JP2008058029A - Ultrasonic analysis system - Google Patents

Ultrasonic analysis system Download PDF

Info

Publication number
JP2008058029A
JP2008058029A JP2006232559A JP2006232559A JP2008058029A JP 2008058029 A JP2008058029 A JP 2008058029A JP 2006232559 A JP2006232559 A JP 2006232559A JP 2006232559 A JP2006232559 A JP 2006232559A JP 2008058029 A JP2008058029 A JP 2008058029A
Authority
JP
Japan
Prior art keywords
ultrasonic
rail
laser
inspection object
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006232559A
Other languages
Japanese (ja)
Inventor
Takahiro Hayashi
高弘 林
Morimasa Murase
守正 村瀬
Mitsunobu Takigawa
光伸 瀧川
Tsukasa Abe
司 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
East Japan Railway Co
Original Assignee
Nagoya Institute of Technology NUC
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC, East Japan Railway Co filed Critical Nagoya Institute of Technology NUC
Priority to JP2006232559A priority Critical patent/JP2008058029A/en
Publication of JP2008058029A publication Critical patent/JP2008058029A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic analysis system capable of acquiring multipoint ultrasonic vibration on an inspection object having a complicated surface shape. <P>SOLUTION: The ultrasonic analysis system 1 is a system for performing ultrasonic analysis by using a rail 3 as the inspection object. The system 1 has an ultrasonic probe 5 for transmitting an ultrasonic wave for inspection to the rail 3; a laser Doppler vibrometer 7 having a laser projecting/receiving part 7a for irradiating laser light to a reception point P on the rail 3 surface, for measuring ultrasonic vibration at the reception point P; and a robot arm 19 for moving the laser projecting/receiving part 7a. A computer 17 controls the robot arm so that the laser projecting/receiving part 7a is moved along the rail 3 surface, while keeping a position relation for allowing laser light from the laser projecting/receiving part 7a to enter the rail 3 surface vertically. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、曲面を含む表面を有する検査対象物の超音波解析を行う超音波解析システムに関するものである。   The present invention relates to an ultrasonic analysis system that performs ultrasonic analysis of an inspection object having a surface including a curved surface.

従来、超音波解析の分野の技術として、XYステージを用いて超音波探触子をXY方向に走査し、検査対象物の表面をスキャンすることで、表面上の多点における超音波振動を取得し、検査対象物内部の異常の平面的な分布を得る方法が知られていた(例えば、非特許文献1参照。)。
日本学術振興会製鋼第19委員会編,「超音波解析法」,改訂新版,日刊工業新聞社,1974年,p268−276.
Conventionally, as a technology in the field of ultrasonic analysis, an ultrasonic probe is scanned in the X and Y directions using an XY stage, and the surface of the inspection object is scanned to obtain ultrasonic vibrations at multiple points on the surface. In addition, a method for obtaining a planar distribution of abnormalities inside an inspection object has been known (for example, see Non-Patent Document 1).
19th Committee of Japan Society for the Promotion of Science, “Ultrasonic Analysis”, revised edition, Nikkan Kogyo Shimbun, 1974, p268-276.

しかしながら、上記方法では、探触子が平面的に移動するので、検査対象物の表面において平面をスキャンする検査には適しているが、曲面を含む表面をスキャンすることはできなかった。従って、上記方法では、複雑な表面形状をもつ検査対象物上においては、多点の超音波振動に基づく超音波解析を行うことができなかった。   However, in the above method, since the probe moves in a plane, it is suitable for an inspection in which a plane is scanned on the surface of the inspection object, but a surface including a curved surface cannot be scanned. Therefore, in the above method, ultrasonic analysis based on multi-point ultrasonic vibrations cannot be performed on an inspection object having a complicated surface shape.

そこで、本発明は、複雑な表面形状をもつ検査対象物上の多点における超音波振動を取得することができる超音波解析システムを提供することを目的とする。   Therefore, an object of the present invention is to provide an ultrasonic analysis system that can acquire ultrasonic vibrations at multiple points on an inspection object having a complicated surface shape.

本発明に係る超音波解析システムは、曲面を含む表面を有する検査対象物の超音波解析を行う超音波解析システムにおいて、検査対象物に検査用超音波を発信する超音波探触子と、検査対象物の表面上の測定スポットにレーザ光を照射するレーザ投受光部を有し、当該測定スポットにおける検査用超音波による振動を測定するレーザ振動計と、レーザ投受光部を移動させるロボットアームと、レーザ投受光部からのレーザ光が検査対象物の表面に垂直に入射する位置関係を維持しながら検査対象物の表面に沿ってレーザ投受光部を移動させるようにロボットアームを制御する制御部と、を備えたことを特徴とする。   An ultrasonic analysis system according to the present invention is an ultrasonic analysis system that performs ultrasonic analysis of an inspection object having a surface including a curved surface, an ultrasonic probe that transmits ultrasonic waves for inspection to the inspection object, and an inspection A laser vibrometer that irradiates a measurement spot on the surface of the object with a laser beam, a laser vibrometer that measures the vibration caused by the inspection ultrasonic waves at the measurement spot, and a robot arm that moves the laser projecting and receiving unit; A control unit that controls the robot arm to move the laser light projecting and receiving unit along the surface of the inspection object while maintaining a positional relationship in which the laser light from the laser projecting and receiving unit is perpendicularly incident on the surface of the inspection object And.

この超音波解析システムにおいては、超音波探触子から検査対象物に検査用超音波が入射され、この検査用超音波による検査対象物表面の測定スポットの振動が、レーザ振動計により測定される。このレーザ振動計のレーザ投受光部は、ロボットアームの駆動によって移動するので、制御部にロボットアームの動作をプログラミングすることで、レーザ投受光部を複雑な軌道で正確に移動させることが可能になる。従って、検査対象物の表面が複雑な曲面を含む場合であっても、その検査対象物の表面に沿ってレーザ投受光部を正確に移動させ、測定スポットに垂直にレーザ光を照射させながら表面を非接触状態で走査することができる。また、このシステムでは、検査対象物表面の振動をレーザ振動計によって測定するので、レーザ投受光部からのレーザ光のスポット径を小さくすることで、曲率半径が小さい曲面においても、曲面上の各スポットの振動を正確に測定することができる。その結果、検査対象物が複雑な形状をなす場合にも、表面上の多点における超音波振動を取得することができる。   In this ultrasonic analysis system, ultrasonic waves for inspection are incident on an inspection object from an ultrasonic probe, and the vibration of a measurement spot on the surface of the inspection object due to the ultrasonic waves for inspection is measured by a laser vibrometer. . The laser projector / receiver of this laser vibrometer is moved by driving the robot arm, so it is possible to accurately move the laser projector / receiver along a complicated trajectory by programming the operation of the robot arm in the controller. Become. Therefore, even when the surface of the inspection object includes a complicated curved surface, the laser light projecting / receiving unit is accurately moved along the surface of the inspection object, and the surface is irradiated with the laser beam perpendicularly to the measurement spot. Can be scanned in a non-contact state. In this system, since the vibration of the surface of the inspection object is measured by a laser vibrometer, the spot diameter of the laser light from the laser light projecting / receiving unit is reduced, so that each surface on the curved surface has a small curvature radius. Spot vibrations can be measured accurately. As a result, even when the inspection object has a complicated shape, ultrasonic vibrations at multiple points on the surface can be acquired.

本発明の超音波解析システムによれば、複雑な表面形状をもつ検査対象物上の多点における超音波振動を取得することができる。   According to the ultrasonic analysis system of the present invention, it is possible to acquire ultrasonic vibrations at multiple points on an inspection object having a complicated surface shape.

以下、図面を参照しつつ本発明に係る超音波解析システムの好適な一実施形態について詳細に説明する。   Hereinafter, a preferred embodiment of an ultrasonic analysis system according to the present invention will be described in detail with reference to the drawings.

図1に示す超音波解析システム1は、鉄道レール3を検査対象物として超音波解析を行い、レール3の損傷評価等の材料評価を行うためのシステムである。超音波解析システム1は、検査用超音波を発信する超音波探触子5と、その検査用超音波によるレール3表面の超音波振動を測定するレーザドップラー振動計7とを備えている。   An ultrasonic analysis system 1 shown in FIG. 1 is a system for performing ultrasonic analysis using a railroad rail 3 as an inspection object and performing material evaluation such as damage evaluation of the rail 3. The ultrasonic analysis system 1 includes an ultrasonic probe 5 that transmits ultrasonic waves for inspection, and a laser Doppler vibrometer 7 that measures ultrasonic vibrations on the surface of the rail 3 due to the ultrasonic waves for inspection.

上記超音波探触子5は、レール3の表面に密着して設置され、信号発生器9及び信号増幅器11を経て入力された信号に基づく検査用超音波を発生させ、レール3に入射する。更に、レール3の他の位置における表面付近には、振動計7のレーザ投受光部7aが非接触で配置される。そして、上記検査用超音波によってレール3の表面に発生した超音波振動が、上記レーザ投受光部7aにより検出される。検出された超音波振動の情報は、電気信号に変換され、振動計7の本体7bからAD変換器15を経由して、オシロスコープ機能を有するコンピュータ17に入力され、コンピュータ17では上記振動の情報が表示/記録される。   The ultrasonic probe 5 is installed in close contact with the surface of the rail 3, generates ultrasonic waves for inspection based on signals input through the signal generator 9 and the signal amplifier 11, and enters the rail 3. Further, a laser light projecting / receiving unit 7a of the vibrometer 7 is disposed in a non-contact manner near the surface at another position of the rail 3. And the ultrasonic vibration which generate | occur | produced on the surface of the rail 3 with the said ultrasonic wave for an inspection is detected by the said laser projector / receiver part 7a. The detected ultrasonic vibration information is converted into an electrical signal, which is input from the main body 7b of the vibrometer 7 via the AD converter 15 to the computer 17 having an oscilloscope function. Displayed / recorded.

この振動計7のレーザ投受光部7aは、レーザ干渉計を構成しており、非接触状態でレール3表面にスポット径約20μmのレーザ光を投光し、その表面からの反射レーザ光を受光する。そして、振動計7では、レーザ投受光部7aで投受光した上記レーザ光の干渉に基づいて超音波振動が検出される。このレーザ投受光部7aは、6軸制御のロボットアーム19の先端19aに取り付けられている。このロボットアーム19は、上記コンピュータ(制御部)17で実行される制御プログラムに従って動作し、レーザ投受光部7aの3次元的な位置及び姿勢を制御する。このような制御により、レーザ投受光部7aを±0.02mmの精度で3次元的に位置決めすると共に、レーザ投受光部7aのレーザ光の照射方向を3次元的に調整して所望の位置及び方向からレール3にレーザ光を入射させることができる。   The laser projecting / receiving unit 7a of the vibrometer 7 constitutes a laser interferometer, which projects a laser beam having a spot diameter of about 20 μm on the surface of the rail 3 in a non-contact state and receives a reflected laser beam from the surface. To do. The vibrometer 7 detects ultrasonic vibration based on the interference of the laser light projected and received by the laser projecting / receiving unit 7a. The laser light projecting / receiving unit 7a is attached to a tip 19a of a 6-axis control robot arm 19. The robot arm 19 operates according to a control program executed by the computer (control unit) 17 and controls the three-dimensional position and posture of the laser light projecting / receiving unit 7a. By such control, the laser projector / receiver 7a is three-dimensionally positioned with an accuracy of ± 0.02 mm, and the laser beam irradiation direction of the laser projector / receiver 7a is three-dimensionally adjusted to obtain a desired position and Laser light can be incident on the rail 3 from the direction.

超音波探触子5から検査用超音波が発信されている状態において、コンピュータ13の上記制御プログラムが実行されると、図2に示すように、レーザ投受光部7aは、照射するレーザ光がレール3表面上の各点で常に垂直に入射するように姿勢を変えながら、レール3の表面に沿った軌道上を移動する。そして、レール3表面上には、予め多数の受信点P(P1,P2,…,Pm,…,Pn)が設定されており、レーザ投受光部7aは、レール3表面を走査しながら、上記受信点(測定スポット)P1,P2,…,Pm,…,Pnにおける超音波振動を測定する。なお、各受信点P同士の間隔は、超音波探触子5から発信される超音波の波長よりも十分に小さい長さに設定される。   When the above-described control program of the computer 13 is executed in a state where inspection ultrasonic waves are transmitted from the ultrasonic probe 5, as shown in FIG. It moves on a track along the surface of the rail 3 while changing its posture so that it is always perpendicularly incident at each point on the surface of the rail 3. A large number of receiving points P (P1, P2,..., Pm,..., Pn) are set in advance on the surface of the rail 3, and the laser light projecting / receiving unit 7a scans the surface of the rail 3 while scanning the surface. Ultrasonic vibrations at reception points (measurement spots) P1, P2,..., Pm,. The interval between the reception points P is set to a length sufficiently smaller than the wavelength of the ultrasonic wave transmitted from the ultrasonic probe 5.

また、レーザ投受光部7aの移動中、レーザ投受光部7aの先端とレール3表面との間には、約100〜200mmの間隙が維持され、各受信点Pの振動は非接触状態で測定される。この際、ロボットアーム19の駆動とレーザ振動計7による振動の測定とがコンピュータ17によって連動され、測定された各受信点Pの超音波振動の波形の情報が、上述の通りコンピュータ17に表示/記録される。   Further, during the movement of the laser projector / receiver 7a, a gap of about 100 to 200 mm is maintained between the tip of the laser projector / receiver 7a and the surface of the rail 3, and the vibration at each receiving point P is measured in a non-contact state. Is done. At this time, the driving of the robot arm 19 and the vibration measurement by the laser vibrometer 7 are linked by the computer 17, and the information of the measured ultrasonic vibration waveform at each receiving point P is displayed / displayed on the computer 17 as described above. To be recorded.

以上のように、この超音波解析システム1によれば、レーザ投受光部7aがロボットアームの駆動によって移動するので、コンピュータ17にロボットアームの動作をプログラミングすることで、レーザ投受光部7aを複雑な軌道で正確に移動させることが可能である。従って、表面が複雑な曲面を含む鉄道レール3の解析においても、レール3表面に沿ってレーザ投受光部7aを正確に移動させ、このレール3表面の各受信点Pに垂直にレーザ光を照射させながら表面を走査することができる。   As described above, according to the ultrasonic analysis system 1, the laser light projecting / receiving unit 7a is moved by driving the robot arm. Therefore, by programming the operation of the robot arm in the computer 17, the laser projecting / receiving unit 7a is complicated. It is possible to move accurately in a simple trajectory. Therefore, even in the analysis of the railway rail 3 having a complicated curved surface, the laser light projecting / receiving unit 7a is accurately moved along the surface of the rail 3, and the laser beam is irradiated perpendicularly to each receiving point P on the surface of the rail 3. The surface can be scanned while

また、このシステム1では、レール3表面の超音波振動を測定するためにレーザドップラー振動計7を採用しており、レーザ投受光部7aからは、約20μmといった小さなスポット径をもつレーザ光が照射される。従って、例えば、数mm〜数cmサイズをもつ垂直探触子、斜角探触子、焦点形探触子、又はアレイ探触子等が設置不可能であるような曲率半径が小さい曲面においても、レーザ光のスポット径やロボットアーム19の位置決め精度よりも大きい曲率半径の曲面であれば、レーザ光の投受光によって受信点の超音波振動を正確に測定することができる。その結果、複雑な形状をなすレール3にあっても、表面上の多数の受信点P1,P2,…,Pm,…Pnにおける超音波振動を正確に取得することができる。   The system 1 employs a laser Doppler vibrometer 7 for measuring the ultrasonic vibration on the surface of the rail 3, and a laser beam having a small spot diameter of about 20 μm is irradiated from the laser light projecting / receiving unit 7a. Is done. Therefore, for example, even on a curved surface with a small radius of curvature where a vertical probe, an oblique probe, a focal probe, or an array probe having a size of several mm to several cm cannot be installed. If the curved surface has a radius of curvature larger than the spot diameter of the laser beam or the positioning accuracy of the robot arm 19, the ultrasonic vibration of the reception point can be accurately measured by projecting and receiving the laser beam. As a result, even in the rail 3 having a complicated shape, ultrasonic vibrations at a large number of receiving points P1, P2,..., Pm,.

また、従来、超音波解析において曲面をスキャンする手法として、曲面形状に合わせて形成された治具を用いる手法が知られているが、この手法では解析可能な検査対象物の表面形状が限定されてしまう。これに対して、システム1においては、検査対象物の表面形状に応じてロボットアーム19の制御プログラムを変更することで、種々の検査対象物に対応することができる。   Conventionally, as a method for scanning a curved surface in ultrasonic analysis, a method using a jig formed in accordance with the curved surface shape is known. However, this method limits the surface shape of an inspection object that can be analyzed. End up. On the other hand, in the system 1, it is possible to cope with various inspection objects by changing the control program of the robot arm 19 according to the surface shape of the inspection object.

また、このシステム1においては、レール3表面上の多数の受信点Pの各々において、様々な超音波モード(例えば、レール3表面を伝播するレイリー波等)による波形や、レール3内部の損傷3aで反射・散乱された縦波・横波等の波形等の波形が重畳して検出され、コンピュータ17に収集される。従って、コンピュータ17によるソフトウエア的な処理によって、重畳された波形から、音速と伝播距離とが既知である所望の超音波モードの波形を分別・抽出して得ることができる。   Further, in this system 1, at each of a large number of reception points P on the surface of the rail 3, waveforms due to various ultrasonic modes (for example, Rayleigh waves propagating on the surface of the rail 3), damage 3 a inside the rail 3, etc. Waveforms such as longitudinal waves and transverse waves reflected / scattered at are superposed and detected and collected by the computer 17. Therefore, a desired ultrasonic mode waveform whose sound speed and propagation distance are known can be separated and extracted from the superimposed waveform by software processing by the computer 17.

従って、検出しようとする検査対象物の損傷形態や材料特性に応じて、最も効果的な受信形態(例えば、垂直受信、斜角受信、焦点形受信等)に係る超音波モードを分別・抽出し、その受信形態に基づいた検査対象物の超音波解析が可能になる。また、このような多数の受信点Pにおける波形を基にして様々な超音波モードの波形を再現できるので、得られた様々な超音波モードの波形に基づく総合的な判断によってレール3の損傷評価等を行うことができる。   Therefore, the ultrasonic mode related to the most effective reception mode (for example, vertical reception, oblique reception, focal reception, etc.) is classified and extracted according to the damage form and material characteristics of the inspection object to be detected. The ultrasonic analysis of the inspection object based on the reception form becomes possible. Further, since the waveforms of various ultrasonic modes can be reproduced based on the waveforms at such a large number of reception points P, the damage evaluation of the rail 3 can be performed by comprehensive judgment based on the waveforms of the various ultrasonic modes obtained. Etc. can be performed.

また、従来であれば、超音波振動を検出するための超音波探触子を、解析に用いようとする超音波モードごとに取り替える必要があったが、上記システム1では、斜角探触子法、フェイズドアレイ法等に対応するガイド波のモード抽出をソフトウエア処理により再現することが可能になるので、超音波振動の受信に係る超音波探触子を、超音波解析に用いようとする超音波モードごとに取り替える必要がなくなる。   Further, conventionally, it has been necessary to replace the ultrasonic probe for detecting ultrasonic vibration for each ultrasonic mode to be used for analysis. However, in the system 1, the oblique probe is used. Mode extraction of the guided wave corresponding to the method, phased array method, etc. can be reproduced by software processing, so the ultrasonic probe related to the reception of ultrasonic vibration will be used for ultrasonic analysis There is no need to replace each ultrasonic mode.

本発明は、上述した実施形態に限定されるものではない。例えば、上記超音波解析システム1は、レール3の解析に限らず、複雑な形状をもつ条鋼材(L形鋼、C形鋼等)又はパイプの超音波解析にも適用できる。   The present invention is not limited to the embodiment described above. For example, the ultrasonic analysis system 1 can be applied not only to the analysis of the rail 3 but also to the ultrasonic analysis of a strip steel material (L-shaped steel, C-shaped steel, etc.) having a complicated shape or a pipe.

本発明に係る超音波解析システムの一実施形態を示す図である。1 is a diagram showing an embodiment of an ultrasonic analysis system according to the present invention. レールの受信点付近における断面図である。It is sectional drawing in the receiving point vicinity of a rail.

符号の説明Explanation of symbols

1…超音波解析システム、3…鉄道レール(検査対象物)、5…超音波探触子、7…レーザ振動計、7a…レーザ投受光部、17…コンピュータ(制御部)、19…ロボットアーム、P…受信点(測定スポット)。   DESCRIPTION OF SYMBOLS 1 ... Ultrasonic analysis system, 3 ... Railway rail (inspection object), 5 ... Ultrasonic probe, 7 ... Laser vibrometer, 7a ... Laser projector / receiver, 17 ... Computer (control part), 19 ... Robot arm , P: Reception point (measurement spot).

Claims (1)

曲面を含む表面を有する検査対象物の超音波解析を行う超音波解析システムにおいて、
前記検査対象物に検査用超音波を発信する超音波探触子と、
前記検査対象物の前記表面上の測定スポットにレーザ光を照射するレーザ投受光部を有し、当該測定スポットにおける前記検査用超音波による振動を測定するレーザ振動計と、
前記レーザ投受光部を移動させるロボットアームと、
前記レーザ投受光部からの前記レーザ光が前記検査対象物の前記表面に垂直に入射する位置関係を維持しながら前記検査対象物の前記表面に沿って前記レーザ投受光部を移動させるように前記ロボットアームを制御する制御部と、を備えたことを特徴とする超音波解析システム。
In an ultrasonic analysis system for performing ultrasonic analysis of an inspection object having a curved surface,
An ultrasonic probe for transmitting ultrasonic waves for inspection to the inspection object;
A laser vibrometer that irradiates a laser beam to a measurement spot on the surface of the inspection object, and measures a vibration due to the ultrasonic wave for inspection at the measurement spot; and
A robot arm that moves the laser light projecting and receiving unit;
The laser light projecting and receiving unit is moved along the surface of the inspection object while maintaining a positional relationship in which the laser light from the laser light projecting and receiving unit is perpendicularly incident on the surface of the inspection object. An ultrasonic analysis system comprising: a control unit that controls a robot arm.
JP2006232559A 2006-08-29 2006-08-29 Ultrasonic analysis system Pending JP2008058029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006232559A JP2008058029A (en) 2006-08-29 2006-08-29 Ultrasonic analysis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006232559A JP2008058029A (en) 2006-08-29 2006-08-29 Ultrasonic analysis system

Publications (1)

Publication Number Publication Date
JP2008058029A true JP2008058029A (en) 2008-03-13

Family

ID=39240953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006232559A Pending JP2008058029A (en) 2006-08-29 2006-08-29 Ultrasonic analysis system

Country Status (1)

Country Link
JP (1) JP2008058029A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236808A (en) * 2008-03-28 2009-10-15 Railway Technical Res Inst Rail flaw inspection method and apparatus
JP2012063325A (en) * 2010-09-17 2012-03-29 Toshiba Corp Laser ultrasonic inspection device and laser ultrasonic inspection method
KR101281582B1 (en) * 2010-11-12 2013-07-03 한국과학기술원 Noncontact imaging method for nondestructive testing
KR20200017066A (en) * 2018-08-08 2020-02-18 전북대학교산학협력단 Device for flaw visualization of the 3d structures based on fully non-contact laser ultrasonic wave imaging process and the method for the same
WO2020241092A1 (en) * 2019-05-30 2020-12-03 株式会社島津製作所 Method and device for inspecting tubular body joint
CN115014164A (en) * 2022-08-09 2022-09-06 山东牧马人测绘技术有限公司 Irregular object length measuring device and measuring method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236808A (en) * 2008-03-28 2009-10-15 Railway Technical Res Inst Rail flaw inspection method and apparatus
JP2012063325A (en) * 2010-09-17 2012-03-29 Toshiba Corp Laser ultrasonic inspection device and laser ultrasonic inspection method
KR101281582B1 (en) * 2010-11-12 2013-07-03 한국과학기술원 Noncontact imaging method for nondestructive testing
KR20200017066A (en) * 2018-08-08 2020-02-18 전북대학교산학협력단 Device for flaw visualization of the 3d structures based on fully non-contact laser ultrasonic wave imaging process and the method for the same
KR102104124B1 (en) 2018-08-08 2020-04-23 전북대학교산학협력단 Device for flaw visualization of the 3d structures based on fully non-contact laser ultrasonic wave imaging process and the method for the same
WO2020241092A1 (en) * 2019-05-30 2020-12-03 株式会社島津製作所 Method and device for inspecting tubular body joint
CN115014164A (en) * 2022-08-09 2022-09-06 山东牧马人测绘技术有限公司 Irregular object length measuring device and measuring method thereof

Similar Documents

Publication Publication Date Title
CN101852774B (en) Flaw detection system and flaw detection method
JP4634336B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP2008058029A (en) Ultrasonic analysis system
CN110779990B (en) Laser ultrasonic three-dimensional positioning quantitative detection method for multiple defects in material
JP2007046913A (en) Welded structure flaw detection testing method, and steel welded structure flaw detector
WO2012008144A1 (en) Ultrasonic flaw detecting apparatus and ultrasonic flaw detecting method
US10197535B2 (en) Apparatus and method for full-field pulse-echo laser ultrasonic propagation imaging
JP5058109B2 (en) Method and apparatus for measuring longitudinal and transverse sound velocities in materials by laser ultrasonic method
JP4912806B2 (en) Evaluation method for laser spot welds
KR101698746B1 (en) Phased Array Ultrasonic Testing Device And Testing Method Using Thereof
JP4600335B2 (en) Ultrasonic inspection method and apparatus
JP2013092468A (en) Flaw detection method and flaw detection device for weld zone using tofd method
JP2006200970A (en) Laser ultrasonic flaw detection method and laser ultrasonic flaw detector
JP4360175B2 (en) Ultrasonic transmission / reception array sensor, ultrasonic flaw detector, and ultrasonic flaw detection method therefor
JP6249763B2 (en) Ultrasonic flaw detection system and control method of ultrasonic flaw detection system
US20220283125A1 (en) Ultrasonic Inspection System and Ultrasonic Inspection Method
JP4559931B2 (en) Ultrasonic flaw detection method
JP2010071884A (en) Method and device for measuring acoustic velocity of longitudinal wave and transverse wave in material by laser ultrasonic method
KR101057586B1 (en) Apparatus for imaging anomalous ultrasonic wave propagation
JP4870516B2 (en) Piping inspection method and piping inspection support device
JP2017101963A (en) Internal defect inspection device and method
JP5235028B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP4038463B2 (en) Ultrasonic flaw detection image display method and apparatus
JP6173636B1 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
JP2022000609A (en) Ultrasonic inspection device and ultrasonic inspection method