品に求められる各種精度を一層高め得る成形金型を提供することにある。   An object of the present invention is to provide a molding die that can further reduce the relative movement amount of an inner mold part and an outer mold part, and thereby can further improve various precisions required for a molded product. .

上記課題を解決するため、本発明では、キャビティを形成する内型部および外型部を備え、内型部と外型部を相対移動可能にした成形金型であって、内型部または外型部の何れか一方を第1の方向に加圧する第1の加圧部材と、第1の加圧部材を前記第1の方向に案内する第1のテーパ面とを具備する成形金型を提供する。   In order to solve the above-described problems, the present invention provides a molding die that includes an inner mold part and an outer mold part that form a cavity, and is capable of relative movement between the inner mold part and the outer mold part. A molding die comprising: a first pressure member that pressurizes one of the mold parts in a first direction; and a first taper surface that guides the first pressure member in the first direction. provide.

上記のように、本発明に係る成形金型は、内型部または外型部の何れか一方を第1の方向に加圧する第1の加圧部材と、第1の加圧部材を前記第1の方向に案内する第1のテーパ面とを具備することを特徴とするものである。かかる構成によれば、何れか一方の型部の第1の方向への移動量を、第1のテーパ面の傾斜角に応じて低減することが可能となる。すなわち、例えば第1の加圧部材の進退量を1とし、第1のテーパ面の傾斜角をαとした場合、前記一方の型部の第1の方向への進退量はtanαとなるので、傾斜角αを45°未満に設定すれば、従来構成に比べ、当該型部の進退量をtanα倍に抑制することができる。これにより、従来構成に比べ、成形すべき成形品の一層の高精度化が容易に可能となる。なお、第1のテーパ面は、第1の加圧部材とこれをガイドする部材の一方又は双方に設けることができる。   As described above, in the molding die according to the present invention, the first pressurizing member that pressurizes either the inner mold part or the outer mold part in the first direction, and the first pressurizing member is the first pressurizing member. And a first tapered surface that guides in one direction. According to this configuration, it is possible to reduce the amount of movement of any one mold part in the first direction according to the inclination angle of the first tapered surface. That is, for example, when the advance / retreat amount of the first pressure member is 1 and the inclination angle of the first taper surface is α, the advance / retreat amount of the one mold part in the first direction is tan α. If the inclination angle α is set to be less than 45 °, the advance / retreat amount of the mold part can be suppressed to tan α times compared to the conventional configuration. Thereby, compared with the conventional configuration, it is possible to easily increase the accuracy of the molded product to be molded. The first tapered surface can be provided on one or both of the first pressure member and the member that guides the first pressure member.

本発明にかかる成形金型には、さらに、前記一方の型部を第2の方向に加圧する第2の加圧部材と、第2の加圧部材を前記第2の方向に案内する第2のテーパ面とを設けることができる。これにより、成形金型を二方向で微量移動させることが可能となり、成形品の一層の高精度化が可能となる。もちろん、この第2のテーパ面も第1のテーパ面と同様に、第2の加圧部材とこれをガイドする部材の一方又は双方に設けることができる。   The molding die according to the present invention further includes a second pressure member that pressurizes the one mold part in the second direction, and a second pressure member that guides the second pressure member in the second direction. The taper surface can be provided. As a result, the molding die can be moved in a small amount in two directions, and the accuracy of the molded product can be further increased. Of course, the second tapered surface can also be provided on one or both of the second pressure member and the member that guides the same as the first tapered surface.

前記第1および第2の方向は、成形品の半径方向で互いに直交させることができる。これにより、内型部と外型部の半径方向の位置決めを高精度に行い、成形品の内面と外面との間の同軸度を高めることができる。   The first and second directions can be orthogonal to each other in the radial direction of the molded product. Thereby, positioning of the inner mold part and the outer mold part in the radial direction can be performed with high accuracy, and the coaxiality between the inner surface and the outer surface of the molded product can be increased.

第1および第2のテーパ面の傾斜角は、成形品に求められる精度にもよるが、大きすぎると内型部と外型部の相対的な位置調整を高精度に行うのが難しくなり、一方、小さ過ぎると型部の移動量を得るのに必要な第1および第2の加圧部材の進退ストロークが大きくなり、金型が大型化すると共にその構造が複雑化する。そのため、第1および第2のテーパ面の傾斜角は1°以上10°以下に設定するのが望ましく、2°以上5°以下に設定するのが一層望ましい。上述したテーパ面の傾斜角を大きくした場合および小さくした場合のデメリットをバランス良く解消するためである。   The inclination angle of the first and second taper surfaces depends on the accuracy required for the molded product, but if it is too large, it is difficult to adjust the relative position of the inner mold portion and the outer mold portion with high accuracy. On the other hand, if it is too small, the advancing / retreating strokes of the first and second pressure members necessary to obtain the movement amount of the mold part become large, the mold becomes large and the structure becomes complicated. For this reason, the inclination angles of the first and second tapered surfaces are preferably set to 1 ° to 10 °, and more preferably set to 2 ° to 5 °. This is to eliminate the disadvantages of increasing and decreasing the inclination angle of the tapered surface described above in a well-balanced manner.

このように、本発明に係る成形金型は、キャビティを形成する内型部と外型部の何れか一方に対し他方を高精度に位置決めできるから、内面と外面との間で高い同軸度が求められる円筒体、例えば流体軸受装置用のハウジングを成形する成形金型として好適に用いることができる。   As described above, the molding die according to the present invention can position the other with high precision with respect to either the inner mold part or the outer mold part forming the cavity, so that a high degree of coaxiality is provided between the inner surface and the outer surface. It can be suitably used as a molding die for molding a required cylindrical body, for example, a housing for a hydrodynamic bearing device.

以上のように、本発明によれば、内型部と外型部の相対移動量を一層微小なものとすることができ、これにより成形品に求められる精度を一層高め得る成形金型を提供することができる。   As described above, according to the present invention, it is possible to further reduce the relative movement amount of the inner mold portion and the outer mold portion, thereby providing a molding die that can further increase the accuracy required for a molded product. can do.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1(a)は、本発明にかかる成形金型を概念的に示すもので、同図に示す成形金型は円筒体の成形金型を概念的に示すものである。この成形金型は、固定型1と、例えば図示しないガイドピン等でガイドされ、固定型1に対して軸方向(成形品の軸線方向)に移動可能な可動型2とで構成される。   FIG. 1A conceptually shows a molding die according to the present invention, and the molding die shown in FIG. 1 conceptually shows a cylindrical molding die. The molding die includes a fixed mold 1 and a movable mold 2 that is guided by, for example, a guide pin (not shown) and is movable in the axial direction (axial direction of the molded product) with respect to the fixed mold 1.

固定型1は、キャビティ6に連通するゲート1aと、その内周面3aがキャビティ6の外壁面となり、半径方向に移動可能な外型部3と、外型部3の半径方向位置を調整する調整機構5とを備えている。ゲート1aとしては、点ゲート(多点ゲートを含む)、リングゲート、フィルムゲート等公知のゲート形状を採用可能であり、成形品のサイズ・形状や射出材料に応じて適宜選択される。   The fixed die 1 has a gate 1 a communicating with the cavity 6, an inner peripheral surface 3 a thereof serving as an outer wall surface of the cavity 6, and an outer die portion 3 movable in the radial direction and a radial position of the outer die portion 3 are adjusted. And an adjusting mechanism 5. As the gate 1a, a known gate shape such as a point gate (including a multi-point gate), a ring gate, or a film gate can be adopted, and is appropriately selected according to the size / shape of the molded product and the injection material.

可動型2は、その外周面4aがキャビティ6の内壁面を構成する内型部(コアピン)4を備えている。本実施形態で、内型部4は固定側の型部となる。   The movable mold 2 includes an inner mold portion (core pin) 4 whose outer peripheral surface 4 a constitutes the inner wall surface of the cavity 6. In this embodiment, the inner mold part 4 is a fixed mold part.

図1(b)に示すように、外型部3および調整機構5は、固定型1に設けられる収容部7に収容される。調整機構5は、外型部3の第1の方向(図中、x軸方向)の位置決めを行うべく、断面矩形状をなす外型部3の外壁面3bの180°対向する位置に配置された第1の加圧部材51および支持部材52と、外型部3の第2の方向(図中、y軸方向)の位置決めを行うべく、上記と同様に、外型部3の外壁面3bの180°対向する位置に配置された第2の加圧部材53および支持部材54とで構成されている。各加圧部材51、53および支持部材52、54には、例えば調整ねじ等、精密送りが可能な送り手段55が接続されており、これを進退動作させることにより、各加圧部材および支持部材の位置調整、すなわち外型部3の半径方向の位置決めが行われる。   As shown in FIG. 1B, the outer mold part 3 and the adjustment mechanism 5 are accommodated in the accommodating part 7 provided in the fixed mold 1. The adjustment mechanism 5 is disposed at a position facing the outer wall surface 3b of the outer mold part 3 having a rectangular cross section at 180 ° in order to position the outer mold part 3 in the first direction (x-axis direction in the drawing). In order to position the first pressurizing member 51 and the support member 52 and the outer mold part 3 in the second direction (y-axis direction in the figure), the outer wall surface 3b of the outer mold part 3 is the same as described above. The second pressurizing member 53 and the support member 54 are arranged at positions facing each other at 180 °. The pressure members 51 and 53 and the support members 52 and 54 are connected to a feeding means 55 capable of precision feeding, such as an adjusting screw, and the pressure members and the support members are moved forward and backward. Position adjustment, that is, positioning of the outer mold portion 3 in the radial direction is performed.

本実施形態で、第1の加圧部材51の外面、およびこれが当接する収容部7の内壁面には、外型部3をx軸方向に移動させるべく、y軸に対して角度αだけ傾斜し、加圧部材51をx軸方向に案内する第1のテーパ面Aが設けられている。従って、例えば第1の加圧部材51をLだけ図中下方に前進させると、それと同時に第1の加圧部材51は−x軸方向にL×tanαだけ前進する。つまりこの場合、第1の加圧部材51によって外型部3に付与される送り量(外型部3の移動量)は−x軸方向にL×tanαとなるので、第1のテーパ面Aの傾斜角αを45°未満に設定しておけば、従来のように直接的に外型部3を移動させる場合に比べ、外型部3のx軸方向への移動量をL×(1−tanα)分だけ減少させることができる。   In the present embodiment, the outer surface of the first pressure member 51 and the inner wall surface of the accommodating portion 7 with which the first pressure member 51 abuts are inclined by an angle α with respect to the y axis so as to move the outer mold portion 3 in the x axis direction. In addition, a first tapered surface A that guides the pressing member 51 in the x-axis direction is provided. Therefore, for example, when the first pressure member 51 is moved downward in the drawing by L, the first pressure member 51 is simultaneously advanced by L × tan α in the −x axis direction. That is, in this case, the feed amount (movement amount of the outer mold part 3) applied to the outer mold part 3 by the first pressure member 51 is L × tanα in the −x-axis direction. Is set to be less than 45 °, the amount of movement of the outer mold part 3 in the x-axis direction is L × (1 compared to the case where the outer mold part 3 is directly moved as in the prior art. -Tan α).

同様に、第2の加圧部材53の外面、およびこれが当接する収容部7の内壁面には、外型部3をy軸方向に移動させるべく、x軸に対して角度αだけ傾斜し、第2の加圧部材53をy軸方向に案内する第2のテーパ面Bが設けられている。従って、上記同様に、従来構成に比べ、外型部3のy軸方向への移動量をL×(1−tanα)分だけ減少させることができる。   Similarly, the outer surface of the second pressure member 53 and the inner wall surface of the accommodating portion 7 with which the second pressing member 53 abuts are inclined by an angle α with respect to the x axis in order to move the outer mold portion 3 in the y axis direction. A second tapered surface B that guides the second pressure member 53 in the y-axis direction is provided. Therefore, similarly to the above, the amount of movement of the outer mold part 3 in the y-axis direction can be reduced by L × (1−tan α) compared to the conventional configuration.

以上の構成からなる成形金型において、円筒体の成形は、例えば、以下示す態様で行うことができる。まず、上記構成の成形金型を射出成形機にセッティングした状態で、調整機構5で外型部3の位置調整を行い、外型部3の外壁面3bを二対の調整機構5で拘束する。そして、成形金型の温度が安定した状態で成形を行う(試成形)。成形時には、図示しない射出成形機のノズルから射出された溶融樹脂Pが、図示しないランナーを通ってゲート1bに入り、ゲート1bからキャビティ6内に充填される。キャビティ6内に充填された溶融樹脂Pを冷却・固化させ、可動型2を移動させて型開きし、成形品を取り出す。   In the molding die having the above configuration, the cylindrical body can be molded, for example, in the following manner. First, in a state where the molding die having the above configuration is set in the injection molding machine, the position of the outer mold portion 3 is adjusted by the adjusting mechanism 5, and the outer wall surface 3 b of the outer mold portion 3 is restrained by the two pairs of adjusting mechanisms 5. . Then, molding is performed in a state where the temperature of the molding die is stable (trial molding). At the time of molding, molten resin P injected from a nozzle of an injection molding machine (not shown) enters the gate 1b through a runner (not shown) and is filled into the cavity 6 from the gate 1b. The molten resin P filled in the cavity 6 is cooled and solidified, the movable mold 2 is moved to open the mold, and the molded product is taken out.

次いで、取り出した成形品の内周面と外周面の同軸度を測定する。そして、この測定結果に基づいて調整機構5の加圧部材51、53および支持部材52、54に接続された送り手段55をそれぞれ操作して外型部3の半径方向位置を調整し、同軸度の狂いを修正する。この調整作業は、必要に応じて複数回行ってもよい。調整作業が完了した後、本成形を行う。なお、支持部材52、54については、これを進退方向で弾性的に支持することにより、支持部材52、54の位置調整を省略することも可能である。   Next, the coaxiality between the inner peripheral surface and the outer peripheral surface of the molded product taken out is measured. Based on the measurement result, the feeding members 55 connected to the pressure members 51 and 53 and the support members 52 and 54 of the adjustment mechanism 5 are operated to adjust the radial position of the outer mold part 3, and the degree of coaxiality is adjusted. Correct the madness. This adjustment operation may be performed a plurality of times as necessary. After the adjustment work is completed, the main molding is performed. In addition, about the support members 52 and 54, it is also possible to abbreviate | omit position adjustment of the support members 52 and 54 by elastically supporting this in the advancing / retreating direction.

なお、射出する溶融樹脂Pは、非晶性樹脂・結晶性樹脂の何れをベース樹脂として用いても良く、これらは成形品に求められる特性に応じて適宜選択可能である。非晶性樹脂としては、ポリサルフォン(PSU)、ポリエーテルサルフォン(PES)、ポリフェニルサルフォン(PPSU)、ポリエーテルイミド(PEI)等が使用可能で、また、結晶性樹脂としては、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド(PPS)等が使用可能である。これらはあくまでも例示であり、使用可能なベース樹脂を限定するものではない。これらのベース樹脂には、必要に応じて強化材(繊維状、粉末状等の形態は問わない)や潤滑剤、導電材等の各種充填材を一種または二種以上配合することもできる。   Note that the molten resin P to be injected may be either an amorphous resin or a crystalline resin as a base resin, and these can be appropriately selected according to the characteristics required for the molded product. As the amorphous resin, polysulfone (PSU), polyethersulfone (PES), polyphenylsulfone (PPSU), polyetherimide (PEI) and the like can be used, and as the crystalline resin, a liquid crystal polymer can be used. (LCP), polyether ether ketone (PEEK), polybutylene terephthalate (PBT), polyphenylene sulfide (PPS) and the like can be used. These are merely examples, and the usable base resins are not limited. These base resins may be mixed with one or more of various fillers such as a reinforcing material (in any form such as a fiber or powder), a lubricant, and a conductive material as necessary.

上述したように、同軸度の狂いに応じて、調整機構5により外型部3を半径方向に調整移動させて、内型部4に対する半径方向位置を調整することにより、両者の軸心の同軸度を高精度なものとすることができる。特に、本実施形態では、外型部3を二軸方向に加圧する第1および第2の加圧部材51、53にそれぞれテーパ面を設けている。従って、テーパ面のテーパ角を適切な値に設定しさえすれば、従来のように、加圧部材(送り手段)の進退量と外型部の移動量が同値になる構成に比べ、外型部3の移動量を小さくすることができ、これにより、円筒体の内周面と外周面の間の同軸度を一層高めることが可能となる。   As described above, the outer mold part 3 is adjusted and moved in the radial direction by the adjusting mechanism 5 in accordance with the deviation of the coaxiality, and the radial position with respect to the inner mold part 4 is adjusted, so that both axes are coaxial. The degree can be made highly accurate. In particular, in the present embodiment, the first and second pressing members 51 and 53 that pressurize the outer mold portion 3 in the biaxial direction are provided with tapered surfaces, respectively. Therefore, as long as the taper angle of the taper surface is set to an appropriate value, the amount of advancement / retraction of the pressurizing member (feed means) and the amount of movement of the outer mold portion are the same as in the conventional case. The amount of movement of the portion 3 can be reduced, whereby the coaxiality between the inner peripheral surface and the outer peripheral surface of the cylindrical body can be further increased.

なお、成形すべき円筒体のサイズおよび求められる同軸度等によっても異なるが、テーパ面A、Bの傾斜角αが大きすぎると、送り手段55を進退させた場合の第1および第2の加圧部材51、53の移動量が大きくなり、所定精度で同軸度の狂いを修正するのが難しくなる。一方、傾斜角αが小さすぎると外型部3の移動量を得るのに必要な第1および第2の加圧部材51、53の進退ストロークが大きくなり、金型が大型化すると共にその構造が複雑化する。以上のことから、テーパ面A、Bの傾斜角αは、1°以上10°以下に設定するのが望ましく、さらに言えば2°以上5°以下に設定するのがより望ましい。テーパ面A、Bの傾斜角αを大きくした場合および小さくした場合のデメリットをバランス良く解消するためである。   It should be noted that, depending on the size of the cylindrical body to be formed and the required coaxiality, etc., if the inclination angle α of the taper surfaces A and B is too large, the first and second additions when the feeding means 55 is advanced and retracted. The amount of movement of the pressure members 51 and 53 becomes large, and it becomes difficult to correct the deviation of the coaxiality with a predetermined accuracy. On the other hand, if the inclination angle α is too small, the forward and backward strokes of the first and second pressure members 51 and 53 required to obtain the amount of movement of the outer mold part 3 become large, and the mold becomes large and its structure. Is complicated. From the above, the inclination angle α of the tapered surfaces A and B is preferably set to 1 ° or more and 10 ° or less, more preferably 2 ° or more and 5 ° or less. This is to eliminate the disadvantages of increasing and decreasing the inclination angle α of the tapered surfaces A and B in a well-balanced manner.

以上では、第1のテーパ面Aと第2のテーパ面Bとを、加圧部材51、53および収容部7の双方に設ける構成について説明を行ったが、第1のテーパ面Aおよび第2のテーパ面Bは、図2(a)に示すように、加圧部材51、53にのみ設ける他、図2(b)に示すように、収容部7にのみ設けることもできる。また、本実施形態では、第1のテーパ面Aおよび第2のテーパ面Bの傾斜角を共にαとしているが、各テーパ面の傾斜角は相互に異ならせることもできる。   In the above description, the configuration in which the first tapered surface A and the second tapered surface B are provided on both the pressure members 51 and 53 and the accommodating portion 7 has been described. However, the first tapered surface A and the second tapered surface A are described. As shown in FIG. 2A, the tapered surface B can be provided only in the pressure members 51 and 53, or can be provided only in the accommodating portion 7 as shown in FIG. 2B. In the present embodiment, the inclination angles of the first taper surface A and the second taper surface B are both α, but the inclination angles of the respective taper surfaces can be different from each other.

また、以上では、外型部3を半径方向に調整移動させる構成について説明を行ったが、外型部3を固定し、内型部4を半径方向に調整移動させる構成とすることもできる。   In the above description, the configuration in which the outer mold portion 3 is adjusted and moved in the radial direction has been described. However, the outer mold portion 3 may be fixed and the inner mold portion 4 may be adjusted and moved in the radial direction.

以上のようにして成形された円筒体は、内周面と外周面の間における同軸度の狂いが極めて小さなものとなるから、上述した成形金型は、例えば、以下示す構成の流体軸受装置用のハウジングを成形する際に好適に用いることができる。   Since the cylindrical body molded as described above has a very small deviation in the coaxiality between the inner peripheral surface and the outer peripheral surface, the above-described molding die is, for example, for a hydrodynamic bearing device having the following configuration. It can be suitably used when molding the housing.

図3は流体軸受装置10の一例を示すものである。この流体軸受装置10は、軸部材11と、軸部材11の軸部11aを内周に挿入可能な軸受スリーブ12と、軸受スリーブ12を収容するハウジング13と、ハウジング13の一端側開口を封口する蓋部材14と、ハウジング13の他端側に位置するシール部材15とを備えている。なお、説明の便宜上、蓋部材14の側を下側、シール部材15の側を上側として以下説明を行う。   FIG. 3 shows an example of the hydrodynamic bearing device 10. The hydrodynamic bearing device 10 seals a shaft member 11, a bearing sleeve 12 into which a shaft portion 11 a of the shaft member 11 can be inserted into an inner periphery, a housing 13 that houses the bearing sleeve 12, and an opening on one end side of the housing 13. A lid member 14 and a seal member 15 located on the other end side of the housing 13 are provided. For convenience of explanation, the lid member 14 side will be described below, and the seal member 15 side will be described as an upper side.

軸部材11は、例えばステンレス鋼等の金属材料で、軸部11aとその一端に一体又は別体に設けられたフランジ部11bとで構成される。あるいは、軸部11aを金属、フランジ部11bを樹脂で構成したハイブリッド構造とすることもできる。   The shaft member 11 is made of, for example, a metal material such as stainless steel, and includes a shaft portion 11a and a flange portion 11b provided at one end of the shaft portion 11a. Or it can also be set as the hybrid structure which comprised the axial part 11a with the metal and the flange part 11b with resin.

軸受スリーブ12は、焼結金属の多孔質体、特に銅を主成分とする焼結金属の多孔質体で円筒状に形成される。この軸受スリーブ12は、焼結金属の他、黄銅等の軟質金属で形成することもできる。   The bearing sleeve 12 is made of a sintered metal porous body, particularly a sintered metal porous body mainly composed of copper, and is formed in a cylindrical shape. The bearing sleeve 12 can be formed of a soft metal such as brass in addition to a sintered metal.

軸受スリーブ12の内周面12aには、ラジアル軸受部R1、R2のラジアル軸受面となる上下2つの領域が軸方向に離隔して設けられ、これら2つの領域には、図示は省略するが、例えば、ヘリングボーン形状に配列された複数の動圧溝がそれぞれ形成される。   On the inner peripheral surface 12a of the bearing sleeve 12, two upper and lower regions serving as radial bearing surfaces of the radial bearing portions R1 and R2 are provided apart from each other in the axial direction. For example, a plurality of dynamic pressure grooves arranged in a herringbone shape are formed.

また、軸受スリーブ12の下側端面12bの全部又は一部環状領域には、第1スラスト軸受部T1のスラスト軸受面となる領域が設けられ、当該領域には、図示は省略するが、例えば、スパイラル形状やヘリングボーン形状に配列された複数の動圧溝が形成されている。   Further, a region that becomes the thrust bearing surface of the first thrust bearing portion T1 is provided in all or part of the annular region of the lower end surface 12b of the bearing sleeve 12, and although not illustrated in the region, for example, A plurality of dynamic pressure grooves arranged in a spiral shape or a herringbone shape are formed.

ハウジング13は、上述した成形金型を用いて成形された樹脂の射出成形品で、略円筒状に形成されている。ハウジング13の内周面13aは平滑な円筒面に形成されている。   The housing 13 is a resin injection-molded product molded using the above-described molding die, and is formed in a substantially cylindrical shape. The inner peripheral surface 13a of the housing 13 is formed in a smooth cylindrical surface.

ハウジング13の下端開口部には、樹脂または金属材料で形成された有底略円筒状の蓋部材14が固定される。この蓋部材14は、円筒状の側部14aと、側部14aの下端開口を封口する底部14bとを備え、これらは一体形成されている。底部14bの上側端面14b1の全部または一部環状領域には、第2スラスト軸受部T2のスラスト軸受面となる領域が設けられ、該スラスト軸受面となる領域には、図示は省略するが、例えばスパイラル形状やヘリングボーン形状に配列された複数の動圧溝が形成されている。   A bottomed substantially cylindrical lid member 14 made of resin or metal material is fixed to the lower end opening of the housing 13. The lid member 14 includes a cylindrical side portion 14a and a bottom portion 14b that seals a lower end opening of the side portion 14a, and these are integrally formed. In the whole or part of the annular region of the upper end surface 14b1 of the bottom portion 14b, a region serving as a thrust bearing surface of the second thrust bearing portion T2 is provided. A plurality of dynamic pressure grooves arranged in a spiral shape or a herringbone shape are formed.

蓋部材14は、その外周面14a1がハウジングの内周面13aの下端部に圧入、接着等適宜の手段で固定される。このとき、軸部材11のフランジ部11bは、軸受スリーブ12の下側端面12bと蓋部材14の底部14bの上側端面14b1との間に形成される空間に収容される。蓋部材14の側部14aの上側端面14a2は、軸受スリーブ12の下側端面12bと当接しており、これによって後述のスラスト軸受隙間が規定幅に管理される。   The outer peripheral surface 14a1 of the lid member 14 is fixed to the lower end portion of the inner peripheral surface 13a of the housing by an appropriate means such as press fitting or adhesion. At this time, the flange portion 11 b of the shaft member 11 is accommodated in a space formed between the lower end surface 12 b of the bearing sleeve 12 and the upper end surface 14 b 1 of the bottom portion 14 b of the lid member 14. The upper end surface 14a2 of the side portion 14a of the lid member 14 is in contact with the lower end surface 12b of the bearing sleeve 12, whereby a later-described thrust bearing gap is managed to a specified width.

ハウジング13の上端開口部には、金属材料や樹脂材料で形成された環状のシール部材15が圧入、接着、あるいはこれを併用した適宜の手段で固定される。シール部材15の内周面15aは上方に向かうにつれてテーパ状に拡径しており、この内周面15aと、これに対向する軸部11aの外周面11a1との間には、上方に向かうにつれて半径方向寸法が漸次拡大する環状のシール空間Sが形成される。シール部材15で密封された流体軸受装置10の内部空間には、潤滑流体として例えば潤滑油が注油され、流体軸受装置10内が潤滑油で満たされる。この状態で、潤滑油の油面は常にシール空間Sの範囲内に維持される。なお、部品点数および組立工数の削減のため、シール部材15をハウジング13と一体成形することもできる。   An annular seal member 15 formed of a metal material or a resin material is fixed to the upper end opening of the housing 13 by press-fitting, bonding, or an appropriate means using both. The inner peripheral surface 15a of the seal member 15 has a diameter that increases in a tapered shape as it goes upward. Between the inner peripheral surface 15a and the outer peripheral surface 11a1 of the shaft portion 11a that faces the inner peripheral surface 15a, the inner peripheral surface 15a gradually increases. An annular seal space S in which the radial dimension gradually increases is formed. In the internal space of the hydrodynamic bearing device 10 sealed with the seal member 15, for example, lubricating oil is injected as a lubricating fluid, and the hydrodynamic bearing device 10 is filled with the lubricating oil. In this state, the oil level of the lubricating oil is always maintained within the range of the seal space S. The seal member 15 can be integrally formed with the housing 13 in order to reduce the number of parts and the number of assembly steps.

上記構成の流体軸受装置10において、軸部材11が回転すると、軸受スリーブ12の内周面12aの上下二箇所に離隔形成されたラジアル軸受面となる領域は、軸部材11の外周面11a1とラジアル軸受隙間を介して対向する。軸部材11の回転に伴い、各ラジアル軸受隙間に潤滑油の動圧が発生し、その圧力によって軸部材11がラジアル方向に回転自在に非接触支持される。これにより、軸部材11をラジアル方向に回転自在に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが形成される。   In the hydrodynamic bearing device 10 having the above-described configuration, when the shaft member 11 rotates, a region that becomes a radial bearing surface that is spaced apart from the upper and lower portions of the inner peripheral surface 12a of the bearing sleeve 12 is a radial region with the outer peripheral surface 11a1 of the shaft member 11. Opposing through the bearing gap. As the shaft member 11 rotates, dynamic pressure of lubricating oil is generated in each radial bearing gap, and the shaft member 11 is supported in a non-contact manner in the radial direction by the pressure. As a result, the first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 11 in a non-contact manner so as to be rotatable in the radial direction are formed.

また、軸部材11が回転すると、軸受スリーブ12の下側端面12bに形成されたスラスト軸受面となる領域は、軸部材11のフランジ部11bの上側端面11b1とスラスト軸受隙間を介して対向する。同時に、蓋部材14の上側端面14b1に形成されたスラスト軸受面となる領域が、軸部材11のフランジ部11bの下側端面11b2とスラスト軸受隙間を介して対向する。軸部材11の回転に伴い、両スラスト軸受隙間に潤滑油の動圧が発生し、その圧力によって軸部材11が両スラスト方向に回転自在に非接触支持される。これにより、軸部材11を両スラスト方向に回転自在に非接触支持する第1スラスト軸受部T1と第2スラスト軸受部T2とが形成される。   In addition, when the shaft member 11 rotates, the region serving as the thrust bearing surface formed on the lower end surface 12b of the bearing sleeve 12 faces the upper end surface 11b1 of the flange portion 11b of the shaft member 11 via the thrust bearing gap. At the same time, a region serving as a thrust bearing surface formed on the upper end surface 14b1 of the lid member 14 faces the lower end surface 11b2 of the flange portion 11b of the shaft member 11 via a thrust bearing gap. As the shaft member 11 rotates, dynamic pressure of lubricating oil is generated in both thrust bearing gaps, and the shaft member 11 is supported in a non-contact manner so as to be rotatable in both thrust directions. Thereby, the 1st thrust bearing part T1 and the 2nd thrust bearing part T2 which support the shaft member 11 so that it can rotate freely in both thrust directions are formed.

以上の構成からなる流体軸受装置10は、例えば図4に示すスピンドルモータに組み込まれる。この情報機器用スピンドルモータは、HDD等のディスク駆動装置に用いられるもので、流体軸受装置10と、流体軸受装置10の軸部材11に取り付けられたディスクハブ16と、例えば半径方向のギャップを介して対向させたステータコイル17およびロータマグネット18と、ベース部材19とを備えている。ステータコイル17はベース部材19の外周に取り付けられ、ロータマグネット18は、ディスクハブ16の内周に取り付けられている。ディスクハブ16は、その外周に磁気ディスク等のディスクDを一または複数枚保持する。ベース部材19の内周に流体軸受装置10のハウジング13が装着されている。ステータコイル17に通電すると、ステータコイル17とロータマグネット18との間に発生する電磁力でロータマグネット18が回転し、それに伴ってディスクハブ16、軸部材11が一体に回転する。   The hydrodynamic bearing device 10 having the above configuration is incorporated in, for example, a spindle motor shown in FIG. This spindle motor for information equipment is used for a disk drive device such as an HDD. The spindle motor is used for a fluid bearing device 10, a disk hub 16 attached to a shaft member 11 of the fluid bearing device 10, and a radial gap, for example. And a stator coil 17 and a rotor magnet 18 and a base member 19 which are opposed to each other. The stator coil 17 is attached to the outer periphery of the base member 19, and the rotor magnet 18 is attached to the inner periphery of the disk hub 16. The disk hub 16 holds one or more disks D such as magnetic disks on the outer periphery thereof. A housing 13 of the hydrodynamic bearing device 10 is mounted on the inner periphery of the base member 19. When the stator coil 17 is energized, the rotor magnet 18 is rotated by the electromagnetic force generated between the stator coil 17 and the rotor magnet 18, and the disk hub 16 and the shaft member 11 are rotated integrally therewith.

上記のように、流体軸受装置10は、ハウジング13をベース部材19の内周に、接着、圧入等の手段で固定することによってモータに組み込まれることとなる。この際、ハウジング13の内周面と外周面の間の同軸度に狂いがあると、ハウジング13の内周に固定される軸受スリーブ12の内周面精度を悪化させる恐れがある。この内周面精度の悪化はラジアル軸受隙間の幅精度を悪化させ、これがモータ(流体軸受装置10)の回転精度を悪化させる一因となる。これに対し、上記の成形金型を用いてハウジング13を射出成形すれば、内周面と外周面の間における同軸度の狂いが極めて微小なものとなるから、小型化、高速回転化、高回転精度化等の要請に資することができる。   As described above, the hydrodynamic bearing device 10 is incorporated into the motor by fixing the housing 13 to the inner periphery of the base member 19 by means such as adhesion or press fitting. At this time, if the coaxiality between the inner peripheral surface and the outer peripheral surface of the housing 13 is incorrect, the accuracy of the inner peripheral surface of the bearing sleeve 12 fixed to the inner periphery of the housing 13 may be deteriorated. This deterioration of the inner peripheral surface accuracy deteriorates the width accuracy of the radial bearing gap, which contributes to the deterioration of the rotation accuracy of the motor (fluid bearing device 10). On the other hand, if the housing 13 is injection-molded using the above-described molding die, the deviation of the coaxiality between the inner peripheral surface and the outer peripheral surface becomes extremely small. This can contribute to requests for higher rotation accuracy.

なお、本発明に係る成形金型は、流体軸受装置用のハウジングのみならず、内周面と外周面の間で高い同軸度が求められる他の円筒体を成形する際にも好適に用いることが可能である。   The molding die according to the present invention is suitably used not only for housing a hydrodynamic bearing device but also for molding other cylindrical bodies that require high coaxiality between the inner peripheral surface and the outer peripheral surface. Is possible.

また、図示は省略するが、本発明にかかる成形金型は、以上で説明を行った両端を開口させた円筒体のみならず、一端を閉じた有底筒状の円筒体を成形する際に用いることも可能である。   Although not shown in the drawings, the molding die according to the present invention is not only used to form not only the cylindrical body having both ends opened but also the bottomed cylindrical body having one end closed. It is also possible to use it.

また、本発明の構成は、上述したような断面真円状の円筒体のみならず、断面非真円形状(例えば、楕円形状)の円筒体、さらには、断面矩形状の中空体を成形する成形金型にも好適に用いることが可能である。   In addition, the configuration of the present invention forms not only a cylindrical body having a circular cross section as described above, but also a cylindrical body having a non-circular cross section (for example, an elliptical shape) and a hollow body having a rectangular cross section. It can be suitably used for a molding die.

さらに、本発明の構成は、半径方向の位置決めのみならず、軸方向の位置決めを行う成形金型にも好適に用いることができる。   Furthermore, the structure of this invention can be used suitably also for the shaping | molding die which performs not only radial positioning but axial positioning.

(a)図は、本発明に係る樹脂製円筒体の成形金型の縦断面図、(b)図は、成形金型の要部を拡大した横断面図である。(A) A figure is a longitudinal cross-sectional view of the molding die of the resin cylinder which concerns on this invention, (b) The figure is the cross-sectional view which expanded the principal part of the molding die. 成形金型に設けられるテーパ面の他の構成を示す図である。It is a figure which shows the other structure of the taper surface provided in a shaping die. 本発明に係る成形金型で成形されたハウジングを組み込んだ流体軸受装置の断面図である。It is sectional drawing of the hydrodynamic bearing apparatus incorporating the housing shape | molded with the shaping die based on this invention. 流体軸受装置を組み込んだ情報機器用スピンドルモータの一例を示す概要図である。It is a schematic diagram showing an example of a spindle motor for information equipment incorporating a hydrodynamic bearing device.

符号の説明Explanation of symbols

1 固定型
2 可動型
3 外型部
4 内型部
5 調整機構
6 キャビティ
10 流体軸受装置
11 軸部材
12 軸受スリーブ
13 ハウジング
51 第1の加圧部材
53 第2の加圧部材
55 送り手段
A 第1のテーパ面
B 第2のテーパ面
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部
S シール空間
α 傾斜角
DESCRIPTION OF SYMBOLS 1 Fixed type | mold 2 Movable type | mold 3 Outer type | mold part 4 Inner type | mold part 5 Adjustment mechanism 6 Cavity 10 Fluid bearing apparatus 11 Shaft member 12 Bearing sleeve 13 Housing 51 1st pressurization member 53 2nd pressurization member 55 Feed means A 1st 1 taper surface B 2nd taper surfaces R1, R2 Radial bearing portion T1, T2 Thrust bearing portion S Seal space α Inclination angle

Claims (4)

キャビティを形成する内型部および外型部を備え、内型部と外型部を相対移動可能にした成形金型であって、
内型部または外型部の何れか一方を第1の方向に加圧する第1の加圧部材と、第1の加圧部材を前記第1の方向に案内する第1のテーパ面とを具備する成形金型。
A molding die comprising an inner mold part and an outer mold part forming a cavity, wherein the inner mold part and the outer mold part are movable relative to each other,
A first pressure member that pressurizes either the inner mold part or the outer mold part in a first direction; and a first tapered surface that guides the first pressure member in the first direction. Mold to mold.
さらに前記一方の型部を第2の方向に加圧する第2の加圧部材と、第2の加圧部材を前記第2の方向に案内する第2のテーパ面とを具備する請求項1記載の成形金型。   The second pressurizing member that pressurizes the one mold part in the second direction, and the second tapered surface that guides the second pressurizing member in the second direction. Molding mold. 第1の方向および第2の方向が、成形品の半径方向で互いに直交している請求項2記載の成形金型。   The molding die according to claim 2, wherein the first direction and the second direction are orthogonal to each other in the radial direction of the molded product. 第1および第2のテーパ面の傾斜角が、1°以上10°以下である請求項2記載の成形金型。   The molding die according to claim 2, wherein an inclination angle of the first and second taper surfaces is not less than 1 ° and not more than 10 °.
JP2006239180A 2006-09-04 2006-09-04 Mold Active JP4884890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006239180A JP4884890B2 (en) 2006-09-04 2006-09-04 Mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006239180A JP4884890B2 (en) 2006-09-04 2006-09-04 Mold

Publications (2)

Publication Number Publication Date
JP2008062387A true JP2008062387A (en) 2008-03-21
JP4884890B2 JP4884890B2 (en) 2012-02-29

Family

ID=39285517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006239180A Active JP4884890B2 (en) 2006-09-04 2006-09-04 Mold

Country Status (1)

Country Link
JP (1) JP4884890B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004098443A (en) * 2002-09-09 2004-04-02 Olympus Corp Mold device with function of correcting position of optical axis
JP2005088427A (en) * 2003-09-18 2005-04-07 Ntn Corp Molding tool for fluid bearing device housing
JP2007152619A (en) * 2005-12-01 2007-06-21 Fujinon Sano Kk Injection molding mold and lens mirror tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004098443A (en) * 2002-09-09 2004-04-02 Olympus Corp Mold device with function of correcting position of optical axis
JP2005088427A (en) * 2003-09-18 2005-04-07 Ntn Corp Molding tool for fluid bearing device housing
JP2007152619A (en) * 2005-12-01 2007-06-21 Fujinon Sano Kk Injection molding mold and lens mirror tube

Also Published As

Publication number Publication date
JP4884890B2 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
KR20080050585A (en) Bearing member and production method thereof, and bearing device provided with bearing member and production method thereof
CN101258014B (en) Method for forming dynamic pressure groove
US20060159374A1 (en) Fluid lubrication bearing apparatus
US8177434B2 (en) Fluid dynamic bearing device
JP2006322511A (en) Bearing
JP4884890B2 (en) Mold
JP2007192317A (en) Sliding bearing unit
JP6297309B2 (en) Fluid dynamic bearing device and manufacturing method thereof
JP2010096200A (en) Fluid bearing device and its manufacturing method
JP2009108877A (en) Fluid bearing device and its manufacturing method
JP2008208944A (en) Hydrodynamic bearing device, motor, recording medium drive mechanism, and bearing sleeve manufacturing method
JP2009103280A (en) Dynamic pressure bearing device and its manufacturing method
JP4790586B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP4794964B2 (en) Bearing device and motor equipped with the same
JP2011033103A (en) Fluid bearing device
JP2013194777A (en) Method of manufacturing sintered bearing
JP2006329267A (en) Sliding device
JP4156478B2 (en) Mold for housing for hydrodynamic bearing device
JP2005265119A (en) Fluid bearing device and its manufacturing method
JP4804894B2 (en) Bearing device and manufacturing method thereof
JP4890066B2 (en) Hydrodynamic bearing device and fan motor having the same
JP4679965B2 (en) Sliding screw device
JP2007162883A (en) Bearing device
JP2006322522A (en) Bearing device and manufacturing method for bearing member
JP2007092845A (en) Bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090805

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4884890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250