JP2008058045A - Sample collection device for soil pollution investigation, and soil pollution investigation device using it - Google Patents

Sample collection device for soil pollution investigation, and soil pollution investigation device using it Download PDF

Info

Publication number
JP2008058045A
JP2008058045A JP2006232955A JP2006232955A JP2008058045A JP 2008058045 A JP2008058045 A JP 2008058045A JP 2006232955 A JP2006232955 A JP 2006232955A JP 2006232955 A JP2006232955 A JP 2006232955A JP 2008058045 A JP2008058045 A JP 2008058045A
Authority
JP
Japan
Prior art keywords
water
passage
introduction
pipe
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006232955A
Other languages
Japanese (ja)
Inventor
Sumio Yamamoto
須美夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KARUTO KK
Original Assignee
KARUTO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KARUTO KK filed Critical KARUTO KK
Priority to JP2006232955A priority Critical patent/JP2008058045A/en
Publication of JP2008058045A publication Critical patent/JP2008058045A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sample collection device for soil pollution investigation, which investigates accurately soil pollution, and also to provide a soil pollution investigation device using it. <P>SOLUTION: Water is sucked through a water suction pipe disposed inside a hole in the ground. A lead-in pipe 86a is provided by being branched from the first connection pipe 44 linked to the water suction pipe, and the lead-in pipe 86a is communicated with a water lead-in container 85. An on-off valve 91 is disposed on the first connection pipe 44. Water introduced into the water lead-in container 85 is discharged through a lead-out pipe 86b. A lead-in control valve 87 is disposed in the lead-in pipe 86a and a lead-out control valve 88 is disposed in the lead-out pipe 86b. When both control valves 87, 88 are closed, the lead-in pipe 86a, the water lead-in container 85 and the lead-out pipe 86b positioned between both control valves 87, 88 are sealed by both control valves 87, 88. An investigation object material dissolved in water in the water lead-in container 85 is vaporized in a vaporization container 92 by supplying the air by an air supply pump 102, and the concentration of the investigation object material is measured by a concentration measuring device 104. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、地中に存在するトリクロロエチレンやテトラクロロエチレン等の揮発性有機化合物(volatile organic compounds 以下「VOCs」という。)からなる汚染物質を調査するための土壌汚染調査装置に関するものである。   The present invention relates to a soil contamination survey device for investigating pollutants made of volatile organic compounds (hereinafter referred to as “VOCs”) such as trichlorethylene and tetrachloroethylene existing in the ground.

特許文献1に示されている従来の土壌汚染調査装置においては、まず、掘削機により表層汚染調査用掘削ビットに回転力と打撃力を作用させて所定の深さまで地盤の掘削を行う。次に、掘削機のドリルヘッドから表層汚染調査用掘削ビットを取外した後に、地下空気採取管の検知管を表層汚染調査用掘削ビットの胴体内部に挿入する。その後、気体採取セットの真空式定量ポンプを作動させて検知管を経由して所定の地下の空気を採取し、汚染ガス等を分析・計測するようにしている。
特開平2003−82976号公報
In the conventional soil contamination investigation device disclosed in Patent Document 1, first, the excavator excavates the ground to a predetermined depth by applying rotational force and striking force to the excavation bit for investigation of surface contamination. Next, after removing the drill bit for surface contamination investigation from the drill head of the excavator, the detection pipe of the underground air sampling pipe is inserted into the body of the drill bit for surface pollution investigation. After that, the vacuum metering pump of the gas sampling set is operated to collect a predetermined underground air through the detection tube, and analyze and measure the polluted gas and the like.
Japanese Patent Laid-Open No. 2003-82976

しかしながら、従来の土壌汚染調査装置は、掘削を行った地盤の地中に貫入した表層汚染調査用掘削ビットから空気を採取するようにしているため、その作業の際、地中に貫入した表層汚染調査用掘削ビットとその外周の地盤との間に生じた隙間から地上の空気が浸入して該空気も採取されてしまい、その結果、土壌汚染調査の精度が悪くなり正確な調査ができないという問題があった。   However, the conventional soil contamination survey device collects air from the excavation bit for surface contamination investigation that has penetrated into the ground of the excavated ground, so that during the work, surface contamination that has penetrated into the ground. The problem is that ground air intrudes from the gap formed between the excavation bit for investigation and the ground around it and the air is also collected, resulting in poor accuracy of soil contamination investigation and accurate investigation. was there.

また、地中には、地下水が流れている地盤があり、そのような場所では表層汚染調査用掘削ビットを貫入して空気を採取しようとする地点に水しか存在しない場合があるので、そのような場合は空気を採取することができないため、調査自体ができないという問題もあった。   In addition, there is ground where groundwater flows in the ground, and in such places there may be only water at the point where the drilling bit for surface contamination investigation penetrates to collect air. In some cases, air could not be collected, so there was a problem that the survey itself could not be performed.

本発明はこのような問題を解消するためになされたもので、土壌汚染の調査を正確に行うことができる土壌汚染調査用試料採取装置およびこれを使用した土壌汚染調査装置を提供することを目的とする。   The present invention has been made to solve such a problem, and an object of the present invention is to provide a soil contamination investigation sample collection device and a soil contamination investigation device using the same that can accurately investigate the soil contamination. And

この目的を達成するために、本発明に係る土壌汚染調査用試料採取装置は、地面に穿った穴の内部に先端側が配設される吸水通路と、この吸水通路を介して水を吸引する吸水手段と、前記吸水通路の中途部から分岐して水導入室に連通する導入通路と、前記吸水通路を流れる水を前記水導入室に導入させるための水導入手段と、前記水導入室に連通すると共に、前記導入通路を介して前記水導入室に導入した水を前記水導入室の外部へ排出する導出通路と、前記導入通路に配置され、前記導入通路の水の通過を許容または禁止する導入制御弁と、前記導出通路に配置され、前記導出通路の水の通過を許容または禁止する導出制御弁とを備えた土壌汚染調査用試料採取装置であって、前記導入通路の水の通過を前記導入制御弁が禁止し、かつ、前記導出通路の水の通過を前記導出制御弁が禁止したとき、水の流れる経路からみて、前記導入制御弁と導出制御弁の間に位置する前記導入通路と前記水導入室と前記導出通路とが前記導入制御弁と導出制御弁とで密閉されるようにしたものである。   In order to achieve this object, a soil contamination investigation sample collecting device according to the present invention includes a water absorption passage having a tip side disposed in a hole drilled in the ground, and a water absorption portion that sucks water through the water absorption passage. Means, an introduction passage branched from a middle portion of the water absorption passage and communicating with the water introduction chamber, water introduction means for introducing water flowing through the water absorption passage into the water introduction chamber, and communication with the water introduction chamber And a discharge passage for discharging water introduced into the water introduction chamber through the introduction passage to the outside of the water introduction chamber and the introduction passage, and allows or prohibits passage of water through the introduction passage. A sampling device for soil contamination investigation, comprising an introduction control valve and a derivation control valve arranged in the derivation passage and allowing or prohibiting passage of water in the derivation passage, The introduction control valve is prohibited, and When the derivation control valve prohibits the passage of water through the derivation passage, the introduction passage, the water introduction chamber, and the derivation passage, which are located between the introduction control valve and the derivation control valve, as viewed from the water flow path, Is sealed by the introduction control valve and the derivation control valve.

請求項2に記載した発明に係る土壌汚染調査用試料採取装置は、請求項1に記載の土壌汚染調査用試料採取装置において、前記導出通路を前記吸水通路に合流させて前記水導入室に導入された水を前記導出通路を介して再び前記吸水通路に戻すようにし、前記水導入手段を、前記吸水通路から導入通路が分岐する部位と前記導出通路が吸水通路に合流する部位との間における前記吸水通路の部位に配置され、該吸水通路の部位を流れる水の通過を許容または制限する開閉弁で構成したものである。なお、この場合の開閉弁とは、閉弁したとき完全に閉じるものだけを指すのではなく、吸水通路の流路面積を絞るようにするものも含まれるものとする。   According to a second aspect of the present invention, there is provided a soil contamination investigation sampling device according to the first aspect, wherein the lead-out passage is joined to the water absorption passage and introduced into the water introduction chamber. The water introduced is returned to the water absorption passage again through the outlet passage, and the water introduction means is disposed between the portion where the introduction passage branches from the water absorption passage and the portion where the outlet passage merges with the water absorption passage. The on-off valve is arranged at the water absorption passage and permits or restricts the passage of water flowing through the water absorption passage. In this case, the on-off valve does not only indicate a valve that is completely closed when the valve is closed, but also includes a valve that narrows the flow passage area of the water absorption passage.

請求項3に記載した発明に係る土壌汚染調査用試料採取装置は、請求項1に記載の土壌汚染調査用試料採取装置において、前記水導入手段を、前記導出通路に接続され、前記導出通路を流れる水を吸引する副吸水手段で構成したものである。   According to a third aspect of the present invention, there is provided a soil contamination investigation sampling device according to the first aspect, wherein the water introduction means is connected to the outlet passage, and the outlet passage is The auxiliary water absorption means for sucking flowing water is used.

請求項4に記載した発明に係る土壌汚染調査用試料採取装置は、請求項1ないし3のうち何れか一つに記載の土壌汚染調査用試料採取装置において、前記吸水通路の先端側を、地面に穿った複数の穴の内部にそれぞれ先端側が配設される分枝吸水通路で構成し、前記導入通路を、前記分枝吸水通路からそれぞれ分岐する分枝導入通路とこれらの分枝導入通路を合流させて前記水導入室に連通する集合導入通路とで構成し、前記分枝導入通路にそれぞれ前記導入制御弁を配置したものである。   According to a fourth aspect of the present invention, there is provided a soil contamination investigation sample collecting device according to any one of the first to third aspects, wherein the tip side of the water absorption passage is disposed on the ground surface. A plurality of holes formed in the branch water absorption passages, each of which is provided with a branch water absorption passage, the branch passages branching from the branch water absorption passage, and the branch introduction passages. And a collecting introduction passage that is joined and communicated with the water introduction chamber, and the introduction control valve is arranged in each of the branch introduction passages.

請求項5に記載した発明に係る土壌汚染調査装置は、請求項1ないし請求項4のうち何れか一つに記載の土壌汚染調査用試料採取装置と、前記水導入室に貯留された水に溶解している調査対象物質を気化させる気化手段と、この気化手段により気化された調査対象物質の濃度を計測する計測手段とを備えているものである。   According to a fifth aspect of the present invention, there is provided a soil contamination investigation device according to any one of the first to fourth aspects, wherein the soil contamination investigation sample collection device according to any one of claims 1 to 4 and water stored in the water introduction chamber are used. Vaporization means for vaporizing the dissolved investigation target substance, and measurement means for measuring the concentration of the investigation target substance vaporized by the vaporization means are provided.

請求項6に記載した発明に係る土壌汚染調査装置は、請求項5に記載の土壌汚染調査装置において、前記気化手段は、気化室と、この気化室に空気を供給する空気供給手段とを備え、前記水導入室に貯留した水を前記気化室に移送して、前記空気供給手段により前記気化室に空気を供給することによって、前記気化室に移送した水に含有する調査対象物質を前記気化室で気化させると共に前記気化室の空気と混合させて混合空気を生成し、この混合空気に含有する調査対象物質の濃度を前記計測手段によって計測するようにしたものである。   The soil contamination investigation apparatus according to the invention described in claim 6 is the soil contamination investigation apparatus according to claim 5, wherein the vaporization means includes a vaporization chamber and an air supply means for supplying air to the vaporization chamber. The substance stored in the water transferred to the vaporization chamber is vaporized by transferring the water stored in the water introduction chamber to the vaporization chamber and supplying air to the vaporization chamber by the air supply means. The mixture is vaporized in a chamber and mixed with the air in the vaporization chamber to generate mixed air, and the concentration of the investigation target substance contained in the mixed air is measured by the measuring means.

請求項7に記載した発明に係る土壌汚染調査装置は、請求項6に記載の土壌汚染調査装置において、前記気化室の上部に空気循環通路の一端を連通させると共に前記気化室の下部に前記空気循環通路の他端を連通させ、前記空気循環通路の中途部に前記空気供給手段を配置し、前記気化室の上部に溜まった空気を前記空気循環通路の一端から前記空気供給手段により吸引すると共にこの吸引した空気を再び前記空気循環通路の他端から前記気化室の下部に貯留した水中に供給することによって、前記気化室に移送した水に含有する調査対象物質を前記気化室で気化させると共に前記気化室の空気と混合させて混合空気を生成し、この混合空気に含有する調査対象物質の濃度を前記計測手段によって計測するようにしたものである。   The soil contamination investigation device according to the invention described in claim 7 is the soil contamination investigation device according to claim 6, wherein one end of an air circulation passage is communicated with an upper portion of the vaporization chamber and the air is disposed under the vaporization chamber. The other end of the circulation passage is communicated, the air supply means is disposed in the middle of the air circulation passage, and the air accumulated in the upper part of the vaporization chamber is sucked from the one end of the air circulation passage by the air supply means. By supplying this sucked air from the other end of the air circulation passage to the water stored in the lower part of the vaporization chamber, the investigation target substance contained in the water transferred to the vaporization chamber is vaporized in the vaporization chamber. The mixed air is generated by mixing with the air in the vaporizing chamber, and the concentration of the investigation target substance contained in the mixed air is measured by the measuring means.

請求項8に記載した発明に係る土壌汚染調査装置は、請求項6または請求項7に記載の土壌汚染調査装置において、前記気化室の上部に計測用循環通路の一端と他端とを連通させると共に前記計測用循環通路の中途部に前記計測手段を配置し、前記気化室の上部に溜まった前記混合空気を前記計測用循環通路を介して循環させて前記計測手段を通過させながら前記混合空気に含有する調査対象物質の濃度を前記計測手段によって計測するようにしたものである。   The soil contamination investigation device according to the invention described in claim 8 is the soil contamination investigation device according to claim 6 or 7, wherein one end and the other end of the measurement circulation passage are communicated with the upper part of the vaporization chamber. In addition, the measurement means is disposed in the middle of the measurement circulation passage, and the mixed air is circulated through the measurement circulation passage and allowed to pass through the measurement means while being circulated through the measurement circulation passage. The concentration of the investigation target substance contained in is measured by the measuring means.

請求項9に記載した発明に係る土壌汚染調査装置は、請求項6ないし請求項8のうち何れか一つに記載の土壌汚染調査装置において、前記水導入室の水を前記気化室に移送する送水手段と、前記送水手段,前記導入制御弁,前記導出制御弁および前記空気供給手段のそれぞれの作動を制御すると共に前記計測手段により計測した計測値のデータ信号を出力する制御装置とを備えているものである。   The soil contamination investigation device according to the invention described in claim 9 is the soil contamination investigation device according to any one of claims 6 to 8, wherein the water in the water introduction chamber is transferred to the vaporization chamber. A water supply means, and a control device that controls the operation of each of the water supply means, the introduction control valve, the derivation control valve, and the air supply means and that outputs a data signal of a measurement value measured by the measurement means. It is what.

本発明によれば、一対の制御弁の間に位置する導入通路と水導入室と導出通路とを一対の制御弁で密閉するようにしたので、調査対象物質の溶解した水を空気に晒すことなく密閉された状態で採取することができる。このため、採取した水に含まれる調査対象物質の濃度を計測することで計測精度が向上し、土壌汚染の調査を正確に行うことができる。
また、一対の制御弁の間に位置する導入通路と水導入室と導出通路とを一対の制御弁で密閉するようにしたので、調査対象物質の溶解した水を空気に晒すことなく密閉された状態で採取するための構造を単純にすることができ、安価に提供することができる。
According to the present invention, since the introduction passage, the water introduction chamber, and the outlet passage located between the pair of control valves are sealed by the pair of control valves, the water in which the investigation target substance is dissolved is exposed to the air. And can be collected in a sealed state. For this reason, measurement accuracy improves by measuring the density | concentration of the investigation object substance contained in the extract | collected water, and can investigate a soil contamination correctly.
In addition, the introduction passage, the water introduction chamber, and the discharge passage located between the pair of control valves are sealed with the pair of control valves, so that the water in which the investigation target substance is dissolved is sealed without being exposed to the air. The structure for sampling in a state can be simplified and can be provided at low cost.

請求項2記載の発明によれば、水導入手段を、吸水通路から導入通路が分岐する部位と導出通路が吸水通路に合流する部位との間における吸水通路の部位に配置した開閉弁で構成したので、該開閉弁を単に閉弁することで水導入室に水を導入させることができ、水導入室に水を導入させる構造を単純にすることができる。   According to the second aspect of the present invention, the water introduction means is configured by an on-off valve disposed at a portion of the water absorption passage between a portion where the introduction passage branches from the water absorption passage and a portion where the outlet passage merges with the water absorption passage. Therefore, by simply closing the on-off valve, water can be introduced into the water introduction chamber, and the structure for introducing water into the water introduction chamber can be simplified.

請求項3記載の発明によれば、水導入手段を、導出通路を流れる水を吸引する副吸水手段で構成したので、水導入室に速やかに水を導入することができる。   According to the third aspect of the present invention, the water introducing means is constituted by the auxiliary water absorbing means for sucking the water flowing through the outlet passage, so that the water can be quickly introduced into the water introducing chamber.

請求項4記載の発明によれば、吸水通路の先端側を、地面に穿った複数の穴の内部にそれぞれ先端側が配設される分枝吸水通路で構成する一方、導入通路を、分枝吸水通路からそれぞれ分岐する分枝導入通路とこれらの分枝導入通路を合流させて水導入室に連通する集合導入通路とで構成し、分枝導入通路にそれぞれ導入制御弁を配置したので、それぞれの導入制御弁を一つずつ順々に開弁すると共に残りの導入制御弁を閉弁すれば分枝吸水通路が配設された地点ごとの地中の水を個別に採取することが容易にできる。このため、個別に採取した水に含まれる調査対象物質の濃度を個別に計測することで、分枝吸水通路が配設された地点ごとの土壌汚染の調査を個別に行うことが容易にできる。   According to the fourth aspect of the present invention, the tip side of the water absorption passage is constituted by the branch water absorption passages each having the tip side disposed in the plurality of holes bored in the ground, while the introduction passage is constituted by the branch water absorption. Since the branch introduction passages branched from the passages and the branch introduction passages merged to communicate with the water introduction chamber, the introduction control valves are arranged in the branch introduction passages. Opening the introduction control valves one by one and closing the remaining introduction control valves makes it easy to individually collect the underground water at each point where the branch water intake passages are arranged. . For this reason, by individually measuring the concentration of the substance to be investigated contained in the water collected individually, it is possible to easily conduct an investigation of soil contamination at each point where the branch water absorption passages are arranged.

請求項5記載の発明によれば、土壌汚染調査用試料採取装置で採取した水に溶解している調査対象物質を気化させ、この気化された調査対象物質の濃度を計測するようにしたので、調査対象物質の濃度の計測精度が向上し、土壌汚染の調査を正確に行うことができる。   According to the invention described in claim 5, since the investigation target substance dissolved in the water collected by the soil contamination investigation sampling device is vaporized, and the concentration of the vaporized investigation target substance is measured, The measurement accuracy of the concentration of the investigation target substance is improved, and the soil contamination can be accurately investigated.

請求項6記載の発明によれば、空気供給手段により気化室に空気を供給することによって、気化室に移送した水に含有する調査対象物質を気化室で気化させると共に気化室の空気と混合させて混合空気を生成し、この混合空気に含有する調査対象物質の濃度を計測手段によって計測するようにしたので、調査対象物質が溶解した水に空気を十分接触させることができ、水に溶解した調査対象物質の気化を確実に行うことができる。このため、調査対象物質の濃度の計測精度が向上し、土壌汚染の調査を正確に行うことができる。   According to the sixth aspect of the invention, by supplying air to the vaporizing chamber by the air supply means, the investigation target substance contained in the water transferred to the vaporizing chamber is vaporized in the vaporizing chamber and mixed with the air in the vaporizing chamber. The mixed air is generated and the concentration of the investigation target substance contained in this mixed air is measured by the measuring means, so that the air can be sufficiently brought into contact with the water in which the investigation target substance is dissolved, and dissolved in the water. The target substance can be reliably vaporized. For this reason, the measurement accuracy of the concentration of the investigation target substance is improved, and the soil contamination can be accurately investigated.

請求項7記載の発明によれば、気化室の上部に溜まった空気を空気循環通路の一端から空気供給手段により吸引すると共にこの吸引した空気を再び空気循環通路の他端から気化室の下部に貯留した水中に供給することによって、気化室に移送した水に含有する調査対象物質を気化室で気化させると共に気化室の空気と混合させて混合空気を生成し、この混合空気に含有する調査対象物質の濃度を計測手段によって計測するようにしたので、調査対象物質が溶解した水に、気化室の上部に溜まった空気だけを接触させて水に溶解した調査対象物質の気化を行うことができる。このため、調査対象物質の気化に使用する空気の量を可及的少なくでき、調査対象物質の空気に対する含有比率を低下させずに済むので、調査対象物質の濃度の計測精度が向上し、土壌汚染の調査を正確に行うことができる。   According to the seventh aspect of the present invention, the air accumulated in the upper part of the vaporization chamber is sucked by the air supply means from one end of the air circulation passage, and the sucked air is again returned from the other end of the air circulation passage to the lower portion of the vaporization chamber. By supplying it to the stored water, the investigation target substance contained in the water transferred to the vaporization chamber is vaporized in the vaporization chamber and mixed with the air in the vaporization chamber to generate mixed air, and the investigation target contained in this mixed air Since the concentration of the substance is measured by the measuring means, the investigation target substance dissolved in water can be vaporized by bringing only the air accumulated in the upper part of the vaporization chamber into contact with the water in which the investigation target substance is dissolved. . For this reason, the amount of air used for vaporization of the investigation target substance can be reduced as much as possible, and the content ratio of the investigation target substance to the air can be reduced. Contamination can be accurately investigated.

請求項8記載の発明によれば、気化室の上部に溜まった混合空気を計測用循環通路を介して循環させて計測手段を通過させながら混合空気に含有する調査対象物質の濃度を計測するようにしたので、調査対象物質の空気に対する含有比率を一定に保持したまま濃度を計測することができる。このため、調査対象物質の濃度を計測している間に濃度が変化することが少なくなるので、計測精度が向上し、土壌汚染の調査を正確に行うことができる。   According to the eighth aspect of the present invention, the concentration of the investigation target substance contained in the mixed air is measured while circulating the mixed air accumulated in the upper part of the vaporization chamber through the measurement circulation passage and passing through the measurement means. Therefore, it is possible to measure the concentration while keeping the content ratio of the investigation target substance to the air constant. For this reason, since the concentration is less likely to change during the measurement of the concentration of the investigation target substance, the measurement accuracy can be improved and the soil contamination can be accurately investigated.

請求項9記載の発明によれば、送水手段,導入制御弁,導出制御弁および空気供給手段のそれぞれの作動制御と計測手段により計測した計測値のデータ信号の出力とを制御装置によって行うようにしたので、調査対象物質の濃度の計測が自動的に行われ、土壌汚染の調査作業の省力化を図ることができる。   According to the ninth aspect of the invention, the control device performs the operation control of each of the water supply means, the introduction control valve, the derivation control valve, and the air supply means and the output of the data signal of the measured value measured by the measurement means. As a result, the concentration of the investigation target substance is automatically measured, and labor saving of the soil contamination investigation work can be achieved.

(第1の実施の形態)
以下、本発明に係る土壌汚染調査装置の第1の実施の形態を図1ないし図10によって詳細に説明する。
図1は本発明に係る土壌汚染調査装置を装備した作業車の構成を示す側面図、図2は本発明に係る土壌汚染調査装置を装備した作業車を上方から見た状態を示す平面図である。図3は試錐管の先端部に掘削部材が固定された状態を示す断面図であり、図4の(a)および(b)は掘削部材を横断した状態を示す拡大断面図であり、同図の(c)は掘削部材を先端側から見た外観の状態を示す拡大図である。図5は本発明に係る土壌汚染調査装置の構成を示すブロック図であり、図6は土壌汚染調査装置本体の構成を示すブロック図であり、図7は試錐管の後端部に固定される閉塞部材の構成を示す図であり、図8は給水管および吸水管に接続される三方継手の構成を示す図である。図9は試錐管に穿設された浄化液排出孔の構成を示す断面図であり、図10は給水管,吸水管および試錐管が載置された枠体を正面から見た外観の状態を示す図であり、図11はその枠体を左側方から見た外観の状態を示す図である。なお、図1,図2,図5および図6については、作図の都合上、それぞれの構成部材の縮尺の比率は互いに異ならせて図示している。
(First embodiment)
Hereinafter, a first embodiment of a soil contamination investigation device according to the present invention will be described in detail with reference to FIGS.
FIG. 1 is a side view showing a configuration of a work vehicle equipped with a soil contamination investigation device according to the present invention, and FIG. 2 is a plan view showing a state where the work vehicle equipped with the soil contamination investigation device according to the present invention is viewed from above. is there. 3 is a cross-sectional view showing a state in which the excavation member is fixed to the tip of the borehole, and FIGS. 4A and 4B are enlarged cross-sectional views showing a state in which the excavation member is crossed. (C) is an enlarged view showing the appearance of the excavation member viewed from the tip side. FIG. 5 is a block diagram showing the configuration of the soil contamination survey device according to the present invention, FIG. 6 is a block diagram showing the configuration of the soil contamination survey device body, and FIG. 7 is fixed to the rear end of the borehole. FIG. 8 is a diagram illustrating a configuration of a blocking member, and FIG. 8 is a diagram illustrating a configuration of a three-way joint connected to a water supply pipe and a water absorption pipe. FIG. 9 is a cross-sectional view showing the configuration of the cleaning liquid discharge hole formed in the borehole, and FIG. 10 shows the appearance of the frame on which the water supply pipe, the water suction pipe and the borehole are mounted as seen from the front. FIG. 11 is a diagram showing the appearance of the frame viewed from the left side. 1, 2, 5, and 6 are illustrated with the ratios of the scales of the constituent members being different from each other for convenience of drawing.

図1および図2において、符号1で示すものは、この実施の形態による試錐装置2を装備した作業車を示す。図2は、後述する試錐管24を装着する前の作業車1を示す平面図である。この作業車1には、左右一対の無限軌道帯3,3と、この無限軌道帯3,3(図1は左側のみを示す。)を駆動して作業車1を走行させるエンジン4と、掘削しながら地盤に穴を穿つための試錐機構部5と、給水ポンプ6と、真空ポンプ7と第1貯水容器8aおよび第2貯水容器8b等を備えている。試錐機構部5,給水ポンプ6および後述する制御盤25等によって試錐装置2が構成されている。試錐装置2,真空ポンプ7,第1貯水容器8aおよび第2貯水容器8bは、作業車1に装備された台座11上に設置され固定されている。   In FIG. 1 and FIG. 2, what is shown with the code | symbol 1 shows the work vehicle equipped with the borehole apparatus 2 by this embodiment. FIG. 2 is a plan view showing the work vehicle 1 before mounting the test tube 24 described later. The work vehicle 1 includes a pair of left and right endless track bands 3 and 3, an engine 4 that drives the endless track bands 3 and 3 (FIG. 1 shows only the left side), and excavation. The drilling mechanism 5 for drilling holes in the ground, a water supply pump 6, a vacuum pump 7, a first water storage container 8a, a second water storage container 8b, and the like are provided. The borehole device 2 is constituted by the borehole mechanism unit 5, the water supply pump 6, the control panel 25 described later, and the like. The borehole device 2, the vacuum pump 7, the first water storage container 8a, and the second water storage container 8b are installed and fixed on a base 11 provided in the work vehicle 1.

無限軌道帯3,3は、駆動スプロケット12および従動スプロケット13…に巻き回され、エンジン4は、作業車1の後部における左右一対の無限軌道帯3,3の間に配置されている。作業車1の後部には、操作盤14が配設され、この操作盤14に配設された第1操作子14aを操作してエンジン4の駆動力を駆動スプロケット12に作業車1が前進方向もしくは後進方向に走行するように伝達または遮断して作業車1を走行または停止させる。また、操作盤14に配設された第2操作子14bを操作して左右一対の無限軌道帯3,3のそれぞれの回転速度を異ならせて作業車1の進行方向を変更する。   The endless track bands 3 and 3 are wound around the drive sprocket 12 and the driven sprockets 13... And the engine 4 is disposed between the pair of left and right endless track bands 3 and 3 in the rear portion of the work vehicle 1. An operation panel 14 is disposed at the rear of the work vehicle 1, and the first operation element 14 a disposed on the operation panel 14 is operated to drive the driving force of the engine 4 to the drive sprocket 12. Alternatively, the work vehicle 1 is caused to travel or stop by being transmitted or interrupted so as to travel in the reverse direction. Further, the traveling direction of the work vehicle 1 is changed by operating the second operation element 14b disposed on the operation panel 14 to change the rotational speeds of the pair of left and right endless track zones 3 and 3 respectively.

左右一対の無限軌道帯3,3の上方で、かつ、操作盤14の前方には、基体15が設けられ、台座11は、昇降自在に基体15によって支持されている。台座11は基体15にリンク部材16で連結され、台座11と基体15との間には油圧シリンダ17aが架設されている。油圧シリンダ17aは、操作盤14に設けられた第3操作子14cを操作することによってエンジン4の右側面部に配設された油圧ポンプ17bにより伸縮駆動され、油圧シリンダ17aは任意の伸縮位置で固定できるように構成されている。   A base body 15 is provided above the pair of left and right endless track bands 3 and 3 and in front of the operation panel 14, and the base 11 is supported by the base body 15 so as to be movable up and down. The base 11 is connected to the base body 15 by a link member 16, and a hydraulic cylinder 17 a is installed between the base 11 and the base body 15. The hydraulic cylinder 17a is telescopically driven by a hydraulic pump 17b disposed on the right side surface of the engine 4 by operating a third operating element 14c provided on the operation panel 14, and the hydraulic cylinder 17a is fixed at an arbitrary expansion / contraction position. It is configured to be able to.

これによって、台座11は基体15に対して鉛直方向の任意の位置で支持される。台座11が基体15に対して鉛直方向下方に変位したとき、それに伴って、台座11に立設された支持部材11aに軸支された円形状の回転体21が基体15に連結されたワイヤ18の張力によって時計回りに回転させられ、回転体21の回転角度が支持部材11aに固定されたエンコーダ22によって計測される。その計測値の信号が、台座11に搭載された制御盤25内のコントローラ23に電線を介して送信され、コントローラ23内に配設されたメモリ23aに計測値データとして記憶される(図5を参照)。コントローラ23は、本発明でいう制御装置を構成し、試錐装置2,真空ポンプ7および後述する土壌汚染調査装置本体9並びに加圧ポンプ52の動作を制御する。   Accordingly, the base 11 is supported at an arbitrary position in the vertical direction with respect to the base body 15. When the pedestal 11 is displaced downward in the vertical direction with respect to the base body 15, accordingly, the circular rotating body 21 pivotally supported by the support member 11 a erected on the pedestal 11 is connected to the base body 15. The rotation angle of the rotating body 21 is measured by the encoder 22 fixed to the support member 11a. The signal of the measurement value is transmitted to the controller 23 in the control panel 25 mounted on the base 11 via an electric wire, and is stored as measurement value data in a memory 23a provided in the controller 23 (see FIG. 5). reference). The controller 23 constitutes a control device according to the present invention, and controls the operation of the borehole device 2, the vacuum pump 7, a soil contamination investigation device main body 9 and a pressurizing pump 52 described later.

また、図1に示すように、台座11は最高位置と最低位置との間をストロークSだけ変位可能に構成され、台座11が最高位置から最低位置まで降下した回数は、図示しないカウンタで計測されメモリ23aに記憶される。この回数とエンコーダ22によって計測された回転角度とに基づいて、地面Eに穴を穿つための円筒状の試錐管24が地中に貫入する深度がコントローラ23内に設けられた演算手段により演算され求められる。なお、台座11が最低位置まで降下したときは、その旨を作業者に報知する表示灯(図示せず)が点灯する。   Further, as shown in FIG. 1, the pedestal 11 is configured to be displaced by a stroke S between the highest position and the lowest position, and the number of times the pedestal 11 is lowered from the highest position to the lowest position is measured by a counter (not shown). Stored in the memory 23a. Based on this number of times and the rotation angle measured by the encoder 22, the depth at which the cylindrical test tube 24 for drilling a hole in the ground E penetrates into the ground is calculated by a calculation means provided in the controller 23. Desired. When the pedestal 11 is lowered to the lowest position, an indicator lamp (not shown) for notifying the operator of the fact is turned on.

また、コントローラ23内には、タイマ23bが配設されており、試錐機構部5による掘削が開始されてからの時間がタイマ23bによって計測される。そして、タイマ23bによる計測時間と、エンコーダ22により計測された深度データと、後述する濃度計測装置104により計測された計測データとがコントローラ23内の制御回路によって関連付けられてメモリ23aに出力され、該メモリ23aで記憶されるようになっており、これによって、地中における深度ごとのVOCsの濃度が時間の経過とも関連付けられてメモリ23aに記憶される。   In addition, a timer 23b is disposed in the controller 23, and the time after the start of excavation by the borehole mechanism unit 5 is measured by the timer 23b. Then, the measurement time by the timer 23b, the depth data measured by the encoder 22, and the measurement data measured by the concentration measuring device 104 described later are associated with each other by the control circuit in the controller 23 and output to the memory 23a. As a result, the concentration of VOCs for each depth in the ground is stored in the memory 23a in association with the passage of time.

台座11が鉛直方向下方に変位して回転体21が時計回りに回転するとき、回転体21と支持部材11a側との間に架設されたトーションバネ(図示せず)が撓んで回転体21を反時計回りに回転させようとするトルクが作用するようになっており、このトーションバネは、台座11が鉛直方向上方に変位したとき、回転体21を反時計回りに回転させるように作用する。   When the pedestal 11 is displaced vertically downward and the rotator 21 rotates clockwise, a torsion spring (not shown) laid between the rotator 21 and the support member 11a side is bent to cause the rotator 21 to move. Torque to rotate counterclockwise acts, and this torsion spring acts to rotate the rotating body 21 counterclockwise when the pedestal 11 is displaced vertically upward.

試錐機構部5は、台座11の前部に固定され、試錐管24を把持した状態で試錐管24をその軸芯L1回りに所定の回転角度(正逆300度の回転角度)で往復回転させるためのクランプ5aと、このクランプ5aに回転力を伝達するための試錐管回転モータ5bとを備える。試錐管24の回転速度は、台座11に搭載された制御盤25に設けられた操作スイッチ25aを操作して無段階に調節することができる。また、掘削の作業中、地中に石等の障害物があった場合はその障害物を粉砕して除去するために、その分、掘削作業の時間が長くなることがあるが、そのような場合は、制御盤25に設けられた操作スイッチ25bを操作してその旨をメモリ23aに記憶させ、障害物除去作業が発生した時間帯と、そのときの深度および濃度の計測データとの関係が後で計測データを整理する際に分かるようにしている。   The borehole mechanism 5 is fixed to the front portion of the base 11 and reciprocally rotates the borehole 24 around its axis L1 at a predetermined rotation angle (a rotation angle of forward and reverse 300 degrees) while holding the borehole 24. A clamp 5a, and a borehole rotation motor 5b for transmitting rotational force to the clamp 5a. The rotational speed of the borehole 24 can be adjusted steplessly by operating an operation switch 25a provided on a control panel 25 mounted on the pedestal 11. In addition, during the excavation work, if there are obstacles such as stones in the ground, the time for excavation work may be increased by that amount because the obstacles are crushed and removed. In this case, the operation switch 25b provided on the control panel 25 is operated and the fact is stored in the memory 23a, and there is a relationship between the time zone when the obstacle removal work occurs and the depth and concentration measurement data at that time. It will be understood later when organizing the measurement data.

図9に示すように、試錐管24は、外径が27.2ミリメートル、内径が23.4ミリメートルで長さが2メートルを有する複数の筒状の分割管73…と、分割管73…に螺着される筒状の試錐管継手76…とで構成され、分割管73…および試錐管継手76…はステンレス製の部材からなる。試錐管継手76…の両端部の内周面にそれぞれ刻設された雌ネジ部に分割管73…のそれぞれの両端部外周面に刻設された雄ネジ部を螺合して分割管73と試錐管継手76とを次々に連結することによって長尺の1本の試錐管24が構成される。なお、分割管73…および試錐管継手76…のネジ部はテーパネジ構造とされ、互いに強固に螺合することによって緩み難くされている。   As shown in FIG. 9, the test tube 24 is divided into a plurality of cylindrical divided tubes 73 having an outer diameter of 27.2 millimeters, an inner diameter of 23.4 millimeters, and a length of 2 meters, and divided tubes 73. It is comprised by the cylindrical trial pipe joint 76 ... screwed together, and the division pipe 73 ... and the trial pipe joint 76 ... consist of stainless steel members. The male threaded portion engraved on the outer peripheral surface of each end portion of the split tube 73 is screwed into the female thread portion engraved on the inner peripheral surface of each end portion of the trial tube joint 76. By connecting the borehole joints 76 one after another, one long borehole 24 is formed. The threaded portions of the divided pipes 73 and the trial pipe joints 76 have a taper screw structure, and are not loosened by being firmly screwed together.

図3に示すように、試錐管24の先端部を構成する試錐管継手76には、地中を掘削するための略円柱状の掘削部材26が螺着され、試錐管24内には、硬質ナイロン樹脂製の吸水管27が挿入され、吸水管27内には給水ポンプ6によって水が供給されるテフロン(登録商標、正確にはPTFE(ポリテトラフルオロエチレン)である。以下同じ。)樹脂製の給水管28が挿入されている。吸水管27および給水管28は、共に円管状の横断面を有している。また、給水管28外周と吸水管27内周との間の間隙は本発明でいう吸水通路を構成する。   As shown in FIG. 3, a substantially cylindrical excavation member 26 for excavating the underground is screwed into a borehole joint 76 that constitutes the tip of the borehole 24, and a hard hole is placed in the borehole 24. A water absorption pipe 27 made of nylon resin is inserted, and water is supplied into the water absorption pipe 27 by the water supply pump 6 (registered trademark, which is PTFE (polytetrafluoroethylene), the same applies hereinafter) made of resin. The water supply pipe 28 is inserted. Both the water absorption pipe 27 and the water supply pipe 28 have a circular cross section. Further, the gap between the outer periphery of the water supply pipe 28 and the inner periphery of the water absorption pipe 27 constitutes a water absorption passage in the present invention.

掘削部材26は、その先端部の掘削部26aと、この掘削部26aが螺着される筒状の掘削部材本体26bと、試錐管24の先端部を構成する試錐管継手76に螺着される連結部材37とからなり、掘削部材本体26bの内部には、略円柱状の空洞からなる水回収部32が掘削部材26の軸芯L2(掘削部材26が固定された試錐管24の軸芯L1と同軸)に沿って形成され、掘削部26aに水供給孔33が軸芯L2方向に穿設されており、この水供給孔33は、掘削部26aに設けられた第1連通路34を介して給水管28と連通する。   The excavation member 26 is screwed to the excavation part 26 a at the tip, a cylindrical excavation member main body 26 b to which the excavation part 26 a is screwed, and a borehole joint 76 constituting the tip of the borehole 24. The water recovery part 32 which consists of a connection member 37 and has a substantially cylindrical cavity is provided inside the excavation member main body 26b. The axis L2 of the excavation member 26 (the axis L1 of the borehole 24 to which the excavation member 26 is fixed). The water supply hole 33 is drilled in the direction of the axis L2 in the excavation part 26a, and the water supply hole 33 is connected to the excavation part 26a via a first communication path 34. To communicate with the water supply pipe 28.

第1連通路34の水供給孔33とは反対側の端部に刻設された雌ネジ部に、筒状の給水管用継手部材35の一端部外周面に刻設された雄ネジ部が螺合され、給水管用継手部材35の他端部には、給水管28の先端部28aが嵌着され、クランプ部材(図示せず)で強固に把持される。このため、給水管28が嵌着されたまま給水管用継手部材35の雄ネジ部を緩めることによって、給水管28を掘削部材26に対して給水管28の軸芯方向に離脱させることができる。   A male threaded portion engraved on the outer peripheral surface of one end of the tubular water pipe coupling member 35 is screwed into a female threaded portion engraved at the end of the first communication passage 34 opposite to the water supply hole 33. The distal end portion 28a of the water supply pipe 28 is fitted to the other end of the water supply pipe joint member 35 and is firmly held by a clamp member (not shown). For this reason, the water supply pipe 28 can be separated from the excavation member 26 in the axial direction of the water supply pipe 28 by loosening the male thread portion of the water supply pipe joint member 35 while the water supply pipe 28 is fitted.

第1連通路34の中途部から分岐通路34bが分岐され、その分岐通路34bの終端が水回収部32の底部32aに開口して水噴射孔36を形成している。図3の矢視A−A線に沿う拡大断面図として図示した図4の(a)に示すように、水噴射孔36は、掘削部材26の軸芯L2から半径方向に偏倚した部位で軸芯L2回りの円周方向に所定の角度(5度〜15度の範囲で適宜設定)だけ傾斜して穿設されている。   A branch passage 34 b is branched from a middle portion of the first communication passage 34, and a terminal end of the branch passage 34 b opens to the bottom 32 a of the water recovery portion 32 to form a water injection hole 36. As shown in FIG. 4A, which is an enlarged cross-sectional view taken along the line AA in FIG. 3, the water injection hole 36 is axially displaced at a portion biased in the radial direction from the axis L2 of the excavating member 26. It is perforated with a predetermined angle (appropriately set in the range of 5 to 15 degrees) in the circumferential direction around the core L2.

連結部材37は、長手方向中間部が大径とされ、それより小径とされた両端部に雄ネジ部がそれぞれ刻設された円管状の部材からなり、該雄ネジ部の一方が、掘削部26aとは反対側の掘削部材本体26bの端部内周面に刻設された雌ネジ部に螺着され、連結部材37内には水回収部32に連通する第2連通路37aが掘削部材26の軸芯L2に沿って形成されている。第2連通路37aの水回収部32とは反対側の端部内周面には雌ネジ部が刻設され、この雌ネジ部に、筒状の吸水管用継手部材38の一端部外周面に刻設された雄ネジ部が螺合され、吸水管用継手部材38の他端部の小径部には、吸水管27の先端部27aが嵌着され、クランプ部材(図示せず)で強固に把持される。このため、吸水管27が嵌着されたまま吸水管用継手部材38の雄ネジ部を緩めることによって、吸水管27を掘削部材26に対して吸水管27の軸芯方向に離脱させることができる。掘削部材本体26b内の水回収部32,連結部材37の第2連通路37aおよび吸水管用継手部材38の内部は本発明でいう吸水通路を構成する。而して、水回収部32の中心部を貫通して給水管28が配設されることになる。なお、試錐管継手76と連結部材37,連結部材37と掘削部材本体26bおよび掘削部材本体26bと掘削部26aのそれぞれのネジ部はテーパネジ構造とされ、互いに強固に螺合することによって緩み難くされている。   The connecting member 37 is formed of a tubular member in which a middle portion in the longitudinal direction has a large diameter and a male screw portion is engraved at both ends having a smaller diameter, and one of the male screw portions is an excavation portion. A second communication passage 37 a communicating with the water recovery portion 32 is formed in the connection member 37 by being screwed into a female screw portion carved on the inner peripheral surface of the end portion of the excavation member main body 26 b opposite to the excavation member 26. Are formed along the axis L2. A female threaded portion is formed on the inner peripheral surface of the end of the second communication passage 37a opposite to the water recovery portion 32, and this female threaded portion is etched on the outer peripheral surface of one end of the tubular water-absorbing pipe joint member 38. The provided male screw portion is screwed together, and the distal end portion 27a of the water absorption tube 27 is fitted into the small diameter portion of the other end portion of the water absorption tube joint member 38, and is firmly held by a clamp member (not shown). The For this reason, the water absorption pipe 27 can be separated from the excavation member 26 in the axial direction of the water absorption pipe 27 by loosening the male thread portion of the water absorption pipe joint member 38 with the water absorption pipe 27 fitted. The water collection part 32 in the excavation member main body 26b, the second communication passage 37a of the connecting member 37, and the inside of the water absorption pipe joint member 38 constitute the water absorption passage referred to in the present invention. Thus, the water supply pipe 28 is disposed through the center of the water recovery unit 32. Note that each of the threaded portions of the borehole joint 76 and the connecting member 37, the connecting member 37 and the excavating member main body 26b, and the excavating member main body 26b and the excavating portion 26a has a taper screw structure, and is not loosened by being firmly screwed together. ing.

また、図3および図3の矢視B−B線に沿う拡大断面図として図示した図4の(b)に示すように、掘削部材26の掘削部材本体26bには、掘削部材26の外部と水回収部32とを連通する水回収孔32b…が掘削部材26の軸芯L2に平行に延びる長孔形状に形成され、これらの水回収孔32b…は軸芯L2回りに等角度間隔に4個形成されている。水回収孔32b…を長孔形状に形成したことで、水回収孔32b…の開口面積を十分確保でき、かつ、大きな粒土は水回収孔32b…を通過することができないため細かな土だけが泥水となって回収される。なお、水回収孔32b…の外部側の周囲は泥水が通過しやすいように大きく面取りされている(図3を参照)。而して、吸水通路を構成する水回収部32と連結部材37の第2連通路37aとを流れる水の経路から見て、水回収孔32b…より上流側に水噴射孔36が位置付けられ、給水管28内の給水通路を流れる水の一部が水噴射孔36から水回収部32の水流方向に略沿うよう噴射される。   Further, as shown in FIG. 4 (b) shown as an enlarged cross-sectional view along the line BB in FIG. 3 and FIG. 3, the excavation member body 26b of the excavation member 26 is connected to the outside of the excavation member 26. Water recovery holes 32b communicating with the water recovery part 32 are formed in a long hole shape extending in parallel to the axis L2 of the excavating member 26, and these water recovery holes 32b are formed at equal angular intervals around the axis L2. Individually formed. Since the water recovery holes 32b are formed in a long hole shape, a sufficient opening area of the water recovery holes 32b can be secured, and a large grain soil cannot pass through the water recovery holes 32b, so that only fine soil is obtained. Is recovered as muddy water. The outer periphery of the water recovery holes 32b is chamfered so as to facilitate the passage of muddy water (see FIG. 3). Thus, the water injection hole 36 is positioned on the upstream side of the water recovery holes 32b as viewed from the path of the water flowing through the water recovery part 32 constituting the water absorption path and the second communication path 37a of the connecting member 37, A part of the water flowing through the water supply passage in the water supply pipe 28 is injected from the water injection hole 36 so as to substantially follow the water flow direction of the water recovery unit 32.

掘削部材26の掘削部26aは掘削部本体41を備え、掘削部本体41には、掘削部材26の軸芯L2に平行に掘削ロッド42…が螺合により植設されている。掘削部材26を先端側から見た外観の拡大した状態を図示した図4の(c)に示すように、掘削ロッド42…は、掘削部材26の軸芯L2の周囲を囲むように3本の掘削ロッド42が掘削部本体41の円柱状突部41aに植設され、前記3本の掘削ロッド42を囲むように6本の掘削ロッド42が円柱状突部41aの周囲に形成された環状段部41bに植設されている。なお、掘削部26aは、合計9本の掘削ロッド42が螺合された状態で熱処理されて硬化された後、掘削ロッド42…の先端が研磨機で研磨されて掘削に適した形状に成形されている。   The excavation part 26a of the excavation member 26 includes an excavation part main body 41, and excavation rods 42 are screwed into the excavation part main body 41 in parallel with the axis L2 of the excavation member 26. As shown in FIG. 4 (c), which shows an enlarged appearance of the excavation member 26 as viewed from the tip side, the excavation rods 42 are formed so as to surround the periphery of the shaft core L2 of the excavation member 26. An excavation rod 42 is implanted in a cylindrical protrusion 41a of the excavation part main body 41, and six excavation rods 42 are formed around the cylindrical protrusion 41a so as to surround the three excavation rods 42. It is planted in the part 41b. The excavation part 26a is heat-treated and hardened in a state where a total of nine excavation rods 42 are screwed together, and then the tips of the excavation rods 42 are polished by a polishing machine and formed into a shape suitable for excavation. ing.

図1に示すように、水泥分離容器43が一対の保持部材43aを介して台座11の支持部材11aに固定されており、図5に示すように、水泥分離容器43の上部に、後述する第3接続管71が接続され、水泥分離容器43の上部と第1貯水容器8aおよび第2貯水容器8bのそれぞれの底部とが、本発明でいう吸水通路の下流部を構成する第1接続管44を介して接続されている。これによって、吸水通路を流れる水の経路から見て、貯水容器8a,8bの上流側に水泥分離容器43が配設される。水泥分離容器43の底部には、水泥分離容器43内の泥を排出するときに取り外すゴム製の栓部材45が着脱自在に嵌入されている。水泥分離容器43は、水と泥とを分離するためのもので略円筒状の透明の容器からなり、水泥分離容器43の容量は、土壌汚染調査の対象となっている1箇所の地点における地中を予定された深度まで掘削したときに地上に排出される泥の体積に相当する容積より少しだけ多い容量とされている。そして、水泥分離容器43の外表面には、深度1メートル分の泥の量に相当する位置ごとに目盛が付けられ、この目盛と泥の貯留量との関係から試錐作業中のおおよその深度を把握することができる。   As shown in FIG. 1, a water mud separation container 43 is fixed to the support member 11a of the pedestal 11 via a pair of holding members 43a. As shown in FIG. 3 connecting pipes 71 are connected, and the upper part of the water mud separation container 43 and the respective bottom parts of the first water storage container 8a and the second water storage container 8b constitute the first connection pipe 44 constituting the downstream part of the water absorption passage in the present invention. Connected through. Accordingly, the water mud separation container 43 is disposed on the upstream side of the water storage containers 8a and 8b when viewed from the path of the water flowing through the water absorption passage. A rubber plug member 45 to be removed when the mud in the water mud separation container 43 is discharged is detachably fitted to the bottom of the water mud separation container 43. The water mud separation container 43 is a substantially cylindrical transparent container for separating water and mud, and the capacity of the water mud separation container 43 is the ground at one point that is the subject of soil contamination investigation. The capacity is slightly larger than the volume corresponding to the volume of mud that is discharged to the ground when excavating to a predetermined depth. A scale is attached to the outer surface of the water mud separation container 43 for each position corresponding to the amount of mud for a depth of 1 meter, and the approximate depth during the drilling operation is determined from the relationship between this scale and the amount of mud stored. I can grasp it.

第1接続管44の中途部には、水泥分離容器43と第1貯水容器8aとの間の通路を開閉する第1電磁弁46aと、水泥分離容器43と第2貯水容器8bとの間の通路を開閉する第2電磁弁46bとが配設されている。水泥分離容器43の上部と貯水容器8a,8bとは第1接続管44を介して接続されており、この第1接続管44の中途部には、水泥分離容器43で泥を除去できなかった場合を想定して念のために除泥フィルタ72が配設されている。   In the middle of the first connecting pipe 44, a first electromagnetic valve 46a that opens and closes a passage between the water mud separation container 43 and the first water storage container 8a, and between the water mud separation container 43 and the second water storage container 8b. A second electromagnetic valve 46b that opens and closes the passage is disposed. The upper part of the water mud separation container 43 and the water storage containers 8a and 8b are connected via the first connection pipe 44, and mud cannot be removed by the water mud separation container 43 in the middle of the first connection pipe 44. In consideration of the case, a mud filter 72 is provided as a precaution.

また、第1貯水容器8aと第1電磁弁46aとの間の第1接続管44における中途部から分岐して設けられた第1排水管47aの中途部には、第1貯水容器8a内に貯留した水を排出する際に開弁する第3電磁弁46cが配設されている。一方、第2貯水容器8bと第2電磁弁46bとの間の第1接続管44における中途部から分岐して設けられた第2排水管47bの中途部には第2貯水容器8b内に貯留した水を排出する際に開弁する第4電磁弁46dが配設されている。   Further, in the middle of the first drain pipe 47a provided by branching from the middle part of the first connection pipe 44 between the first water storage container 8a and the first electromagnetic valve 46a, the first water storage container 8a is provided. A third solenoid valve 46c is provided that opens when the stored water is discharged. On the other hand, the second drainage pipe 47b provided by branching from the middle part of the first connection pipe 44 between the second water storage container 8b and the second electromagnetic valve 46b is stored in the second water storage container 8b. A fourth solenoid valve 46d is provided that opens when draining the discharged water.

第1貯水容器8aと第2貯水容器8bとには、貯留する水の水位が予め設定された最高水位または最低水位の何れかに到達したことを検出して、その検出信号を、コントローラ23に電線(図示せず)を介して送信する第1水位検出センサ48aと第2水位検出センサ48bとがそれぞれ配設されている。貯水容器8a,8b内のそれぞれの上部には、台座11に搭載された加圧ポンプ52が第2接続管51を介して接続され、貯水容器8a,8b内に貯留した水を排水管47a,47bを介して排出する際に貯水容器8a,8b内を加圧ポンプ52によって加圧する。第2接続管51の中途部には、加圧ポンプ52と第1貯水容器8aとの間の通路を開閉する第5電磁弁46eと、加圧ポンプ52と第2貯水容器8bとの間の通路を開閉する第6電磁弁46fとが配設されている。   The first water storage container 8a and the second water storage container 8b detect that the water level of the stored water has reached either the preset maximum water level or the minimum water level, and send the detection signal to the controller 23. A first water level detection sensor 48a and a second water level detection sensor 48b that transmit via electric wires (not shown) are respectively provided. A pressure pump 52 mounted on the pedestal 11 is connected to the upper part of each of the water storage containers 8a and 8b via the second connection pipe 51, and the water stored in the water storage containers 8a and 8b is drained from the drain pipe 47a, The water storage containers 8a and 8b are pressurized by the pressurizing pump 52 when discharged through 47b. In the middle of the second connecting pipe 51, a fifth electromagnetic valve 46e for opening and closing a passage between the pressurizing pump 52 and the first water storage container 8a, and between the pressurizing pump 52 and the second water storage container 8b. A sixth electromagnetic valve 46f that opens and closes the passage is disposed.

また、第2接続管51の中途部には、貯水容器8a,8b内から吸い出された気体が排出される排気管53の一端が接続され、排気管53の中途部には真空ポンプ7が接続され、貯水容器8a,8b内の圧力が真空ポンプ7によって減圧される。また、第2接続管51の中途部には、真空ポンプ7と第1貯水容器8aとの間の通路を開閉する第7電磁弁46gと、真空ポンプ7と第2貯水容器8bとの間の通路を開閉する第8電磁弁46hとが配設されている。真空ポンプ7,第1貯水容器8a,第2貯水容器8b,第1電磁弁46a,第2電磁弁46b,第3電磁弁46c,第4電磁弁46d,第5電磁弁46e,第6電磁弁46f,第7電磁弁46g,第8電磁弁46hおよび加圧ポンプ52によって吸水手段50が構成されている。
上述した第1電磁弁46aないし第8電磁弁46hは、それぞれコントローラ23に電線(図示せず)を介して接続され、コントローラ23によって開閉制御される。また、前記給水ポンプ6,真空ポンプ7および加圧ポンプ52もそれぞれコントローラ23に電線(図示せず)を介して接続され、コントローラ23によって作動またはその作動の停止が制御される。
One end of an exhaust pipe 53 from which the gas sucked out from the water storage containers 8 a and 8 b is discharged is connected to the middle part of the second connection pipe 51, and the vacuum pump 7 is connected to the middle part of the exhaust pipe 53. The pressure in the water storage containers 8 a and 8 b is reduced by the vacuum pump 7. Further, in the middle of the second connecting pipe 51, a seventh electromagnetic valve 46g for opening and closing a passage between the vacuum pump 7 and the first water storage container 8a, and between the vacuum pump 7 and the second water storage container 8b are provided. An eighth electromagnetic valve 46h that opens and closes the passage is provided. Vacuum pump 7, first water storage container 8a, second water storage container 8b, first electromagnetic valve 46a, second electromagnetic valve 46b, third electromagnetic valve 46c, fourth electromagnetic valve 46d, fifth electromagnetic valve 46e, sixth electromagnetic valve 46f, the seventh electromagnetic valve 46g, the eighth electromagnetic valve 46h, and the pressurizing pump 52 constitute the water absorption means 50.
The first electromagnetic valve 46 a to the eighth electromagnetic valve 46 h described above are connected to the controller 23 via electric wires (not shown), and are controlled to be opened and closed by the controller 23. The water supply pump 6, the vacuum pump 7 and the pressure pump 52 are also connected to the controller 23 via electric wires (not shown), and the controller 23 controls the operation or stop of the operation.

図5に示すように、第1接続管44における除泥フィルタ72と第1電磁弁46aおよび第2電磁弁46bとの間には、土壌汚染調査装置本体9が配設されている。この土壌汚染調査装置本体9は、後述する洗浄用水槽115を除き、台座11に配設されている。図6に示すように、土壌汚染調査装置本体9は、第1接続管44から分岐して円筒状の水導入容器85の一端部に接続された導入管86aと、水導入容器85の他端部に接続され、水導入容器85に導入された水を再び第1接続管44に合流するように配管された導出管86bと、導入管86aの中途部に配設された導入制御弁87と、導出管86bの中途部に配設された導出制御弁88と、第1接続管44における導入管86aとの分岐部と導出管86bとの合流部との間に配設された電磁弁からなる開閉弁91とを備えている。導入管86aの内部は本発明の導入通路を構成し、導出管86bの内部は本発明の導出通路を構成し、水導入容器85の内部は本発明でいう水導入室を構成する。   As shown in FIG. 5, the soil contamination investigation device main body 9 is disposed between the mud filter 72 and the first electromagnetic valve 46 a and the second electromagnetic valve 46 b in the first connection pipe 44. The soil contamination investigation device main body 9 is disposed on the pedestal 11 except for a washing water tank 115 described later. As shown in FIG. 6, the soil contamination investigation device main body 9 includes an introduction pipe 86 a branched from the first connection pipe 44 and connected to one end of a cylindrical water introduction container 85, and the other end of the water introduction container 85. A lead-out pipe 86b that is connected to the pipe and piped so that the water introduced into the water introduction container 85 joins the first connection pipe 44 again, and an introduction control valve 87 disposed in the middle of the introduction pipe 86a, From the solenoid valve disposed between the derivation control valve 88 disposed in the middle part of the derivation pipe 86b, and the junction part of the first connection pipe 44 with the introduction pipe 86a and the derivation pipe 86b. And an on-off valve 91. The inside of the introduction pipe 86a constitutes the introduction passage of the present invention, the inside of the lead-out pipe 86b constitutes the lead-out passage of the present invention, and the inside of the water introduction container 85 constitutes the water introduction chamber referred to in the present invention.

水導入容器85の一端部には第4接続管93の一端が接続され、第4接続管93の他端は円筒状の気化容器92内の上部に連通している。水導入容器85に貯留された水は第4接続管93を介して気化容器92内に導入される。第4接続管93の中途部には、水導入容器85内の水を強制的に気化容器92に送水するための送水ポンプ96が配設され、第4接続管93における水導入容器85と送水ポンプ96との間には第9電磁弁93aが配設されている。水導入容器85の他端部には空気を導入するための第1空気導入管94が接続され、その中途部には第10電磁弁94aが配設されている。第9電磁弁93a,第10電磁弁94aおよび送水ポンプ96は本発明でいう送水手段を構成する。なお、送水ポンプ96を設けずに、第9電磁弁93aおよび第10電磁弁94aを共に開弁するだけで水導入容器85内の水を自由落下により気化容器92に供給することもできる。その場合は、送水ポンプ96による強制的な送水に比べて送水に要する時間が長くなる。   One end of the fourth connection pipe 93 is connected to one end of the water introduction container 85, and the other end of the fourth connection pipe 93 communicates with the upper part in the cylindrical vaporization container 92. The water stored in the water introduction container 85 is introduced into the vaporization container 92 through the fourth connection pipe 93. A water supply pump 96 for forcibly supplying water in the water introduction container 85 to the vaporization container 92 is disposed in the middle of the fourth connection pipe 93, and the water introduction container 85 and the water supply in the fourth connection pipe 93 are arranged. Between the pump 96, a ninth electromagnetic valve 93a is disposed. A first air introduction pipe 94 for introducing air is connected to the other end portion of the water introduction container 85, and a tenth electromagnetic valve 94a is disposed in the middle portion thereof. The ninth electromagnetic valve 93a, the tenth electromagnetic valve 94a and the water supply pump 96 constitute the water supply means referred to in the present invention. Note that the water in the water introduction container 85 can be supplied to the vaporization container 92 by free fall only by opening both the ninth electromagnetic valve 93a and the tenth electromagnetic valve 94a without providing the water pump 96. In that case, the time required for water supply becomes longer than that of forced water supply by the water pump 96.

気化容器92内は、本発明でいう気化室を構成し、第4接続管93の下流端は、気化容器92内の上部中央に連通されて、第4接続管93から流出する水が落下するように位置付けられている。気化容器92内に落下した水は、気化容器92内の下部に貯留される。気化容器92内の上部と下部には空気循環管101の両端部がそれぞれ連通され、空気循環管101の中途部に配設された空気供給ポンプ102により、気化容器92内の上部の空気が空気循環管101の一端部から排出させられて再び気化容器92内の下部の他端部から流入させられ循環するようになっている。空気循環管101の内部は本発明でいう空気循環通路を構成し、空気供給ポンプ102は本発明でいう空気供給手段を構成する。   The inside of the vaporization container 92 constitutes a vaporization chamber as referred to in the present invention, and the downstream end of the fourth connection pipe 93 is communicated with the upper center in the vaporization container 92, and the water flowing out from the fourth connection pipe 93 falls. It is positioned as follows. The water that has fallen into the vaporization container 92 is stored in the lower part of the vaporization container 92. Both ends of the air circulation pipe 101 are communicated with the upper part and the lower part in the vaporization container 92, respectively, and the air in the upper part in the vaporization container 92 is converted into air by an air supply pump 102 disposed in the middle of the air circulation pipe 101. The gas is discharged from one end of the circulation pipe 101 and is again introduced from the other end at the lower part in the vaporization container 92 to circulate. The inside of the air circulation pipe 101 constitutes an air circulation passage referred to in the present invention, and the air supply pump 102 constitutes an air supply means referred to in the present invention.

気化容器92内の上部には計測用循環往路管103の一端部が連通され、計測用循環往路管103の他端部は、本発明でいう計測手段を構成する濃度計測装置104に接続されている。濃度計測装置104は電線(図示せず)を介してコントローラ23に接続されている。計測用循環往路管103の中途部には第1三方電磁弁103aが配設され、この第1三方電磁弁103aには換気用管108が配管され、この換気用管108の中途部には除湿フィルタ112が配設されている。また、濃度計測装置104には計測用循環復路管109の一端が接続され、計測用循環復路管109の他端は気化容器92内の上部に連通している。計測用循環往路管103および計測用循環復路管109のそれぞれの内部は本発明でいう計測用循環通路を構成する。また、計測用循環復路管109の中途部には第2三方電磁弁109aが配設され、この第2三方電磁弁109aには排気管116が接続され、換気用管108を介して導入され濃度計測装置104内が洗浄された後の空気が排気管116から排出される。また、気化容器92の上部には、気化容器92内の上部に空気を導入するための第2空気導入管110が配管され、その第2空気導入管110の中途部には第11電磁弁110aが配設されている。   One end of the circulation circulation pipe 103 for measurement is communicated with the upper part of the vaporization container 92, and the other end of the circulation circulation pipe 103 for measurement is connected to the concentration measuring device 104 constituting the measurement means referred to in the present invention. Yes. The concentration measuring device 104 is connected to the controller 23 via an electric wire (not shown). A first three-way solenoid valve 103a is disposed in the middle of the measurement circulation forward pipe 103, and a ventilation pipe 108 is provided in the first three-way solenoid valve 103a, and a dehumidifying part is provided in the middle of the ventilation pipe 108. A filter 112 is provided. Further, one end of a measurement circulation return pipe 109 is connected to the concentration measuring device 104, and the other end of the measurement circulation return pipe 109 communicates with an upper portion in the vaporization container 92. The inside of each of the measurement circulation outward pipe 103 and the measurement circulation return pipe 109 constitutes a measurement circulation passage in the present invention. In addition, a second three-way solenoid valve 109a is disposed in the middle of the measurement circulation return pipe 109, and an exhaust pipe 116 is connected to the second three-way solenoid valve 109a, which is introduced via the ventilation pipe 108 and the concentration. The air after the inside of the measuring device 104 is cleaned is discharged from the exhaust pipe 116. A second air introduction pipe 110 for introducing air into the upper part of the vaporization container 92 is piped on the upper part of the vaporization container 92, and an eleventh electromagnetic valve 110a is provided in the middle of the second air introduction pipe 110. Is arranged.

一方、気化容器92の底部には、気化容器92内の水を排出するための第3排水管98が配管され、その中途部には排水用ポンプ106が配設され、第3排水管98における気化容器92と排水用ポンプ106との間には第12電磁弁98aが配設されている。なお、排水用ポンプ106を設けずに、第11電磁弁110aおよび第12電磁弁98aを共に開弁するだけで気化容器92内の水を自由落下により排出することもできる。その場合は、排水用ポンプ106による強制的な排水に比べて排水に要する時間が長くなる。   On the other hand, a third drain pipe 98 for discharging water in the vaporizer container 92 is piped at the bottom of the vaporizer container 92, and a drainage pump 106 is arranged in the middle of the third drain pipe 98. A twelfth electromagnetic valve 98 a is disposed between the vaporization container 92 and the drainage pump 106. It should be noted that the water in the vaporization vessel 92 can be discharged by free fall by simply opening both the eleventh electromagnetic valve 110a and the twelfth electromagnetic valve 98a without providing the drain pump 106. In that case, the time required for drainage becomes longer than the forced drainage by the drainage pump 106.

上述した導入制御弁87,導出制御弁88,開閉弁91,第9電磁弁93a,第10電磁弁94a,第11電磁弁110a,第12電磁弁98a,第1三方電磁弁103aおよび第2三方電磁弁109aは、電磁弁からなり、電線(図示せず)を介してそれぞれコントローラ23に接続され、コントローラ23によって開閉制御される。なお、導入制御弁87および開閉弁91に代えて、第1接続管44における導入管86aとの分岐部に一つの三方電磁弁を配設して、第1接続管44と導入管86aとを流れる水の流れをコントローラ23により制御するようにしてもよい。この場合は、前記一つの三方電磁弁が導入制御弁87と開閉弁91との双方の機能を備えることになる。   The introduction control valve 87, the derivation control valve 88, the on-off valve 91, the ninth electromagnetic valve 93a, the tenth electromagnetic valve 94a, the eleventh electromagnetic valve 110a, the twelfth electromagnetic valve 98a, the first three-way electromagnetic valve 103a and the second three-way. The solenoid valve 109a is composed of a solenoid valve, and is connected to the controller 23 via an electric wire (not shown), and is controlled to be opened and closed by the controller 23. Instead of the introduction control valve 87 and the on-off valve 91, a single three-way solenoid valve is disposed at the branch portion of the first connection pipe 44 with the introduction pipe 86a, and the first connection pipe 44 and the introduction pipe 86a are connected. The flow of flowing water may be controlled by the controller 23. In this case, the one three-way solenoid valve has both functions of the introduction control valve 87 and the on-off valve 91.

第4接続管93における送水ポンプ96と気化容器92との間の中途部には、気化容器92内を洗浄するために、洗浄用水槽115に貯留された水を気化容器92に供給する洗浄用水管117が接続され、この洗浄用水管117の中途部には洗浄用水供給ポンプ122が配設され、このポンプ122によって洗浄用水槽115の水が洗浄用水管117を介して強制的に水導入容器85に供給される。送水ポンプ96,空気供給ポンプ102,排水用ポンプ106および洗浄用水供給ポンプ122の各ポンプは電線(図示せず)を介してコントローラ23に接続され、それぞれコントローラ23によって作動またはその作動の停止が制御される。洗浄用水槽115は作業車1の近傍の地面Eに設置される。   In the middle of the fourth connecting pipe 93 between the water pump 96 and the vaporization vessel 92, the water for the washing stored in the washing water tank 115 is supplied to the vaporization vessel 92 in order to wash the vaporization vessel 92. A water pipe 117 is connected, and a cleaning water supply pump 122 is disposed in the middle of the cleaning water pipe 117, and the water in the cleaning water tank 115 is forced by the pump 122 through the cleaning water pipe 117. 85. The water pump 96, the air supply pump 102, the drainage pump 106, and the cleaning water supply pump 122 are connected to the controller 23 via electric wires (not shown), and are controlled by the controller 23 or controlled by the controller 23. Is done. The cleaning water tank 115 is installed on the ground E near the work vehicle 1.

試錐管24の後端部を構成する試錐管継手76には、図7に示すように、アルミニウム合金製の閉塞部材55が装着される。すなわち、吸水管27および給水管28が突出した試錐管継手76の開口と吸水管27との間が閉塞部材55によって閉塞され、この閉塞部材55は、試錐管24の後端部を構成する試錐管継手76に装着したとき、試錐管24の軸芯L1を通る仮想平面を接合面とする一対の半体55a,55bからなり、これらの半体55a,55bにそれぞれ一体に形成されたヒンジ部56のヒンジ孔にピン57が挿入され、このピン57の軸芯L3回りに互いに半体55a,55b同士を接近する方向または離間する方向に回動させて半体55a,55bが接合または離脱される。   As shown in FIG. 7, a blocking member 55 made of an aluminum alloy is attached to the trial tube joint 76 constituting the rear end portion of the trial tube 24. That is, the opening between the water intake pipe 27 and the water supply pipe 28 protruding from the borehole joint 76 and the water absorption pipe 27 is closed by the closing member 55, and the closing member 55 forms the rear end portion of the borehole 24. When mounted on the pipe joint 76, the hinge portion is formed of a pair of half bodies 55a and 55b whose joint plane is a virtual plane passing through the axis L1 of the borehole 24, and is integrally formed with each of the half bodies 55a and 55b. A pin 57 is inserted into the hinge hole 56, and the halves 55a and 55b are joined or detached by rotating the halves 55a and 55b toward and away from each other around the axis L3 of the pin 57. The

半体55a,55bのヒンジ部56とは反対側に凹状の凹部58a,58bがそれぞれ形成され、半体55bの凹部58b内に棒状の係止部材61の一端部が回転自在に軸支されている。半体55a,55b同士を接合した状態で、半体55aの凹部58a内に係止部材61を挿入して係止部材61の他端部に螺合されたネジ部材61aを半体55aの端面に圧接するようにねじ込むことによって半体55a,55b同士が強固に接合される。
吸水管27の外周と閉塞部材55との間および半体55a,55bの接合面84a,84b同士の間は半体55a,55bのそれぞれに装着されたシール部材たるリングシール62a,62b同士等の圧接によって液密にシールされる。
Concave recesses 58a and 58b are formed on the opposite sides of the half portions 55a and 55b from the hinge portion 56, respectively, and one end portion of a rod-like locking member 61 is rotatably supported in the recess portion 58b of the half body 55b. Yes. In a state where the halves 55a and 55b are joined to each other, the screw member 61a inserted into the recess 58a of the half 55a and screwed to the other end of the lock member 61 is used as the end surface of the half 55a. The half bodies 55a and 55b are firmly joined to each other by being screwed so as to be pressed against each other.
Between the outer periphery of the water absorption tube 27 and the closing member 55 and between the joint surfaces 84a and 84b of the half bodies 55a and 55b, ring seals 62a and 62b, which are seal members mounted on the half bodies 55a and 55b, respectively. Liquid tightly sealed by pressure welding.

ところで、掘削作業時に試錐管24がその軸芯L1回りに正逆300度の回転角度で往復回転したときは、試錐管24と共にその軸芯L1回りに閉塞部材55も回転するが、吸水管27とリングシール62a,62bとは摺動自在とされているので閉塞部材55と吸水管27とは相対的に回転することができ、試錐管24および閉塞部材55の回転に連れ回されて吸水管27も回転することはない。   By the way, when the borehole 24 reciprocates around the axis L1 at a rotation angle of forward and reverse 300 degrees during excavation work, the blocking member 55 also rotates around the axis L1 together with the borehole 24. Since the ring seals 62a and 62b are slidable, the closing member 55 and the water absorption tube 27 can be rotated relative to each other, and the water absorption tube is rotated by the rotation of the borehole 24 and the closing member 55. 27 also does not rotate.

半体55a,55b同士が接合された状態の閉塞部材55における内部と外部とは、一方の半体55aに形成された連通路63によって連通される。また、試錐管24の後端部を構成する試錐管継手76の内周と吸水管27の外周との間に設けられた間隙が試錐液供給通路64とされ、この試錐液供給通路64と半体55aの連通路63とが連通される。そして、試錐液供給ポンプ65により試錐液容器66内に貯留された試錐液が、連通路63に接続された配管81を介して供給される(図1を参照)。このとき、試錐管24の後端部を構成する試錐管継手76の端面は半体55a,55bに形成された段部83a,83bに当接しているため、試錐液供給ポンプ65により供給された試錐液で閉塞部材55内の圧力が上昇しても、その圧力により該試錐管継手76が閉塞部材55から抜け出ることはない。
なお、試錐液供給ポンプ65および試錐液容器66は地面Eに設置される。
The inside and the outside of the closing member 55 in a state where the halves 55a and 55b are joined to each other are communicated with each other by a communication path 63 formed in the one half 55a. Further, a gap provided between the inner periphery of the test tube joint 76 constituting the rear end portion of the test tube 24 and the outer periphery of the water absorption tube 27 is used as a test fluid supply passage 64. The communication path 63 of the body 55a is communicated. Then, the borehole liquid stored in the borehole liquid container 66 by the borehole liquid supply pump 65 is supplied through a pipe 81 connected to the communication path 63 (see FIG. 1). At this time, since the end face of the test tube joint 76 constituting the rear end portion of the test tube 24 is in contact with the step portions 83a and 83b formed in the half bodies 55a and 55b, the end surface is supplied by the test fluid supply pump 65. Even if the pressure in the closing member 55 is increased by the borehole liquid, the borehole joint 76 does not come out of the closing member 55 due to the pressure.
The borehole liquid supply pump 65 and the borehole liquid container 66 are installed on the ground E.

試錐液供給通路64に供給された試錐液は、試錐管24の先端部を構成する試錐管継手76に軸芯L1回りに等角度間隔に4個穿設された試錐液排出孔67…を介して試錐管24の外部に排出される(図3を参照)。試錐液は、ベントナイトを主成分として水に懸濁させた懸濁液からなり、地中に貫入した試錐管24とその外周の土との摩擦抵抗を低減する機能,掘削部材26の掘削部26aで掘削した泥を吸水通路を介して搬送する機能,試錐管24が地中から引き抜かれたとき、地面Eに穿った穴の内周面に擁壁を形成する機能等を有する。   The borehole liquid supplied to the borehole liquid supply passage 64 passes through borehole liquid discharge holes 67 formed at four equiangular intervals around the axis L1 in the borehole joint 76 that forms the tip of the borehole 24. And discharged to the outside of the borehole 24 (see FIG. 3). The borehole liquid is composed of a suspension in which bentonite is the main component and is suspended in water. The borehole liquid has a function of reducing frictional resistance between the borehole 24 penetrating into the ground and the soil around the borehole, and a drilling portion 26a of the drilling member 26. A function of conveying the mud excavated through the water absorption passage, and a function of forming a retaining wall on the inner peripheral surface of the hole drilled in the ground E when the borehole 24 is pulled out from the ground.

図8に示すように、試錐管24の後端部を構成する試錐管継手76から突出した吸水管27の後端部27bには、略T字状をした三方継手68が接続される。三方継手68は、筒状の主継手部68aと、この主継手部68aの長手方向中途部から分岐した分岐部68bとからなり、主継手部68aの一端部に吸水管27の後端部27bが接続され、吸水管27内から突出した給水管28は主継手部68aの中空部を貫通し主継手部68aの他端部の開口から突出して、その突出端部は、図1に示すように給水ポンプ6に接続されており、作業車1の近傍の地面Eに設置された貯水槽69に貯留された水が給水管28を介して給水ポンプ6により供給される。   As shown in FIG. 8, a substantially T-shaped three-way joint 68 is connected to the rear end portion 27 b of the water absorption tube 27 that protrudes from the trial tube joint 76 that constitutes the rear end portion of the test tube 24. The three-way joint 68 includes a cylindrical main joint portion 68a and a branch portion 68b branched from a midway portion in the longitudinal direction of the main joint portion 68a. The rear end portion 27b of the water absorption pipe 27 is formed at one end portion of the main joint portion 68a. Is connected, and the water supply pipe 28 protruding from the water absorption pipe 27 passes through the hollow portion of the main joint portion 68a and protrudes from the opening of the other end portion of the main joint portion 68a. The protruding end portion is as shown in FIG. The water stored in the water storage tank 69 installed on the ground E near the work vehicle 1 is supplied by the water supply pump 6 via the water supply pipe 28.

主継手部68aの他端部の開口と給水管28との間の間隙はゴム製の栓部材70で液密に閉塞される。この結果、吸水管27と給水管28との後端部側同士が、これら両管27,28の軸芯方向に互いに相対変位不能に三方継手68および栓部材70によって連結される。三方継手68の分岐部68bの端部は、第3接続管71を介して水泥分離容器43の上部に接続される(図1を参照)。而して、吸水管27の内周と給水管28の外周との間の吸水通路は、三方継手68を介して第3接続管71と連通し、図8に示す矢印のように、水がそれぞれ流れる。   The gap between the opening at the other end of the main joint 68a and the water supply pipe 28 is liquid-tightly closed by a rubber plug member 70. As a result, the rear end sides of the water suction pipe 27 and the water supply pipe 28 are connected by the three-way joint 68 and the plug member 70 so that they cannot be displaced relative to each other in the axial direction of the pipes 27 and 28. The end of the branching portion 68b of the three-way joint 68 is connected to the upper portion of the water mud separation container 43 via the third connection pipe 71 (see FIG. 1). Thus, the water absorption passage between the inner circumference of the water suction pipe 27 and the outer circumference of the water supply pipe 28 communicates with the third connection pipe 71 via the three-way joint 68, and water is passed as shown by the arrows in FIG. Each flows.

分割管73…の中途部には、図9に示すように、分割管73…の内部と外部とを連通する浄化液排出孔73b…が分割管73…の長手方向に沿って等間隔で複数箇所穿設され、かつ、その複数箇所ごとに分割管73…の軸芯回りに等角度間隔に4個ずつ穿設されている。図9中に、一部を拡大して示すように、浄化液排出孔73b…には、ステンレス製の細い短線を不織布状に形成した円盤状のフィルタ74が装着され、さらに、フィルタ74が脱落しないように分割管73…の外部のフィルタ74の上から抜け止め部材75が装着されている。フィルタ74の目の粗さは、試錐液中のベントナイトは透過できないが後述する浄化液は透過できる大きさとされている。   As shown in FIG. 9, a plurality of purifying liquid discharge holes 73 b that communicate the inside and the outside of the divided pipes 73 are provided at equal intervals along the longitudinal direction of the divided pipes 73. Four holes are formed at equal angular intervals around the axis of the split pipe 73 at each of the plurality of positions. As shown in a partially enlarged view in FIG. 9, a disk-like filter 74 in which fine stainless steel short wires are formed in a nonwoven fabric is attached to the cleaning liquid discharge hole 73b, and the filter 74 is further dropped. A retaining member 75 is attached from above the filter 74 outside the dividing pipes 73. The coarseness of the filter 74 is such that bentonite in the borehole liquid cannot pass through but the purification liquid described later can pass through.

なお、試錐作業を行う場合は、長尺の1本の試錐管24のままでは取り扱いが不便であるので、試錐作業の前は、試錐管24を複数の分割管73…に分解した状態で取り扱う。図10および図11に示すように、分割管73…のそれぞれの一端部には試錐管継手76を予め螺着しておき、その試錐管継手76が螺着された分割管73…を、給水管28が挿入された吸水管27の外周に一定の間隔を隔てて環装する。分割管73…の本数は、地中に貫入する試錐管24の長さに相当する分より少し多い数量とし、吸水管27および給水管28は試錐管24の長さよりさらに10メートル以上長い管長とする。試錐管継手76が螺着された分割管73…が環装されたまま吸水管27を給水管28と共にとぐろ状に巻いた状態で枠体77に載置しておく。この枠体77の下部にはキャスタ77aが設けられているので、吸水管27,給水管28および複数の分割管73…を載置した状態で所望の場所に枠体77を容易に移動させることができる。   When performing the borehole operation, it is inconvenient to handle the single long borehole 24. Therefore, before the borehole operation, the borehole 24 is handled in a state of being divided into a plurality of divided tubes 73. . As shown in FIG. 10 and FIG. 11, a trial tube joint 76 is screwed in advance to one end of each of the divided pipes 73, and the divided pipe 73 to which the trial tube joint 76 is screwed is supplied with water. The outer periphery of the water absorption pipe 27 in which the pipe 28 is inserted is mounted at a predetermined interval. The number of the dividing pipes 73 is a little larger than the length corresponding to the length of the borehole 24 penetrating into the ground, and the water absorption pipe 27 and the water supply pipe 28 are longer than the length of the borehole 24 by 10 meters or more. To do. The water absorption pipe 27 is wound on the frame 77 together with the water supply pipe 28 while the divided pipes 73 to which the trial pipe joints 76 are screwed are mounted. Since the caster 77a is provided at the lower part of the frame body 77, the frame body 77 can be easily moved to a desired place with the water absorption pipe 27, the water supply pipe 28, and the plurality of divided pipes 73 mounted thereon. Can do.

(土壌汚染調査の作業工程)
上述した土壌汚染調査装置本体9を使用して土壌汚染の調査を行う場合は、以下の作業工程で行われる。
(Soil contamination investigation work process)
When investigating soil contamination using the soil contamination investigation device main body 9 described above, the following work process is performed.

(試錐作業の工程)
(1)まず、複数の分割管73…が環装され、とぐろ状に巻かれた吸水管27および給水管28が載置された枠体77,土壌汚染調査装置本体9が装備された作業車1,試錐液供給ポンプ65その他の機具を土壌汚染の調査を行う現場まで運搬する。
(Process of drilling work)
(1) First, a work vehicle equipped with a plurality of divided pipes 73... And a frame body 77 on which a water absorption pipe 27 and a water supply pipe 28 wound in a trough shape are placed, and a soil contamination investigation apparatus main body 9. 1. Transport the borehole pump 65 and other equipment to the site where soil contamination is to be investigated.

(2)次に、試錐する地点に作業車1を設置した後、吸水管27および給水管28が連結された掘削部材26が螺着された分割管73を枠体77から取り出して試錐機構部5のクランプ5aの孔内に貫入して掘削部材26の掘削部26aを地面Eに接地させる。
なお、吸水管27および給水管28がそれぞれ嵌着された吸水管用継手部材38および給水管用継手部材35は掘削部材26の連結部材37および掘削部26aにそれぞれ螺合されているが、これらの螺合はネジ長さの中途部までしか螺合せずに螺合に余裕を持たせ、掘削の際に試錐管24が軸芯L1回りに正逆300度の回転角度で往復回転しても、それに伴って吸水管27および給水管28も回転しないようにしている。
(2) Next, after the work vehicle 1 is installed at a point where the drilling is performed, the dividing pipe 73 to which the excavating member 26 to which the water suction pipe 27 and the water supply pipe 28 are connected is screwed out from the frame body 77 and the drilling mechanism unit. The excavation part 26 a of the excavation member 26 is grounded to the ground E.
It should be noted that the water absorption pipe joint member 38 and the water supply pipe joint member 35 into which the water absorption pipe 27 and the water supply pipe 28 are respectively fitted are screwed into the connecting member 37 and the excavation part 26a of the excavation member 26, respectively. In this case, only the middle part of the screw length is screwed in, so that there is a margin for screwing, and even when the drill tube 24 reciprocates around the axis L1 at a rotation angle of 300 degrees forward / reverse at the time of excavation, Accordingly, the water absorption pipe 27 and the water supply pipe 28 are also prevented from rotating.

(3)次に、エンジン4を運転した状態で、操作盤14の第3操作子14cを操作して、油圧ポンプ17bを作動させて油圧シリンダ17aを伸張させて台座11を最高位置まで上昇させ、その最高位置で、試錐機構部5のクランプ5aにより試錐管24を強固に把持させる。   (3) Next, with the engine 4 in operation, the third operating element 14c of the operation panel 14 is operated to operate the hydraulic pump 17b and extend the hydraulic cylinder 17a to raise the base 11 to the highest position. At the highest position, the borehole 24 is firmly held by the clamp 5a of the borehole mechanism 5.

(4)次に、制御盤25の操作スイッチ25aを操作して試錐管回転モータ5bを駆動させて正逆300度の回転角度で試錐管24を往復回転させる。このとき、油圧ポンプ17bの作動を停止して油圧シリンダ17aの油圧を減少させ、土壌汚染調査装置本体9が設置された台座11自体の荷重によって下方に向かう推力が試錐管24に付与され、この推力と試錐管24の回転とによって掘削部材26により掘削が行われる。このため、試錐管24を地中に貫入させるための特別な荷重付与手段が不要となる。   (4) Next, the operation switch 25a of the control panel 25 is operated to drive the test tube rotation motor 5b, and the test tube 24 is reciprocally rotated at a rotation angle of 300 degrees forward and reverse. At this time, the operation of the hydraulic pump 17b is stopped to reduce the hydraulic pressure of the hydraulic cylinder 17a, and a downward thrust is applied to the borehole 24 by the load of the pedestal 11 itself on which the soil contamination investigation device body 9 is installed. Excavation is performed by the excavation member 26 by the thrust and rotation of the borehole 24. This eliminates the need for special load applying means for penetrating the borehole 24 into the ground.

(5)一方、貯水槽69に貯留された水が給水ポンプ6によって給水管28を介して供給され、その水が掘削部材26の掘削部26aに穿設された水供給孔33から噴射される。この水の噴射と掘削部26aの回転による攪拌とによって、掘削された土が泥水となって掘削部材26の水回収孔32b…から水回収部32に回収された後、その泥水が、真空ポンプ7による減圧作用によって吸水管27と給水管28との間の吸水通路を介して水泥分離容器43内に導入される。   (5) On the other hand, the water stored in the water storage tank 69 is supplied via the water supply pipe 28 by the water supply pump 6, and the water is injected from the water supply hole 33 formed in the excavation part 26 a of the excavation member 26. . By this water injection and agitation by the rotation of the excavation part 26a, the excavated soil becomes muddy water and is recovered from the water recovery holes 32b of the excavation member 26 to the water recovery part 32, and then the muddy water is vacuum pumped. 7 is introduced into the water mud separation container 43 through the water absorption passage between the water absorption pipe 27 and the water supply pipe 28.

(6)この水泥分離容器43内で泥が分離された後の水が真空ポンプ7による減圧作用によって、第1接続管44の中途部に配設された除泥フィルタ72を通過して第1貯水容器8aに導入され、この導入された水で第1貯水容器8a内の水位が予め設定された水位に到達したとき、第1水位検出センサ48aからの信号をコントローラ23が受信して、コントローラ23によって第1電磁弁46aが閉弁されると共に第2電磁弁46bが開弁される。このとき、第3電磁弁46cおよび第4電磁弁46dは閉弁されている。
これによって、水泥分離容器43からの水が真空ポンプ7による減圧作用によって、第1接続管44および第2電磁弁46bを通過して第2貯水容器8b内に導入される。水が第2貯水容器8b内に導入されている間、コントローラ23によって第3電磁弁46cが開弁され、第1貯水容器8a内に貯留された水が第1排水管47aを介して排水される。このとき、コントローラ23によって第5電磁弁46eが開弁されると共に加圧ポンプ52が駆動され、これによって、第2接続管51を介して第1貯水容器8a内の圧力が増加させられ第1貯水容器8a内の水が強制的に排出される。
(6) The water after the mud is separated in the water mud separation container 43 passes through the mud filter 72 disposed in the middle of the first connection pipe 44 by the pressure reducing action by the vacuum pump 7 to be the first. When the water level introduced into the water storage container 8a reaches the preset water level with the introduced water, the controller 23 receives a signal from the first water level detection sensor 48a, and the controller 23 23 closes the first electromagnetic valve 46a and opens the second electromagnetic valve 46b. At this time, the third electromagnetic valve 46c and the fourth electromagnetic valve 46d are closed.
Thereby, the water from the water mud separation container 43 is introduced into the second water storage container 8b through the first connection pipe 44 and the second electromagnetic valve 46b by the pressure reducing action by the vacuum pump 7. While the water is being introduced into the second water storage container 8b, the controller 23 opens the third electromagnetic valve 46c, and the water stored in the first water storage container 8a is drained through the first drain pipe 47a. The At this time, the controller 23 opens the fifth electromagnetic valve 46e and drives the pressurizing pump 52, whereby the pressure in the first water storage container 8a is increased via the second connection pipe 51, and the first The water in the water storage container 8a is forcibly discharged.

(7)第1貯水容器8a内の水が排出され、第1貯水容器8a内の水位が予め設定された最低水位になったとき、第1水位検出センサ48aからの信号をコントローラ23が受信し、コントローラ23によって加圧ポンプ52の駆動が停止されると共に第3電磁弁46cおよび第5電磁弁46eが共に閉弁される。   (7) When the water in the first water storage container 8a is discharged and the water level in the first water storage container 8a reaches a preset minimum water level, the controller 23 receives a signal from the first water level detection sensor 48a. The controller 23 stops the driving of the pressurizing pump 52 and closes both the third electromagnetic valve 46c and the fifth electromagnetic valve 46e.

(8)第2貯水容器8b内の水位が予め設定された最高水位に到達したとき、第2水位検出センサ48bからの信号をコントローラ23が受信して、コントローラ23によって第1電磁弁46aが開弁されると共に第2電磁弁46bが閉弁される。これによって、水泥分離容器43からの水が真空ポンプ7による減圧作用によって、第1接続管44および第1電磁弁46aを通過して第1貯水容器8a内に再び導入される。水が第1貯水容器8a内に導入されている間、コントローラ23によって第4電磁弁46dが開弁され、第2貯水容器8b内に貯留された水が第2排水管47bを介して排水される。
このとき、コントローラ23によって第6電磁弁46fが開弁されると共に加圧ポンプ52が駆動され、これによって、第2接続管51を介して第2貯水容器8b内の圧力が増加させられ第2貯水容器8b内の水が強制的に排出される。第2貯水容器8b内の水が排出されると、コントローラ23によって加圧ポンプ52の駆動が停止されると共に第4電磁弁46dおよび第6電磁弁46fが共に閉弁される。なお、第1貯水容器8aまたは第2貯水容器8b内から交互に真空ポンプ7によって吸い出された気体は排気管53に排出される。
(8) When the water level in the second water storage container 8b reaches the preset maximum water level, the controller 23 receives a signal from the second water level detection sensor 48b, and the controller 23 opens the first electromagnetic valve 46a. At the same time, the second electromagnetic valve 46b is closed. As a result, the water from the water mud separation container 43 is introduced again into the first water storage container 8a through the first connection pipe 44 and the first electromagnetic valve 46a by the pressure reducing action of the vacuum pump 7. While the water is being introduced into the first water storage container 8a, the controller 23 opens the fourth electromagnetic valve 46d, and the water stored in the second water storage container 8b is drained through the second drain pipe 47b. The
At this time, the controller 23 opens the sixth electromagnetic valve 46f and drives the pressurizing pump 52, whereby the pressure in the second water storage container 8b is increased via the second connection pipe 51 and second. The water in the water storage container 8b is forcibly discharged. When the water in the second water storage container 8b is discharged, the controller 23 stops driving the pressurizing pump 52 and closes both the fourth electromagnetic valve 46d and the sixth electromagnetic valve 46f. The gas sucked alternately by the vacuum pump 7 from the first water storage container 8 a or the second water storage container 8 b is discharged to the exhaust pipe 53.

(9)以下、同様の工程が繰り返され、給水管28を介して連続して水が地面Eの穴内に供給されると共にその供給された水が連続して第1貯水容器8aまたは第2貯水容器8bに交互に回収される。   (9) Hereinafter, the same process is repeated, and water is continuously supplied into the hole of the ground E through the water supply pipe 28, and the supplied water is continuously supplied to the first water storage container 8a or the second water storage water. The containers 8b are alternately collected.

(10)試錐管24と吸水管27との間の試錐液供給通路64に試錐液供給ポンプ65により試錐液が供給される。この試錐液は、試錐管24の試錐液排出孔67…から試錐管24の外部に排出される。この排出された試錐液の一部は、掘削部材26の水回収孔32b…から回収された泥水と一緒になって、真空ポンプ7による減圧作用によって吸水管27と給水管28との間の吸水通路を流れる。このとき、泥水の中の泥は試錐液によって搬送されながら水泥分離容器43内に導入される。   (10) The borehole liquid is supplied to the borehole supply path 64 between the borehole 24 and the water absorption pipe 27 by the borehole supply pump 65. The borehole liquid is discharged to the outside of the borehole 24 through the borehole discharge holes 67 of the borehole 24. A part of the drained borehole liquid is combined with the muddy water recovered from the water recovery holes 32b of the excavating member 26, and the water absorption between the water absorption pipe 27 and the water supply pipe 28 by the pressure reducing action by the vacuum pump 7. Flow through the passage. At this time, the mud in the mud is introduced into the water mud separation container 43 while being transported by the borehole liquid.

(11)台座11が最低位置まで降下したら、制御盤25の操作スイッチ25aを操作して試錐管回転モータ5bを停止して試錐管24の回転を停止させる。次に、試錐機構部5のクランプ5aを緩めて試錐管24の把持を解除し、操作盤14の第3操作子14cを操作して油圧ポンプ17bを作動させて油圧シリンダ17aを伸張させ台座11を最高位置まで上昇させて、その最高位置でクランプ5aにより試錐管24を再び強固に把持させる。   (11) When the pedestal 11 is lowered to the lowest position, the operation switch 25a of the control panel 25 is operated to stop the borehole rotation motor 5b to stop the rotation of the borehole 24. Next, the clamp 5a of the borehole mechanism unit 5 is loosened to release the gripping of the borehole 24, the third operating element 14c of the operation panel 14 is operated, the hydraulic pump 17b is operated, the hydraulic cylinder 17a is extended, and the base 11 is extended. Is raised to the highest position, and the borehole 24 is firmly gripped again by the clamp 5a at the highest position.

(12)次に、制御盤25の操作スイッチ25aを操作して試錐管回転モータ5bを駆動させて再び試錐管24を回転させ、操作盤14の第3操作子14cを操作して油圧ポンプ17bの作動を停止して油圧シリンダ17aの油圧を減少させる。これによって、台座11自体の荷重によって掘削部材26により掘削が行われる。   (12) Next, the operation switch 25a of the control panel 25 is operated to drive the borehole rotation motor 5b to rotate the borehole 24 again, and the third operation element 14c of the operation panel 14 is operated to operate the hydraulic pump 17b. Is stopped to reduce the hydraulic pressure of the hydraulic cylinder 17a. Thereby, excavation is performed by the excavation member 26 by the load of the base 11 itself.

(13)掘削部材26による掘削によって地中の深度が深くなり、試錐管24の長さが不足する場合は、制御盤25の操作スイッチ25aを操作して試錐管回転モータ5bを停止し、試錐管24の回転を停止させると共に試錐液供給ポンプ65も停止させる。   (13) When the underground depth is increased by excavation by the excavating member 26 and the length of the borehole 24 is insufficient, the borehole rotation motor 5b is stopped by operating the operation switch 25a of the control panel 25, and the borehole The rotation of the pipe 24 is stopped and the borehole liquid supply pump 65 is also stopped.

(14)試錐管24の後端部を構成する試錐管継手76に固定した閉塞部材55の半体55a,55bを、係止部材61による係止を解除して試錐管継手76から離脱させた後、枠体77から次の分割管73(試錐管継手76が一端部に螺着されたもの)を吸水管27に沿って移動させ、閉塞部材55を離脱させた試錐管24の後端部(試錐管継手76)に、前記次の分割管73を螺合させ、分割管73を継ぎ足す。継ぎ足した分割管73の他端部(試錐管継手76)に閉塞部材55の半体55a,55bを装着して接合し、係止部材61により係止する。   (14) The half members 55 a and 55 b of the closing member 55 fixed to the test tube joint 76 constituting the rear end portion of the test tube 24 are released from the test tube joint 76 by releasing the locking by the locking member 61. Thereafter, the rear end portion of the test tube 24 from which the next split tube 73 (the test tube joint 76 is screwed to one end) is moved along the water absorption tube 27 from the frame body 77 and the closing member 55 is detached. The next divided pipe 73 is screwed into the (trial bore joint 76), and the divided pipe 73 is added. The half members 55 a and 55 b of the closing member 55 are attached and joined to the other end portion (the test tube joint 76) of the joined divided pipe 73 and locked by the locking member 61.

(15)次に、制御盤25の操作スイッチ25aを操作して試錐管回転モータ5bを駆動して試錐管24を再び回転させると共に試錐液供給ポンプ65も駆動させ試錐液の供給を再び行う。   (15) Next, the operation switch 25a of the control panel 25 is operated to drive the borehole rotation motor 5b to rotate the borehole tube 24 again, and also drive the borehole fluid supply pump 65 to supply the borehole fluid again.

(16)以下、同様の工程が繰り返され、掘削部材26によって、予定された地中の深度まで掘削される。   (16) Thereafter, the same process is repeated, and the excavation member 26 excavates to a predetermined depth in the ground.

(土壌汚染調査の工程)
土壌汚染の調査は以下の作業工程で行われる。なお、下記の作業工程における電磁弁やポンプ等の動作の制御は全てコントローラ23によって行われる。
(1)除泥フィルタ72を通過した後の第1接続管44を流れる水は、導入管86aを介して水導入容器85に定期的に導入される。すなわち、開弁されていた開閉弁91が閉弁されると同時に、閉弁されていた導入制御弁87および導出制御弁88が共に開弁されることによって、除泥フィルタ72を通過した後の第1接続管44を流れる水が導入管86aに全て導入され、水導入容器85内に水が貯留される。この状態は一定時間行われる。このとき、第9電磁弁93aおよび第9電磁弁94aは共に閉弁されており、送水ポンプ96も停止させられている。
(Soil contamination investigation process)
The investigation of soil contamination is carried out in the following work process. In addition, control of operation | movement of a solenoid valve, a pump, etc. in the following work process is all performed by the controller 23.
(1) The water flowing through the first connection pipe 44 after passing through the mud filter 72 is periodically introduced into the water introduction container 85 via the introduction pipe 86a. That is, the open / close valve 91 that has been opened is closed, and at the same time, the introduction control valve 87 and the derivation control valve 88 that have been closed are both opened, so that the valve after passing through the mud filter 72 is removed. All of the water flowing through the first connection pipe 44 is introduced into the introduction pipe 86 a and water is stored in the water introduction container 85. This state is performed for a certain time. At this time, both the ninth electromagnetic valve 93a and the ninth electromagnetic valve 94a are closed, and the water supply pump 96 is also stopped.

(2)前記一定時間が経過し、水導入容器85内に水が充填されて導出管86bを通過して再び第1接続管44に水が合流して流れている状態で、開閉弁91が開弁されると同時に導入制御弁87および導出制御弁88が共に閉弁される。これによって、第1接続管44を流れる水は導入管86aおよび導出管86bを介して迂回することなく直接、第1貯水容器8aまたは第2貯水容器8bの方に流れる。一方、導入制御弁87と導出制御弁88との間の導入管86a,水導入容器85および導出管86b内は、水が充填された状態で導入制御弁87と導出制御弁88とによって密閉される。   (2) In the state where the predetermined time has passed and the water introduction container 85 is filled with water, passes through the outlet pipe 86b, and again flows into the first connection pipe 44, the on-off valve 91 is Simultaneously with the opening, both the introduction control valve 87 and the derivation control valve 88 are closed. Thereby, the water flowing through the first connection pipe 44 flows directly toward the first water storage container 8a or the second water storage container 8b without detouring via the introduction pipe 86a and the outlet pipe 86b. On the other hand, the inside of the introduction pipe 86a, the water introduction container 85, and the outlet pipe 86b between the introduction control valve 87 and the derivation control valve 88 is sealed by the introduction control valve 87 and the derivation control valve 88 in a state where water is filled. The

(3)第9電磁弁93aおよび第10電磁弁94aが共に開弁されると同時に送水ポンプ96が駆動され、導入制御弁87と導出制御弁88とによって密閉された水の全てが第4接続管93を介して気化容器92内の上部に移送されて水が落下する。このとき、空気供給ポンプ102が駆動され、空気循環管101の一端から気化容器92内の上部に溜まった空気が吸引されて気化容器92内の下部に貯留した水中に供給され、この動作が繰返されて、空気循環管101を介して気化容器92内の空気が循環する。このとき、第12電磁弁98aは閉弁している。
この結果、気化容器92内の下部に貯留した水と空気供給ポンプ102によって循環された空気とが接触して、水に溶解しているVOCsが気化され空気と混合される。
(3) The water supply pump 96 is driven at the same time when the ninth electromagnetic valve 93a and the tenth electromagnetic valve 94a are both opened, and all of the water sealed by the introduction control valve 87 and the outlet control valve 88 is in the fourth connection. Water is transferred to the upper part of the vaporization container 92 through the pipe 93 and falls. At this time, the air supply pump 102 is driven, the air accumulated in the upper part of the vaporization container 92 is sucked from one end of the air circulation pipe 101 and supplied to the water stored in the lower part of the vaporization container 92, and this operation is repeated. Thus, the air in the vaporization vessel 92 circulates through the air circulation pipe 101. At this time, the twelfth electromagnetic valve 98a is closed.
As a result, the water stored in the lower part in the vaporization container 92 and the air circulated by the air supply pump 102 come into contact with each other, and VOCs dissolved in the water are vaporized and mixed with the air.

(4)気化容器92内でVOCsが気化され空気と混合されて生成された混合空気は、濃度計測装置104に内蔵されたポンプ(図示せず)の作動により、計測用循環往路管103を介して濃度計測装置104内に導入されたのち、計測用循環復路管109を介して気化容器92内に帰還し、計測用循環往路管103および計測用循環復路管109を介して気化容器92内の混合空気が循環する。このとき、第1三方電磁弁103aは、気化容器92と濃度計測装置104とが計測用循環往路管103を介して連通するように制御され、第2三方電磁弁109aは、濃度計測装置104と気化容器92とが計測用循環復路管109を介して連通するように制御されている。   (4) The mixed air generated by vaporizing VOCs in the vaporization vessel 92 and mixing with the air passes through the circulation circulation pipe 103 for measurement by the operation of a pump (not shown) built in the concentration measuring device 104. After being introduced into the concentration measuring device 104, it is returned to the vaporization container 92 through the measurement circulation return pipe 109, and is returned to the vaporization container 92 through the measurement circulation forward pipe 103 and the measurement circulation return pipe 109. The mixed air circulates. At this time, the first three-way electromagnetic valve 103a is controlled so that the vaporization container 92 and the concentration measuring device 104 communicate with each other via the measurement circulation forward pipe 103, and the second three-way electromagnetic valve 109a is connected to the concentration measuring device 104. The vaporizing container 92 is controlled to communicate with the measurement circulation return pipe 109.

計測用循環往路管103および計測用循環復路管109を介して気化容器92内の混合空気が循環している間に、その混合空気に含まれるVOCsの濃度が濃度計測装置104によって計測される。その計測の後、その計測値の信号とエンコーダ22によって計測された深度データの信号とがコントローラ23に送信されて、計測値データとしてコントローラ23内のメモリ23aに記憶される。
このとき、濃度計測装置104による計測値データとエンコーダ22による深度データとコントローラ23内のタイマ23bによって計測された時間とが関連付けられてメモリ23aに記憶されるようになっており、これによって、地中における深度ごとのVOCsの濃度がその計測された時の時間と共にメモリ23aに記憶される。
また、濃度計測装置104およびエンコーダ22による計測値のデータがコントローラ23内のメモリ23aに記憶されるので、その記憶された計測値のデータをコントローラ23に電線(図示せず)を介して接続された外部機器で適宜変換して外部機器のモニタに表示させることもできる。
While the mixed air in the vaporization vessel 92 circulates through the measurement circulation forward pipe 103 and the measurement circulation return pipe 109, the concentration measuring device 104 measures the concentration of VOCs contained in the mixed air. After the measurement, the signal of the measurement value and the signal of the depth data measured by the encoder 22 are transmitted to the controller 23 and stored in the memory 23a in the controller 23 as measurement value data.
At this time, the measured value data by the concentration measuring device 104, the depth data by the encoder 22, and the time measured by the timer 23b in the controller 23 are associated with each other and stored in the memory 23a. The concentration of VOCs at each depth in the inside is stored in the memory 23a together with the time when the measurement was performed.
In addition, since the measured value data by the concentration measuring device 104 and the encoder 22 is stored in the memory 23a in the controller 23, the stored measured value data is connected to the controller 23 via an electric wire (not shown). It can also be appropriately converted by an external device and displayed on the monitor of the external device.

(5)濃度計測装置104によるVOCsの濃度の計測が終了した後、第9電磁弁93aが閉弁されると共に、送水ポンプ96および空気供給ポンプ102の駆動が停止される。次いで、第12電磁弁98aおよび第11電磁弁110aが開弁されると共に洗浄用水供給ポンプ122および排水用ポンプ106が駆動される。これによって、洗浄用水供給ポンプ122によって洗浄用水槽115の水が洗浄用水管117を介して強制的に気化容器92に供給され気化容器92内が洗浄される。洗浄した後の水は、排水用ポンプ106によって第3排水管98から強制的に排出される。この工程で、気化容器92内の洗浄に要する時間が経過すると、排水用ポンプ106および洗浄用水供給ポンプ122の駆動が停止されると共に第11電磁弁110aおよび第12電磁弁98aが閉弁される。
(6)また、第1三方電磁弁103aが制御され、換気用管108が濃度計測装置104に連通するように切り替えられる一方、第2三方電磁弁109aが制御され、排気管116が濃度計測装置104に連通するように切り替えられる。この結果、濃度計測装置104に内蔵されたポンプ(図示せず)の作動により換気用管108を介して除湿フィルタ112により乾燥した空気が濃度計測装置104内に導入されて、その空気によって濃度計測装置104内が洗浄される。洗浄後の空気は排気管116を介して外部に排出される。これによって、濃度計測装置104によるVOCsの次の濃度計測を精度良く行うことができる。この工程で、濃度計測装置104内の洗浄に要する時間が経過すると、第1三方電磁弁103aが制御され、計測用循環往路管103が濃度計測装置104に連通するように切り替えられる一方、第2三方電磁弁109aが制御され、計測用循環復路管109が濃度計測装置104に連通するように切り替えられる。
(7)以下、同様の工程が一定の周期で繰返される。
(5) After the measurement of the concentration of VOCs by the concentration measuring device 104 is completed, the ninth electromagnetic valve 93a is closed and the driving of the water supply pump 96 and the air supply pump 102 is stopped. Next, the twelfth electromagnetic valve 98a and the eleventh electromagnetic valve 110a are opened, and the cleaning water supply pump 122 and the drainage pump 106 are driven. As a result, the water in the cleaning water tank 115 is forcibly supplied to the vaporizing container 92 through the cleaning water pipe 117 by the cleaning water supply pump 122 and the inside of the vaporizing container 92 is cleaned. The washed water is forcibly discharged from the third drain pipe 98 by the drain pump 106. In this step, when the time required for cleaning the vaporization container 92 elapses, the driving of the drain pump 106 and the cleaning water supply pump 122 is stopped and the eleventh electromagnetic valve 110a and the twelfth electromagnetic valve 98a are closed. .
(6) Further, the first three-way solenoid valve 103a is controlled to switch the ventilation pipe 108 to communicate with the concentration measuring device 104, while the second three-way solenoid valve 109a is controlled to connect the exhaust pipe 116 to the concentration measuring device. It is switched so as to communicate with 104. As a result, air dried by the dehumidifying filter 112 is introduced into the concentration measuring device 104 through the ventilation pipe 108 by the operation of a pump (not shown) built in the concentration measuring device 104, and the concentration measurement is performed by the air. The inside of the device 104 is cleaned. The cleaned air is discharged to the outside through the exhaust pipe 116. Thereby, the next concentration measurement of VOCs by the concentration measuring device 104 can be accurately performed. In this step, when the time required for cleaning the concentration measuring device 104 elapses, the first three-way solenoid valve 103a is controlled to switch the measurement circulation forward tube 103 to communicate with the concentration measuring device 104, while the second The three-way solenoid valve 109 a is controlled and switched so that the measurement circulation return pipe 109 communicates with the concentration measuring device 104.
(7) Thereafter, the same process is repeated at a constant cycle.

(他の地点の土壌汚染調査の作業工程)
予定された地点の土壌汚染調査が終了した後、同じ調査区域における他の地点の土壌汚染調査を行う場合は、以下の作業工程で行われる。
(Work process of soil contamination survey at other points)
When soil contamination surveys at other points in the same survey area are conducted after the soil contamination survey at the scheduled site is completed, the following work process is used.

(1)制御盤25の操作スイッチ25aを操作して試錐管回転モータ5bを停止して試錐管24の回転を停止させると共に試錐液供給ポンプ65も停止させる。   (1) The operation switch 25a of the control panel 25 is operated to stop the borehole rotation motor 5b to stop the rotation of the borehole 24 and also stop the borehole liquid supply pump 65.

(2)試錐管24の後端部(試錐管継手76)に固定した閉塞部材55を離脱させた後、クランプ5aによって試錐管24を把持した状態で操作盤14の第3操作子14cを操作して油圧ポンプ17bを作動させ、台座11を上昇させて地中から試錐管24を引き抜く。このとき、試錐管24外周に接する地中には、試錐液による擁壁が形成されているので、試錐管24を引き抜く際に試錐管24外周と地中との間に作用する摩擦力は低減される。   (2) After detaching the closing member 55 fixed to the rear end portion of the borehole 24 (the borehole joint 76), the third operator 14c of the operation panel 14 is operated with the borehole 24 held by the clamp 5a. Then, the hydraulic pump 17b is operated, the base 11 is raised, and the borehole 24 is pulled out from the ground. At this time, since a retaining wall is formed in the ground in contact with the outer periphery of the borehole 24, the frictional force acting between the outer circumference of the borehole 24 and the ground when the borehole 24 is pulled out is reduced. Is done.

(3)次に、地上に引き出された試錐管24の分割管73を回転して、その分割管73と地中に貫入している試錐管24の後端部(試錐管継手76)との螺合を緩め、地上に引き出された分割管73を取り外した後、試錐機構部5のクランプ5aを緩めて試錐管24の把持を解除し、操作盤14の第3操作子14cを操作して油圧ポンプ17bの作動を停止させて油圧シリンダ17aを収縮させ台座11を最低位置まで下降させて、地中に貫入した試錐管24をクランプ5aにより再び強固に把持させる。   (3) Next, the split tube 73 of the test tube 24 drawn to the ground is rotated, and the split tube 73 and the rear end portion of the test tube 24 penetrating into the ground (the test tube joint 76). After loosening the screw and removing the split pipe 73 drawn to the ground, the clamp 5a of the borehole mechanism 5 is loosened to release the grip of the borehole 24, and the third operator 14c of the operation panel 14 is operated. The operation of the hydraulic pump 17b is stopped, the hydraulic cylinder 17a is contracted and the pedestal 11 is lowered to the lowest position, and the borehole 24 penetrating into the ground is firmly held by the clamp 5a again.

(4)取り外された分割管73は一端部に試錐管継手76が螺着されたまま、給水管28が挿入された吸水管27の外周に環装された状態で枠体77に載置する。   (4) The detached divided pipe 73 is placed on the frame 77 in a state of being looped around the outer periphery of the water suction pipe 27 into which the water supply pipe 28 is inserted, with the trial pipe joint 76 screwed to one end. .

(5)次に、クランプ5aによって試錐管24を把持した状態で操作盤14の第3操作子14cを操作して油圧ポンプ17bを作動させ、再び台座11を上昇させて、まだ地中に貫入している試錐管24を引き抜く。   (5) Next, in the state where the borehole 24 is gripped by the clamp 5a, the third operation element 14c of the operation panel 14 is operated to operate the hydraulic pump 17b, the pedestal 11 is raised again, and still penetrates into the ground. The drilling tube 24 is pulled out.

(6)以下、同様の工程が繰り返され、地中に貫入した全ての試錐管24を引き抜く。
なお、上述した試錐管24の引き抜き作業の際、給水管28および吸水管27は、掘削部材26に連結したままであったが、試錐管24の引き抜き作業を行う前に、試錐管24の後端から外部に突出している給水管28および吸水管27の部位を回転させて給水管28の先端部28aおよび吸水管27の先端部27aがそれぞれ嵌着されている給水管用継手部材35および吸水管用継手部材38を掘削部材26から離脱させて試錐管24内から給水管28および吸水管27を予め引き出しておいてもよい。
(6) Thereafter, the same process is repeated, and all the boreholes 24 penetrating into the ground are pulled out.
Note that the water supply pipe 28 and the water absorption pipe 27 remain connected to the excavation member 26 during the above-described extraction operation of the test tube 24, but before the test tube 24 is extracted, The water supply pipe 28 and the water absorption pipe 27 projecting outward from the ends are rotated to rotate the water supply pipe 28 and the water supply pipe 27, respectively. The joint member 38 may be detached from the excavation member 26 and the water supply pipe 28 and the water absorption pipe 27 may be drawn out from the borehole 24 in advance.

(7)地中に貫入した全ての試錐管24が引き抜かれた後、作業車1の操作盤14の第1操作子14aおよび第2操作子14bを操作して作業車1を他の地点に移動させると共に枠体77等もその地点に移動させ、その地点の土壌汚染の調査を、上述した(1)ないし(6)の工程と同様の工程で行う。   (7) After all the boreholes 24 that have penetrated into the ground are pulled out, the first operation element 14a and the second operation element 14b of the operation panel 14 of the work vehicle 1 are operated to move the work vehicle 1 to another point. The frame body 77 and the like are also moved to that point, and the soil contamination at that point is investigated in the same steps as the steps (1) to (6) described above.

上述したように構成された土壌汚染調査用試料採取装置によれば、一対の制御弁87,88の間に位置する導入管86aと水導入容器85と導出管86bとを一対の制御弁87,88で密閉するようにしたので、VOCsの溶解した水を空気に晒すことなく密閉された状態で採取することができる。このため、採取した水に含まれるVOCsの濃度を計測することで計測精度が向上し、土壌汚染の調査を正確に行うことができる。
また、一対の制御弁87,88の間に位置する導入管86aと水導入容器85と導出管86bとを一対の制御弁87,88で密閉するようにしたので、VOCsの溶解した水を空気に晒すことなく密閉された状態で採取するための構造を単純にすることができ、安価に提供することができる。
According to the soil sampling device for soil contamination investigation configured as described above, the introduction pipe 86a, the water introduction container 85, and the outlet pipe 86b located between the pair of control valves 87, 88 are connected to the pair of control valves 87, 88. Since it was made to seal with 88, it can extract | collect in the sealed state, without exposing the water in which VOCs melt | dissolved to air. For this reason, measurement accuracy improves by measuring the density | concentration of VOCs contained in the extract | collected water, and can investigate a soil contamination correctly.
Further, since the introduction pipe 86a, the water introduction container 85, and the outlet pipe 86b positioned between the pair of control valves 87 and 88 are sealed with the pair of control valves 87 and 88, the water in which VOCs are dissolved is air. The structure for collecting in a sealed state without being exposed to water can be simplified and can be provided at low cost.

また、この実施の形態による土壌汚染調査用試料採取装置によれば、開閉弁91を閉弁することにより水導入容器85に水を導入させるようにしたので、水導入容器85に水を導入させる構造を単純にすることができる。   Further, according to the soil contamination investigation sample collecting apparatus according to this embodiment, since water is introduced into the water introduction container 85 by closing the on-off valve 91, water is introduced into the water introduction container 85. The structure can be simplified.

また、この実施の形態による土壌汚染調査装置によれば、水導入容器85で採取した水に溶解しているVOCsを気化容器92内で気化させ、この気化されたVOCsの濃度を濃度計測装置104で計測するようにしたので、VOCsの濃度の計測精度が向上し、土壌汚染の調査を正確に行うことができる。   Further, according to the soil contamination investigation apparatus according to this embodiment, VOCs dissolved in the water collected by the water introduction container 85 are vaporized in the vaporization container 92, and the concentration of the vaporized VOCs is measured by the concentration measuring apparatus 104. Therefore, the measurement accuracy of the concentration of VOCs is improved, and the soil contamination can be accurately investigated.

また、この実施の形態による土壌汚染調査装置によれば、空気供給ポンプ102により気化容器92に空気を供給することによって、気化容器92に移送した水に含有するVOCsを気化容器92内で気化させると共に気化容器92の空気と混合させて混合空気を生成し、この混合空気に含有するVOCsの濃度を濃度計測装置104によって計測するようにしたので、VOCsが溶解した水に空気を十分接触させることができ、水に溶解したVOCsの気化を確実に行うことができる。このため、VOCsの濃度の計測精度が向上し、土壌汚染の調査を正確に行うことができる。   Moreover, according to the soil contamination investigation apparatus according to this embodiment, VOCs contained in the water transferred to the vaporization container 92 are vaporized in the vaporization container 92 by supplying air to the vaporization container 92 by the air supply pump 102. At the same time, mixed air is generated by mixing with the air in the vaporization container 92, and the concentration of VOCs contained in the mixed air is measured by the concentration measuring device 104. Therefore, the air is sufficiently brought into contact with water in which VOCs are dissolved. VOCs dissolved in water can be reliably vaporized. For this reason, the measurement precision of the density | concentration of VOCs improves and it can investigate a soil contamination correctly.

また、この実施の形態による土壌汚染調査装置によれば、気化容器92内の上部に溜まった空気を空気循環管101の一端から空気供給ポンプ102により吸引すると共にこの吸引した空気を再び空気循環管101の他端から気化容器92内の下部に貯留した水中に供給することによって、気化容器92に移送した水に含有するVOCsを気化容器92内で気化させると共に気化容器92内の空気と混合させて混合空気を生成し、この混合空気に含有するVOCsの濃度を濃度計測装置104によって計測するようにしたので、VOCsが溶解した水に、気化容器92内の上部に溜まった空気だけを接触させて水に溶解したVOCsの気化を行うことができる。このため、VOCsの気化に使用する空気の量を可及的少なくでき、VOCsの空気に対する含有比率を低下させずに済むので、VOCsの濃度の計測精度が向上し、土壌汚染の調査を正確に行うことができる。   Further, according to the soil contamination investigation device according to this embodiment, air accumulated in the upper part of the vaporization vessel 92 is sucked from one end of the air circulation pipe 101 by the air supply pump 102 and the sucked air is again drawn into the air circulation pipe. The VOCs contained in the water transferred to the vaporization vessel 92 are vaporized in the vaporization vessel 92 and mixed with the air in the vaporization vessel 92 by supplying the water stored in the lower part of the vaporization vessel 92 from the other end of the vaporization vessel 101. Since the mixed air is generated and the concentration of VOCs contained in the mixed air is measured by the concentration measuring device 104, only the air accumulated in the upper part of the vaporization vessel 92 is brought into contact with the water in which the VOCs are dissolved. Thus, VOCs dissolved in water can be vaporized. For this reason, the amount of air used for vaporizing VOCs can be reduced as much as possible, and the content ratio of VOCs to air does not need to be reduced. Therefore, the measurement accuracy of the concentration of VOCs is improved, and the investigation of soil contamination can be performed accurately. It can be carried out.

また、この実施の形態による土壌汚染調査装置によれば、気化容器92内の上部に溜まった混合空気を計測用循環往路管103および計測用循環復路管109を介して循環させて濃度計測装置104を通過させながら混合空気に含有するVOCsの濃度を計測するようにしたので、VOCsの空気に対する含有比率を一定に保持したまま濃度を計測することができる。このため、VOCsの濃度を計測している間に濃度が変化することが少なくなるので、計測精度が向上し、土壌汚染の調査を正確に行うことができる。   In addition, according to the soil contamination investigation apparatus according to this embodiment, the concentration measuring apparatus 104 is configured to circulate the mixed air accumulated in the upper portion of the vaporization container 92 through the measurement circulation forward pipe 103 and the measurement circulation return pipe 109. Since the concentration of VOCs contained in the mixed air is measured while passing through, the concentration can be measured while the content ratio of VOCs to air is kept constant. For this reason, since the concentration is less likely to change while measuring the concentration of VOCs, the measurement accuracy is improved, and the soil contamination can be accurately investigated.

また、この実施の形態による土壌汚染調査装置によれば、第9電磁弁93a,第10電磁弁94a,送水ポンプ96,導入制御弁87,導出制御弁88および空気供給ポンプ102のそれぞれの作動制御と濃度計測装置104により計測した計測値のデータ信号の出力とをコントローラ23によって行うようにしたので、VOCsの濃度の計測が自動的に行われ、土壌汚染の調査作業の省力化を図ることができる。   Further, according to the soil contamination investigation device according to this embodiment, the respective operation controls of the ninth electromagnetic valve 93a, the tenth electromagnetic valve 94a, the water pump 96, the introduction control valve 87, the derivation control valve 88, and the air supply pump 102. Since the controller 23 outputs the data signal of the measured value measured by the concentration measuring device 104, the concentration of VOCs is automatically measured and labor saving of the soil contamination investigation work can be achieved. it can.

上述した実施の形態においては、貯水容器として第1貯水容器8aと第2貯水容器8bとの2個の容器を配設する例を示したが、本発明は、このような構成に囚われることなく、3個以上の容器を配設し、その一部の容器から順番に水を貯留するように切り替えてもよい。例えば貯水容器を6個設ける場合では、2個ずつ順番に水を貯留するように切り替えてもよい。   In embodiment mentioned above, although the example which arrange | positions two containers, the 1st water storage container 8a and the 2nd water storage container 8b, was shown as a water storage container, this invention is not restricted to such a structure. Three or more containers may be arranged, and switching may be performed so that water is stored in order from some of the containers. For example, in the case where six water storage containers are provided, switching may be performed so that water is stored in order two by two.

また、この実施の形態においては、貯水容器8a,8b内を加圧して貯留した水を強制的に排出するように加圧ポンプ52を配設したが、本発明は、このような構成に囚われることなく、該加圧ポンプ52を省略することもできる。その場合は、貯水容器8a,8bからの排水に要する時間が長くなり、回収された水を再び貯留するときまでに排水が完了しない虞があるが、その分、貯水容器の個数を多くするようにすればよい。   In this embodiment, the pressurizing pump 52 is disposed so as to forcibly discharge the water stored by pressurizing the water storage containers 8a and 8b. However, the present invention is constrained by such a configuration. Alternatively, the pressurizing pump 52 can be omitted. In that case, the time required for draining from the water storage containers 8a and 8b becomes longer, and there is a possibility that drainage will not be completed by the time when the collected water is stored again. However, the number of water storage containers is increased accordingly. You can do it.

また、この実施の形態においては、真空ポンプ7による減圧により水を吸引して第1貯水容器8aおよび第2貯水容器8bに水を貯留する例を示したが、本発明は、このような構成に囚われることなく、貯水容器8a,8bおよび真空ポンプ7等に代えて、うず巻ポンプ等の汎用性のあるポンプを使用してもよい。この場合は、該ポンプが吸水手段を構成する。   Moreover, in this embodiment, although the example which attracts | sucks water by pressure reduction with the vacuum pump 7 and stores water in the 1st water storage container 8a and the 2nd water storage container 8b was shown, this invention is such a structure. Instead of being trapped, a general-purpose pump such as a spiral pump may be used instead of the water storage containers 8a and 8b and the vacuum pump 7 or the like. In this case, the pump constitutes a water absorption means.

また、この実施の形態においては、給水管28内を給水通路とし、給水管28外周と吸水管27内周との間の間隙を吸水通路とし、試錐管24の内周と吸水管27の外周との間の間隙を試錐液供給通路64としたが、このような構成に囚われることなく、3つの通路を適宜選択してそれぞれの通路を決定してもよい。   Further, in this embodiment, the inside of the water supply pipe 28 is a water supply passage, the gap between the outer periphery of the water supply pipe 28 and the inner periphery of the water absorption pipe 27 is a water absorption passage, and the inner circumference of the borehole 24 and the outer circumference of the water absorption pipe 27. Although the borehole liquid supply passage 64 is defined as the gap between the two, the three passages may be selected as appropriate without being limited by such a configuration.

また、この実施の形態においては、掘削部材26の掘削部材本体26bに水回収孔32b…を形成したが、このような構成に囚われることなく、掘削部材26近傍の試錐管24(試錐管24の先端部を構成する試錐管継手76を含む。)に複数の水回収孔を穿設する一方、掘削部材本体26bの水回収孔32b…を廃止するか、または廃止しないで穿設したままにしておいてもよい。   In this embodiment, the water recovery holes 32b are formed in the excavation member main body 26b of the excavation member 26. However, the borehole 24 in the vicinity of the excavation member 26 (the borehole 24) A plurality of water recovery holes are drilled in the drill pipe joint 76 constituting the tip portion), while the water recovery holes 32b of the drilling member body 26b are abolished or left without being abolished. It may be left.

また、この実施の形態においては、試錐管24の先端部を構成する試錐管継手76に試錐液排出孔67を穿設したが、このような構成に囚われることなく、試錐液供給通路64を掘削部材26内まで延設すると共にこれに連通する試錐液排出孔を掘削部材26の適当な位置に穿設する一方、試錐管24の先端部を構成する試錐管継手76の試錐液排出孔67を廃止するか、または廃止しないで穿設したままにしておいてもよい。   Further, in this embodiment, the borehole discharge hole 67 is formed in the borehole joint 76 that forms the tip of the borehole 24, but the borehole supply passage 64 is excavated without being restricted by such a configuration. A borehole discharge hole 67 of the borehole joint 76 constituting the tip of the borehole 24 is formed while a borehole discharge hole extending to the inside of the member 26 and communicating therewith is drilled at an appropriate position of the drilling member 26. It may be abolished or left perforated without being abolished.

また、この実施の形態においては、吸水管27が嵌着された吸水管用継手部材38と掘削部材26の連結部材37とは螺合構造で連結したが、このような構成に囚われることなく、両者を互いに単に嵌合する嵌合構造で接続するようにしてもよい。このような構成にしたとしても、吸水管27と給水管28とは三方継手68によって連結され、かつ、給水管用継手部材35を介して給水管28が掘削部26aに螺合されているので、吸水管27が嵌着された吸水管用継手部材が掘削部材26の連結部材37から抜け出て離脱することはない。   Further, in this embodiment, the water absorption pipe joint member 38 to which the water absorption pipe 27 is fitted and the connection member 37 of the excavation member 26 are connected by a screwed structure. May be connected by a fitting structure that simply fits each other. Even with this configuration, the water absorption pipe 27 and the water supply pipe 28 are connected by the three-way joint 68, and the water supply pipe 28 is screwed into the excavation part 26a via the water supply pipe joint member 35. The water-absorbing-pipe joint member to which the water-absorbing pipe 27 is fitted does not come out of the connecting member 37 of the excavating member 26 and leave.

また、この実施の形態においては、試錐機構部5により試錐管24をその軸芯L1回りに正逆300度の回転角度で往復回転させるようにしたが、このような構成に囚われることなく、試錐管24を一定方向に回転させるようにしてもよい。この場合は、吸水管27が嵌着された吸水管用継手部材38と掘削部材26の連結部材37との接続および給水管28が嵌着された給水管用継手部材35と掘削部材26の掘削部26aとの接続をそれぞれ互いに軸方向の相対変位が不能で、かつ、相対回転は可能とする液密な接続構造とする。   In this embodiment, the test tube 24 is reciprocally rotated around the axis L1 at a rotation angle of 300 degrees forward / reverse by the test mechanism unit 5 in this embodiment. The tube 24 may be rotated in a certain direction. In this case, the connection between the water-absorbing pipe joint member 38 fitted with the water-absorbing pipe 27 and the connecting member 37 of the excavation member 26 and the water-feed pipe joint member 35 fitted with the water supply pipe 28 and the excavation part 26 a of the excavation member 26. And a liquid-tight connection structure in which relative displacement in the axial direction is impossible and relative rotation is possible.

また、この実施の形態においては、浄化液排出孔73b…が穿設された試錐管24を使用したが、このような構成に囚われることなく、浄化液排出孔73b…が穿設されていない試錐管を使用してもよい。そのような試錐管を使用した場合は、土壌汚染調査が終了したら、直ちに試錐管を地中から引き抜くことになるが、その引き抜き工程の際、試錐液を試錐管内に供給しながら引き抜くようにすれば試錐管を引き抜いた後の地中の穴に試錐液が充填されて穴が崩壊することがない。   Further, in this embodiment, the test tube 24 in which the cleaning liquid discharge holes 73b are formed is used. However, the test hole in which the cleaning liquid discharge holes 73b are not formed without being constrained by such a configuration. A tube may be used. When such a borehole is used, the borehole should be withdrawn from the ground as soon as the soil contamination survey is completed. During the drawing process, the borehole should be pulled out while supplying the borehole into the borehole. For example, the hole in the ground after pulling out the borehole will not be filled with the borehole liquid and the hole will not collapse.

そして、試錐管を引き抜いた後、地下水の定期的な水質調査や土壌の浄化を行う場合は、浄化液排出孔が穿設された試錐管を地中の穴に貫入する作業を行う必要があるが、穴には試錐液が充填されているだけなので比較的小さな押圧力を該試錐管に付与するだけで試錐管を穴に貫入させることができる。このため、この試錐管の先端部には、上述したような掘削部材26を固定する必要はなく単に先端が尖った安価な部材を固定すれば足り、この結果、掘削部材としては、掘削作業を行う1本の試錐管だけに固定するために1個だけ用意すれば足りるので、ダイヤモンドビットのような掘削性能の優れた高価な掘削ビットが設けられた掘削部材を使用したとしても工具全体の費用の増加は殆どない。   And, after pulling out the borehole, when conducting periodic water quality surveys and soil purification, it is necessary to perform the work of penetrating the borehole in which the drainage hole is drilled. However, since the hole is only filled with the borehole liquid, the borehole can be penetrated into the hole only by applying a relatively small pressing force to the borehole. For this reason, it is not necessary to fix the excavation member 26 as described above to the tip portion of the borehole, and it is sufficient to fix an inexpensive member with a sharp tip. As a result, the excavation member can perform excavation work. Since it is sufficient to prepare only one to fix to only one borehole to be performed, the cost of the entire tool can be obtained even if a drilling member provided with an expensive drilling bit with excellent drilling performance such as a diamond bit is used. There is almost no increase.

さらにまた、この実施の形態の土壌汚染調査装置本体9は、コントローラ23で制御して自動的に動作するようにしたが、このような構成に囚われることなく、導入制御弁87,導出制御弁88,開閉弁91,第9電磁弁93a,第10電磁弁94a,第12電磁弁98a,第1三方電磁弁103a,第2三方電磁弁109aおよび第11電磁弁110aを手動式の開閉弁または切替弁として必要なタイミングで人為的に開閉または切替の操作を行うと共に、送水ポンプ96,空気供給ポンプ102,排水用ポンプ106および洗浄用水供給ポンプ122を駆動するそれぞれのモータ(図示せず)への電力の供給またはその停止も必要なタイミングで人為的に操作するようにしてもよい。   Furthermore, although the soil contamination investigation device main body 9 of this embodiment is controlled by the controller 23 and automatically operates, the introduction control valve 87 and the derivation control valve 88 are not limited to such a configuration. , On-off valve 91, ninth electromagnetic valve 93a, tenth electromagnetic valve 94a, twelfth electromagnetic valve 98a, first three-way electromagnetic valve 103a, second three-way electromagnetic valve 109a and eleventh electromagnetic valve 110a are manually operated on-off valves or switching. The valve is manually opened / closed or switched at a necessary timing as a valve, and supplied to each motor (not shown) for driving the water supply pump 96, the air supply pump 102, the drainage pump 106, and the cleaning water supply pump 122. You may make it operate artificially at the required timing also in supply of electric power, or the stop.

(第2の実施の形態)
次に、本発明に係る土壌汚染調査装置の第2の実施の形態を図12ないし図15によって詳細に説明する。図12は、第2の実施の形態に係る浄化用器具を、一部を破断して示した図であり、図13は、土壌汚染調査装置を使用している状態を模式的に表した図であり、図14は、浄化用器具を試錐管内に設置した状態を示した断面図であり、図15は、浄化用器具が設置され地中に貫入された試錐管によって土壌汚染の浄化が行われている状態を示した図である。なお、この実施の形態においても、第1の実施の形態で説明した作業車1の搭載機器の一部は使用する。また、図12ないし図15において、前記第1の実施の形態で説明したものと同一もしくは同等部材については、同一符号を付し詳細な説明は省略する。また、図13については、作図の都合上、それぞれの構成部材の縮尺の比率は互いに異ならせて図示している。
(Second Embodiment)
Next, a second embodiment of the soil contamination investigation apparatus according to the present invention will be described in detail with reference to FIGS. FIG. 12 is a diagram illustrating a purification instrument according to the second embodiment with a part thereof broken, and FIG. 13 is a diagram schematically illustrating a state in which the soil contamination investigation device is used. FIG. 14 is a cross-sectional view showing a state in which the purifying instrument is installed in the borehole, and FIG. 15 is a diagram illustrating the soil contamination being purified by the drilling pipe in which the purifying instrument is installed and penetrated into the ground. It is the figure which showed the state which has been broken. In this embodiment, a part of the equipment mounted on the work vehicle 1 described in the first embodiment is used. 12 to 15, the same or equivalent members as those described in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. Further, in FIG. 13, for the convenience of drawing, the ratios of the scales of the respective constituent members are shown different from each other.

上述した第1の実施の形態の土壌汚染調査では、その調査が終了した地点の地中から試錐管24を引き抜くようにしたが、試錐管24を地中に貫入したままにしておくこともできる。そのようにして、試錐管24内に水を供給しながら吸水して、浄化液排出孔73b…のフィルタ74に詰まった試錐液中のベントナイトを除去したのち、浄化液排出孔73b…から浄化液を地中に排出して供給しながら、上述した試錐作業により同様に地中に貫入された他の試錐管24から吸水手段で地下水を吸引し、この吸引した地下水に含まれるVOCsの濃度を土壌汚染調査装置の濃度計測装置104によって計測する。この場合の浄化液としては、オゾン,過酸化水素または界面活性剤を所定の割合で水に溶解して生成した浄化液や、その他、水等がある。   In the soil contamination investigation of the first embodiment described above, the borehole 24 is pulled out from the ground where the investigation is completed, but the borehole 24 can be left penetrating into the ground. . In this manner, water is supplied while supplying water into the borehole 24 to remove bentonite in the borehole liquid clogged in the filter 74 of the purified liquid discharge hole 73b, and then the purified liquid is discharged from the purified liquid discharge hole 73b. As the groundwater is discharged and supplied to the ground, groundwater is sucked in by the water-absorbing means from the other boreholes 24 similarly penetrated into the ground by the above-mentioned drilling work, and the concentration of VOCs contained in the sucked groundwater is determined. The concentration is measured by the concentration measuring device 104 of the contamination investigation device. Examples of the purification liquid in this case include a purification liquid produced by dissolving ozone, hydrogen peroxide, or a surfactant in water at a predetermined ratio, and water.

この実施の形態による土壌汚染調査を具体的に説明すると、地中に貫入された試錐管24内に、図12に示す浄化用器具105を挿入する。浄化用器具105は、前記浄化液を供給するためのステンレス製の浄化液供給管107と、空気を供給するためのステンレス製の空気供給管111と、これらの管107,111が並列にされた状態で挿通される一対のゴム製の膨張管113,114とを備える。図12中に、一部を拡大して示すように、膨張管113の上端部および下端部の内側にはステンレス製の円柱状の口金118,118がそれぞれ配設され、膨張管114の上端部および下端部の内側にはステンレス製の円柱状の口金118,121がそれぞれ嵌入されている。口金118に貫通して穿設された貫通孔には浄化液供給管107および空気供給管111の長手方向中途部がそれぞれ貫通して気密に嵌入され、口金121に穿設された有底穴には浄化液供給管107および空気供給管111の先端部がそれぞれ気密に嵌入されている。   The soil contamination investigation according to this embodiment will be described in detail. A purification instrument 105 shown in FIG. 12 is inserted into a borehole 24 that has penetrated into the ground. The purifying instrument 105 includes a stainless steel purifying liquid supply pipe 107 for supplying the purifying liquid, a stainless steel air supplying pipe 111 for supplying air, and the pipes 107 and 111 arranged in parallel. And a pair of rubber expansion tubes 113 and 114 inserted in a state. In FIG. 12, as shown partially enlarged, stainless steel cylindrical bases 118, 118 are respectively disposed inside the upper end and lower end of the expansion tube 113, and the upper end of the expansion tube 114. In addition, stainless steel cylindrical bases 118 and 121 are respectively fitted inside the lower end portions. In the through holes drilled through the base 118, the longitudinal intermediate portions of the cleaning liquid supply pipe 107 and the air supply pipe 111 are inserted in an airtight manner, and are inserted into the bottomed holes drilled in the base 121. Each of the tip ends of the cleaning liquid supply pipe 107 and the air supply pipe 111 is fitted in an airtight manner.

口金118,121が嵌入された膨張管113,114のそれぞれの端部の外周には、ステンレス製の環状の締結具123が環装され、締結具123によって膨張管113,114がそれぞれ口金118,121に強固に締め付けられている。これによって、一対の膨張管113,114内は気密にされた膨張室113a,114aがそれぞれ形成され、該膨張室113a,114aにそれぞれ連通する連通孔124,124が空気供給管111の長手方向中途部に穿設されている。浄化液供給管107における膨張管113,114間には、膨張管114の近傍に浄化液供給孔125が穿設されている。   Stainless steel annular fasteners 123 are provided around the outer circumferences of the end portions of the expansion tubes 113 and 114 into which the caps 118 and 121 are inserted, and the expansion tubes 113 and 114 are respectively connected to the caps 118 and 114 by the fasteners 123. It is firmly tightened to 121. As a result, airtight expansion chambers 113a and 114a are formed in the pair of expansion tubes 113 and 114, respectively, and the communication holes 124 and 124 communicating with the expansion chambers 113a and 114a, respectively, are arranged in the longitudinal direction of the air supply tube 111. It is drilled in the part. Between the expansion pipes 113 and 114 in the purification liquid supply pipe 107, a purification liquid supply hole 125 is formed in the vicinity of the expansion pipe 114.

膨張管113から突出した浄化液供給管107と空気供給管111とには、それぞれテフロン樹脂製の浄化液供給接続管126と空気供給接続管127とが気密に接続され、地中に貫入された試錐管24内に浄化用器具105を挿入する際、地中における浄化用器具105の深度を把握できるように浄化液供給接続管126または空気供給接続管127の少なくとも何れか一方の管に長さを表す目印を印しておくとよい。   A purified liquid supply connecting pipe 126 and an air supply connecting pipe 127 made of Teflon resin are airtightly connected to the purified liquid supply pipe 107 and the air supply pipe 111 protruding from the expansion pipe 113, respectively, and penetrated into the ground. When the purification instrument 105 is inserted into the borehole 24, the length of at least one of the purification liquid supply connection pipe 126 and the air supply connection pipe 127 is long so that the depth of the purification instrument 105 in the ground can be grasped. It is good to mark a mark representing

上述した浄化用器具105を使用して土壌汚染の浄化および調査の作業を行う場合は、第1の実施の形態で説明した試錐作業により、汚染された区域を挟んで地中に貫入された複数の試錐管24…内にそれぞれ浄化用器具105を、その膨張管113,114間に試錐管24の浄化液排出孔73bが位置する所望の深度まで挿入する。このときの深度は、土壌汚染を浄化したい深度とし、それぞれの試錐管24に対して各浄化用器具105を挿入する深度は同一とする。図13に示すように、複数の試錐管24のうち一部の試錐管24(図13中の左右両側に位置する2本の試錐管24)に配置された浄化液供給接続管126のそれぞれの端部は浄化液供給集合管128に接続され、該浄化液供給集合管128の端部には浄化液貯留槽131に貯留された浄化液を供給するための浄化液供給ポンプ132が接続されている。浄化液貯留槽131は地面Eに設置され、浄化液供給ポンプ132は作業車1の台座11に搭載される。   In the case of performing the soil contamination purification and investigation work using the purification tool 105 described above, a plurality of drilled holes inserted into the ground across the contaminated area by the drilling work described in the first embodiment. Each of the purifying instruments 105 is inserted between the expansion tubes 113 and 114 to a desired depth at which the purifying fluid discharge hole 73b of the drill tube 24 is located. The depth at this time is the depth at which it is desired to purify soil contamination, and the depth at which each purifying instrument 105 is inserted into each borehole 24 is the same. As shown in FIG. 13, each of the purifying fluid supply connection pipes 126 arranged in some of the plurality of boreholes 24 (two boreholes 24 located on the left and right sides in FIG. 13). The end portion is connected to the purification liquid supply collecting pipe 128, and the purification liquid supply pump 132 for supplying the purification liquid stored in the purification liquid storage tank 131 is connected to the end of the purification liquid supply collecting pipe 128. Yes. The cleaning liquid storage tank 131 is installed on the ground E, and the cleaning liquid supply pump 132 is mounted on the base 11 of the work vehicle 1.

また、複数の試錐管24のうち残りの試錐管24(図13中の中央側に位置する3本の試錐管24)に配置された浄化液供給接続管126のそれぞれの端部は吸水管133に接続され、浄化液供給接続管126のそれぞれの中途部には、開閉動作する吸水用電磁弁134a,134b,134cがそれぞれ配設されている。吸水管133,この吸水管133に繋がる浄化液供給接続管126および浄化液供給管107のそれぞれの管の内部は、本発明でいう吸水通路を構成する。吸水管133の端部には、第1の実施の形態と同一の吸水手段50が接続され、吸水用電磁弁134a,134b,134cと吸水手段50との間の吸水管133の中途部には第1の実施の形態と同一の土壌汚染調査装置本体9が接続されている。この場合は、第1の実施の形態における第1接続管44に対応するように吸水管133が土壌汚染調査装置本体9に対して接続されることになる。なお、吸水用電磁弁134a,134b,134cは、作業車1の台座11に搭載された制御盤25のコントローラ23にそれぞれ電線(図示せず)を介して接続され、コントローラ23によって開閉制御される。   Moreover, each end part of the purification liquid supply connection pipe 126 arranged in the remaining boreholes 24 (three boreholes 24 located on the center side in FIG. 13) among the plurality of boreholes 24 is a water absorption pipe 133. In the middle of each of the purifying liquid supply connecting pipes 126, water-absorbing electromagnetic valves 134a, 134b, 134c that open and close are respectively disposed. The insides of the water absorption pipe 133 and the purification liquid supply connecting pipe 126 and the purification liquid supply pipe 107 connected to the water absorption pipe 133 constitute a water absorption passage in the present invention. The same water absorption means 50 as in the first embodiment is connected to the end of the water absorption pipe 133, and in the middle of the water absorption pipe 133 between the water absorption electromagnetic valves 134a, 134b, 134c and the water absorption means 50, The same soil contamination investigation apparatus main body 9 as that in the first embodiment is connected. In this case, the water absorption pipe 133 is connected to the soil contamination investigation apparatus main body 9 so as to correspond to the first connection pipe 44 in the first embodiment. The water absorbing electromagnetic valves 134a, 134b, and 134c are connected to the controller 23 of the control panel 25 mounted on the base 11 of the work vehicle 1 via electric wires (not shown), respectively, and are controlled to be opened and closed by the controller 23. .

それぞれの空気供給接続管127の端部は空気供給集合管129に接続され、この空気供給集合管129の端部には、該空気供給集合管129に空気を供給するための空気供給ポンプ135が接続されている。空気供給ポンプ135は作業車1の台座11に搭載される。前記浄化液供給ポンプ132および空気供給ポンプ135は、コントローラ23にそれぞれ電線(図示せず)を介して接続され、コントローラ23によって作動またはその作動の停止が制御される。また、土壌汚染調査装置本体9および吸水手段50についても第1の実施の形態と同様にコントローラ23にそれぞれ電線(図示せず)を介して接続されている。   An end of each air supply connecting pipe 127 is connected to an air supply collecting pipe 129, and an air supply pump 135 for supplying air to the air supply collecting pipe 129 is connected to the end of the air supply collecting pipe 129. It is connected. The air supply pump 135 is mounted on the base 11 of the work vehicle 1. The purification liquid supply pump 132 and the air supply pump 135 are connected to the controller 23 via electric wires (not shown), respectively, and the controller 23 controls operation or stoppage of the operation. Further, the soil contamination investigation device main body 9 and the water absorption means 50 are also connected to the controller 23 via electric wires (not shown), respectively, as in the first embodiment.

複数の試錐管24内にそれぞれ浄化用器具105を挿入したのち、コントローラ23により空気供給ポンプ135を作動させて空気供給管111の連通孔124,124から空気を供給し、試錐管24の内壁に圧接されるまで膨張管113,114を膨張させる(図14を参照)。膨張管113,114が試錐管24の内壁に圧接された状態で膨張管113,114内の空気圧が保持され、その状態で、コントローラ23により浄化液供給ポンプ132を作動させて浄化液貯留槽131に貯留された浄化液が浄化液供給管107の浄化液供給孔125から試錐管24内の膨張管113,114間に供給される。そして、その後、浄化液は図13中の左右両側に位置する2本の試錐管24の浄化液排出孔73b…から地中に排出される。このとき、コントローラ23により、吸水用電磁弁134a,134b,134cのうち何れか1つの吸水用電磁弁だけが選択されて開弁され、他の2つの吸水用電磁弁が閉弁されている。   After inserting the cleaning instrument 105 into each of the plurality of boreholes 24, the controller 23 operates the air supply pump 135 to supply air from the communication holes 124 and 124 of the air supply pipe 111, and The expansion tubes 113 and 114 are expanded until they are pressed (see FIG. 14). The air pressure in the expansion tubes 113 and 114 is maintained in a state where the expansion tubes 113 and 114 are pressed against the inner wall of the borehole 24, and in this state, the purification liquid supply pump 132 is operated by the controller 23 to operate the purification liquid storage tank 131. The purifying liquid stored in is supplied from the purifying liquid supply hole 125 of the purifying liquid supply pipe 107 to the expansion pipes 113 and 114 in the borehole tube 24. After that, the purification liquid is discharged into the ground from the purification liquid discharge holes 73b of the two boreholes 24 located on the left and right sides in FIG. At this time, the controller 23 selects and opens only one of the water absorbing electromagnetic valves 134a, 134b, and 134c, and closes the other two water absorbing electromagnetic valves.

而して、図15に示すように、試錐管24の浄化液排出孔73b…から排出された浄化液によって土壌から溶出したVOCsが浄化液や地下水と共に、図13中の中央側に位置する3本の試錐管24のうち吸水用電磁弁が開弁された浄化用器具105が挿入された試錐管24(図15中の中央の試錐管24)の浄化液排出孔73b…から吸引される。この吸引によって地中のVOCsが除去され、土壌の浄化がなされる。また、その吸引された液体に溶解しているVOCsの濃度が土壌汚染調査装置本体9の濃度計測装置104により計測され、この計測データが、浄化作業が開始されてからコントローラ23のタイマ23bによって計測された時間の経過とも関連付けられてコントローラ23のメモリ23aに記憶される。メモリ23aに記憶された計測データをリアルタイムで確認することによって、地中における浄化の進捗状況を容易に確認することができる。なお、図15中、符号119で示したものは、試錐管24の浄化液排出孔73b…から排出された浄化液によって土壌から溶出したVOCsが浄化液や地下水と共に地中を流れた経路であり、符号120で示したものは、試錐液によって地中に形成された擁壁である。   Thus, as shown in FIG. 15, the VOCs eluted from the soil by the purification liquid discharged from the purification liquid discharge hole 73 b... Of the borehole 24 are located on the center side in FIG. Of the boreholes 24, the water is sucked from the purified liquid discharge holes 73b of the borehole 24 (the central borehole 24 in FIG. 15) into which the purification device 105 with the water absorption solenoid valve opened is inserted. This suction removes VOCs in the ground and purifies the soil. Further, the concentration of VOCs dissolved in the sucked liquid is measured by the concentration measuring device 104 of the soil contamination investigation device main body 9, and this measurement data is measured by the timer 23b of the controller 23 after the purification work is started. The memory 23a of the controller 23 is also associated with the elapsed time. By confirming the measurement data stored in the memory 23a in real time, the progress of purification in the ground can be easily confirmed. In FIG. 15, what is indicated by reference numeral 119 is a path through which VOCs eluted from the soil by the cleaning liquid discharged from the cleaning liquid discharge hole 73b of the borehole 24 flowed together with the cleaning liquid and groundwater. The reference numeral 120 indicates a retaining wall formed in the ground by the borehole liquid.

また、吸水用電磁弁134a,134b,134cは一定時間ごとに順々に開弁するようにコントローラ23によって開閉制御されると共に、土壌汚染調査装置本体9の濃度計測装置104により計測される計測データが、吸水用電磁弁が開弁されて浄化液等が吸引された試錐管24ごとに区別してコントローラ23のメモリ23aに記憶される。これによって、試錐管24が貫入された地点ごとの浄化の進捗状況を容易に確認することができる。
また、それぞれの試錐管24に対して各浄化用器具105を挿入する深度を浄化液排出孔73bの位置ごとに適宜変更して、土壌汚染された地中の箇所を全て浄化すると共に、その浄化の進捗状況を土壌汚染調査装置本体9の濃度計測装置104によるVOCsの濃度の計測により確認する。
The water absorption electromagnetic valves 134a, 134b, and 134c are controlled to be opened and closed by the controller 23 so that they are sequentially opened at regular intervals, and the measurement data measured by the concentration measuring device 104 of the soil contamination investigation device main body 9 However, it is stored in the memory 23a of the controller 23 by distinguishing it for each borehole 24 in which the water absorption electromagnetic valve is opened and the cleaning liquid or the like is sucked. Thereby, it is possible to easily check the progress of purification at each point where the borehole 24 is inserted.
In addition, the depth at which each purification instrument 105 is inserted into each borehole 24 is appropriately changed for each position of the purification liquid discharge hole 73b to purify all the soil-contaminated underground locations, and the purification. Is confirmed by measuring the concentration of VOCs by the concentration measuring device 104 of the soil contamination investigation device main body 9.

なお、この実施の形態においても、上述した第1の実施の形態と同等の構成部分については、第1の実施の形態と同様の構造変更は可能であり、第1の実施の形態と同様の作用・効果も奏することができるのは言うまでもない。
また、この実施の形態の土壌汚染調査装置における浄化液供給ポンプ132,空気供給ポンプ135および吸水用電磁弁134aないし134cは、コントローラ23で制御して自動的に動作するようにしたが、このような構成に囚われることなく、浄化液供給ポンプ132および空気供給ポンプ135を駆動するそれぞれのモータ(図示せず)への電力の供給またはその停止を必要なタイミングで人為的に操作すると共に、吸水用電磁弁134aないし134cも手動式の開閉弁として必要なタイミングで人為的に開閉操作を行うようにしてもよい。
また、この実施の形態においては、浄化液を供給しながら、その供給した浄化液を吸引して、その吸引した液体に溶解しているVOCsの濃度を土壌汚染調査装置本体9の濃度計測装置104により計測するようにしたが、このような構成に囚われることなく、浄化液の供給は行わずに、試錐管24から地下水を吸引して、その吸引した地下水に溶解しているVOCsの濃度を土壌汚染調査装置本体9の濃度計測装置104により計測することもできる。
In this embodiment as well, structural changes similar to those in the first embodiment can be made for the same components as those in the first embodiment described above, and the same as in the first embodiment. Needless to say, there are also effects and effects.
Further, the purification liquid supply pump 132, the air supply pump 135, and the water absorption electromagnetic valves 134a to 134c in the soil contamination investigation apparatus of this embodiment are controlled by the controller 23 so as to automatically operate. Without being constrained by a simple configuration, the power supply to each motor (not shown) for driving the purification liquid supply pump 132 and the air supply pump 135 or the stop thereof is artificially operated at a necessary timing, and is used for water absorption. The electromagnetic valves 134a to 134c may be manually opened and closed at a necessary timing as manual open / close valves.
Further, in this embodiment, while supplying the cleaning liquid, the supplied cleaning liquid is sucked, and the concentration of VOCs dissolved in the sucked liquid is determined as the concentration measuring device 104 of the soil contamination investigation apparatus main body 9. However, the concentration of VOCs dissolved in the aspirated groundwater is determined by sucking groundwater from the borehole tube 24 without being supplied with the purifying solution without being trapped by such a configuration. It can also be measured by the concentration measuring device 104 of the contamination investigation device main body 9.

また、この実施の形態においては、コントローラ23により、各浄化液供給接続管126に配設された吸水用電磁弁134a,134b,134cのうち何れか1つの吸水用電磁弁だけを選択して開弁し、他の2つの吸水用電磁弁を閉弁するようにしたが、このような構成に囚われることなく、地中に貫入する試錐管24の本数を増やすと共に、それらの試錐管24に浄化用器具105および吸水用電磁弁をそれぞれ配置し、互いに近い地点に貫入した2以上の一群の試錐管24に配置した浄化用器具105の吸水用電磁弁をコントローラ23により選択して開弁し、それらの2以上の一群の浄化液供給接続管126から吸引して、その吸引した液体に溶解しているVOCsの濃度を土壌汚染調査装置本体9の濃度計測装置104により計測するようにしてもよい。   In this embodiment, the controller 23 selects and opens only one water absorbing electromagnetic valve among the water absorbing electromagnetic valves 134a, 134b, and 134c disposed in each of the purification liquid supply connecting pipes 126. The other two water-absorbing solenoid valves are closed, but without being restricted by such a configuration, the number of boreholes 24 penetrating into the ground is increased and the boreholes 24 are purified. A water absorbing solenoid valve of the purifying instrument 105 disposed in a group of two or more boreholes 24 penetrating at a point close to each other, the controller 105 and the water absorbing solenoid valve being respectively disposed; The concentration of the VOCs sucked from the two or more groups of purified liquid supply connection pipes 126 and dissolved in the sucked liquid is measured by the concentration measuring device 104 of the soil contamination investigation device body 9. It may be so that.

上述した実施の形態の土壌汚染調査では、その調査が終了した地点の地中に貫入したままの試錐管24に浄化用器具105を配置するようにしたが、土壌汚染調査が終了した地点の試錐管24を、試錐液を試錐管24内に供給しながら引き抜き、そして、試錐管24を引き抜いた後の穴に、図16ないし図18に示すような試錐管24'を貫入して、試錐管24の代わりに試錐管24'を使用して地中の浄化を行うこともできる。図16は、試錐管24'の先端側の一部を示した断面図であり、図17は図16の矢視C1−C1線および矢視C2−C2線に沿う拡大断面図であり、図18は、浄化用器具105が設置され地中に貫入された試錐管24'によって土壌汚染の浄化が行われている状態を示した図である。なお、図16は、作図の都合上、試錐管24'を中途部で分断して図示している。また、図16の矢視C1−C1線および矢視C2−C2線に沿う拡大断面図は、同一の形状になるので作図の都合上、図17では1つの拡大断面図しか図示していない。図16に示すように、試錐管24'は、先端部が円錐形状に尖った貫入部136と、該貫入部136に接続された分割管73'と、分割管73'の端部同士を螺着して連結する試錐管継手76(第1の実施の形態と同じもの。図16中には図示せず。)とで構成される。   In the soil contamination investigation of the above-described embodiment, the purification instrument 105 is arranged in the borehole 24 that has been penetrated into the ground at the point where the investigation has been completed. The tube 24 is pulled out while supplying the borehole liquid into the borehole 24, and the borehole 24 'as shown in FIGS. 16 to 18 is inserted into the hole after the bored tube 24 is pulled out. It is also possible to use the borehole 24 'instead of 24 to perform underground purification. 16 is a cross-sectional view showing a part of the tip side of the borehole 24 ′, and FIG. 17 is an enlarged cross-sectional view taken along the lines C1-C1 and C2-C2 in FIG. 18 is a view showing a state in which the soil contamination is being purified by the test tube 24 ′ in which the purification device 105 is installed and penetrated into the ground. In FIG. 16, for the sake of drawing, the borehole 24 'is divided at the middle portion. Also, the enlarged cross-sectional views along the arrow C1-C1 line and the arrow C2-C2 line in FIG. 16 have the same shape, and therefore only one enlarged cross-sectional view is shown in FIG. 17 for convenience of drawing. As shown in FIG. 16, the borehole 24 'has a penetration part 136 whose tip is pointed in a conical shape, a split pipe 73' connected to the penetration part 136, and ends of the split pipe 73 'screwed together. It is configured with a test tube joint 76 (same as in the first embodiment, not shown in FIG. 16) that is connected by wearing.

この試錐管24'は、外径が27.2ミリメートル、内径が23.4ミリメートル、長さが2メートルで、0.3ミリメートルないし2ミリメートルの孔径を有する浄化液排出孔137と、幅寸法が0.3ミリメートルないし2ミリメートルで長さが5ミリメートルないし50ミリメートルの長孔からなり、試錐管24'の軸芯L1'に沿う方向に長い長孔とされた吸水孔138とが穿設されている。図17に示すように、浄化液排出孔137と吸水孔138とは、軸芯L1'回りの円周方向に等角度間隔でそれぞれ6個ずつ穿設されており、これらの孔は、高密度のレーザー光線の照射によって穿設されている。浄化液排出孔137…と吸水孔138…とは、試錐管24'の軸芯L1'方向に交互に穿設されており、浄化用器具105を試錐管24'内に配置した場合において、浄化用器具105の浄化液供給管107から浄化液を排出するときは、一対の膨張管113,114の間に浄化液排出孔137…が位置付けられ、浄化用器具105の浄化液供給管107から地下水を吸引するときは、一対の膨張管113,114の間に吸水孔138…が位置付けられる。   The borehole 24 'has an outer diameter of 27.2 millimeters, an inner diameter of 23.4 millimeters, a length of 2 meters, a cleaning liquid discharge hole 137 having a hole diameter of 0.3 millimeters to 2 millimeters, and a width dimension. A water-absorbing hole 138 having a long hole in the direction along the axis L1 ′ of the test tube 24 ′ is formed with a long hole having a length of 0.3 to 2 mm and a length of 5 to 50 mm. Yes. As shown in FIG. 17, six purification liquid discharge holes 137 and six water absorption holes 138 are formed at equal angular intervals in the circumferential direction around the axis L1 ′. It is drilled by laser beam irradiation. The cleaning liquid discharge holes 137 and the water absorption holes 138 are alternately drilled in the direction of the axis L1 ′ of the test tube 24 ′, and when the cleaning tool 105 is disposed in the test tube 24 ′, the cleaning solution is cleaned. When the purification liquid is discharged from the purification liquid supply pipe 107 of the cleaning instrument 105, the purification liquid discharge holes 137 are positioned between the pair of expansion pipes 113, 114, and the groundwater is discharged from the purification liquid supply pipe 107 of the purification instrument 105. Are sucked between the pair of expansion tubes 113, 114.

浄化液排出孔137は、0.3ミリメートルないし2ミリメートルの孔径を有する細孔に形成されているので、浄化用器具105を試錐管24'内に配置して浄化液供給管107から浄化液を浄化液供給ポンプ132によって所定の高圧力で供給すると、6個の浄化液排出孔137…から試錐管24'の軸芯L1'に略直交する方向に試錐管24'の周囲に浄化液が勢いよく地中に噴射される。このため、図18に示すように、試錐管24'(図18中の左右両側の試錐管24')の浄化液排出孔137…から浄化液が略水平方向に地中を拡散し、その拡散した浄化液によって土壌から溶出したVOCsが浄化液や地下水と共に、他の試錐管24'(図18中の中央の試錐管24')の吸水孔138を介してその試錐管24'に配置された浄化用器具105の浄化液供給管107に回収される。この回収によって地中のVOCsが除去され、土壌の浄化がなされる。
また、吸水孔138は、幅寸法が0.3ミリメートルないし2ミリメートルで長さが5ミリメートルないし50ミリメートルの細長孔に形成されているので、吸水孔138から水が吸引されるとき、大きな粒土は吸水孔138を通過することができないため細かな土だけが泥水となって回収されるので、吸水孔138が粒土で目詰まりすることがない。
Since the cleaning liquid discharge hole 137 is formed in a pore having a hole diameter of 0.3 millimeters to 2 millimeters, the cleaning tool 105 is disposed in the borehole 24 ′ and the cleaning liquid is supplied from the cleaning liquid supply pipe 107. When the cleaning liquid supply pump 132 supplies the cleaning liquid at a predetermined high pressure, the cleaning liquid urges around the borehole 24 ′ in the direction substantially perpendicular to the axis L 1 ′ of the borehole 24 ′ from the six cleaning liquid discharge holes 137. It is often injected into the ground. For this reason, as shown in FIG. 18, the purifying liquid diffuses in the ground in the substantially horizontal direction from the purifying liquid discharge holes 137... Of the borehole 24 '(the left and right side drilling pipes 24' in FIG. 18). The VOCs eluted from the soil by the purified liquid were disposed in the borehole 24 'together with the purified liquid and groundwater through the water intake hole 138 of another borehole 24' (the central borehole 24 'in FIG. 18). It is collected in the purification liquid supply pipe 107 of the purification instrument 105. This recovery removes underground VOCs and purifies the soil.
Further, since the water absorption holes 138 are formed as elongated holes having a width dimension of 0.3 millimeters to 2 millimeters and a length of 5 millimeters to 50 millimeters, when water is sucked from the water absorption holes 138, a large grain soil is formed. Since water cannot pass through the water absorption holes 138, only fine soil is recovered as muddy water, so that the water absorption holes 138 are not clogged with granular soil.

(第3の実施の形態)
次に、本発明に係る土壌汚染調査装置の第3の実施の形態を図19によって詳細に説明する。図19は、この第3の実施の形態に係る土壌汚染調査装置の構成を示すブロック図である。なお、この実施の形態においても、前記第1の実施の形態で説明した作業車1の搭載機器の一部は使用する。また、図19において、前記第1の実施の形態で説明したものと同一もしくは同等部材については、同一符号を付し詳細な説明は省略する。また、図19については、作図の都合上、それぞれの構成部材の縮尺の比率は互いに異ならせて図示している。
(Third embodiment)
Next, a third embodiment of the soil contamination investigation apparatus according to the present invention will be described in detail with reference to FIG. FIG. 19 is a block diagram showing a configuration of a soil contamination investigation apparatus according to the third embodiment. In this embodiment, a part of the equipment mounted on the work vehicle 1 described in the first embodiment is used. Further, in FIG. 19, the same or equivalent members as those described in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. Further, in FIG. 19, for the convenience of drawing, the ratios of the scales of the respective constituent members are shown different from each other.

この実施の形態においては、第1の実施の形態で説明した試錐作業により、汚染された区域の地中に複数の試錐管24…が貫入され、それらの試錐管24…内に、第2の実施の形態で説明した浄化用器具105がそれぞれ配置され、複数の試錐管24…のうち一部の試錐管24…の浄化用器具105の浄化液供給管107から浄化液を地中に供給しながら、その供給した浄化液を地下水と共に、残りの試錐管24…の浄化用器具105の浄化液供給管107から吸引して、その吸引した液体に溶解しているVOCsの濃度を計測するものである。図19には、作図の都合上、地面Eの穴に貫入される複数の試錐管24…に配置される浄化用器具105…の構成部材のうちの浄化液供給管107…(地下水等を吸引するもの)のみを図示している。
図19中に符号X1およびX2で示すものは、汚染された区域を、一定の面積を有する2つの領域に区分けし、それらの2つの領域を表している。領域X1における浄化液供給管107…に接続された浄化液供給接続管126…のそれぞれの端部は吸水管141に接続され、浄化液供給接続管126…のそれぞれの中途部には、開閉動作する吸水用電磁弁142a,142b,142c,142d,142eがそれぞれ配設されている。吸水用電磁弁142aないし142eは電線(図示せず)を介してそれぞれコントローラ23に接続され、コントローラ23によって開閉制御される。浄化液供給管107…,浄化液供給接続管126…および吸水管141のそれぞれの管の内部は、本発明でいう吸水通路を構成する。
In this embodiment, a plurality of boreholes 24... Penetrate into the ground of the contaminated area by the borehole operation described in the first embodiment, and the second borehole 24... Each of the purification instruments 105 described in the embodiment is disposed, and the purification liquid is supplied into the ground from the purification liquid supply pipe 107 of the purification instrument 105 of some of the plurality of test tubes 24. However, the supplied purification liquid is sucked together with the ground water from the purification liquid supply pipe 107 of the purification instrument 105 of the remaining boreholes 24, and the concentration of VOCs dissolved in the sucked liquid is measured. is there. In FIG. 19, for the convenience of drawing, the purification solution supply pipe 107 of the components of the purification instrument 105 disposed in the plurality of boreholes 24 penetrating into the hole of the ground E.. Only).
In FIG. 19, what is indicated by reference numerals X1 and X2 represents a contaminated area divided into two regions having a certain area, and these two regions are represented. Each end of the purification liquid supply connection pipe 126 connected to the purification liquid supply pipe 107 in the region X1 is connected to the water absorption pipe 141, and an opening / closing operation is performed in each middle part of the purification liquid supply connection pipe 126. The electromagnetic valves 142a, 142b, 142c, 142d, 142e for absorbing water are respectively disposed. The water absorbing electromagnetic valves 142a to 142e are connected to the controller 23 via electric wires (not shown), respectively, and are controlled to be opened and closed by the controller 23. The interior of each of the cleaning liquid supply pipe 107, the cleaning liquid supply connecting pipe 126, and the water absorption pipe 141 constitutes a water absorption passage in the present invention.

吸水管141の端部には、第1の実施の形態と同一の吸水手段50が接続されている。この場合は、第1の実施の形態における第1接続管44に対応するように吸水管141が吸水手段50に対して接続されることになる。浄化液供給管107…と吸水用電磁弁142aないし142eとの間における浄化液供給接続管126…の中途部からそれぞれ分岐して分枝導入管143a,143b,143c,143d,143eが配管され、これらの分枝導入管143aないし143eが集合導入管144に接続されており、分枝導入管143aないし143eの中途部にはそれぞれ分枝導入管用電磁弁145a,145b,145c,145d,145eが配設されている。分枝導入管用電磁弁145aないし145eは電線(図示せず)を介してそれぞれコントローラ23に接続され、コントローラ23によって開閉制御される。分枝導入管143aないし143eの内部は本発明でいう分枝導入通路を構成し、集合導入管144の内部は本発明でいう集合導入通路を構成し、分枝導入管用電磁弁145aないし145eは本発明でいう導入制御弁を構成する。   The same water absorption means 50 as that of the first embodiment is connected to the end of the water absorption pipe 141. In this case, the water absorption pipe 141 is connected to the water absorption means 50 so as to correspond to the first connection pipe 44 in the first embodiment. Branch introduction pipes 143a, 143b, 143c, 143d, and 143e are respectively branched from the middle portion of the purification liquid supply connection pipe 126 between the purification liquid supply pipe 107 and the water absorption electromagnetic valves 142a to 142e, These branch introduction pipes 143a to 143e are connected to the collective introduction pipe 144, and branch introduction pipe electromagnetic valves 145a, 145b, 145c, 145d, and 145e are arranged in the middle of the branch introduction pipes 143a to 143e, respectively. It is installed. The branch introduction pipe solenoid valves 145 a to 145 e are connected to the controller 23 via electric wires (not shown), and are controlled to be opened and closed by the controller 23. The inside of the branch introduction pipes 143a to 143e constitutes a branch introduction passage referred to in the present invention, the inside of the collection introduction pipe 144 constitutes a collection introduction passage referred to in the present invention, and the electromagnetic valves 145a to 145e for branch introduction pipes The introduction control valve referred to in the present invention is configured.

また、領域X2における浄化液供給管107…に接続された浄化液供給接続管126…のそれぞれの端部は吸水管141に接続され、浄化液供給接続管126…のそれぞれの中途部には、開閉動作する吸水用電磁弁142f,142g,142h,142i,142jがそれぞれ配設されている。吸水用電磁弁142fないし142jは、電線(図示せず)を介してそれぞれコントローラ23に接続され、コントローラ23によって開閉制御される。浄化液供給管107…と吸水用電磁弁142fないし142jとの間における浄化液供給接続管126…の中途部からそれぞれ分岐して分枝導入管143f,143g,143h,143i,143jが配管され、これらの分枝導入管143fないし143jが集合導入管144に接続されており、分枝導入管143fないし143jの中途部にはそれぞれ分枝導入管用電磁弁145f,145g,145h,145i,145jが配設されている。分枝導入管用電磁弁145fないし145jは、電線(図示せず)を介してそれぞれコントローラ23に接続され、コントローラ23によって開閉制御される。分枝導入管143fないし143jの内部は本発明でいう分枝導入通路を構成し、分枝導入管用電磁弁145fないし145jは本発明でいう導入制御弁を構成する。   Further, each end portion of the purification liquid supply connection pipe 126 connected to the purification liquid supply pipe 107 in the region X2 is connected to the water absorption pipe 141, and in each middle part of the purification liquid supply connection pipe 126, Water-absorbing electromagnetic valves 142f, 142g, 142h, 142i, 142j that open and close are respectively provided. The water absorption electromagnetic valves 142f to 142j are connected to the controller 23 via electric wires (not shown), respectively, and are controlled to be opened and closed by the controller 23. Branching introduction pipes 143f, 143g, 143h, 143i, 143j are respectively branched from the middle part of the purification liquid supply connection pipe 126 ... between the purification liquid supply pipe 107 ... and the electromagnetic valves 142f to 142j for water absorption. These branch introduction pipes 143f to 143j are connected to the collective introduction pipe 144, and branch introduction pipe solenoid valves 145f, 145g, 145h, 145i, and 145j are arranged in the middle of the branch introduction pipes 143f to 143j, respectively. It is installed. The branch introduction pipe solenoid valves 145f to 145j are connected to the controller 23 via electric wires (not shown), respectively, and are controlled to be opened and closed by the controller 23. The insides of the branch introduction pipes 143f to 143j constitute a branch introduction passage referred to in the present invention, and the branch introduction pipe electromagnetic valves 145f to 145j constitute an introduction control valve referred to in the present invention.

集合導入管144は水導入容器85の一端部に接続され、水導入容器85の他端部には、水導入容器85の凡そ5倍の容量を有する第3貯水容器152が導出管86bを介して接続されている。導出管86bの中途部には電磁弁からなる導出制御弁88が配設され、第3貯水容器152の上部には副吸水ポンプ153が第5接続管154を介して接続され、第5接続管154の中途部には第13電磁弁154aが配設されている。副吸水ポンプ153は本発明でいう副吸水手段を構成する。また、第3貯水容器152の上部と下部には、第3貯水容器152内に貯留された水を排出する際に共に開弁される第14電磁弁155aと第15電磁弁156aとが第3空気導入管155と第4排水管156との中途部にそれぞれ配設され、第3貯水容器152内には、貯留された水の水位が所定の上限または下限の水位の何れかに到達したことを検出して、その検出信号を、コントローラ23に電線(図示せず)を介して送信する第3水位検出センサ157が配設されている。第13電磁弁154a,第14電磁弁155aおよび第15電磁弁156aは、電線(図示せず)を介してそれぞれコントローラ23に接続され、コントローラ23によって開閉制御される。副吸水ポンプ153は電線(図示せず)を介してコントローラ23に接続され、コントローラ23によって作動またはその作動の停止が制御される。   The collective introduction pipe 144 is connected to one end of the water introduction container 85, and a third water storage container 152 having a capacity approximately five times that of the water introduction container 85 is connected to the other end of the water introduction container 85 through the outlet pipe 86b. Connected. A derivation control valve 88 made up of an electromagnetic valve is disposed in the middle of the derivation pipe 86b. A sub-water absorption pump 153 is connected to the upper part of the third water storage container 152 via a fifth connection pipe 154, and a fifth connection pipe. A thirteenth electromagnetic valve 154 a is disposed in the middle of the 154. The auxiliary water absorption pump 153 constitutes the auxiliary water absorption means referred to in the present invention. In addition, the 14th electromagnetic valve 155a and the 15th electromagnetic valve 156a, which are both opened when discharging the water stored in the third water storage container 152, are provided at the upper part and the lower part of the third water storage container 152. The level of the stored water has reached either the predetermined upper limit or the lower limit in the third water storage container 152, which is disposed in the middle of the air introduction pipe 155 and the fourth drain pipe 156, respectively. And a third water level detection sensor 157 for transmitting the detection signal to the controller 23 via an electric wire (not shown). The thirteenth electromagnetic valve 154a, the fourteenth electromagnetic valve 155a, and the fifteenth electromagnetic valve 156a are connected to the controller 23 via electric wires (not shown), and are controlled to be opened and closed by the controller 23. The auxiliary water absorption pump 153 is connected to the controller 23 via an electric wire (not shown), and the controller 23 controls the operation or the stop of the operation.

(土壌汚染調査の作業工程)
上述した土壌汚染調査装置を使用して、土壌汚染の調査を行う場合は、以下の作業工程で行われる。なお、下記の作業工程における電磁弁やポンプの動作の制御は全てコントローラ23によって行われるが、第1および第2の実施の形態において説明したのと同様に、人為的に動作させるようにしてもよい。
(Soil contamination investigation work process)
When investigating soil contamination using the soil contamination investigation device described above, the following work process is used. In addition, although the control of the operation of the solenoid valve and the pump in the following work process is all performed by the controller 23, the operation may be performed artificially as described in the first and second embodiments. Good.

(1)まず、領域X1の地点から地下水を採取する場合は、吸水手段50による吸水のために開弁されていた吸水用電磁弁142aないし142eのうち、例えば吸水用電磁弁142aのみが閉弁されると共に、閉弁されていた分枝導入管用電磁弁145aないし145eのうち分枝導入管用電磁弁145aが開弁される。それと同時に、導出制御弁88および第13電磁弁154aが開弁されると共に副吸水ポンプ153が作動させられる。このとき、領域X2の吸水用電磁弁142fないし142jは吸水手段50による吸水のために全て開弁され、分枝導入管用電磁弁145fないし145jは閉弁されている。吸水用電磁弁142aに対応する浄化液供給管107から吸引された地下水は、分枝導入管143aおよび集合導入管144を介して水導入容器85に導入される。この状態は一定時間行われる。このとき、第9電磁弁93aおよび第10電磁弁94aは共に閉弁されており、送水ポンプ96も停止されている。   (1) First, when collecting groundwater from a point in the region X1, only the water absorption electromagnetic valve 142a is closed among the water absorption electromagnetic valves 142a to 142e that have been opened for water absorption by the water absorption means 50, for example. At the same time, the branch introduction pipe solenoid valve 145a among the branch introduction pipe solenoid valves 145a to 145e that has been closed is opened. At the same time, the derivation control valve 88 and the thirteenth electromagnetic valve 154a are opened and the auxiliary water suction pump 153 is operated. At this time, all the water absorption electromagnetic valves 142f to 142j in the region X2 are opened for water absorption by the water absorption means 50, and the branch introduction pipe electromagnetic valves 145f to 145j are closed. Groundwater sucked from the purification liquid supply pipe 107 corresponding to the water absorption electromagnetic valve 142a is introduced into the water introduction container 85 via the branch introduction pipe 143a and the collective introduction pipe 144. This state is performed for a certain time. At this time, both the ninth electromagnetic valve 93a and the tenth electromagnetic valve 94a are closed, and the water supply pump 96 is also stopped.

(2)前記一定時間が経過し、水導入容器85内に水が充填されて導出管86bを通過して第3貯水容器152に水が流出している状態で、副吸水ポンプ153が停止されると同時に分枝導入管用電磁弁145aおよび導出制御弁88が共に閉弁される。また、これと同時に吸水用電磁弁142aが開弁され、該吸水用電磁弁142aに対応する浄化液供給管107から吸水手段50により地下水が再び吸引される。一方、分枝導入管用電磁弁145aないし145jと導出制御弁88との間の分枝導入管143aないし143j,集合導入管144,水導入容器85および導出管86b内は、水が充填された状態で分枝導入管用電磁弁145a等と導出制御弁88とによって密閉される。   (2) The sub-water absorption pump 153 is stopped in a state where the predetermined time has elapsed and the water introduction container 85 is filled with water, passes through the outlet pipe 86b, and flows into the third water storage container 152. At the same time, both the branch introduction pipe electromagnetic valve 145a and the derivation control valve 88 are closed. At the same time, the water absorption electromagnetic valve 142a is opened, and the groundwater is again sucked by the water absorption means 50 from the purified liquid supply pipe 107 corresponding to the water absorption electromagnetic valve 142a. On the other hand, the branch introduction pipes 143a to 143j, the collective introduction pipe 144, the water introduction container 85, and the outlet pipe 86b between the branch introduction pipe solenoid valves 145a to 145j and the derivation control valve 88 are filled with water. And the branch introduction pipe electromagnetic valve 145a and the outlet control valve 88 are hermetically sealed.

(3)ないし(6)の作業工程は、第1の実施の形態で述べた土壌汚染調査の作業工程(3)ないし(6)と同様の作業工程が行われる。よって、説明は省略する。
(7)次に、開弁されていた吸水用電磁弁142aないし142eのうち、吸水用電磁弁142bのみが閉弁されると共に、閉弁されていた分枝導入管用電磁弁145aないし145eのうち分枝導入管用電磁弁145bが開弁される。それと同時に、導出制御弁88および第13電磁弁154aが開弁されると共に副吸水ポンプ153が作動させられる。このとき、領域X2の吸水用電磁弁142fないし142jは吸水手段50による吸水のために全て開弁され、分枝導入管用電磁弁145fないし145jは閉弁されている。吸水用電磁弁142bに対応する浄化液供給管107から吸引された地下水は、分枝導入管143bおよび集合導入管144を介して水導入容器85に導入される。この状態は一定時間行われる。このとき、第9電磁弁93aおよび第10電磁弁94aは共に閉弁されており、送水ポンプ96も停止されている。
The work processes (3) to (6) are the same as the work processes (3) to (6) of the soil contamination investigation described in the first embodiment. Therefore, the description is omitted.
(7) Next, among the water-absorbing electromagnetic valves 142a to 142e that have been opened, only the water-absorbing electromagnetic valve 142b is closed, and among the electromagnetic valves 145a to 145e that have been closed, The branch introduction pipe electromagnetic valve 145b is opened. At the same time, the derivation control valve 88 and the thirteenth electromagnetic valve 154a are opened and the auxiliary water suction pump 153 is operated. At this time, all the water absorption electromagnetic valves 142f to 142j in the region X2 are opened for water absorption by the water absorption means 50, and the branch introduction pipe electromagnetic valves 145f to 145j are closed. The groundwater sucked from the purification liquid supply pipe 107 corresponding to the water absorption electromagnetic valve 142b is introduced into the water introduction container 85 through the branch introduction pipe 143b and the collective introduction pipe 144. This state is performed for a certain time. At this time, both the ninth electromagnetic valve 93a and the tenth electromagnetic valve 94a are closed, and the water supply pump 96 is also stopped.

(8)前記一定時間が経過し、水導入容器85内に水が充填されて導出管86bを通過して第3貯水容器152に水が流出している状態で、副吸水ポンプ153が停止されると同時に分枝導入管用電磁弁145bおよび導出制御弁88が共に閉弁される。また、これと同時に吸水用電磁弁142bが開弁され、該吸水用電磁弁142bに対応する浄化液供給管107から吸水手段50により地下水が再び吸引される。一方、分枝導入管用電磁弁145aないし145jと導出制御弁88との間の分枝導入管143aないし143j,集合導入管144,水導入容器85および導出管86b内は、水が充填された状態で分枝導入管用電磁弁145a等と導出制御弁88とによって密閉される。   (8) The sub-water absorption pump 153 is stopped in a state where the predetermined time has elapsed and the water introduction container 85 is filled with water, passes through the outlet pipe 86b, and flows into the third water storage container 152. At the same time, both the branch introduction pipe solenoid valve 145b and the derivation control valve 88 are closed. At the same time, the water absorption electromagnetic valve 142b is opened, and the ground water is again sucked by the water absorption means 50 from the purified liquid supply pipe 107 corresponding to the water absorption electromagnetic valve 142b. On the other hand, the branch introduction pipes 143a to 143j, the collective introduction pipe 144, the water introduction container 85, and the outlet pipe 86b between the branch introduction pipe solenoid valves 145a to 145j and the derivation control valve 88 are filled with water. And the branch introduction pipe electromagnetic valve 145a and the outlet control valve 88 are hermetically sealed.

(9)ないし(12)の作業工程は、第1の実施の形態で述べた土壌汚染調査の作業工程(3)ないし(6)と同様の作業工程が行われる。よって、説明は省略する。
(13)以下、同様にして、次の吸水用電磁弁の1つのみが閉弁されると共に、その吸水用電磁弁に対応する分枝導入管用電磁弁の1つのみが開弁され、これらの吸水用電磁弁および分枝導入管用電磁弁の開閉制御が順々に行われ、その後、水導入容器85への水の充填,気化容器92でのVOCsの気化および濃度計測装置104によるVOCsの濃度計測等が行われる。このようにして、領域X1の土壌汚染調査が終了したのち領域X2の土壌汚染調査が同様に行われる。
領域X2の土壌汚染調査が終了したら、再び、領域X1に戻り、開弁されていた吸水用電磁弁142aないし142eのうち、吸水用電磁弁142aのみが閉弁されると共に、閉弁されていた分枝導入管用電磁弁145aないし145eのうち分枝導入管用電磁弁145aが開弁される。そして、その後、水導入容器85への水の充填,気化容器92でのVOCsの気化および濃度計測装置104によるVOCsの濃度計測等が行われる。
The work steps (9) to (12) are the same as the work steps (3) to (6) of the soil contamination investigation described in the first embodiment. Therefore, the description is omitted.
(13) Hereinafter, similarly, only one of the next water-absorbing solenoid valves is closed, and only one of the branch introduction pipe solenoid valves corresponding to the water-absorbing solenoid valve is opened. The water intake solenoid valve and the branch introduction pipe solenoid valve are sequentially controlled to be opened and closed. Thereafter, the water introduction container 85 is filled with water, the VOCs are vaporized in the vaporization container 92, and the VOCs are measured by the concentration measuring device 104. Concentration measurement is performed. In this way, after the soil contamination survey in the region X1 is completed, the soil contamination survey in the region X2 is similarly performed.
When the soil contamination investigation in the area X2 is completed, the process returns to the area X1 again, and among the water-absorbing electromagnetic valves 142a to 142e that have been opened, only the water-absorbing electromagnetic valve 142a is closed and closed. Of the branch introduction pipe solenoid valves 145a to 145e, the branch introduction pipe solenoid valve 145a is opened. After that, filling of water into the water introduction container 85, vaporization of VOCs in the vaporization container 92, measurement of the concentration of VOCs by the concentration measuring device 104, and the like are performed.

なお、上述した作業工程において、第3貯水容器152内に貯留された水の水位が所定の上限の水位に至ったことが第3水位検出センサ157によって検出されたとき、第14電磁弁155aおよび第15電磁弁156aが共に開弁され、第3空気導入管155から空気が導入されて第3貯水容器152内の水が自由落下により排出される。この排出は、副吸水ポンプ153の動作が停止しているときに行われる。そして、第3貯水容器152内の水位が所定の下限の水位に至ったことが第3水位検出センサ157によって検出されたとき、第14電磁弁155aおよび第15電磁弁156aが共に閉弁される。   When the third water level detection sensor 157 detects that the water level stored in the third water storage container 152 has reached the predetermined upper limit level in the work process described above, the fourteenth electromagnetic valve 155a and Both the fifteenth electromagnetic valves 156a are opened, air is introduced from the third air introduction pipe 155, and the water in the third water storage container 152 is discharged by free fall. This discharge is performed when the operation of the auxiliary water suction pump 153 is stopped. When the third water level detection sensor 157 detects that the water level in the third water storage container 152 has reached a predetermined lower limit water level, both the fourteenth electromagnetic valve 155a and the fifteenth electromagnetic valve 156a are closed. .

上述したように構成された土壌汚染調査用試料採取装置によれば、導出管86bを介して副吸水ポンプ153により水を吸引するようにしたので、水導入容器85内に速やかに水を導入することができる。   According to the soil contamination survey sampling device configured as described above, water is sucked by the auxiliary water suction pump 153 via the outlet pipe 86b, so that water is quickly introduced into the water introduction container 85. be able to.

また、上述したように構成された土壌汚染調査用試料採取装置によれば、地面に穿った複数の穴の内部に浄化液供給管107…をそれぞれ配設し、これらの浄化液供給管107…を、浄化液供給接続管126…,分枝導入管143aないし143jおよび集合導入管144を介して水導入容器85に接続し、分枝導入管143aないし143jにそれぞれ分枝導入管用電磁弁145aないし145jを配置したので、それぞれの分枝導入管用電磁弁145aないし145jを一つずつ順々に開弁すると共に開弁した分枝導入管用電磁弁以外の分枝導入管用電磁弁を閉弁すれば浄化液供給管107…を配設した地点ごとの地中の水を個別に採取することが容易にできる。このため、個別に採取した水に含まれるVOCsの濃度を個別に計測することで、浄化液供給管107…を配設した地点ごとの土壌汚染の調査を個別に行うことが容易にできる。   In addition, according to the soil contamination investigation sample collecting apparatus configured as described above, the purification liquid supply pipes 107 are respectively arranged in the plurality of holes drilled in the ground, and these purification liquid supply pipes 107. Are connected to the water introduction container 85 via the purification liquid supply connecting pipe 126, the branch introduction pipes 143a to 143j and the collective introduction pipe 144, and the branch introduction pipe electromagnetic valves 145a to 143a are connected to the branch introduction pipes 143a to 143j, respectively. 145j is arranged, so that each of the branch introduction pipe solenoid valves 145a to 145j is opened one by one and the branch introduction pipe solenoid valve other than the opened branch introduction pipe solenoid valve is closed. It is easy to individually collect underground water at each point where the cleaning liquid supply pipes 107 are disposed. For this reason, by individually measuring the concentration of VOCs contained in individually collected water, it is possible to easily individually investigate soil contamination at each point where the purification solution supply pipes 107 are disposed.

なお、この実施の形態においても、上述した第1の実施の形態および第2の実施の形態と同等の構成部分については、第1の実施の形態および第2の実施の形態と同様の構造変更は可能であり、第1の実施の形態および第2の実施の形態と同様の作用・効果も奏することができるのは言うまでもない。
また、上述した実施の形態においては、吸水管141に接続された浄化液供給接続管126…にそれぞれ吸水用電磁弁142aないし142jを配設する例を示したが、本発明は、このような構成に囚われることなく、副吸水ポンプ153の出力が十分あり、副吸水ポンプ153の吸引によって水導入容器85内に水を導入することができる場合は、吸水用電磁弁142aないし142jを廃止して浄化液供給接続管126…を吸水管141に直接接続するようにしてもよい。
In this embodiment as well, structural changes equivalent to those in the first and second embodiments are the same as those in the first and second embodiments described above. Needless to say, the same functions and effects as those of the first and second embodiments can be obtained.
Further, in the above-described embodiment, the example in which the water-absorbing electromagnetic valves 142a to 142j are respectively disposed in the purified liquid supply connecting pipes 126 connected to the water-absorbing pipe 141 has been shown. If the sub-water absorption pump 153 has sufficient output without being constrained by the configuration, and water can be introduced into the water introduction container 85 by suction of the sub-water absorption pump 153, the water absorption electromagnetic valves 142a to 142j should be abolished. The cleaning liquid supply connection pipes 126 may be directly connected to the water absorption pipe 141.

また、この実施の形態においては、導出管86bから流出した水を副吸水ポンプ153により吸引して第3貯水容器152に貯留するようにしたが、本発明は、このような構成に囚われることなく、図19の一部を変更して記載した図20のブロック図に示すように、導出管86bを吸水管141に直接接続するようにし、導出管86bから流出した水を吸水手段50により吸引することもできる。このようにすれば、第3貯水容器152および副吸水ポンプ153等を省略することができるので、その分、土壌汚染調査用試料採取装置を安価に提供することができる。   Further, in this embodiment, the water flowing out from the outlet pipe 86b is sucked by the auxiliary water suction pump 153 and stored in the third water storage container 152. However, the present invention is not limited to such a configuration. As shown in the block diagram of FIG. 20 with a part of FIG. 19 changed, the outlet pipe 86b is directly connected to the water absorption pipe 141, and the water flowing out from the outlet pipe 86b is sucked by the water absorption means 50. You can also. In this way, the third water storage container 152, the sub-water absorption pump 153, and the like can be omitted, so that the soil contamination investigation sample collection device can be provided at a low cost.

また、この実施の形態においては、汚染された区域を2つの領域X1およびX2に区分けし、それらの2つの領域にそれぞれ複数の試錐管24…を貫入するようにしたが、本発明は、このような構成に囚われることなく、汚染された区域をさらに多くの領域に区分けし、それらの全ての領域にそれぞれ複数の試錐管24…を貫入して、それらの試錐管24…にそれぞれ配設した浄化用器具105の浄化液供給管107から吸引して、その吸引した地下水に溶解しているVOCsの濃度を計測するようにしてもよい。   In this embodiment, the contaminated area is divided into two regions X1 and X2, and a plurality of bores 24 are penetrated into each of these two regions. Without being constrained by such a configuration, the contaminated area is further divided into a plurality of regions, and a plurality of boreholes 24 are inserted into all of the regions, and the boreholes 24 are respectively disposed. You may make it measure the density | concentration of VOCs which attracted | sucks from the purification liquid supply pipe | tube 107 of the purification instrument 105, and is melt | dissolving in the sucked ground water.

また、この実施の形態においては、複数の試錐管24…のうち一部の試錐管24…の浄化用器具105の浄化液供給管107から浄化液を地中に供給しながら、その供給した浄化液を地下水と共に、残りの試錐管24…の浄化用器具105の浄化液供給管107から吸引して、その吸引した液体に溶解しているVOCsの濃度を計測するようにしたが、本発明は、このような構成に囚われることなく、浄化液を地中に供給せずに浄化液供給管107から地下水を吸引するだけにして、その吸引した地下水に溶解しているVOCsの濃度を計測して地中の土壌汚染の程度を調査するようにしてもよい。   Moreover, in this embodiment, while supplying the purification liquid into the ground from the purification liquid supply pipe 107 of the purification instrument 105 of some of the plurality of boreholes 24. The liquid is sucked together with the groundwater from the purifying liquid supply pipe 107 of the purifying apparatus 105 of the remaining boreholes 24, and the concentration of VOCs dissolved in the sucked liquid is measured. Without being constrained by such a configuration, the concentration of VOCs dissolved in the aspirated groundwater is measured by simply aspirating the groundwater from the purifying fluid supply pipe 107 without supplying the purifying fluid to the ground. The degree of soil contamination in the ground may be investigated.

図1は本発明に係る土壌汚染調査装置を装備した作業車の構成を示す側面図である。FIG. 1 is a side view showing a configuration of a work vehicle equipped with a soil contamination investigation device according to the present invention. 図2は本発明に係る土壌汚染調査装置を装備した作業車を上方から見た状態を示す平面図である。FIG. 2 is a plan view showing a state in which a work vehicle equipped with the soil contamination investigation device according to the present invention is viewed from above. 図3は試錐管の先端部に掘削部材が固定された状態を示す断面図である。FIG. 3 is a cross-sectional view showing a state where the excavation member is fixed to the tip of the borehole. 図4の(a)は図3の矢視A−A線に沿う拡大断面図、同図の(b)は図3の矢視B−B線に沿う拡大断面図、同図の(c)は掘削部材を先端側から見た外観の状態を示す拡大図である。4A is an enlarged cross-sectional view taken along the line AA in FIG. 3, FIG. 4B is an enlarged cross-sectional view taken along the line BB in FIG. 3, and FIG. FIG. 3 is an enlarged view showing the appearance of the excavation member viewed from the tip side. 図5は本発明に係る土壌汚染調査装置の構成を示すブロック図である。FIG. 5 is a block diagram showing the configuration of the soil contamination investigation device according to the present invention. 図6は本発明に係る土壌汚染調査装置の土壌汚染調査装置本体の構成を示すブロック図である。FIG. 6 is a block diagram showing the configuration of the soil contamination investigation device main body of the soil contamination investigation device according to the present invention. 図7は試錐管の後端部に固定される閉塞部材の構成を示す図である。FIG. 7 is a view showing a configuration of a closing member fixed to the rear end portion of the borehole. 図8は給水管および吸水管に接続される三方継手の構成を示す図である。FIG. 8 is a diagram showing a configuration of a three-way joint connected to the water supply pipe and the water absorption pipe. 図9は試錐管に穿設された浄化液排出孔の構成を示す断面図である。FIG. 9 is a cross-sectional view showing the configuration of the cleaning liquid discharge hole formed in the borehole. 図10は給水管,吸水管および試錐管が載置された枠体を正面から見た外観の状態を示す図である。FIG. 10 is a view showing the appearance of a frame body on which a water supply pipe, a water absorption pipe, and a borehole are placed as viewed from the front. 図11は給水管,吸水管および試錐管が載置された枠体を左側方から見た外観の状態を示す図である。FIG. 11 is a diagram showing an external appearance of the frame on which the water supply pipe, the water absorption pipe, and the borehole are placed as viewed from the left side. 図12は本発明の第2の実施の形態に係る浄化用器具を、一部を破断して示す図である。FIG. 12 is a diagram showing a purification instrument according to the second embodiment of the present invention with a part thereof broken. 図13は本発明の第2の実施の形態に係る土壌汚染調査装置を使用している状態を模式的に表した図である。FIG. 13 is a diagram schematically showing a state in which the soil contamination investigation device according to the second embodiment of the present invention is used. 図14は本発明の第2の実施の形態に係る浄化用器具を試錐管内に設置した状態を示した断面図である。FIG. 14 is a cross-sectional view showing a state in which a purification instrument according to the second embodiment of the present invention is installed in a borehole. 図15は本発明の第2の実施の形態に係る浄化用器具が設置され地中に貫入された試錐管によって土壌汚染の浄化が行われている状態を示した図である。FIG. 15 is a view showing a state in which soil contamination is being purified by a borehole in which a purification device according to a second embodiment of the present invention is installed and penetrated into the ground. 図16は本発明の第2の実施の形態に係る他の試錐管における先端側の一部を示した断面図である。FIG. 16 is a cross-sectional view showing a part of the tip side of another borehole according to the second embodiment of the present invention. 図17は図16の矢視C1−C1線および矢視C2−C2線に沿う拡大断面図である。FIG. 17 is an enlarged cross-sectional view taken along line C1-C1 and line C2-C2 in FIG. 図18は本発明の第2の実施の形態に係る浄化用器具が設置され地中に貫入された試錐管によって土壌汚染の浄化が行われている状態を示した図である。FIG. 18 is a view showing a state in which soil contamination is being purified by a test tube installed with a purification device according to the second embodiment of the present invention and penetrating into the ground. 図19は本発明の第3の実施の形態に係る土壌汚染調査装置の構成を示すブロック図である。FIG. 19 is a block diagram showing a configuration of a soil contamination investigation apparatus according to the third embodiment of the present invention. 図20は図19の一部の構成を変更したブロック図である。FIG. 20 is a block diagram in which a part of the configuration of FIG. 19 is changed.

符号の説明Explanation of symbols

9 土壌汚染調査装置本体
23 コントローラ(制御装置)
50 吸水手段
85 水導入容器(水導入室)
86a 導入管(導入通路)
86b 導出管(導出通路)
87 導入制御弁
88 導出制御弁
91 開閉弁
92 気化容器(気化室)
93a 第9電磁弁(送水手段)
94a 第10電磁弁(送水手段)
96 送水ポンプ(送水手段)
101 空気循環管(空気循環通路)
102 空気供給ポンプ(空気供給手段)
103 計測用循環往路管(計測用循環通路)
104 濃度計測装置(計測手段)
109 計測用循環復路管(計測用循環通路)
143a 分枝導入管(分枝導入通路)
143b 分枝導入管(分枝導入通路)
143c 分枝導入管(分枝導入通路)
143d 分枝導入管(分枝導入通路)
143e 分枝導入管(分枝導入通路)
143f 分枝導入管(分枝導入通路)
143g 分枝導入管(分枝導入通路)
143h 分枝導入管(分枝導入通路)
143i 分枝導入管(分枝導入通路)
143j 分枝導入管(分枝導入通路)
144 集合導入管(集合導入通路)
145a 分枝導入管用電磁弁(導入制御弁)
145b 分枝導入管用電磁弁(導入制御弁)
145c 分枝導入管用電磁弁(導入制御弁)
145d 分枝導入管用電磁弁(導入制御弁)
145e 分枝導入管用電磁弁(導入制御弁)
145f 分枝導入管用電磁弁(導入制御弁)
145g 分枝導入管用電磁弁(導入制御弁)
145h 分枝導入管用電磁弁(導入制御弁)
145i 分枝導入管用電磁弁(導入制御弁)
145j 分枝導入管用電磁弁(導入制御弁)
153 副吸水ポンプ(副吸水手段)
E 地面
9 Soil Contamination Survey Device 23 Controller (Control Device)
50 Water absorption means 85 Water introduction container (water introduction chamber)
86a Introduction pipe (introduction passage)
86b Lead pipe (lead passage)
87 Introduction control valve 88 Derivation control valve 91 On-off valve 92 Vaporization container (vaporization chamber)
93a Ninth solenoid valve (water supply means)
94a 10th solenoid valve (water supply means)
96 Water supply pump (water supply means)
101 Air circulation pipe (air circulation passage)
102 Air supply pump (air supply means)
103 Circulation return pipe for measurement (circulation passage for measurement)
104 Concentration measuring device (measuring means)
109 Circulation return pipe (measurement circulation passage)
143a Branch introduction pipe (branch introduction passage)
143b Branch introduction pipe (branch introduction passage)
143c Branch introduction pipe (branch introduction passage)
143d Branch introduction pipe (branch introduction passage)
143e Branch introduction pipe (branch introduction passage)
143f Branch introduction pipe (branch introduction passage)
143g Branch introduction pipe (branch introduction passage)
143h Branch introduction pipe (branch introduction passage)
143i Branch introduction pipe (branch introduction passage)
143j Branch introduction pipe (branch introduction passage)
144 Collective introduction pipe (collective introduction passage)
145a Solenoid valve for branch introduction pipe (introduction control valve)
145b Solenoid valve for branch introduction pipe (introduction control valve)
145c Solenoid valve for branch introduction pipe (introduction control valve)
145d Solenoid valve for branch introduction pipe (introduction control valve)
145e Solenoid valve for branch introduction pipe (introduction control valve)
145f Solenoid valve for branch introduction pipe (introduction control valve)
145g Solenoid valve for branch introduction pipe (introduction control valve)
145h Solenoid valve for branch introduction pipe (introduction control valve)
145i Solenoid valve for branch introduction pipe (introduction control valve)
145j Solenoid valve for branch introduction pipe (introduction control valve)
153 Sub-water absorption pump (sub-water absorption means)
E Ground

Claims (9)

地面に穿った穴の内部に先端側が配設される吸水通路と、
この吸水通路を介して水を吸引する吸水手段と、
前記吸水通路の中途部から分岐して水導入室に連通する導入通路と、
前記吸水通路を流れる水を前記水導入室に導入させるための水導入手段と、
前記水導入室に連通すると共に、前記導入通路を介して前記水導入室に導入した水を前記水導入室の外部へ排出する導出通路と、
前記導入通路に配置され、前記導入通路の水の通過を許容または禁止する導入制御弁と、
前記導出通路に配置され、前記導出通路の水の通過を許容または禁止する導出制御弁とを備えた土壌汚染調査用試料採取装置であって、
前記導入通路の水の通過を前記導入制御弁が禁止し、かつ、前記導出通路の水の通過を前記導出制御弁が禁止したとき、水の流れる経路からみて、前記導入制御弁と導出制御弁の間に位置する前記導入通路と前記水導入室と前記導出通路とが前記導入制御弁と導出制御弁とで密閉されるようにした土壌汚染調査用試料採取装置。
A water absorption passage in which a tip side is disposed inside a hole made in the ground;
Water absorption means for sucking water through the water absorption passage;
An introduction passage branched from the middle of the water absorption passage and communicating with the water introduction chamber;
Water introduction means for introducing water flowing through the water absorption passage into the water introduction chamber;
A lead-out passage communicating with the water introduction chamber and discharging water introduced into the water introduction chamber through the introduction passage to the outside of the water introduction chamber;
An introduction control valve disposed in the introduction passage and allowing or prohibiting passage of water in the introduction passage;
A sampling device for soil contamination investigation, comprising a derivation control valve disposed in the derivation passage and allowing or prohibiting passage of water in the derivation passage;
When the introduction control valve prohibits passage of water in the introduction passage and the introduction control valve prohibits passage of water in the lead-out passage, the introduction control valve and the discharge control valve are viewed from the path of water flow. A sampling device for soil contamination investigation, wherein the introduction passage, the water introduction chamber, and the lead-out passage located between the two are sealed by the introduction control valve and the lead-out control valve.
請求項1に記載の土壌汚染調査用試料採取装置において、
前記導出通路を前記吸水通路に合流させて前記水導入室に導入された水を前記導出通路を介して再び前記吸水通路に戻すようにし、
前記水導入手段を、前記吸水通路から導入通路が分岐する部位と前記導出通路が吸水通路に合流する部位との間における前記吸水通路の部位に配置され、該吸水通路の部位を流れる水の通過を許容または制限する開閉弁で構成した土壌汚染調査用試料採取装置。
In the sampling device for soil contamination survey according to claim 1,
The water introduced into the water introduction chamber by merging the outlet passage with the water absorption passage is returned to the water absorption passage again through the outlet passage,
The water introduction means is disposed at a portion of the water absorption passage between a portion where the introduction passage branches from the water absorption passage and a portion where the outlet passage merges with the water absorption passage, and the passage of water flowing through the portion of the water absorption passage Sampling device for soil contamination survey, which consists of on-off valve that allows or restricts.
請求項1に記載の土壌汚染調査用試料採取装置において、
前記水導入手段を、前記導出通路に接続され、前記導出通路を流れる水を吸引する副吸水手段で構成した土壌汚染調査用試料採取装置。
In the sampling device for soil contamination survey according to claim 1,
A soil sampling device for sampling a soil contamination, wherein the water introduction means is constituted by sub-water absorption means that is connected to the outlet passage and sucks water flowing through the outlet passage.
請求項1ないし3のうち何れか一つに記載の土壌汚染調査用試料採取装置において、
前記吸水通路の先端側を、地面に穿った複数の穴の内部にそれぞれ先端側が配設される分枝吸水通路で構成し、
前記導入通路を、前記分枝吸水通路からそれぞれ分岐する分枝導入通路とこれらの分枝導入通路を合流させて前記水導入室に連通する集合導入通路とで構成し、
前記分枝導入通路にそれぞれ前記導入制御弁を配置した土壌汚染調査用試料採取装置。
In the sample collection device for soil contamination investigation according to any one of claims 1 to 3,
The front end side of the water absorption passage is constituted by a branched water absorption passage in which the front end side is disposed in each of a plurality of holes bored in the ground,
The introduction passage is constituted by a branch introduction passage that branches from the branch water intake passage and a collective introduction passage that joins these branch introduction passages and communicates with the water introduction chamber,
A sampling device for soil contamination investigation, wherein the introduction control valve is disposed in each branch introduction passage.
請求項1ないし請求項4のうち何れか一つに記載の土壌汚染調査用試料採取装置と、
前記水導入室に貯留された水に溶解している調査対象物質を気化させる気化手段と、
この気化手段により気化された調査対象物質の濃度を計測する計測手段とを備えた土壌汚染調査装置。
A sample collection device for soil contamination investigation according to any one of claims 1 to 4,
Vaporization means for vaporizing the investigation target substance dissolved in the water stored in the water introduction chamber;
A soil contamination investigation device comprising: a measurement means for measuring the concentration of the investigation target substance vaporized by the vaporization means.
請求項5に記載の土壌汚染調査装置において、
前記気化手段は、気化室と、この気化室に空気を供給する空気供給手段とを備え、
前記水導入室に貯留した水を前記気化室に移送して、前記空気供給手段により前記気化室に空気を供給することによって、前記気化室に移送した水に含有する調査対象物質を前記気化室で気化させると共に前記気化室の空気と混合させて混合空気を生成し、
この混合空気に含有する調査対象物質の濃度を前記計測手段によって計測するようにした土壌汚染調査装置。
In the soil contamination investigation device according to claim 5,
The vaporization means includes a vaporization chamber and air supply means for supplying air to the vaporization chamber,
By transferring the water stored in the water introduction chamber to the vaporization chamber and supplying the air to the vaporization chamber by the air supply means, the investigation target substance contained in the water transferred to the vaporization chamber is transferred to the vaporization chamber. Vaporized and mixed with the air in the vaporizing chamber to produce mixed air,
A soil contamination investigation device configured to measure the concentration of the investigation target substance contained in the mixed air by the measurement means.
請求項6に記載の土壌汚染調査装置において、
前記気化室の上部に空気循環通路の一端を連通させると共に前記気化室の下部に前記空気循環通路の他端を連通させ、
前記空気循環通路の中途部に前記空気供給手段を配置し、
前記気化室の上部に溜まった空気を前記空気循環通路の一端から前記空気供給手段により吸引すると共にこの吸引した空気を再び前記空気循環通路の他端から前記気化室の下部に貯留した水中に供給することによって、前記気化室に移送した水に含有する調査対象物質を前記気化室で気化させると共に前記気化室の空気と混合させて混合空気を生成し、
この混合空気に含有する調査対象物質の濃度を前記計測手段によって計測するようにした土壌汚染調査装置。
In the soil contamination investigation device according to claim 6,
One end of the air circulation passage is communicated with the upper part of the vaporization chamber and the other end of the air circulation passage is communicated with the lower part of the vaporization chamber,
Arranging the air supply means in the middle of the air circulation passage;
The air accumulated in the upper part of the vaporization chamber is sucked by the air supply means from one end of the air circulation passage, and the sucked air is supplied again from the other end of the air circulation passage to the water stored in the lower portion of the vaporization chamber. By doing so, the investigation target substance contained in the water transferred to the vaporization chamber is vaporized in the vaporization chamber and mixed with the air in the vaporization chamber to generate mixed air,
A soil contamination investigation device configured to measure the concentration of the investigation target substance contained in the mixed air by the measurement means.
請求項6または請求項7に記載の土壌汚染調査装置において、
前記気化室の上部に計測用循環通路の一端と他端とを連通させると共に前記計測用循環通路の中途部に前記計測手段を配置し、
前記気化室の上部に溜まった前記混合空気を前記計測用循環通路を介して循環させて前記計測手段を通過させながら前記混合空気に含有する調査対象物質の濃度を前記計測手段によって計測するようにした土壌汚染調査装置。
In the soil contamination investigation device according to claim 6 or 7,
The measurement means is arranged in the middle of the measurement circulation path while communicating one end and the other end of the measurement circulation path to the upper part of the vaporization chamber,
The measurement unit measures the concentration of the substance to be investigated contained in the mixed air while circulating the mixed air accumulated in the upper part of the vaporization chamber through the measurement circulation passage and passing through the measurement unit. Soil contamination survey device.
請求項6ないし請求項8のうち何れか一つに記載の土壌汚染調査装置において、
前記水導入室の水を前記気化室に移送する送水手段と、
前記送水手段,前記導入制御弁,前記導出制御弁および前記空気供給手段のそれぞれの作動を制御すると共に前記計測手段により計測した計測値のデータ信号を出力する制御装置とを備えた土壌汚染調査装置。
In the soil contamination investigation device according to any one of claims 6 to 8,
Water supply means for transferring water from the water introduction chamber to the vaporization chamber;
A soil contamination investigation device comprising: a control device that controls the operation of each of the water supply means, the introduction control valve, the derivation control valve, and the air supply means and that outputs a data signal of a measurement value measured by the measurement means .
JP2006232955A 2006-08-30 2006-08-30 Sample collection device for soil pollution investigation, and soil pollution investigation device using it Pending JP2008058045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006232955A JP2008058045A (en) 2006-08-30 2006-08-30 Sample collection device for soil pollution investigation, and soil pollution investigation device using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006232955A JP2008058045A (en) 2006-08-30 2006-08-30 Sample collection device for soil pollution investigation, and soil pollution investigation device using it

Publications (1)

Publication Number Publication Date
JP2008058045A true JP2008058045A (en) 2008-03-13

Family

ID=39240968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006232955A Pending JP2008058045A (en) 2006-08-30 2006-08-30 Sample collection device for soil pollution investigation, and soil pollution investigation device using it

Country Status (1)

Country Link
JP (1) JP2008058045A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102518109A (en) * 2011-12-14 2012-06-27 上海交通大学 Dendrite type data acquisition method and device
JP2015094739A (en) * 2013-11-14 2015-05-18 健夫 鈴木 Investigation method of contaminated soil
CN114739742A (en) * 2022-03-31 2022-07-12 海之韵(苏州)科技有限公司 Cross-contamination-preventing water quality sampling unmanned ship and water quality sampling method of unmanned ship

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102518109A (en) * 2011-12-14 2012-06-27 上海交通大学 Dendrite type data acquisition method and device
CN102518109B (en) * 2011-12-14 2014-04-16 上海交通大学 Dendrite type data acquisition method and device
JP2015094739A (en) * 2013-11-14 2015-05-18 健夫 鈴木 Investigation method of contaminated soil
CN114739742A (en) * 2022-03-31 2022-07-12 海之韵(苏州)科技有限公司 Cross-contamination-preventing water quality sampling unmanned ship and water quality sampling method of unmanned ship
CN114739742B (en) * 2022-03-31 2023-10-10 海之韵(苏州)科技有限公司 Cross-pollution-preventing unmanned water quality sampling ship and unmanned water quality sampling method

Similar Documents

Publication Publication Date Title
CN110681685A (en) Polluted site soil-underground water integrated simulation restoration device and method
CN106825024A (en) A kind of moveable-type soil prosthetic device
CN112974497B (en) Agricultural heavy metal pollution farmland soil repair system
JP2008058046A (en) Soil pollution investigation device
JP2008058045A (en) Sample collection device for soil pollution investigation, and soil pollution investigation device using it
CN107907380A (en) A kind of beach water quality detection sampler
CN109975094A (en) A kind of soil and the efficiently quick sampling apparatus of Organic Chemicals In Groundwater
CN112033754B (en) Sediment pore water collection device of sandy river bed and manufacturing method thereof
CN109655309A (en) A kind of drawing out soil equipment and method suitable for the acquisition of forest fieid soil monolith
CN101322885A (en) Soil anaerobic leaching method and device thereof
CN210720067U (en) Rotatable serial-type earth pillar test device
JP2008013936A (en) Soil pollution investigating device
CN110304668B (en) Automatic control device capable of adjusting injection depth of water restoration agent
CN114323807A (en) Collecting device and collecting method for detecting benzene series in underground water
JP2015057267A (en) Method of purifying contaminated ground
JP2004183392A (en) Under ground sampling device, and contamination surveying method using the same
US10525514B2 (en) Soil treatment device and use thereof for treating contaminated soil and/or groundwater contained therein
JP3740045B2 (en) Soil contaminant diffusion test equipment
CN110439551A (en) A kind of underground water sampler and tilting groundwater sampling system
CN206454987U (en) A kind of moveable-type soil prosthetic device
CN213933193U (en) Sampling device for observing sediment
CN109682649A (en) Gas concentration is layered rapid detection system between a kind of soil aperture
CN214585341U (en) A gather and analytical equipment for groundwater drenches solution
CN211877540U (en) Trace gas collecting device for oil gas geochemical exploration
JP4919998B2 (en) Purification method for oil contaminated parts