JP2008057394A - Rotary compressor and refrigerant cycle device - Google Patents

Rotary compressor and refrigerant cycle device Download PDF

Info

Publication number
JP2008057394A
JP2008057394A JP2006234022A JP2006234022A JP2008057394A JP 2008057394 A JP2008057394 A JP 2008057394A JP 2006234022 A JP2006234022 A JP 2006234022A JP 2006234022 A JP2006234022 A JP 2006234022A JP 2008057394 A JP2008057394 A JP 2008057394A
Authority
JP
Japan
Prior art keywords
shaft
bearing member
rotary compressor
bearing
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006234022A
Other languages
Japanese (ja)
Inventor
Takuya Hirayama
卓也 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2006234022A priority Critical patent/JP2008057394A/en
Publication of JP2008057394A publication Critical patent/JP2008057394A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce sliding loss by making an eccentric part small and using a rolling bearing on a shaft having smaller diameter. <P>SOLUTION: The rotary compressor 100 is provided with an electric motor part 120 arranged at an upper part in a hermetic case 110, a compression mechanism part 130 arranged at a lower part of the electric motor part 120, and a shaft 140 connecting the electric motor part 120 and the compression mechanism part 130. The shaft 140 is fixed on the electric motor part 120, is concentric with a main shaft part 141 supported by a first bearing member 132, the eccentric part 142 arranged in the compression chamber provided at a tip of the main shaft part 141, and the main shaft part 141 provided on the eccentric part 142, is formed in a small diameter than diameter of the main shaft part 141, and is formed with an auxiliary shaft part 143 supported by a second bearing member 133. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、空気調和機等に用いられる回転圧縮機及び冷凍サイクルに関し、特に摺動損失の低減に関する。   The present invention relates to a rotary compressor and a refrigeration cycle used for an air conditioner and the like, and more particularly to reduction of sliding loss.

空気調和機等の冷凍サイクル装置には、例えば回転圧縮機が用いられている。このような回転圧縮機では、小型化を図るための様々な工夫がなされている。例えば、偏心部を小型化させ、偏心部を有するシャフトを複数箇所で転がり軸受により支持し、さらに、シャフトの偏心部を挟んでもう一方のシャフトを、回転軸上からカムの軸方向に偏心させるものが知られている(例えば特許文献1参照)。   For example, a rotary compressor is used in a refrigeration cycle apparatus such as an air conditioner. In such a rotary compressor, various devices for reducing the size are made. For example, the eccentric part is reduced in size, the shaft having the eccentric part is supported by rolling bearings at a plurality of locations, and the other shaft is eccentric from the rotation axis in the axial direction of the cam with the eccentric part of the shaft interposed therebetween. Those are known (for example, see Patent Document 1).

また、シリンダの電動機部側と、この電動機部側とはシリンダを挟んで逆の位置とに設けた2箇所のすべり軸受により、シャフトを支持することにより振動や騒音の発生を防止するとともに、さらには小型化するよう形成されている回転圧縮機もある(例えば特許文献2参照)。
特開平5−256283号公報 特開2001−323886号公報
In addition, the shaft portion is supported by two plain bearings provided on the motor part side of the cylinder and on the opposite side of the motor part side from the motor part side, thereby preventing generation of vibration and noise. There is also a rotary compressor formed so as to be miniaturized (see, for example, Patent Document 2).
JP-A-5-256283 JP 2001-323886 A

上述した回転圧縮機では、次のような問題があった。すなわち、シャフトの偏心部の径を大きくすると、摺動面が大きくなるため摺動損失が大きくなってしまう。しかし、偏心部を小さくするには、偏心部にそれぞれ接続されているシャフトのうちどちらか一方のシャフト軸径を小さくしなければならない。しかし、シャフト軸径を小さくするためにシャフトを偏心させると、部品点数や軸受の増加等につながる。また、シャフト軸径が小さくなると、すべり軸受では信頼性が低下してしまう。さらに、シャフトにすべり軸受のみを使用すると、損失が大きくなってしまう。このようなことから、偏心部を小さくすると、摺動損失、コスト・製造工程の増大及び圧縮機の大型化等の問題があった。   The above rotary compressor has the following problems. That is, when the diameter of the eccentric portion of the shaft is increased, the sliding surface is increased, and the sliding loss is increased. However, in order to reduce the eccentric part, one of the shaft shaft diameters connected to the eccentric part must be reduced. However, if the shaft is decentered to reduce the shaft diameter, the number of parts and the number of bearings will increase. Further, when the shaft shaft diameter is reduced, the reliability of the slide bearing is lowered. Furthermore, if only a plain bearing is used for the shaft, the loss increases. For this reason, when the eccentric portion is made small, there are problems such as sliding loss, an increase in cost and manufacturing process, and an increase in size of the compressor.

そこで本発明は、偏心部を小さくすることで小型化をはかり、かつ、軸における摺動損失を低減させることが可能な回転圧縮機及び冷凍サイクル装置を提供することを目的としている。   Accordingly, an object of the present invention is to provide a rotary compressor and a refrigeration cycle apparatus that can be downsized by reducing an eccentric portion and can reduce sliding loss in a shaft.

前記課題を解決し目的を達成するために、本発明の回転圧縮機及び冷凍サイクル装置は次のように構成されている。   In order to solve the problems and achieve the object, the rotary compressor and the refrigeration cycle apparatus of the present invention are configured as follows.

密閉ケースと、この密閉ケース内に設けられた電動機部と、シリンダ室を形成するシリンダと、上記電動機部に連結されるとともに、上記シリンダ室を貫通し、第1軸受部材により軸支される主軸部、第2軸受部材により軸支される副軸部及び上記シリンダ室内に位置する偏心部とを有するシャフトと、このシャフトの上記偏心部に係合されたローラとを備えた回転圧縮機において、上記シャフトの主軸部及び副軸部の一方を他方より小径に形成するとともに、上記シャフトの軸径が大きい一方の軸部を軸支する第1又は第2の軸受部材をすべり軸受で形成するとともに、軸径が小さい他方の軸部を軸支する第1又は第2の軸受部材に転がり軸受を設けたことを特徴とする。   A sealed case, a motor part provided in the sealed case, a cylinder forming a cylinder chamber, a main shaft coupled to the motor part and penetrating the cylinder chamber and pivotally supported by a first bearing member A rotary compressor including a shaft having a shaft portion, a countershaft portion supported by a second bearing member, and an eccentric portion located in the cylinder chamber, and a roller engaged with the eccentric portion of the shaft. One of the main shaft portion and the sub shaft portion of the shaft is formed to have a smaller diameter than the other, and the first or second bearing member that pivotally supports one shaft portion having the larger shaft diameter is formed by a slide bearing. A rolling bearing is provided on the first or second bearing member that pivotally supports the other shaft portion having a small shaft diameter.

上記回転圧縮機と、上記回転圧縮機に接続された凝縮器と、上記凝縮器に接続された膨張装置と、上記膨張装置に接続された蒸発器とを備えていることを特徴とする。   The rotary compressor, a condenser connected to the rotary compressor, an expansion device connected to the condenser, and an evaporator connected to the expansion device.

本発明によれば、偏心部を小さくすることで小型化をはかり、かつ、軸における摺動損失を低減させることが可能となる。   According to the present invention, it is possible to reduce the size by reducing the eccentric portion and to reduce the sliding loss in the shaft.

図1は本発明の第1の実施の形態に係る冷凍サイクル装置1の構成及びこの冷凍サイクル1に組込まれた回転圧縮機100を示す断面図、図2は同回転圧縮機100の圧縮機構部130を示す断面図である。   FIG. 1 is a cross-sectional view showing a configuration of a refrigeration cycle apparatus 1 according to a first embodiment of the present invention and a rotary compressor 100 incorporated in the refrigeration cycle 1, and FIG. 2 is a compression mechanism portion of the rotary compressor 100. FIG.

図1に示すように、冷凍サイクル装置1は、回転圧縮機100と、回転圧縮機100の吐出口101に接続された凝縮器200と、凝縮器200に接続された膨張装置300と、膨張装置300に接続された蒸発器400と、蒸発器400に接続されたアキュムレータ500とが順次連結されて構成されている。   As shown in FIG. 1, the refrigeration cycle apparatus 1 includes a rotary compressor 100, a condenser 200 connected to the discharge port 101 of the rotary compressor 100, an expansion device 300 connected to the condenser 200, and an expansion device. An evaporator 400 connected to 300 and an accumulator 500 connected to the evaporator 400 are sequentially connected.

回転圧縮機100は、密閉ケース110内の上部に配置された電動機部120と、電動機部120の下部に配置された圧縮機構部130と、電動機部120と圧縮機構部130とを連結させるシャフト140とを有している。密閉ケース110は、密閉ケース110を密閉するための上蓋110aを備えている。   The rotary compressor 100 includes an electric motor unit 120 disposed in an upper portion of the sealed case 110, a compression mechanism unit 130 disposed in a lower part of the electric motor unit 120, and a shaft 140 that connects the electric motor unit 120 and the compression mechanism unit 130. And have. The sealing case 110 includes an upper lid 110 a for sealing the sealing case 110.

電動機部120は、シャフト140に固定された回転子121と、密閉ケース110に固定された固定子122とを有しており、回転子121は永久磁石を有するとともに、固定子122は例えばコイルが集中巻方式により巻かれて形成されている。また、電動機部120は、運転周波数を可変するインバータ装置や商用電源等に接続されている。   The electric motor unit 120 includes a rotor 121 fixed to the shaft 140 and a stator 122 fixed to the hermetic case 110. The rotor 121 includes a permanent magnet, and the stator 122 includes, for example, a coil. It is formed by winding with a concentrated winding method. In addition, the motor unit 120 is connected to an inverter device, a commercial power source, or the like that varies the operating frequency.

圧縮機構部130は、圧縮室(シリンダ室)を形成し、例えば密閉ケース110に圧入され溶接により固定されたシリンダ131と、シリンダ131の上端面に設けられた第1軸受部材132と、第1軸受部材132に対向するシリンダ131の下端面に設けられた第2軸受部材133と、シャフト140に設けられ圧縮室内に配置された偏心部142と、偏心部142の外周面に設けられたローラ134と、シリンダ131に設けられ例えばスプリング135と密閉ケース110内の高圧冷媒とにより背圧を背面に受け、ローラ134の外周面に接触するベーン136とを備えている。   The compression mechanism unit 130 forms a compression chamber (cylinder chamber). For example, the cylinder 131 press-fitted into the sealed case 110 and fixed by welding, the first bearing member 132 provided on the upper end surface of the cylinder 131, and the first A second bearing member 133 provided on the lower end surface of the cylinder 131 facing the bearing member 132, an eccentric portion 142 provided on the shaft 140 and disposed in the compression chamber, and a roller 134 provided on the outer peripheral surface of the eccentric portion 142. And a vane 136 that is provided in the cylinder 131 and receives a back pressure on the back surface by, for example, a spring 135 and a high-pressure refrigerant in the sealed case 110 and contacts the outer peripheral surface of the roller 134.

シャフト140は、電動機部120に固定され、第1軸受部材132に支持された主軸部141と、主軸部141の先端に設けられ圧縮室内に配置された偏心部142と、偏心部142に設けられ主軸部141と同心軸上であり、主軸部141の径より小さい径に形成され、第2軸受部材133により支持された副軸部143とを有している。また、シャフト140はシリンダ131、第1軸受部材132及び第2軸受部材133を貫通している。   The shaft 140 is fixed to the motor unit 120 and is supported by the first bearing member 132, the eccentric part 142 provided at the tip of the main shaft part 141 and disposed in the compression chamber, and the eccentric part 142. The main shaft portion 141 is concentric with the main shaft portion 141 and has a diameter smaller than that of the main shaft portion 141 and is supported by the second bearing member 133. The shaft 140 passes through the cylinder 131, the first bearing member 132, and the second bearing member 133.

第1軸受部材132は圧縮室で圧縮した冷媒を吐出する吐出孔137を有しており、この吐出孔137を覆うバルブカバー160が設けられている。また、第1軸受部材132の、シャフト140の主軸部141と接触する部位はすべり軸受となっており、このすべり軸受でシャフト140を支持することになる。さらに、第1軸受部材132のローラ134が摺動する面には、大きな面圧が発生しないように圧力溝138が設けられている。   The first bearing member 132 has a discharge hole 137 for discharging the refrigerant compressed in the compression chamber, and a valve cover 160 that covers the discharge hole 137 is provided. Moreover, the site | part which contacts the main-shaft part 141 of the shaft 140 of the 1st bearing member 132 becomes a slide bearing, and the shaft 140 is supported by this slide bearing. Further, a pressure groove 138 is provided on the surface of the first bearing member 132 on which the roller 134 slides so as not to generate a large surface pressure.

第2軸受部材133はシャフト140の副軸部143を支持する転がり軸受161を有しており、第2軸受部材133の圧縮室に接する面に、内径が転がり軸受161の外輪外形よりも小さく、かつ、内輪外径よりも大きい貫通孔139を有している。バルブカバー160と、第1軸受部材132と、シリンダ131と、第2軸受部材133とはボルト162により結合されている。   The second bearing member 133 has a rolling bearing 161 that supports the countershaft portion 143 of the shaft 140, and the inner diameter of the second bearing member 133 is smaller than the outer ring outer shape of the rolling bearing 161 on the surface in contact with the compression chamber. And it has the through-hole 139 larger than an inner ring outer diameter. The valve cover 160, the first bearing member 132, the cylinder 131, and the second bearing member 133 are coupled by a bolt 162.

このように構成された冷凍サイクル装置1では、まず回転圧縮機100の電動機部120に外部エネルギ(例えば商用電源等)を供給することにより回転子121が回転し、回転子121に固着されたシャフト140が回転する。このとき、シャフト140の主軸部141では回転、偏心部142では偏心回転、副軸部143では回転となる。偏心部142に設けられたローラ134は偏心部142と同様にシリンダ131内の圧縮室内を偏心回転する。このとき、ローラ134にベーン136が接触しているため、圧縮室は2分断されており、アキュムレータ500からの冷媒は、ローラ134が偏心回転することにより圧縮される。   In the refrigeration cycle apparatus 1 configured as described above, first, the rotor 121 rotates by supplying external energy (for example, commercial power supply) to the motor unit 120 of the rotary compressor 100, and the shaft fixed to the rotor 121. 140 rotates. At this time, the main shaft portion 141 of the shaft 140 rotates, the eccentric portion 142 rotates eccentrically, and the auxiliary shaft portion 143 rotates. The roller 134 provided in the eccentric portion 142 rotates eccentrically in the compression chamber in the cylinder 131 as with the eccentric portion 142. At this time, since the vane 136 is in contact with the roller 134, the compression chamber is divided into two, and the refrigerant from the accumulator 500 is compressed by the roller 134 rotating eccentrically.

圧縮された冷媒は、吐出孔137からバルブカバー160を介して密閉ケース110内へと通り、密閉ケース110に設けられた吐出口101から凝縮器200、膨張装置300及び蒸発器400を順次通過し、アキュムレータ500を介して回転圧縮機100へと戻る。   The compressed refrigerant passes from the discharge hole 137 through the valve cover 160 into the sealed case 110, and sequentially passes through the condenser 200, the expansion device 300, and the evaporator 400 from the discharge port 101 provided in the sealed case 110. Return to the rotary compressor 100 via the accumulator 500.

上述したように、本実施の形態に係る冷凍サイクル装置1によれば、回転圧縮機100に設けられたシャフト140の副軸部143の径を主軸部141の径よりも小さくすることにより、偏心部142の径を小さくすることができる。これは、偏心部142の径Dcは、偏心e及びシャフト軸径Dsとの関係からD≧2e+Dsで表されるため、副軸部143の径を小さくすることで、偏心部142の径を小さくしても成り立つためである。   As described above, according to the refrigeration cycle apparatus 1 according to the present embodiment, by making the diameter of the auxiliary shaft portion 143 of the shaft 140 provided in the rotary compressor 100 smaller than the diameter of the main shaft portion 141, eccentricity is achieved. The diameter of the part 142 can be reduced. This is because the diameter Dc of the eccentric portion 142 is expressed by D ≧ 2e + Ds from the relationship between the eccentricity e and the shaft shaft diameter Ds, so that the diameter of the eccentric portion 142 is reduced by reducing the diameter of the auxiliary shaft portion 143. This is because it holds.

このように、偏心部142を小さくすることにより、ローラ134径を小さくすることができるため、摺動面積が小さくなり、摺動損失を低減させることができる。また、シャフト140の径(本実施の形態では副軸部143の径)を小さくしても、副軸部143にすべり軸受より信頼性の高い転がり軸受161を用いることにより、シャフト140径の細小化による信頼性の低下を防ぐこともできる。これにより、回転圧縮機1を、小型化及び軽量化することができる。   Thus, since the diameter of the roller 134 can be reduced by reducing the eccentric portion 142, the sliding area can be reduced and the sliding loss can be reduced. Further, even if the diameter of the shaft 140 (in this embodiment, the diameter of the auxiliary shaft portion 143) is reduced, the diameter of the shaft 140 can be reduced by using the rolling bearing 161 that is more reliable than the slide bearing for the auxiliary shaft portion 143. It is also possible to prevent a decrease in reliability due to conversion. Thereby, the rotary compressor 1 can be reduced in size and weight.

さらに、第1軸受部材132に圧力溝138を設けることにより、ローラ134の摺動面に対して、第1軸受部材132の圧力溝138と第2軸受部材133の貫通溝139とから軸方向(偏心部142に向かう方向)に圧力が加わり、ローラ134摺動面に加わる圧力の差を低減させることができる。このため、ローラ134を軸方向のどちらか一方に押し付ける圧力が低減するので、ローラ134の押し付けによる摺動損失の低減が可能となる。   Further, by providing the first bearing member 132 with the pressure groove 138, the axial direction (from the pressure groove 138 of the first bearing member 132 and the through groove 139 of the second bearing member 133 to the sliding surface of the roller 134 ( Pressure is applied in the direction toward the eccentric portion 142), and the difference in pressure applied to the sliding surface of the roller 134 can be reduced. For this reason, since the pressure which presses the roller 134 to either one of the axial directions is reduced, it is possible to reduce the sliding loss due to the pressing of the roller 134.

また、第2軸受部材133に内径が転がり軸受161の外輪外形よりも小さく、内輪外径よりも大きい貫通孔139を設けることにより、第2軸受部材133とローラ134との摺動間におけるシール幅(タイト幅)を容易に確保することができるため冷媒の漏れの低減となる。さらに、貫通孔139を設けると、転がり軸受の大径化や回転軸偏心部の偏心量の増大等をすることができるため、効率、信頼性及び設計自由度等の設計範囲を広めることができる。また、第2軸受部材133と転がり軸受161内輪の摺動干渉が発生せず、転がり軸受161への潤滑油の流入・流出が容易でもあるため、摺動損失の低減、効率の向上及び軸受の信頼性の向上をさせることができる。   Further, by providing the second bearing member 133 with a through hole 139 having an inner diameter smaller than the outer ring outer diameter of the rolling bearing 161 and larger than the outer diameter of the inner ring, the seal width between the sliding of the second bearing member 133 and the roller 134 is provided. Since (tight width) can be easily secured, the leakage of the refrigerant is reduced. Furthermore, when the through-hole 139 is provided, the diameter of the rolling bearing can be increased and the amount of eccentricity of the rotating shaft eccentric portion can be increased. Therefore, the design range such as efficiency, reliability, and design freedom can be widened. . In addition, sliding interference between the second bearing member 133 and the inner ring of the rolling bearing 161 does not occur, and it is easy for the lubricating oil to flow into and out of the rolling bearing 161, thereby reducing sliding loss, improving efficiency, Reliability can be improved.

さらに、吐出孔137を、転がり軸受161を有する第2軸受部材133ではなく、第1軸受部材132に設けることにより、転がり軸受161と吐出孔137との干渉がないため、転がり軸受161と吐出孔137との設計では自由度が増し、設計上での最適化が容易にできる。   Further, since the discharge hole 137 is provided not in the second bearing member 133 having the rolling bearing 161 but in the first bearing member 132, there is no interference between the rolling bearing 161 and the discharge hole 137. In the design with 137, the degree of freedom increases, and optimization in design can be easily performed.

図3は本実施の形態の第1の変形例に係る圧縮機構部130Aを示す断面図である。なお、図3において図1、2と同一機能部分には同一符号を付し、その詳細な説明は省略する。   FIG. 3 is a cross-sectional view showing a compression mechanism portion 130A according to a first modification of the present embodiment. 3, the same functional parts as those in FIGS. 1 and 2 are denoted by the same reference numerals, and detailed description thereof is omitted.

図3に示すように、第2軸受部材133は、副軸部143を支持する転がり軸受161を有しており、第2軸受部材133の圧縮室に接する面に、内径が転がり軸受161の内輪外径よりも小さい貫通孔139aを有し、貫通孔139aと転がり軸受161との間に外輪外形よりも小さく、かつ、内輪外形よりも大きい逃げ溝139bを設けている。   As shown in FIG. 3, the second bearing member 133 has a rolling bearing 161 that supports the countershaft portion 143, and an inner diameter of the second bearing member 133 is in contact with the compression chamber of the inner shaft of the rolling bearing 161. A through hole 139a smaller than the outer diameter is provided, and a clearance groove 139b smaller than the outer ring outer shape and larger than the inner ring outer shape is provided between the through hole 139a and the rolling bearing 161.

第2軸受部材133に貫通孔139aと逃げ溝139bを設けることにより、第2軸受部材133とローラ134の摺動間におけるシール幅(タイト幅)をより確保することができるため、冷媒の漏れのさらなる低減となる。また、転がり軸受の大径化や回転軸偏心部の偏心量の向上等が可能となるため、効率、信頼性及び設計自由度等の設計範囲を広めることができる。さらに、第2軸受部材133と転がり軸受161内輪の摺動干渉が発生せず、転がり軸受161への潤滑油の流入・流出が容易でもあるため、摺動損失の低減、効率の向上及び軸受の信頼性の向上をさせることができる。   By providing the through hole 139a and the relief groove 139b in the second bearing member 133, a seal width (tight width) between the sliding of the second bearing member 133 and the roller 134 can be further ensured. Further reduction. Further, since the diameter of the rolling bearing can be increased and the eccentric amount of the rotating shaft eccentric portion can be increased, the design range such as efficiency, reliability, and design freedom can be widened. In addition, sliding interference between the second bearing member 133 and the inner ring of the rolling bearing 161 does not occur, and it is easy for the lubricating oil to flow into and out of the rolling bearing 161, thereby reducing sliding loss, improving efficiency, Reliability can be improved.

上述したように、貫通孔139aと逃げ溝139bとにより、従来の回転圧縮機よりもシール幅を確保することができるため、冷媒の漏れのさらなる低減となる。また、シール幅を確保することができるため、偏心部142及びローラ134を小さくすることができる。このため、従来の回転圧縮機に比べ摺動抵抗を低減させ、高効率で小型化された回転圧縮機を形成することができる。   As described above, the through-hole 139a and the escape groove 139b can secure a seal width as compared with the conventional rotary compressor, thereby further reducing refrigerant leakage. Moreover, since the seal width can be ensured, the eccentric portion 142 and the roller 134 can be made small. For this reason, sliding resistance can be reduced compared with the conventional rotary compressor, and the highly efficient and compact rotary compressor can be formed.

図4は本実施の形態の第2の変形例に係る圧縮機構部130Bを示す断面図である。なお、図4において図1〜3と同一機能部分には同一符号を付し、その詳細な説明は省略する。   FIG. 4 is a cross-sectional view showing a compression mechanism portion 130B according to a second modification of the present embodiment. 4, the same functional parts as those in FIGS. 1 to 3 are denoted by the same reference numerals, and detailed description thereof is omitted.

図4に示すように、第2軸受部材133は転がり軸受161を有し、第2軸受部材133とシリンダ131との間に、ローラ134を摺動させ外輪外形よりも小さく内輪外形よりも大きい貫通孔139cを有する摺動板163が設けられている。バルブカバー160と、第1軸受部材132と、シリンダ131と、摺動板163と、第2軸受部材133とはボルト162で固定されている。   As shown in FIG. 4, the second bearing member 133 has a rolling bearing 161, and a roller 134 is slid between the second bearing member 133 and the cylinder 131 to penetrate smaller than the outer ring outer shape and larger than the inner ring outer shape. A sliding plate 163 having a hole 139c is provided. The valve cover 160, the first bearing member 132, the cylinder 131, the sliding plate 163, and the second bearing member 133 are fixed with bolts 162.

上述のしたように、第2軸受部材133とシリンダ131との間に摺動板163を設けることにより、第2軸受部材133に転がり軸受161を圧入するときに生じる摺動面の微小変形や、運転中転がり軸受が負荷を受けた時の転がり軸受161周辺部に生じる微小変形等が摺動面に発生しないので、ローラ134と摺動面とによるシール性能の低下を防止することができる。   As described above, by providing the sliding plate 163 between the second bearing member 133 and the cylinder 131, a minute deformation of the sliding surface that occurs when the rolling bearing 161 is press-fitted into the second bearing member 133, Since the minute deformation or the like generated in the periphery of the rolling bearing 161 when the rolling bearing is subjected to a load during operation does not occur on the sliding surface, it is possible to prevent deterioration of the sealing performance due to the roller 134 and the sliding surface.

図5は本実施の形態の第3の変形例に係る圧縮機構部130Cを示す断面図である。なお、図5において図1〜3と同一機能部分には同一符号を付し、その詳細な説明は省略する。   FIG. 5 is a cross-sectional view showing a compression mechanism portion 130C according to a third modification of the present embodiment. 5, the same functional parts as those in FIGS. 1 to 3 are denoted by the same reference numerals, and detailed description thereof is omitted.

本変形例では、図5に示す第1軸受部材132の圧力溝138の直径D1と、第2軸受部材133の貫通孔139の直径D2との内径差が5%以下に形成されている。このように、第1軸受部材132の圧力溝138の直径D1と、第2軸受部材133の貫通孔139の直径D2との内径差を5%以下に設定することにより、ローラ134の摺動面に対して、第1軸受部材132の圧力溝138と第2軸受部材133の貫通溝139とから軸方向(偏心部142に向かう方向)にほぼ同圧が加わり、ローラ134摺動面に加わる圧力の差を殆どなくすことができる。このため、ローラ134を軸方向のどちらか一方に押し付ける圧力が発生せず、ローラ134の押し付けによる摺動損失の低減が可能となる。   In this modification, the inner diameter difference between the diameter D1 of the pressure groove 138 of the first bearing member 132 and the diameter D2 of the through hole 139 of the second bearing member 133 shown in FIG. Thus, by setting the inner diameter difference between the diameter D1 of the pressure groove 138 of the first bearing member 132 and the diameter D2 of the through hole 139 of the second bearing member 133 to 5% or less, the sliding surface of the roller 134 In contrast, almost the same pressure is applied in the axial direction (direction toward the eccentric portion 142) from the pressure groove 138 of the first bearing member 132 and the through groove 139 of the second bearing member 133, and the pressure applied to the sliding surface of the roller 134 It is possible to almost eliminate the difference. For this reason, the pressure which presses the roller 134 to either one of the axial directions is not generated, and the sliding loss due to the pressing of the roller 134 can be reduced.

図6は本発明の第2の実施の形態に係る冷凍サイクル装置1Aの構成及びこの冷凍サイクル1Aに組込まれた回転圧縮機100Aを示す断面図である。なお、図6において図1〜3と同一機能部分には同一符号を付し、その詳細な説明は省略する。   FIG. 6 is a cross-sectional view showing a configuration of a refrigeration cycle apparatus 1A according to a second embodiment of the present invention and a rotary compressor 100A incorporated in the refrigeration cycle 1A. In FIG. 6, the same functional parts as those in FIGS. 1 to 3 are denoted by the same reference numerals, and detailed description thereof is omitted.

回転圧縮機100Aでは、圧縮機構部130Dを2シリンダとしている。このような2シリンダの圧縮機構部130Dでは、第2シリンダ131Bの第2吐出孔137Aを第1シリンダ131Aと第2シリンダ131Bの間に設ける仕切り板164に設けることで、上述した第1の実施の形態に係る冷凍サイクル装置1と同様の効果を発揮することができる2シリンダの圧縮機構部130Dとなる。   In the rotary compressor 100A, the compression mechanism unit 130D has two cylinders. In such a two-cylinder compression mechanism portion 130D, the second discharge hole 137A of the second cylinder 131B is provided in the partition plate 164 provided between the first cylinder 131A and the second cylinder 131B, whereby the first implementation described above is performed. It becomes the compression mechanism part 130D of 2 cylinders which can exhibit the effect similar to the refrigerating-cycle apparatus 1 which concerns on this form.

なお、本発明は前記実施の形態に限定されるものではない。例えば、上述した例では、ローラ134はシャフト140の偏心部142に係合されているが、ローラ134を偏心部142に転がり軸受を介して係合する場合でも適用できる。また、副軸受143に転がり軸受161を設けているが、主軸受141に転がり軸受を設けた場合や、主軸受141と副軸受143との両方に転がり軸受を設ける場合でも適用できる。さらに、冷凍サイクル装置1は回転圧縮機100、凝縮器200、膨張装置300、蒸発器400及びアキュムレータ500を備えていると説明したが、さらに四方弁を有する場合にも適用できる。   The present invention is not limited to the above embodiment. For example, in the above-described example, the roller 134 is engaged with the eccentric portion 142 of the shaft 140, but the present invention can also be applied to the case where the roller 134 is engaged with the eccentric portion 142 via a rolling bearing. Further, although the rolling bearing 161 is provided in the auxiliary bearing 143, the present invention can be applied even when the rolling bearing is provided in the main bearing 141 or when the rolling bearing is provided in both the main bearing 141 and the auxiliary bearing 143. Furthermore, although it has been described that the refrigeration cycle apparatus 1 includes the rotary compressor 100, the condenser 200, the expansion device 300, the evaporator 400, and the accumulator 500, it can also be applied to a case where a four-way valve is further provided.

さらには、シャフト140の主軸部141と副軸部143とが同一軸上であれば、軸径が同じでも、上述した例を用いることにより、小型化、摺動抵抗の低減、及び高効率化等の効果を有することができる。この他、本発明の要旨を逸脱しない範囲で種々変形実施可能である。   Further, if the main shaft portion 141 and the sub shaft portion 143 of the shaft 140 are on the same axis, even if the shaft diameter is the same, by using the above-described example, it is possible to reduce the size, reduce the sliding resistance, and increase the efficiency. It is possible to have effects such as. In addition, various modifications can be made without departing from the scope of the present invention.

本発明の第1の実施の形態に係る冷凍サイクル装置の構成及びこの冷凍サイクルに組込まれた回転圧縮機を示す断面図。Sectional drawing which shows the structure of the refrigeration cycle apparatus which concerns on the 1st Embodiment of this invention, and the rotary compressor integrated in this refrigeration cycle. 同回転圧縮機の圧縮機構部を示す断面図。Sectional drawing which shows the compression mechanism part of the rotary compressor. 本発明の第1の変形例に係る圧縮機構部を示す断面図。Sectional drawing which shows the compression mechanism part which concerns on the 1st modification of this invention. 本発明の第2の変形例に係る圧縮機構部を示す断面図。Sectional drawing which shows the compression mechanism part which concerns on the 2nd modification of this invention. 本発明の第3の変形例に係る圧縮機構部を示す断面図。Sectional drawing which shows the compression mechanism part which concerns on the 3rd modification of this invention. 本発明の第2の実施の形態に係る冷凍サイクル装置の構成及びこの冷凍サイクルに組込まれた回転圧縮機を示す断面図。Sectional drawing which shows the structure of the refrigerating-cycle apparatus which concerns on the 2nd Embodiment of this invention, and the rotary compressor integrated in this refrigerating cycle.

符号の説明Explanation of symbols

1…冷凍サイクル装置、100…回転圧縮機、101…吐出口、110…密閉ケース、110a…上軸受、120…電動機部、121…回転子、122…固定子、130…圧縮機構部、131…シリンダ、132…第1軸受部材、133…第2軸受部材、134…ローラ、135…スプリング、136…ベーン、137…吐出孔、138…圧力溝、139…貫通孔、140…シャフト、141…主軸部、142…偏心部、143…副軸部、160…バルブカバー、161…転がり軸受、162…ボルト、200…凝縮器、300…膨張装置、400…蒸発器。   DESCRIPTION OF SYMBOLS 1 ... Refrigeration cycle apparatus, 100 ... Rotary compressor, 101 ... Discharge port, 110 ... Sealing case, 110a ... Upper bearing, 120 ... Electric motor part, 121 ... Rotor, 122 ... Stator, 130 ... Compression mechanism part, 131 ... Cylinder 132 ... first bearing member 133 ... second bearing member 134 ... roller 135 ... spring 136 ... vane 137 ... discharge hole 138 ... pressure groove 139 ... through hole 140 ... shaft 141 ... main shaft , 142: eccentric part, 143: countershaft part, 160 ... valve cover, 161 ... rolling bearing, 162 ... bolt, 200 ... condenser, 300 ... expansion device, 400 ... evaporator.

Claims (4)

密閉ケースと、
この密閉ケース内に設けられた電動機部と、
シリンダ室を形成するシリンダと、
上記電動機部に連結されるとともに、上記シリンダ室を貫通し、第1軸受部材により軸支される主軸部、第2軸受部材により軸支される副軸部及び上記シリンダ室内に位置する偏心部とを有するシャフトと、
このシャフトの上記偏心部に係合されたローラとを備えた回転圧縮機において、
上記シャフトの主軸部及び副軸部の一方を他方より小径に形成するとともに、
上記シャフトの軸径が大きい一方の軸部を軸支する第1又は第2の軸受部材をすべり軸受で形成するとともに、軸径が小さい他方の軸部を軸支する第1又は第2の軸受部材に転がり軸受を設けたことを特徴とする回転圧縮機。
A sealed case;
An electric motor provided in the sealed case;
A cylinder forming a cylinder chamber;
A main shaft portion that is coupled to the electric motor portion, passes through the cylinder chamber, and is pivotally supported by a first bearing member; a countershaft portion that is pivotally supported by a second bearing member; and an eccentric portion that is positioned in the cylinder chamber; A shaft having
In a rotary compressor including a roller engaged with the eccentric portion of the shaft,
While forming one of the main shaft portion and the sub shaft portion of the shaft to be smaller in diameter than the other,
The first or second bearing member that supports one shaft portion with a large shaft diameter is formed by a slide bearing, and the first or second bearing supports the other shaft portion with a small shaft diameter. A rotary compressor characterized in that a rolling bearing is provided on a member.
上記第1軸受部材及び第2軸受部材のうち、すべり軸受を有する軸受部材にのみ、上記シリンダ室内で圧縮された冷媒を吐出する吐出孔を有することを特徴とする請求項1に記載の回転圧縮機。   2. The rotary compression according to claim 1, wherein, of the first bearing member and the second bearing member, only a bearing member having a slide bearing has a discharge hole for discharging a refrigerant compressed in the cylinder chamber. Machine. 上記第1軸受部材及び上記第2軸受部材の上記シリンダ室に接する側面に設けられたそれぞれの側面孔の内径差は5%以下であることを特徴とする請求項1、2に記載の回転圧縮機。   The rotary compression according to claim 1 or 2, wherein a difference in inner diameter of each side hole provided on a side surface of the first bearing member and the second bearing member in contact with the cylinder chamber is 5% or less. Machine. 請求項1〜3のいずれかに記載の回転圧縮機と、
上記回転圧縮機に接続された凝縮器と、
上記凝縮器に接続された膨張装置と、
上記膨張装置に接続された蒸発器とを備えていることを特徴とする冷凍サイクル装置。
The rotary compressor according to any one of claims 1 to 3,
A condenser connected to the rotary compressor;
An expansion device connected to the condenser;
A refrigeration cycle apparatus comprising: an evaporator connected to the expansion device.
JP2006234022A 2006-08-30 2006-08-30 Rotary compressor and refrigerant cycle device Pending JP2008057394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006234022A JP2008057394A (en) 2006-08-30 2006-08-30 Rotary compressor and refrigerant cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006234022A JP2008057394A (en) 2006-08-30 2006-08-30 Rotary compressor and refrigerant cycle device

Publications (1)

Publication Number Publication Date
JP2008057394A true JP2008057394A (en) 2008-03-13

Family

ID=39240456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006234022A Pending JP2008057394A (en) 2006-08-30 2006-08-30 Rotary compressor and refrigerant cycle device

Country Status (1)

Country Link
JP (1) JP2008057394A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017476A (en) * 2014-07-09 2016-02-01 ダイキン工業株式会社 Rotary compressor
US10807114B2 (en) 2011-04-11 2020-10-20 Nordson Corporation System, nozzle and method for coating elastic strands

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6365190A (en) * 1986-09-05 1988-03-23 Matsushita Refrig Co Rotary compressor
JPH01190982A (en) * 1988-01-25 1989-08-01 Matsushita Refrig Co Ltd Rotary compressor
JPH0447190A (en) * 1990-06-13 1992-02-17 Sanyo Electric Co Ltd Bearing device for compressor
JPH109168A (en) * 1996-06-28 1998-01-13 Hitachi Ltd Rotary compressor
JPH10141271A (en) * 1996-11-01 1998-05-26 Daikin Ind Ltd Rotary compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6365190A (en) * 1986-09-05 1988-03-23 Matsushita Refrig Co Rotary compressor
JPH01190982A (en) * 1988-01-25 1989-08-01 Matsushita Refrig Co Ltd Rotary compressor
JPH0447190A (en) * 1990-06-13 1992-02-17 Sanyo Electric Co Ltd Bearing device for compressor
JPH109168A (en) * 1996-06-28 1998-01-13 Hitachi Ltd Rotary compressor
JPH10141271A (en) * 1996-11-01 1998-05-26 Daikin Ind Ltd Rotary compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10807114B2 (en) 2011-04-11 2020-10-20 Nordson Corporation System, nozzle and method for coating elastic strands
JP2016017476A (en) * 2014-07-09 2016-02-01 ダイキン工業株式会社 Rotary compressor

Similar Documents

Publication Publication Date Title
JP4864572B2 (en) Rotary compressor and refrigeration cycle apparatus using the same
US8221096B2 (en) Compressor arrangement with stator welded to a housing
JPWO2009028632A1 (en) Rotary compressor and refrigeration cycle apparatus
EP1851437B1 (en) Capacity varying type rotary compressor
US11710992B2 (en) Motor and compressor including the same
JP2005299653A (en) Rolling piston and rotary compressor gas leakage preventing device equipped therewith
US9841024B2 (en) Compressor and method for producing compressor
JP2007205227A (en) Compressor
JP2008057394A (en) Rotary compressor and refrigerant cycle device
KR20090012841A (en) Two stage rotary compressor
WO2020166430A1 (en) Compressor
JP2007285180A (en) Rotating compressor, and refrigerating cycle device using the same
JP2012072679A (en) Compressor
JP2009108747A (en) Hermetic electric compressor
KR20090012848A (en) Rotary compressor
KR101337079B1 (en) Two stage rotary compressor
JP2008141805A (en) Compressor
EP2918773B1 (en) Rotary compressor
JP2006177158A (en) Sealed type electric compressor and refrigerating cycle device
JP5040111B2 (en) Compressor
JP2008169743A (en) Compressor
JP4715281B2 (en) Hermetic compressor
KR101322511B1 (en) Twin rotary compressor
KR101201909B1 (en) Vibration absorber for rotary compressor
KR20090012860A (en) Two stage rotary compressor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A977 Report on retrieval

Effective date: 20110519

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111108