JP2008054466A - Motor controller - Google Patents

Motor controller Download PDF

Info

Publication number
JP2008054466A
JP2008054466A JP2006230401A JP2006230401A JP2008054466A JP 2008054466 A JP2008054466 A JP 2008054466A JP 2006230401 A JP2006230401 A JP 2006230401A JP 2006230401 A JP2006230401 A JP 2006230401A JP 2008054466 A JP2008054466 A JP 2008054466A
Authority
JP
Japan
Prior art keywords
time
current control
current
control calculation
command value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006230401A
Other languages
Japanese (ja)
Other versions
JP5011892B2 (en
Inventor
Hideaki Nakayama
英明 中山
Takeshi Ito
健 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006230401A priority Critical patent/JP5011892B2/en
Publication of JP2008054466A publication Critical patent/JP2008054466A/en
Application granted granted Critical
Publication of JP5011892B2 publication Critical patent/JP5011892B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a motor controller which improves current controllability by lessening the dead time, irrespective of the magnitude of the carrier period. <P>SOLUTION: When the time required for the time for one current control calculation from reading of a phase current value and a rotation angle up to the calculation of a voltage command value is the current-control calculation time, then it is constituted that a point of time which is prior only by the current control calculation time from the next voltage command value output timing is set as start timing of the current control calculation. In other words, it is so constituted that reading is performed at the time that is as close as possible to the voltage command value output point of time (the time prior to the voltage command value output point of time by only the current control calculation time). Since the time that is faster only by the current control calculation time from the voltage command value output timing is set as the start timing of the current control calculation, irrespective of the PWM carrier period, the dead time is shortened, even if the PWM carrier period becomes larger with respect to the current control calculation time, and current controllability is improved. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電動機の制御装置に関し、特に制御演算における演算開始タイミングの設定技術に関する。   The present invention relates to a motor control device, and more particularly to a technique for setting calculation start timing in a control calculation.

下記特許文献1に記載のように、PWMキャリア信号の所定位相(例えば山もしくは谷:三角波の頂点)のタイミングで電動機の相電流値および回転角を取り込み、相電流値と電流指令値との差および回転角に基づいて電圧指令値を演算すると共に、次回のキャリア周期における前記所定位相の時点で、前記演算しておいた電圧指令値を出力する制御装置が開示されている。
特開2005−57901号公報
As described in Patent Document 1 below, the phase current value and rotation angle of the motor are captured at the timing of a predetermined phase of the PWM carrier signal (for example, peak or valley: the peak of a triangular wave), and the difference between the phase current value and the current command value A control device is disclosed that calculates a voltage command value based on the rotation angle and outputs the calculated voltage command value at the time of the predetermined phase in the next carrier cycle.
JP-A-2005-57901

上記のように従来は、キャリア周期に応じて相電流、回転角の読み込みと電圧指令値の出力タイミングを決定していた。このキャリア周期を電動機の回転速度に応じて変化させれば、低速回転時にはキャリア周期を延ばすことによってインバータのスイッチング損失を減少してスイッチング素子の温度上昇を抑制できる、という利点がある。しかし、この構成では、相電流、回転角の読み込みから実際に電圧指令値が出力されるまでの無駄時間はキャリア周期に応じて決定されるので、低速回転時にキャリア周期が大きくなると、無駄時間が大きくなって制御が遅れ、電流制御性が悪化する、という問題があった。
本発明は上記の問題を解決するものであり、キャリア周期の大きさに拘らず無駄時間を小さくして電流制御性を向上させることの出来る電動機制御装置を提供することを目的とする。
As described above, conventionally, the reading of the phase current and the rotation angle and the output timing of the voltage command value are determined according to the carrier period. If this carrier cycle is changed in accordance with the rotation speed of the electric motor, there is an advantage that the switching loss of the inverter can be reduced and the temperature rise of the switching element can be suppressed by extending the carrier cycle during low-speed rotation. However, in this configuration, the dead time from the reading of the phase current and the rotation angle to the actual output of the voltage command value is determined according to the carrier cycle. There is a problem that the control is delayed due to the increase, and the current controllability is deteriorated.
The present invention solves the above-described problem, and an object thereof is to provide an electric motor control device capable of improving current controllability by reducing dead time regardless of the carrier period.

上記の目的を達成するため、本発明においては、相電流値および回転角の読み込みから電圧指令値を演算するまでの電流制御演算1回に要する時間を電流制御演算時間とした場合に、次回の電圧指令値出力タイミングから前記電流制御演算時間だけ前の時点を電流制御演算の開始タイミングとして設定するように構成している。つまり、本発明においては、電圧指令値出力時点になるべく近い時点(電圧指令値出力時点よりも電流制御演算時間だけ前の時点)で読み込みを行うように構成している。   In order to achieve the above object, in the present invention, when the time required for one current control calculation from the reading of the phase current value and the rotation angle to the calculation of the voltage command value is defined as the current control calculation time, A time point before the current control calculation time from the voltage command value output timing is set as a start timing of the current control calculation. That is, in the present invention, the reading is performed at a time point as close as possible to the voltage command value output time point (a time point before the voltage command value output time point by the current control calculation time).

本発明においては、PWMキャリア周期に拘らず電圧指令値出力タイミングから前記電流制御演算時間だけ前の時点を電流制御演算の開始タイミングとするので、PWMキャリア周期が電流制御演算時間に対して長くなっても無駄時間を短縮することが出来る。そのため電流制御性を向上させることが出来る。   In the present invention, since the time point before the current control calculation time from the voltage command value output timing is the current control calculation start timing regardless of the PWM carrier cycle, the PWM carrier cycle becomes longer than the current control calculation time. However, the wasted time can be shortened. Therefore, current controllability can be improved.

図1は、本発明を適用する電動機制御装置の一例を示す回路ブロック図である。なお、この例では、三相電動機の場合を例示したが、これに限られるものではない。
図1において、1は直流電源、2はインバータ、3は電動機、4は制御部(詳細後述)、5は直流電源1の電圧Vdcを検出する電圧センサ、6は電動機の各相電流i、i、iを検出する電流センサ、7は電動機の回転子回転角(回転位相)θ(電気角)を検出する角度センサ(レゾルバやエンコーダ等)である。また、インバータ2内のQ1〜Q6はスイッチング素子(IGBT等)、D1〜D6はスイッチング素子Q1〜Q6をそれぞれ駆動する駆動信号である。Tは外部から与えられるトルク指令値であり、例えばアクセル信号や車速信号に応じて設定される信号である。
FIG. 1 is a circuit block diagram showing an example of an electric motor control device to which the present invention is applied. In this example, the case of a three-phase motor is illustrated, but the present invention is not limited to this.
In FIG. 1, 1 is a DC power source, 2 is an inverter, 3 is an electric motor, 4 is a control unit (details will be described later), 5 is a voltage sensor for detecting the voltage Vdc of the DC power source 1, 6 is each phase current i u of the electric motor, A current sensor 7 detects i v , i w , and 7 is an angle sensor (resolver, encoder, etc.) that detects the rotor rotation angle (rotation phase) θ (electrical angle) of the motor. Further, Q1 to Q6 in the inverter 2 are switching elements (IGBT or the like), and D1 to D6 are drive signals for driving the switching elements Q1 to Q6, respectively. T * is a torque command value given from the outside, for example, a signal set according to an accelerator signal or a vehicle speed signal.

制御部4は、例えばCPUや電子回路からなり、直流電源電圧Vdc、電動機の各相電流i、i、i、電動機の回転角θおよびはトルク指令値Tを入力し、ベクトル制御による電流制御演算およびPWM演算を行って駆動信号D1〜D6を出力し、それによってインバータ2のスイッチング素子Q1〜Q6を開閉制御して電動機3に電流を供給し、電動機3をトルク指令値Tに応じて駆動する。 The control unit 4 includes, for example, a CPU and an electronic circuit, and inputs a DC power supply voltage Vdc, motor phase currents i u , i v , i w , a motor rotation angle θ, and a torque command value T * , and performs vector control. The current control calculation and the PWM calculation are performed, and the drive signals D1 to D6 are output, whereby the switching elements Q1 to Q6 of the inverter 2 are controlled to open and close to supply current to the motor 3, and the motor 3 is set to the torque command value T *. Drive according to.

図2は、図1における制御部4の内部構成を示すブロック図である。
図2において、インバータ2、電動機3は図1と同じであり、破線で囲んだ部分が図1の制御部4に相当する。
制御部4において、電流マップ11は、外部から与えられたトルク指令値T[N・m]と電動機の回転子角速度ω[rad/s]から、d軸およびq軸の電流指令値(i [A]、i [A])をマップ引きにより求める。なお、回転子角速度ωは回転子回転角θを微分部15で微分することによって求める。
FIG. 2 is a block diagram showing an internal configuration of the control unit 4 in FIG.
In FIG. 2, the inverter 2 and the electric motor 3 are the same as those in FIG. 1, and a portion surrounded by a broken line corresponds to the control unit 4 in FIG. 1.
In the control unit 4, the current map 11 is based on the torque command value T * [N · m] given from the outside and the rotor angular velocity ω [rad / s] of the motor, and the current command values (i and d-axis) d * [A], i q * [A]) is obtained by map drawing. The rotor angular velocity ω is obtained by differentiating the rotor rotation angle θ by the differentiating unit 15.

上記の電流指令値i 、i と実際のd軸電流i、q軸電流iとの偏差をそれぞれ求め、その結果をdq軸電圧指令値演算部12へ送る。なお、実際のd軸およびq軸電流i 、iは、読み込んだ電動機の各相電流i、i、iと電動機の回転角θとを用いて、dq軸変換部16で三相二相変換を行うことによって求める。
dq軸電圧指令値演算部12においては、電流指令値i 、i と実際のd軸電流i、q軸電流iとの偏差(i −iおよびi −i)から下記(数1)式を用いて比例積分制御を行い、d軸電圧指令値v 、q軸電圧指令値v を演算する。
Deviations between the current command values i d * and i q * and the actual d-axis current i d and q-axis current i q are obtained, and the results are sent to the dq-axis voltage command value calculation unit 12. The actual d-axis and q-axis currents i d * and i q are obtained by the dq-axis conversion unit 16 using the read phase currents i u , i v and i w of the motor and the rotation angle θ of the motor. Obtained by performing three-phase to two-phase conversion.
In dq-axis voltage command value computing unit 12, * current command value i d, i q * and the actual d-axis current i d, the deviation between the q-axis current i q (i d * -i d and i q * - The proportional-integral control is performed from i q ) using the following equation (Equation 1) to calculate the d-axis voltage command value v d * and the q-axis voltage command value v q * .

Figure 2008054466
但し、(数1)式において、
…d軸電圧指令値[V] v …q軸電圧指令値[V]
…d軸電流指令値[A] i …q軸電流指令値[A]
…d軸電流[A]
…q軸電流[A]
pd…d軸比例ゲイン Kpq…q軸比例ゲイン
id…d軸積分ゲイン Kiq…q軸積分ゲイン
s…ラプラス演算子
なお、ここで非干渉制御を用いても良い。
Figure 2008054466
However, in Equation (1),
v d * ... d-axis voltage command value [V] v q * ... q-axis voltage command value [V]
i d * ... d-axis current command value [A] i q * ... q-axis current command value [A]
i d ... d-axis current [A]
i q q-axis current [A]
K pd ... d-axis proportional gain K pq ... q-axis proportional gain K id ... d-axis integral gain K iq ... q-axis integral gain s ... Laplace operator Here, non-interference control may be used.

次に、二相三相変換部13では、下記(数2)式を用いて上記のd軸電圧指令値v 、q軸電圧指令値v を三相電圧指令値v 、v 、v に変換する。 Next, in the two-phase / three-phase conversion unit 13, the d-axis voltage command value v d * and the q-axis voltage command value v q * are converted into the three-phase voltage command value v u * , using the following equation (2): Convert to v v * , v w * .

Figure 2008054466
但し、(数2)式において、
…u相電圧指令値[V] v …v相電圧指令値[V]
…w相電圧指令値[V] v …d軸電圧指令値[V]
…q軸電圧指令値[V] θ…回転子回転角(電気角)[rad]
なお、回転角θは遅れ補償をした値を用いても良い。
Figure 2008054466
However, in the formula (2),
v u * ... u-phase voltage command value [V] v v * ... v-phase voltage command value [V]
v w * ... w-phase voltage command value [V] v d * ... d-axis voltage command value [V]
v q * ... q-axis voltage command value [V] θ ... rotor rotation angle (electrical angle) [rad]
The rotation angle θ may be a value with delay compensation.

次に、PWM変換部14では、上記の三相電圧指令値v 、v 、v と電源電圧VdcとPWMキャリア信号周期Tとに基づいて三相電圧指令値v 、v 、v をPWM信号に変換する。つまり、下記(数3)式を用いてPWM信号の各相パルス幅t、t、tを算出する。なお、PWMキャリア信号は例えば三角波または鋸歯状波などを用いる。 Then, the PWM conversion unit 14, the three-phase voltage command value of the v u *, v v *, v w * and the power supply voltage Vdc and the three-phase voltage command value based on the PWM carrier signal period T 0 v u * , V v * , v w * are converted into PWM signals. In other words, to calculate the phase pulse width t u of the PWM signal, t v, a t w by using the following equation (3). For example, a triangular wave or a sawtooth wave is used as the PWM carrier signal.

Figure 2008054466
但し、(数3)式において、
…u相パルス幅[s] t…v相パルス幅[s] t…w相パルス幅[s]
…PWMキャリア信号周期[s] Vdc…電源電圧[V]
次に、デッドタイム補償部17では、三相電流値(i、i、i)によって決まる補償値をマップ引きにより求め、それぞれ上記各相のパルス幅に加える。
なお、この場合の三相電流値(i、i、i)は、dq軸電流指令値を三相変換した三相電流指令値でも良いし、dq軸電流指令値に電流応答相当のフィルタをかけたdq軸電流推定値を三相変換した三相電流推定値でも良い。
また、前記dq軸変換部16における三相電流値(i、i、i)からdq軸電流への変換は、下記(数4)式で行う。
Figure 2008054466
However, in the formula (3),
t u ... u-phase pulse width [s] t v ... v-phase pulse width [s] t w ... w-phase pulse width [s]
T 0 ... PWM carrier signal cycle [s] Vdc ... Power supply voltage [V]
Next, the dead time compensation unit 17 obtains a compensation value determined by the three-phase current values (i u , i v , i w ) by map drawing, and adds each to the pulse width of each phase.
In this case, the three-phase current values (i u , i v , i w ) may be three-phase current command values obtained by three-phase conversion of the dq-axis current command values. A three-phase current estimated value obtained by three-phase conversion of the filtered dq-axis current estimated value may be used.
Further, the conversion from the three-phase current values (i u , i v , i w ) to the dq-axis current in the dq axis conversion unit 16 is performed by the following equation (Equation 4).

Figure 2008054466
但し、(数4)式において、
:u相電流値[A] i:v相電流値[A] i:w相電流値[A]
θ…回転子回転角[rad]
この後、デッドタイム補償部17から出力されたPWM信号(パルス幅)に従ってインバータ2の各スイッチング素子を開閉駆動することにより、電動機3に電圧を印加して駆動する。
Figure 2008054466
However, in Equation (4),
i u : u-phase current value [A] i v : v-phase current value [A] i w : w-phase current value [A]
θ: Rotor rotation angle [rad]
Thereafter, each switching element of the inverter 2 is driven to open and close in accordance with the PWM signal (pulse width) output from the dead time compensation unit 17 to drive the motor 3 by applying a voltage.

上記の構成は、従来のベクトル制御による電流フィードバック制御と同じである。本発明は、図2の各相電流i、i、iと回転子回転角θの読み込みから二相三相変換部13での三相電圧指令値v 、v 、v の演算までの電流制御演算の開始タイミングに関するものである。 The above configuration is the same as the current feedback control by the conventional vector control. In the present invention, the three-phase voltage command values v u * , v v * , v in the two-phase three-phase conversion unit 13 are read from the respective phase currents i u , i v , i w and the rotor rotation angle θ shown in FIG. This relates to the start timing of the current control calculation up to the calculation of w * .

以下、従来例の電流制御演算の開始タイミングと本発明とを比較して説明する。
図7は、従来例におけるPWMキャリア信号と電流制御演算タイミングとの関係を示す図である。図7において、三角波はキャリア信号を示し、(a)<(b)<(c)の順にキャリア周期が大きい場合を示す。なお、図3〜図7において、黒太一点鎖線は三相電圧指令値の出力時点を示し、黒く塗りつぶした四角形は電流制御演算時間を示す。
Hereinafter, the start timing of the current control calculation of the conventional example and the present invention will be compared and described.
FIG. 7 is a diagram showing the relationship between the PWM carrier signal and the current control calculation timing in the conventional example. In FIG. 7, a triangular wave indicates a carrier signal, and shows a case where the carrier period is large in the order of (a) <(b) <(c). 3 to 7, the black thick one-dot chain line indicates the output time point of the three-phase voltage command value, and the black square indicates the current control calculation time.

電流演算開始タイミングは、PWMキャリア信号の谷の時点、つまり図3(c)のA点によって決定され、この時点で各相電流と回転角の読み込みが行われ、続いて電圧指令値が演算され、その演算結果がPWMキャリア信号の次回の谷の時点で出力される。したがって各相電流と回転角の読み込みが行われてから演算結果の電圧指令値が出力されるまでには、PWMキャリア信号で1周期分の無駄時間が発生する。電動機の回転速度が大きく、PWMキャリア信号の周期が短い図7(a)の場合には、無駄時間も短いが、図3(c)のようにPWMキャリア信号の周期が長くなると無駄時間が大きくなり、制御が遅れるので、電流制御特性が低下する。   The current calculation start timing is determined by the valley of the PWM carrier signal, that is, the point A in FIG. 3C. At this time, the current of each phase and the rotation angle are read, and then the voltage command value is calculated. The calculation result is output at the next trough of the PWM carrier signal. Therefore, a dead time corresponding to one cycle is generated in the PWM carrier signal from the reading of each phase current and the rotation angle to the output of the voltage command value as the calculation result. In the case of FIG. 7A in which the rotation speed of the electric motor is large and the cycle of the PWM carrier signal is short, the dead time is also short, but when the cycle of the PWM carrier signal is long as shown in FIG. As a result, the control is delayed, and the current control characteristics are degraded.

(第1実施例)
次に図3は、本発明の第1実施例におけるPWMキャリア信号と演算開始タイミングを示す図である。図3においては、PWMキャリア信号以外の他のタイマを使用して演算開始タイミングを決定する場合を示している。この場合にも三相電圧指令値の出力タイミングはPWMキャリア信号の谷(所定位相)の時点であるが、電流制御演算開始タイミングは電流制御演算開始タイミング設定用タイマによって設定する。
(First embodiment)
FIG. 3 is a diagram showing a PWM carrier signal and calculation start timing in the first embodiment of the present invention. FIG. 3 shows a case where the calculation start timing is determined using a timer other than the PWM carrier signal. Also in this case, the output timing of the three-phase voltage command value is at the time of the valley (predetermined phase) of the PWM carrier signal, but the current control calculation start timing is set by the current control calculation start timing setting timer.

図3に示すように、電流制御演算開始タイミング設定用タイマは、PWMキャリア信号の周期と同じ周期でリセットされ、PWMキャリア周期よりも電流制御演算時間だけ前にずらしてカウントさせている。
ここで、電流制御演算時間とは三相電流値および回転角の読み込みから三相電圧指令値を演算するまでの電流制御演算1回に要する時間を意味する。
したがって前記タイマがリセットされた時点を演算開始タイミングとすれば、次回の電圧指令値出力タイミングから電流制御演算時間だけ前の時点を電流制御演算の開始タイミングとして設定することが出来る。このように構成すれば、各相電流と回転角の読み込みが行われてから演算結果の電圧指令値が出力されるまでの無駄時間は、PWMキャリア周期に拘りなく、常に電流制御演算時間とほぼ同等になり、可及的に短くすることが出来る。
As shown in FIG. 3, the current control calculation start timing setting timer is reset at the same cycle as the cycle of the PWM carrier signal, and is shifted and counted by the current control calculation time before the PWM carrier cycle.
Here, the current control calculation time means a time required for one current control calculation from the reading of the three-phase current value and the rotation angle to the calculation of the three-phase voltage command value.
Therefore, if the time point when the timer is reset is set as the calculation start timing, the time point that is the current control calculation time before the next voltage command value output timing can be set as the current control calculation start timing. With this configuration, the dead time from the reading of each phase current and rotation angle to the output of the calculated voltage command value is always substantially equal to the current control calculation time regardless of the PWM carrier cycle. It becomes equivalent and can be made as short as possible.

なお、実際の電流制御演算時間は、実用上の演算処理過程で多少の長短が生じるので、その最長時間を電流制御演算時間とする。つまり、電流制御演算時間は、各相電流値および回転角の読み込みから三相電圧指令値を演算するまでに要する時間の最長時間であり、次回の電圧指令値出力タイミングよりも前記最長時間より前で、キャリア周期の一周期前よりは後のタイミングを電流制御演算の開始タイミングとする。   Note that the actual current control calculation time varies somewhat in the practical calculation process, and the longest time is defined as the current control calculation time. That is, the current control calculation time is the longest time required from the reading of each phase current value and rotation angle to the calculation of the three-phase voltage command value, and before the next voltage command value output timing. Thus, the timing after the one cycle before the carrier cycle is set as the start timing of the current control calculation.

また、実用的には正確に電流制御演算時間に一致させる必要はなく、電流制御演算時間に近い切りの良い時間に設定すれば良い。以下の実施例においても同様である。
また、電流制御演算時間は、電動機制御を行っているCPUに基づいて決定される電流制御演算負荷に応じて設定されるものであり、高速のCPUを用いれば短縮することが出来るがコスト高になる。
In practice, it is not necessary to accurately match the current control calculation time, and it may be set to a good time close to the current control calculation time. The same applies to the following embodiments.
Also, the current control calculation time is set according to the current control calculation load determined based on the CPU performing the motor control, and can be shortened by using a high-speed CPU, but the cost is high. Become.

(第2実施例)
図4は、第2実施例におけるPWMキャリア信号と電流演算開始タイミングを示す図である。
この実施例は、電流制御演算開始タイミング設定タイマとしてリセット値可変のタイマを用い、次回の電流制御演算時間を今回の電流制御演算中に演算し、演算で求めた電流制御演算時間に応じて前記タイマのリセット値を設定し、PWMキャリア信号の所定位相(山または谷)の時点からカウントを開始した前記タイマがリセットされた時点を電流制御演算開始タイミングとしている。
(Second embodiment)
FIG. 4 is a diagram showing a PWM carrier signal and current calculation start timing in the second embodiment.
In this embodiment, a reset value variable timer is used as the current control calculation start timing setting timer, the next current control calculation time is calculated during the current control calculation, and the current control calculation time is calculated according to the current control calculation time obtained by the calculation. The timer reset value is set, and the current control calculation start timing is set to the time when the timer that has started counting from the predetermined phase (peak or valley) of the PWM carrier signal is reset.

PWMキャリア信号で電流制御を行っている際に電流制御演算時間が変化する場合には、上記のように次回の電流制御演算時間を今回の電流制御演算中に演算し、電流制御演算開始タイミング設定タイマのリセット値を可変することにより、無駄時間を常に最小とすることが出来る。
リセットされたタイマはPWMキャリア信号の谷が来るまではカウントせず、次回の電流制御演算後のPWMキャリア信号の谷の時点からカウントを開始する。
なお、電流制御演算時間が途中で変わるような場合には、演算内容の変化に応じてフラグを立て、そのフラグに応じて電流制御演算時間の設定値、つまり電流制御演算開始タイミング設定タイマのリセット値を変えるように設定する。
If the current control calculation time changes while performing current control with the PWM carrier signal, the next current control calculation time is calculated during the current current control calculation as described above, and the current control calculation start timing is set. By changing the reset value of the timer, the dead time can always be minimized.
The reset timer does not count until the valley of the PWM carrier signal comes, and starts counting from the time of the valley of the PWM carrier signal after the next current control calculation.
If the current control calculation time changes in the middle, a flag is set according to the change in the calculation contents, and the current control calculation time setting value, that is, the current control calculation start timing setting timer is reset according to the flag. Set to change the value.

(第3実施例)
図5は、第3実施例におけるPWMキャリア信号と電流演算開始タイミングを示す図である。
図5においては、電流制御演算開始タイミング設定タイマの周期を電流制御演算時間の最長時間とほぼ同じ値に設定し、電圧指令値出力タイミングとは拘りなく電流制御演算を繰り返し行って最終の演算結果を順次記憶しておき、次回の電圧指令値出力タイミング(キャリア信号の谷)の時点における記憶値を電圧指令値として出力するように構成している。
このように構成すれば、図5に示すように、キャリア周期や電流制御演算時間が毎回変化するような場合でも、PWMキャリア信号や電流制御時間を測定することなく無駄時間を短縮することができる。
(Third embodiment)
FIG. 5 is a diagram showing a PWM carrier signal and current calculation start timing in the third embodiment.
In FIG. 5, the cycle of the current control calculation start timing setting timer is set to substantially the same value as the longest time of the current control calculation time, the current control calculation is repeated regardless of the voltage command value output timing, and the final calculation result Are sequentially stored, and the stored value at the time of the next voltage command value output timing (carrier signal valley) is output as the voltage command value.
With this configuration, as shown in FIG. 5, even when the carrier cycle and the current control calculation time change every time, the dead time can be shortened without measuring the PWM carrier signal and the current control time. .

(第4実施例)
図6は、第4実施例におけるPWMキャリア信号と電流演算開始タイミングを示す図である。
この実施例は、他のタイマを用いず、PWMキャリア信号を用いて電流演算開始タイミングを設定する例である。図6に示すようにPWMキャリア信号が測定可能な場合には、PWMキャリア信号に対して電流制御演算時間分の閾値を設け、この閾値以下になった際に、電流制御演算を開始させることにより、電圧指令値を出力するタイミングから電流制御演算時間分だけ減算したタイミングで電流制御演算を開始することができる。つまり、PWMキャリア信号の値を読み取り、電流制御演算時間に応じて設定された閾値に前記PWMキャリア信号が至った時点を前記演算開始タイミングとする。この実施例においては、他のタイマを必要としないので、コストを低減することが出来る。
(Fourth embodiment)
FIG. 6 is a diagram showing a PWM carrier signal and current calculation start timing in the fourth embodiment.
In this embodiment, the current calculation start timing is set using a PWM carrier signal without using another timer. As shown in FIG. 6, when the PWM carrier signal can be measured, a threshold value for the current control calculation time is provided for the PWM carrier signal, and when the threshold value falls below this threshold value, the current control calculation is started. The current control calculation can be started at a timing obtained by subtracting the current control calculation time from the timing at which the voltage command value is output. That is, the value of the PWM carrier signal is read, and the time when the PWM carrier signal reaches the threshold set according to the current control calculation time is set as the calculation start timing. In this embodiment, since no other timer is required, the cost can be reduced.

なお、上記の各実施例を組み合わせても良い。また、これまでの説明では、PWMキャリア信号の谷の時点で三相電圧指令値が出力される構成を例として説明してきたが、図7(c)のB点で示したPWMキャリア信号の山で出力される構成においても同様であり、さらに谷や山に限らずPWMキャリア信号の他の所定位相でもよい。   The above embodiments may be combined. In the above description, the configuration in which the three-phase voltage command value is output at the time of the valley of the PWM carrier signal has been described as an example. However, the peak of the PWM carrier signal indicated by point B in FIG. The same applies to the configuration output at, and not only valleys and peaks, but also other predetermined phases of the PWM carrier signal may be used.

本発明を適用する電動機制御装置の一例を示す回路ブロック図。The circuit block diagram which shows an example of the electric motor control apparatus to which this invention is applied. 図1における制御部4の内部構成を示すブロック図。The block diagram which shows the internal structure of the control part 4 in FIG. 本発明の第1実施例におけるPWMキャリア信号と演算開始タイミングを示す図。The figure which shows the PWM carrier signal and calculation start timing in 1st Example of this invention. 本発明の第2実施例におけるPWMキャリア信号と演算開始タイミングを示す図。The figure which shows the PWM carrier signal and calculation start timing in 2nd Example of this invention. 本発明の第3実施例におけるPWMキャリア信号と演算開始タイミングを示す図。The figure which shows the PWM carrier signal and calculation start timing in 3rd Example of this invention. 本発明の第4実施例におけるPWMキャリア信号と演算開始タイミングを示す図。The figure which shows the PWM carrier signal and calculation start timing in 4th Example of this invention. 従来例におけるPWMキャリア信号と電流制御演算タイミングとの関係を示す図。The figure which shows the relationship between the PWM carrier signal and current control calculation timing in a prior art example.

符号の説明Explanation of symbols

1…直流電源 2…インバータ
3…電動機 4…制御部
5…電圧センサ 6…電流センサ
7…角度センサ 11…電流マップ
12…dq軸電圧指令値演算部 13…二相三相変換部
14…PWM変換部 15…微分部
16…dq軸変換部 17…デッドタイム補償部
DESCRIPTION OF SYMBOLS 1 ... DC power supply 2 ... Inverter 3 ... Electric motor 4 ... Control part 5 ... Voltage sensor 6 ... Current sensor 7 ... Angle sensor 11 ... Current map 12 ... dq axis voltage command value calculating part 13 ... Two-phase three-phase conversion part 14 ... PWM Conversion unit 15 ... Differentiation unit 16 ... dq axis conversion unit 17 ... Dead time compensation unit

Claims (7)

PWMキャリア信号の所定位相のタイミングで電動機の相電流値および回転角を読み込み、前記相電流値と電流指令値との差および前記回転角に基づいて電動機を制御する電圧指令値を演算し、前記PWMキャリア信号の次回のキャリア周期における前記所定位相の時点で、前記演算しておいた電圧指令値を出力する電動機制御装置において、
前記相電流値および回転角の読み込みから前記電圧指令値を演算するまでの電流制御演算1回に要する時間を電流制御演算時間とした場合に、次回の電圧指令値出力タイミングから前記電流制御演算時間だけ前の時点を電流制御演算の開始タイミングとして設定することを特徴とする電動機制御装置。
Read the phase current value and rotation angle of the motor at the timing of the predetermined phase of the PWM carrier signal, calculate the voltage command value for controlling the motor based on the difference between the phase current value and the current command value and the rotation angle, In the motor controller that outputs the calculated voltage command value at the time of the predetermined phase in the next carrier cycle of the PWM carrier signal,
When the time required for one current control calculation from the reading of the phase current value and the rotation angle to the calculation of the voltage command value is defined as a current control calculation time, the current control calculation time from the next voltage command value output timing An electric motor control device characterized in that a time point just before is set as the start timing of the current control calculation.
前記電流制御演算時間は、前記相電流値および回転角の読み込みから前記電圧指令値を演算するまでに要する時間の最長時間であり、次回の電圧指令値出力タイミングよりも前記最長時間より前で、キャリア周期の一周期前よりは後のタイミングを電流制御演算の開始タイミングとすることを特徴とする請求項1に記載の電動機制御装置。   The current control calculation time is the longest time required to calculate the voltage command value from the reading of the phase current value and rotation angle, and is before the longest time before the next voltage command value output timing, The motor control device according to claim 1, wherein a timing later than one cycle before the carrier cycle is set as a start timing of the current control calculation. PWMキャリア周期と同周期でリセットされるタイマを、PWMキャリア周期よりも前記電流制御演算時間だけ前にずらしてカウントさせ、前記タイマがリセットされた時点を前記演算開始タイミングとすることを特徴とする請求項1または請求項2に記載の電動機制御装置。   A timer that is reset in the same period as the PWM carrier cycle is shifted and counted by the current control calculation time before the PWM carrier period, and the time point when the timer is reset is set as the calculation start timing. The electric motor control device according to claim 1 or 2. リセット値可変のタイマを設け、次回の電流制御演算時間を今回の電流制御演算中に演算し、演算で求めた電流制御演算時間に応じて前記タイマのリセット値を設定し、PWMキャリア信号の前記所定位相からカウントを開始した前記タイマがリセットされた時点を前記演算開始タイミングとすることを特徴とする請求項1または請求項2に記載の電動機制御装置。   A reset value variable timer is provided, the next current control calculation time is calculated during the current current control calculation, the reset value of the timer is set according to the current control calculation time obtained by the calculation, and the PWM carrier signal The motor control device according to claim 1, wherein the calculation start timing is a time when the timer that has started counting from a predetermined phase is reset. 電圧指令値出力タイミングとは拘りなく電流制御演算を繰り返し行って最終の演算結果を順次記憶しておき、次回の電圧指令値出力タイミングの時点における記憶値を電圧指令値として出力することを特徴とする請求項1または請求項2に記載の電動機制御装置。   Regardless of the voltage command value output timing, the current control calculation is repeatedly performed and the final calculation result is sequentially stored, and the stored value at the time of the next voltage command value output timing is output as the voltage command value. The electric motor control device according to claim 1 or 2. 前記PWMキャリア信号の値を読み取り、電流制御演算時間に応じて設定された閾値に前記PWMキャリア信号が至った時点を前記演算開始タイミングとすることを特徴とする請求項1または請求項2に記載の電動機制御装置。   The value of the PWM carrier signal is read, and a point in time when the PWM carrier signal reaches a threshold set according to a current control calculation time is set as the calculation start timing. Electric motor control device. 前記電流制御演算時間は、電動機制御を行っているCPUに基づいて決定される電流制御演算負荷に応じて設定されることを特徴とする請求項1乃至請求項6の何れかに記載の電動機制御装置。   The motor control according to claim 1, wherein the current control calculation time is set according to a current control calculation load determined based on a CPU performing motor control. apparatus.
JP2006230401A 2006-08-28 2006-08-28 Electric motor control device Active JP5011892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006230401A JP5011892B2 (en) 2006-08-28 2006-08-28 Electric motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006230401A JP5011892B2 (en) 2006-08-28 2006-08-28 Electric motor control device

Publications (2)

Publication Number Publication Date
JP2008054466A true JP2008054466A (en) 2008-03-06
JP5011892B2 JP5011892B2 (en) 2012-08-29

Family

ID=39237974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006230401A Active JP5011892B2 (en) 2006-08-28 2006-08-28 Electric motor control device

Country Status (1)

Country Link
JP (1) JP5011892B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014212641A (en) * 2013-04-19 2014-11-13 株式会社デンソー PWM signal output device
JP2015065351A (en) * 2013-09-25 2015-04-09 本田技研工業株式会社 Current controller
JP2019170018A (en) * 2018-03-22 2019-10-03 株式会社デンソー Motor drive device
US11358476B2 (en) 2016-10-19 2022-06-14 Toyota Jidosha Kabushiki Kaisha Drive device and vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5666191A (en) * 1979-10-31 1981-06-04 Toyo Electric Mfg Co Ltd Digital speed controller
JPH03215182A (en) * 1990-01-17 1991-09-20 Meidensha Corp Current controlling system of variable speed driving gear
JPH06349154A (en) * 1993-06-08 1994-12-22 Matsushita Electric Ind Co Ltd Capstan software servo device for vtr
JPH09154283A (en) * 1995-11-29 1997-06-10 Hitachi Ltd Control system of power converter
JP2005057901A (en) * 2003-08-05 2005-03-03 Nissan Motor Co Ltd Controller for motor
JP2005312274A (en) * 2004-04-26 2005-11-04 Mitsubishi Electric Corp Control device for ac motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5666191A (en) * 1979-10-31 1981-06-04 Toyo Electric Mfg Co Ltd Digital speed controller
JPH03215182A (en) * 1990-01-17 1991-09-20 Meidensha Corp Current controlling system of variable speed driving gear
JPH06349154A (en) * 1993-06-08 1994-12-22 Matsushita Electric Ind Co Ltd Capstan software servo device for vtr
JPH09154283A (en) * 1995-11-29 1997-06-10 Hitachi Ltd Control system of power converter
JP2005057901A (en) * 2003-08-05 2005-03-03 Nissan Motor Co Ltd Controller for motor
JP2005312274A (en) * 2004-04-26 2005-11-04 Mitsubishi Electric Corp Control device for ac motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014212641A (en) * 2013-04-19 2014-11-13 株式会社デンソー PWM signal output device
JP2015065351A (en) * 2013-09-25 2015-04-09 本田技研工業株式会社 Current controller
US11358476B2 (en) 2016-10-19 2022-06-14 Toyota Jidosha Kabushiki Kaisha Drive device and vehicle
JP2019170018A (en) * 2018-03-22 2019-10-03 株式会社デンソー Motor drive device

Also Published As

Publication number Publication date
JP5011892B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP4697017B2 (en) Control device for multiphase rotating electrical machine
JP4434184B2 (en) Method and apparatus for feedback control of electric motor
US20110241583A1 (en) Control device of motor driving apparatus
JP2009201192A (en) Motor drive control device
CN104682786A (en) Method And Device For Determining Position Data Of Rotor Of Motor
JP2010200430A (en) Drive controller for motors
JP5011892B2 (en) Electric motor control device
JP5737123B2 (en) Rotating machine control device and rotation angle calculation device
JP5483218B2 (en) AC motor control device
JP6119585B2 (en) Electric motor drive
JP6579195B2 (en) Power control method and power control apparatus
JP6293401B2 (en) Motor controller for air conditioner and air conditioner
JP2017077079A (en) Power converter
JP2015126641A (en) Controller of motor
JP2007159348A (en) Controller of motor
JP2018143054A (en) vehicle
JP2006197718A (en) Controller for motor
JP5595436B2 (en) Motor control device
JP5167768B2 (en) Electric motor control apparatus and electric motor control method
JP2017205017A (en) Motor control device of air conditioner, and air conditioner
JP6946988B2 (en) Drive device
JP5751059B2 (en) Drive device and electric vehicle
JP2011061956A (en) Device for controlling electric motor
JP4727405B2 (en) Electric motor control device
JP2007166730A (en) Controller for motors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100127

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101013

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5011892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150