JP2008053505A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2008053505A
JP2008053505A JP2006228887A JP2006228887A JP2008053505A JP 2008053505 A JP2008053505 A JP 2008053505A JP 2006228887 A JP2006228887 A JP 2006228887A JP 2006228887 A JP2006228887 A JP 2006228887A JP 2008053505 A JP2008053505 A JP 2008053505A
Authority
JP
Japan
Prior art keywords
chip
substrate
mold resin
filler
pads
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006228887A
Other languages
Japanese (ja)
Inventor
Naotsugu Yasuda
直世 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2006228887A priority Critical patent/JP2008053505A/en
Publication of JP2008053505A publication Critical patent/JP2008053505A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73207Bump and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a semiconductor device which prevents the warpage of a package and can prevent the mutual contact of adjoining wires. <P>SOLUTION: The semiconductor device has a substrate 11, a chip 13 mounted on the substrate, a plurality of wires 18 which connects respectively a plurality of pads 16 on the chip and a plurality of pads 17 on the substrate, and a mold resin 41 which seals the chip and the plurality of wires. The mold resin contains 80 wt.% or more of filler whose mean particle diameter is 3-7 μm, and maximum particle diameter is 20-30 μm; and the pitch of the plurality of the pads is 100 μm or more. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ファインフィラーを含有するモールド樹脂を用いた半導体装置に関し、特にパッケージの反りを防止し、かつ隣接するワイヤ同士の接触を防止することができる半導体装置に関するものである。   The present invention relates to a semiconductor device using a mold resin containing a fine filler, and more particularly to a semiconductor device capable of preventing package warpage and preventing contact between adjacent wires.

2以上のチップを積層した基板を下金型上に載置し、基板を下金型と上金型で挟むことで形成されるキャビティ内にモールド樹脂を充填してチップを封止する半導体装置の製造方法が知られている。   A semiconductor device in which a substrate in which two or more chips are stacked is placed on a lower mold, and a mold resin is filled in a cavity formed by sandwiching the substrate between the lower mold and the upper mold, thereby sealing the chips The manufacturing method is known.

また、接着層を用いて2つのチップを積層した場合、上側のチップが接着層に対してオーバーハングする場合がある。この場合、上下チップの隙間に、モールド樹脂に含有される硬いフィラーが噛み込む恐れがある。そうすると、モールド樹脂の注入時の圧力や、硬化収縮によってフィラーが下側のチップに食い込んで傷がついてしまうという問題があった。これに対して、スペーサを設けて上側のチップと下側のチップの隙間を大きくすればよいが、装置全体の高さが増してしまうという問題があった。   In addition, when two chips are stacked using an adhesive layer, the upper chip may overhang the adhesive layer. In this case, a hard filler contained in the mold resin may be caught in the gap between the upper and lower chips. If it does so, there existed a problem that a filler will bite into a chip | tip of a lower side by the pressure at the time of injection | pouring of mold resin, and hardening shrinkage, and it will be damaged. On the other hand, a spacer may be provided to increase the gap between the upper chip and the lower chip, but there is a problem that the height of the entire apparatus increases.

これに対し、ウェハをダイシングした後にチップの搭載より先に、ダイボンドフィルムをチップごとに貼り付ける場合や、チップごとに樹脂ペーストを塗布する場合では、接着層として、上側のチップより大きいダイアタッチフィルムを用いたり、樹脂ペーストをはみ出させたりすることで、上側と下側のチップの隙間にフィラーが噛み込むのを防いでいた。しかし、接着層をはみ出させるスペースが無い場合や、製造誤差等により上下チップの隙間が発生してしまう場合があった。   On the other hand, when the die bond film is pasted for each chip before the chip is mounted after dicing the wafer, or when a resin paste is applied for each chip, the die attach film is larger than the upper chip as an adhesive layer. The filler is prevented from biting into the gap between the upper and lower chips by using the resin or by protruding the resin paste. However, there is a case where there is no space for the adhesive layer to protrude or a gap between the upper and lower chips may occur due to a manufacturing error or the like.

また、ウェハ裏面にダイアタッチフィルムを貼り付けた後にウェハをダイシングする場合では、基本的には、ダイアタッチフィルムのサイズはチップのサイズとほぼ同じになる。しかし、ダインシング時のブレードへのダイアタッチフィルムの巻き込みや、ダイアタッチフィルムの硬化収縮により、チップに対してダイアタッチフィルムが小さくなってしまい、チップを積層して搭載した場合に、上下チップの隙間が発生してしまう場合があった。そして、この隙間にフィラーが噛み込み、下側のチップの表面を傷つけるという問題があった。   Further, when the wafer is diced after the die attach film is attached to the back surface of the wafer, the size of the die attach film is basically the same as the size of the chip. However, when the die attach film is wound around the blade during dicing or the die attach film cures and shrinks, the die attach film becomes smaller than the chip. May occur. Then, there is a problem that the filler bites into the gap and damages the surface of the lower chip.

そこで、積層したチップ間にフィラーが噛み込むのを防ぐために、接着層の厚さよりも最大粒径が小さいファインフィラーが用いられるようになってきた。従来のモールド樹脂は、平均粒径が5μmで最大粒径が25μmのフィラーを78wt%含有していた。   Therefore, in order to prevent the filler from biting between the stacked chips, a fine filler having a maximum particle size smaller than the thickness of the adhesive layer has been used. A conventional mold resin contained 78 wt% of a filler having an average particle size of 5 μm and a maximum particle size of 25 μm.

特開2002−368029号公報JP 2002-368029 A

上記の従来のモールド樹脂を用いた場合、パッケージの反りが1.2mm程度ある。このようにパッケージが反ることによりボール取り付け工程でのボール搭載不良が発生したり、反ったパッケージと粘着テープとの接触不良により個片ダイシング工程においてパッケージが飛んだり、欠け不良を生じたりするという問題があった。この問題を回避するための第1の対策として、モールド後のキュア時にパッケージに重りを載せて、パッケージの反りを防ぐ方法がある。しかし、この方法は、手作業となり、また基材に載っているレジンバリが基材に打ち込まれてボール不良が発生するという問題があった。また、第2の対策として、パッケージのカットライン以外の場所を先にカットしてパッケージを小さくすることで、パッケージと粘着テープとの接着不良を防ぐ方法がある。しかし、この方法は、カットの回数が増えることにより、個片ダイシングの生産能力が5〜10%ダウンするという問題があった。   When the above conventional mold resin is used, the warpage of the package is about 1.2 mm. As a result of the warping of the package, a ball mounting defect occurs in the ball mounting process, or the package flies or a chipping defect occurs in the individual dicing process due to a poor contact between the warped package and the adhesive tape. There was a problem. As a first countermeasure for avoiding this problem, there is a method for preventing warpage of the package by placing a weight on the package during curing after molding. However, this method has a problem in that it is a manual operation and a resin burr placed on the base material is driven into the base material to cause a ball defect. Further, as a second countermeasure, there is a method for preventing defective bonding between the package and the adhesive tape by first cutting a place other than the cut line of the package to make the package smaller. However, this method has a problem that the production capacity of the individual dicing decreases by 5 to 10% due to an increase in the number of times of cutting.

また、トランスファモールド時に樹脂の流れによってワイヤが流され、隣接するワイヤ同士が接触すると、ショート不良の原因になるという問題があった。これを防ぐために、ワイヤ同士を固定体によって連結固定するなどの方法(例えば、特許文献1参照)を用いると、製造コストが上がってしまうという問題があった。   In addition, there is a problem in that when a wire is caused to flow by a resin flow at the time of transfer molding and adjacent wires come into contact with each other, a short circuit is caused. In order to prevent this, when a method (for example, refer patent document 1), such as connecting and fixing wires with a fixed body, is used, there is a problem that the manufacturing cost increases.

本発明は、上述のような課題を解決するためになされたもので、その目的は、パッケージの反りを防止し、かつ隣接するワイヤ同士の接触を防止することができる半導体装置を得るものである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a semiconductor device that can prevent package warpage and contact between adjacent wires. .

本発明に係る半導体装置は、基板と、基板上に搭載されたチップと、チップ上の複数のパッドと基板上の複数のパッドとをそれぞれ接続する複数のワイヤと、チップ及び複数のワイヤを封止するモールド樹脂とを有し、モールド樹脂は、平均粒径が3〜7μmで最大粒径が20〜30μmのフィラーを80wt%以上含有し、複数のパッドのピッチが100μm以上である。本発明のその他の特徴は以下に明らかにする。   A semiconductor device according to the present invention includes a substrate, a chip mounted on the substrate, a plurality of wires connecting the plurality of pads on the chip and the plurality of pads on the substrate, and the chip and the plurality of wires. The mold resin contains 80 wt% or more of filler having an average particle diameter of 3 to 7 μm and a maximum particle diameter of 20 to 30 μm, and the pitch of the plurality of pads is 100 μm or more. Other features of the present invention will become apparent below.

本発明により、パッケージの反りを防止し、かつ隣接するワイヤ同士の接触を防止することができる。   By this invention, the curvature of a package can be prevented and the contact of adjacent wires can be prevented.

実施の形態1.
以下、本発明の実施の形態1に係る半導体装置の製造工程について図面を参照しながら説明する。
Embodiment 1 FIG.
Hereinafter, the manufacturing process of the semiconductor device according to the first embodiment of the present invention will be described with reference to the drawings.

まず、図1に示すように、基板11上に接着層12を介してチップ13を搭載する。そして、チップ13上に接着層14を介して他のチップ15を接着する。ただし、接着層14の幅は、チップ13,15の幅よりも狭い。図2は、チップの積層構造を示す断面図であり、図3はその平面図である。また、図4は、ワイヤ接合部を拡大した平面図である。図示のように、チップ13上の複数のパッド16と基板11上の複数のパッド17とをそれぞれ複数のワイヤ18により接続する。ここで、複数のパッド16,17のピッチが100μm以上であるか、もしくは複数のワイヤ18の長さが3.0mm以下であるのが好ましい。また、複数のパッド16,17のピッチが100μm以上であり、かつ複数のワイヤ18の長さが3.0mm以下であるのがより好ましい。そして、基板11には位置決め穴19と、テーパピン用穴21と、エアベント22とが設けられている。   First, as shown in FIG. 1, a chip 13 is mounted on a substrate 11 via an adhesive layer 12. Then, another chip 15 is bonded onto the chip 13 via the adhesive layer 14. However, the width of the adhesive layer 14 is narrower than the widths of the chips 13 and 15. FIG. 2 is a cross-sectional view showing a laminated structure of chips, and FIG. 3 is a plan view thereof. FIG. 4 is an enlarged plan view of the wire bonding portion. As illustrated, a plurality of pads 16 on the chip 13 and a plurality of pads 17 on the substrate 11 are connected by a plurality of wires 18, respectively. Here, the pitch of the plurality of pads 16 and 17 is preferably 100 μm or more, or the length of the plurality of wires 18 is preferably 3.0 mm or less. More preferably, the pitch between the plurality of pads 16 and 17 is 100 μm or more, and the length of the plurality of wires 18 is 3.0 mm or less. The substrate 11 is provided with a positioning hole 19, a taper pin hole 21, and an air vent 22.

ここで、チップのダイシングと積層の方法について説明する。まず、図5に示すように、ウェハ23上に複数の半導体素子を形成し、ウェハ23を研磨した後に、ウェハ23をダイシングシート24に貼りつけて台25の上に載置する。次に、図6に示すように、ダイシングブレード26により、ダイシングシート24ごとウェハ23をダイシングしてチップ13ごとに分離する。そして、図7に示すように、UV照射を行う。   Here, a method of chip dicing and stacking will be described. First, as shown in FIG. 5, a plurality of semiconductor elements are formed on the wafer 23, and after polishing the wafer 23, the wafer 23 is attached to the dicing sheet 24 and placed on the table 25. Next, as shown in FIG. 6, the wafer 23 is diced together with the dicing sheet 24 by the dicing blade 26 and separated into chips 13. Then, as shown in FIG. 7, UV irradiation is performed.

次に、図8に示すように、ツール27を用いて、接着層12としてダイボンドフィルムを基板11上に貼り付けていく。なお、接着層12として樹脂ペーストを基板11上に塗布してもよい。そして、図9に示すように、接着層12上にチップ13を搭載する。以上の工程を繰り返して任意の数のチップ13を積層する。   Next, as shown in FIG. 8, a die bond film is bonded onto the substrate 11 as the adhesive layer 12 using a tool 27. Note that a resin paste may be applied to the substrate 11 as the adhesive layer 12. Then, as shown in FIG. 9, the chip 13 is mounted on the adhesive layer 12. The above steps are repeated to stack any number of chips 13.

図10は上金型を示す上面図であり、図11は下金型を示す上面図である。上金型28には、カル29、カル側ランナー31の一部、オーバーフローキャビティ32、オーバーフローキャビティランナー33の一部、位置決めピン受け部34、及びテーパピン35が設けられている。一方、下金型39には、カル29、カル側ランナー31の一部、オーバーフローキャビティランナー33の一部、基板11を載置するための凹部36、キャビティ37及び位置決めピン38が設けられている。本実施の形態においては、キャビティ37が下金型に形成される場合を示すが、これに限られる物ではなく、キャビティ37が上金型に形成され、基板11のチップ13,15が搭載された面を上向きに載置して、樹脂封止する場合に本発明を適用することも可能である。   FIG. 10 is a top view showing the upper mold, and FIG. 11 is a top view showing the lower mold. The upper die 28 is provided with a cull 29, a part of the cull-side runner 31, an overflow cavity 32, a part of the overflow cavity runner 33, a positioning pin receiving part 34, and a taper pin 35. On the other hand, the lower mold 39 is provided with a cull 29, a part of the cull-side runner 31, a part of the overflow cavity runner 33, a recess 36 for placing the substrate 11, a cavity 37, and a positioning pin 38. . In the present embodiment, the case where the cavity 37 is formed in the lower mold is shown. However, the present invention is not limited to this, and the cavity 37 is formed in the upper mold and the chips 13 and 15 of the substrate 11 are mounted. It is also possible to apply the present invention when the resin surface is placed with the surface facing upward.

次に、図12に示すように、基板11を下金型39の凹部36内に、チップ13,15がキャビティ37内に配置されるように載置する。この際に、下金型39に設けられた位置決めピン38を基板11に設けられた位置決め穴19に貫通させて基板11を位置決めする。そして、基板11を下金型39と上金型28で挟む。この際に、上金型28に設けられたテーパピン35の先端のテーパ部分を基板11に設けられたテーパピン用穴21の開口縁部に圧接させ、基板11をスライドさせて、基板11のカル側ランナー31がまたがる端辺を下金型39の凹部36の側壁に圧接させる。この状態で、キャビティ37内に、カル29からカル側ランナー31を介してモールド樹脂41を充填して複数のチップ13,15及び複数のワイヤ18を一括して封止する。   Next, as shown in FIG. 12, the substrate 11 is placed in the recess 36 of the lower mold 39 so that the chips 13 and 15 are placed in the cavity 37. At this time, the positioning pins 38 provided in the lower mold 39 are passed through the positioning holes 19 provided in the substrate 11 to position the substrate 11. Then, the substrate 11 is sandwiched between the lower mold 39 and the upper mold 28. At this time, the taper portion of the tip of the taper pin 35 provided on the upper mold 28 is brought into pressure contact with the opening edge portion of the taper pin hole 21 provided on the substrate 11, and the substrate 11 is slid, The end side over which the runner 31 spans is brought into pressure contact with the side wall of the recess 36 of the lower mold 39. In this state, the cavity 37 is filled with the mold resin 41 from the cull 29 through the cull-side runner 31 to seal the plurality of chips 13 and 15 and the plurality of wires 18 together.

ここで、フィラーがチップ13,15の間に噛み込むのを防ぐため、モールド樹脂41に含有されるフィラーは、下層のチップ13と、上層のチップ15との隙間よりも小さな目開きのふるいによって選別された物を使用するのが好ましい。本実施の形態においては、下層のチップ13と、上層のチップ15との隙間は35μmであり、モールド樹脂41に含有されるフィラーは、平均粒径が3〜7μmで最大粒径が20〜30μmのファインフィラーである。そして、モールド樹脂41はファインフィラーを80wt%以上含有する。フィラーの最大粒径としては、下層のチップ13と、上層のチップ15との隙間以下であることが最も好ましいが、前記隙間よりも粒径の大きなフィラーが含まれていたとしても、その量がごく微量であれば、半導体装置の信頼性に及ぼす影響は許容できる範囲に留まる。例えば、前記隙間よりも粒径の大きなフィラーの含有量は、0.1wt%以下にするのが好ましい。特に、フィラーの最大粒径が30μm以下である場合、もしくは、粒径が30μm以下のフィラーの含有量が0.1wt%以下であり、かつ、フィラーの総含有量が80wt%以上である場合には、トランスファーモールド時の樹脂の粘性が従来の樹脂に比較して極端に上昇する傾向にある。   Here, in order to prevent the filler from biting between the chips 13 and 15, the filler contained in the mold resin 41 is formed by a sieve having an opening smaller than the gap between the lower chip 13 and the upper chip 15. It is preferable to use a sorted product. In the present embodiment, the gap between the lower chip 13 and the upper chip 15 is 35 μm, and the filler contained in the mold resin 41 has an average particle size of 3 to 7 μm and a maximum particle size of 20 to 30 μm. Fine filler. The mold resin 41 contains 80 wt% or more of fine filler. The maximum particle size of the filler is most preferably less than or equal to the gap between the lower chip 13 and the upper chip 15, but even if a filler having a larger particle size than the gap is included, the amount is If the amount is extremely small, the influence on the reliability of the semiconductor device remains within an acceptable range. For example, the content of the filler having a particle size larger than the gap is preferably 0.1 wt% or less. In particular, when the maximum particle size of the filler is 30 μm or less, or when the content of the filler having a particle size of 30 μm or less is 0.1 wt% or less and the total content of the filler is 80 wt% or more. The viscosity of the resin at the time of transfer molding tends to increase extremely compared to the conventional resin.

その後、図13に示すように、基板11の裏面上の端子に半田ボール42を取り付けた後に、基板11及びモールド樹脂41をチップごとに切断し、個別の半導体装置を得る。   Then, as shown in FIG. 13, after attaching the solder balls 42 to the terminals on the back surface of the substrate 11, the substrate 11 and the mold resin 41 are cut for each chip to obtain individual semiconductor devices.

ここで、図14は、モールド樹脂の厚みが840μmの場合(左側)と910μmの場合(右側)について、モールド樹脂中のファインフィラーの含有量(フィラー量)とキャビティ反り量との関係を示す図である。この図より、ファインフィラーを80wt%以上含有するモールド樹脂を用いることで、パッケージの反りを防止することができることが分かる。   Here, FIG. 14 is a diagram showing the relationship between the fine filler content (filler amount) in the mold resin and the cavity warp amount when the thickness of the mold resin is 840 μm (left side) and 910 μm (right side). It is. From this figure, it can be seen that warpage of the package can be prevented by using a mold resin containing 80 wt% or more of fine filler.

図15は、フィラー量とモールド樹脂のガラス転移温度以下での線膨張係数α1との関係を示す図であり、図16は、フィラー量とモールド樹脂のガラス転移温度以上での線膨張係数α2との関係を示す図であり、図17は、フィラー量とモールド樹脂の成形収縮率を示す図であり、図18は、フィラー量とモールド樹脂のスパイラルフローを示す図であり、図19は、フィラー量とモールド樹脂の粘度を示す図である。これらの図より、ファインフィラーの含有量が増すほどモールド樹脂の流動性が低下することが分かる。特に、ファインフィラーの含有量が80wt%を超えると、極端な粘度の上昇が発生するため、モールド樹脂の流動性の低下に伴い、複数のワイヤ18が変形し易くなる。粘度の高い樹脂であっても、キャビティ37内でのモールド樹脂41の流速を極端に遅くすれば、ワイヤの変形を防ぐことができるが、キャビティ37内に樹脂が充填されるのに長い時間がかかるため、生産性の低下が問題となる。生産性の低下を防ぐためには、キャビティ37内の樹脂の最大流速として、少なくとも10mm/秒以上、より好ましくは20mm/秒以上を採用するのが好ましい。しかし、大きな流速で樹脂を注入すると、ワイヤ18の変形が問題となる。そこで、上記のように、複数のパッド16,17のピッチを100μm以上とするか、又は、複数のワイヤ18の長さを3.0mm以下とする。これにより、隣接するワイヤ同士の接触を防止することができる。   FIG. 15 is a diagram showing the relationship between the amount of filler and the linear expansion coefficient α1 below the glass transition temperature of the mold resin, and FIG. 16 shows the relationship between the amount of filler and the linear expansion coefficient α2 above the glass transition temperature of the mold resin. 17 is a diagram showing the filler amount and the molding shrinkage rate of the mold resin, FIG. 18 is a diagram showing the filler amount and the spiral flow of the mold resin, and FIG. 19 is a diagram showing the filler amount. It is a figure which shows the quantity and the viscosity of mold resin. From these figures, it can be seen that the fluidity of the mold resin decreases as the content of the fine filler increases. In particular, when the content of the fine filler exceeds 80 wt%, an extreme increase in viscosity occurs, so that the plurality of wires 18 are easily deformed with a decrease in the fluidity of the mold resin. Even if the resin has a high viscosity, if the flow rate of the mold resin 41 in the cavity 37 is extremely slow, deformation of the wire can be prevented, but a long time is required for filling the cavity 37 with the resin. Therefore, a decrease in productivity becomes a problem. In order to prevent a decrease in productivity, it is preferable to employ a maximum flow rate of the resin in the cavity 37 of at least 10 mm / second or more, more preferably 20 mm / second or more. However, when the resin is injected at a large flow rate, deformation of the wire 18 becomes a problem. Therefore, as described above, the pitch of the plurality of pads 16 and 17 is set to 100 μm or more, or the length of the plurality of wires 18 is set to 3.0 mm or less. Thereby, the contact of adjacent wires can be prevented.

また、キャビティ37内に樹脂を充填する際に、キャビティ37内の樹脂を基板11の外側に設けられたオーバーフローキャビティ32にオーバーフローキャビティランナー33を介してオーバーフローさせる。そして、キャビティ37内で発生した表面ボイドを除去するため、樹脂の充填完了時にかける圧力は100kg/cm以上にする。また、チップ領域を充填する際は樹脂の注入スピードを速くし、樹脂がエアベント22に達するまでに注入スピードを遅くする。これにより、複数のワイヤ18の変形がますます深刻になる。そこで、複数のパッド16,17のピッチ又は複数のワイヤ18の長さを上記のように設定して、隣接するワイヤ同士の接触を防止することが重要となる。 Further, when the resin is filled in the cavity 37, the resin in the cavity 37 is caused to overflow into the overflow cavity 32 provided outside the substrate 11 through the overflow cavity runner 33. In order to remove the surface voids generated in the cavity 37, the pressure applied at the completion of the resin filling is set to 100 kg / cm 2 or more. Further, when filling the chip region, the resin injection speed is increased, and the injection speed is decreased until the resin reaches the air vent 22. Thereby, the deformation of the plurality of wires 18 becomes more and more serious. Therefore, it is important to set the pitch of the plurality of pads 16 and 17 or the length of the plurality of wires 18 as described above to prevent contact between adjacent wires.

実施の形態2.
図20は、本発明の実施の形態2に係る半導体装置を示す断面図である。図示のように、チップ13上に、他のチップ15がバンプ電極43を介してフリップチップ接続されている。そして、チップ13と他のチップ15との隙間にモールド樹脂41が注入されている。その他の構成は実施の形態1と同様である。特に、フィラーがチップ13,15の間に噛み込むのを防ぐため、下層のチップ13と、上層のチップ15との隙間よりも小さな目開きのふるいによって選別されたフィラーを使用するのが好ましい。本実施の形態においては、下層のチップ13主面上の表面保護絶縁膜と、上層のチップ15の表面保護絶縁膜との間の距離は、35μmであり、モールド樹脂41に含有されたフィラーは、実施の形態1と同様に、平均粒径が3〜7μmで最大粒径が20〜30μmのファインフィラーである。そして、モールド樹脂41は実施の形態1と同様にファインフィラーを80wt%以上含有し、複数のパッド16,17のピッチ又は複数のワイヤ18の長さは実施の形態1と同様に設定されている。これにより、実施の形態1と同様の効果を奏する。
Embodiment 2. FIG.
FIG. 20 is a sectional view showing a semiconductor device according to the second embodiment of the present invention. As shown in the figure, another chip 15 is flip-chip connected to the chip 13 via a bump electrode 43. A mold resin 41 is injected into the gap between the chip 13 and the other chip 15. Other configurations are the same as those of the first embodiment. In particular, in order to prevent the filler from biting between the chips 13 and 15, it is preferable to use a filler selected by a sieve having an opening smaller than the gap between the lower chip 13 and the upper chip 15. In the present embodiment, the distance between the surface protective insulating film on the main surface of the lower chip 13 and the surface protective insulating film of the upper chip 15 is 35 μm, and the filler contained in the mold resin 41 is As in Embodiment 1, the fine filler has an average particle size of 3 to 7 μm and a maximum particle size of 20 to 30 μm. The mold resin 41 contains 80 wt% or more of fine filler as in the first embodiment, and the pitch of the plurality of pads 16 and 17 or the length of the plurality of wires 18 is set in the same manner as in the first embodiment. . As a result, the same effects as those of the first embodiment can be obtained.

複数のチップを搭載した基板を示す上面図である。It is a top view which shows the board | substrate which mounted several chip | tip. チップの積層構造を示す断面図である。It is sectional drawing which shows the laminated structure of a chip | tip. チップの積層構造を示す上面図である。It is a top view which shows the laminated structure of a chip | tip. ワイヤ接合部を拡大した平面図である。It is the top view which expanded the wire junction part. チップのダイシングと積層の方法を説明するための斜視図である。It is a perspective view for demonstrating the method of chip | tip dicing and lamination | stacking. チップのダイシングと積層の方法を説明するための斜視図である。It is a perspective view for demonstrating the method of chip | tip dicing and lamination | stacking. チップのダイシングと積層の方法を説明するための斜視図である。It is a perspective view for demonstrating the method of chip | tip dicing and lamination | stacking. チップのダイシングと積層の方法を説明するための斜視図である。It is a perspective view for demonstrating the method of chip | tip dicing and lamination | stacking. チップのダイシングと積層の方法を説明するための斜視図である。It is a perspective view for demonstrating the method of chip | tip dicing and lamination | stacking. 上金型を示す上面図である。It is a top view which shows an upper metal mold | die. 下金型を示す上面図である。It is a top view which shows a lower mold. キャビティ内に樹脂を充填する様子を示す上面図である。It is a top view which shows a mode that resin is filled in a cavity. 本発明の実施の形態1に係る半導体装置を示す断面図である。It is sectional drawing which shows the semiconductor device which concerns on Embodiment 1 of this invention. フィラー量とキャビティ反り量との関係を示す図である。It is a figure which shows the relationship between the amount of fillers, and the amount of cavity curvature. フィラー量とモールド樹脂のガラス転移温度以下での線膨張係数α1との関係を示す図である。It is a figure which shows the relationship between the amount of fillers, and the linear expansion coefficient (alpha) 1 below the glass transition temperature of mold resin. フィラー量とモールド樹脂のガラス転移温度以上での線膨張係数α2との関係を示す図である。It is a figure which shows the relationship between the amount of fillers, and the linear expansion coefficient (alpha) 2 more than the glass transition temperature of mold resin. フィラー量とモールド樹脂の成形収縮率を示す図である。It is a figure which shows the amount of fillers, and the molding shrinkage rate of mold resin. フィラー量とモールド樹脂のスパイラルフローを示す図である。It is a figure which shows the amount of fillers, and the spiral flow of mold resin. フィラー量とモールド樹脂の粘度を示す図である。It is a figure which shows the amount of fillers, and the viscosity of mold resin. 本発明の実施の形態2に係る半導体装置を示す断面図である。It is sectional drawing which shows the semiconductor device which concerns on Embodiment 2 of this invention.

符号の説明Explanation of symbols

11 基板
13 チップ
14 接着層
15 チップ(他のチップ)
16,17 複数のパッド
18 複数のワイヤ
41 モールド樹脂
11 substrate 13 chip 14 adhesive layer 15 chip (other chip)
16, 17 Multiple pads 18 Multiple wires 41 Mold resin

Claims (4)

基板と、
前記基板上に搭載されたチップと、
前記チップ上の複数のパッドと前記基板上の複数のパッドとをそれぞれ接続する複数のワイヤと、
前記チップ及び前記複数のワイヤを封止するモールド樹脂とを有し、
前記モールド樹脂は、平均粒径が3〜7μmで最大粒径が20〜30μmのフィラーを80wt%以上含有し、
前記複数のパッドのピッチが100μm以上であることを特徴とする半導体装置。
A substrate,
A chip mounted on the substrate;
A plurality of wires respectively connecting a plurality of pads on the chip and a plurality of pads on the substrate;
A mold resin for sealing the chip and the plurality of wires;
The mold resin contains 80 wt% or more filler having an average particle size of 3 to 7 μm and a maximum particle size of 20 to 30 μm,
A semiconductor device, wherein a pitch of the plurality of pads is 100 μm or more.
基板と、
前記基板上に搭載されたチップと、
前記チップ上の複数のパッドと前記基板上の複数のパッドとをそれぞれ接続する複数のワイヤと、
前記チップ及び前記ワイヤを封止するモールド樹脂とを有し、
前記モールド樹脂は、平均粒径が3〜7μmで最大粒径が20〜30μmのフィラーを80wt%以上含有し、
前記複数のワイヤの長さが3.0mm以下であることを特徴とする半導体装置。
A substrate,
A chip mounted on the substrate;
A plurality of wires respectively connecting a plurality of pads on the chip and a plurality of pads on the substrate;
A mold resin for sealing the chip and the wire;
The mold resin contains 80 wt% or more filler having an average particle size of 3 to 7 μm and a maximum particle size of 20 to 30 μm,
The semiconductor device, wherein a length of the plurality of wires is 3.0 mm or less.
前記チップ上に接着層を介して接着された他のチップを更に有し、
前記接着層の幅は、前記チップ及び前記他のチップの幅よりも狭いことを特徴とする請求項1又は2に記載の半導体装置。
It further has another chip bonded on the chip through an adhesive layer,
The semiconductor device according to claim 1, wherein a width of the adhesive layer is narrower than a width of the chip and the other chip.
前記チップ上にフリップチップ接続された他のチップを更に有し、
前記チップと前記他のチップとの隙間に前記モールド樹脂が注入されていることを特徴とする請求項1又は2に記載の半導体装置。
And further comprising another chip flip-chip connected on the chip,
3. The semiconductor device according to claim 1, wherein the molding resin is injected into a gap between the chip and the other chip.
JP2006228887A 2006-08-25 2006-08-25 Semiconductor device Pending JP2008053505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006228887A JP2008053505A (en) 2006-08-25 2006-08-25 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006228887A JP2008053505A (en) 2006-08-25 2006-08-25 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2008053505A true JP2008053505A (en) 2008-03-06

Family

ID=39237258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006228887A Pending JP2008053505A (en) 2006-08-25 2006-08-25 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2008053505A (en)

Similar Documents

Publication Publication Date Title
TWI501378B (en) Semiconductor device and method for manufacturing the same
US20210143089A1 (en) Semiconductor package with wettable flank
TW498516B (en) Manufacturing method for semiconductor package with heat sink
US6649448B2 (en) Method of manufacturing a semiconductor device having flexible wiring substrate
US7736999B2 (en) Manufacturing method of semiconductor device
JP5543086B2 (en) Semiconductor device and manufacturing method thereof
JP4992904B6 (en) Manufacturing method of semiconductor device
US6894380B2 (en) Packaged stacked semiconductor die and method of preparing same
JPWO2008038345A6 (en) Manufacturing method of semiconductor device
US8169089B2 (en) Semiconductor device including semiconductor chip and sealing material
US11735435B2 (en) Quad flat no lead package and method of making
JP5184132B2 (en) Semiconductor device and manufacturing method thereof
US20190019745A1 (en) Package with backside protective layer during molding to prevent mold flashing failure
JP4620553B2 (en) Manufacturing method of semiconductor device
JP2010050262A (en) Semiconductor device and manufacturing method thereof
JP2007294767A (en) Method for manufacturing semiconductor device
JP2010135501A (en) Method of manufacturing semiconductor device
JP2006344827A (en) Method for manufacturing semiconductor device
TW200409315A (en) Semiconductor package with stilts for supporting dice
JP2008053505A (en) Semiconductor device
JP2001358287A (en) Semiconductor device
TWM407485U (en) Device of stackable semiconductor package having whole surface molding
JP2010153521A (en) Resin sealing method for semiconductor element
JP2011035283A (en) Semiconductor device and method of manufacturing the same
TW202335211A (en) Semiconductor device and semiconductor device manufacturing method