JP2008050770A - Deposit evacuation system of dam - Google Patents

Deposit evacuation system of dam Download PDF

Info

Publication number
JP2008050770A
JP2008050770A JP2006225376A JP2006225376A JP2008050770A JP 2008050770 A JP2008050770 A JP 2008050770A JP 2006225376 A JP2006225376 A JP 2006225376A JP 2006225376 A JP2006225376 A JP 2006225376A JP 2008050770 A JP2008050770 A JP 2008050770A
Authority
JP
Japan
Prior art keywords
dam
sediment
deposit
shaft
reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006225376A
Other languages
Japanese (ja)
Other versions
JP4658880B2 (en
Inventor
Michihiro Oya
通弘 大矢
Ichiro Yoshikoshi
一郎 吉越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hazama Corp
Original Assignee
Hazama Gumi Ltd
Hazama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hazama Gumi Ltd, Hazama Corp filed Critical Hazama Gumi Ltd
Priority to JP2006225376A priority Critical patent/JP4658880B2/en
Publication of JP2008050770A publication Critical patent/JP2008050770A/en
Application granted granted Critical
Publication of JP4658880B2 publication Critical patent/JP4658880B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Barrages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a deposit evacuation system of a dam capable of eliminating environmental pollution caused by the land transportation of soil and making the temporarily-stored soil sufficiently flow to the downstream side, enabling the extended length of a tunnel to be shortened more than before, and having high sand evacuation efficiency. <P>SOLUTION: This deposit evacuation system 10 comprises an evacuation tunnel 11, a submerged breakwater 12, a shaft 13, a stockyard 14, and a deposit force-feed device 30 for charging deposit into the shaft 13. In a normal time when a flood does not occur, the deposit 21 at the bottom of a dam water storage pond 20 is dredged up, temporarily stored in a stockyard 14, charged into a discharge tunnel 11 through the shaft 13, and discharged to the downstream side of the dam water storage pond 20. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ダムの貯水池に溜まった堆積物を排出するシステムに関する。   The present invention relates to a system for discharging sediment accumulated in a reservoir of a dam.

ダムの貯水池には、上流から土砂や濁水が流入し、水底に泥や土砂等の堆積物が蓄積される。ダムの貯水池は、このような堆積物の容量を予め計算したうえで、設計されるものであるが、予期せぬ自然環境の変化などの要因により、予想を上回る容量の堆積物が溜まることがある。このような堆積物による影響として、一般的に貯水池容量の減少、上流河床の上昇、下流河床の低下や海岸線の後退、生物環境への影響などが指摘されている。   Sediment and muddy water flow into the reservoir of the dam from the upstream, and deposits such as mud and sediment accumulate on the bottom of the water. The reservoir of a dam is designed after calculating the volume of such sediments in advance. However, due to factors such as unexpected changes in the natural environment, sediments with a volume exceeding expectations may accumulate. is there. The effects of such sediments are generally pointed out such as a decrease in reservoir capacity, an increase in the upstream riverbed, a decrease in the downstream riverbed, a receding coastline, and an impact on the biological environment.

また近年、ダム貯水池の堆積物の問題は、流砂系の総合的な土砂管理の視点から対策を実施することが求められており、ダムにより遮断された土砂を下流へ排出する等、適切な土砂管理によってその連続性を回復させようとする方法や装置が提案されている。
つまり、ダム下流の河床や海岸線の保全、魚類の生息環境の改善等のために、砂の定期的なダム下流河川への供給が必要であり、こうした下流への土砂還元が各分野で研究されている。ダムは一般的には山岳部にあり、土砂を市街地や港湾へ運搬しようとすると、運搬コストが大きくなるため、河川濁度が高い洪水時に放流する下流への土砂還元方法が提案されている。
このような方法としては、第一に、貯水池の底を掘削して浚渫し、土砂をダム下流まで運搬して仮置きし、洪水時に河川に放流する方法であり、これは、多くのダムで試験施工されている。また第二に、ダムの貯水池の上流に分派堰を設け、洪水時にバイパストンネルを通して放流するものがあり、旭ダムや美和ダムで実施されている。第三に、堤体ゲートから下流に排出する方法があり、宇奈月ダムや出し平ダムで実施されている。
In recent years, it has been required to take measures against sediment problems in dam reservoirs from the viewpoint of comprehensive sediment management of sediment transport systems, and appropriate sediments such as discharging sediments blocked by dams downstream. There have been proposed methods and apparatuses that attempt to restore the continuity through management.
In other words, it is necessary to regularly supply sand to the river downstream of the dam in order to preserve the river bed and coastline downstream of the dam, improve the habitat of fish, and so on. ing. Dams are generally located in mountainous areas, and transportation costs increase when transporting sediments to urban areas and harbors. Therefore, a downstream sediment reduction method has been proposed for discharge during floods with high river turbidity.
In this method, first, the bottom of the reservoir is excavated and dredged, the sediment is transported to the downstream of the dam, temporarily placed, and discharged into the river in the event of a flood. Test construction is in progress. Second, there is a branch weir upstream of the dam reservoir, which is discharged through a bypass tunnel during floods, and is implemented at Asahi and Miwa dams. Third, there is a method of discharging downstream from the bank gate, which is implemented at Unazuki Dam and Deirahira Dam.

しかしながら、前記第一の方法では、山岳地の狭隘道路で陸上運搬能力が不足し易く、陸上運搬に伴う環境への悪影響があり、ダム下流に土砂を仮置きする場所が少なく、仮置きした土砂が完全に流れないといった多くの問題がある。
前記第二の方法では、バイパストンネルが長くなるという問題があり、例えば、佐久間ダムの貯水池を完全にバイパスしようとすると、そのトンネル延長は概ね20kmにも及ぶものとなる。また使用される水量に比べて排出される土砂量が少ないため、排砂効率が悪く、洪水後に分派堰の粗粒分を陸上運搬により処理する必要もある。
前記第三の方法では、堤体に排出口を形成するための建設コストが高く、また粗粒分は排出し難いという問題がある。
また第一の方法から第三の方法まで共通する問題として、既に貯水池に堆積してしまっている土砂は処理が困難であり、洪水時には貯水池から土砂を採取する作業が実施不可能である。
However, in the first method, the land transport capacity tends to be insufficient on narrow roads in mountainous areas, and there is an adverse effect on the environment due to land transport, and there are few places to temporarily place earth and sand downstream of the dam. There are many problems, such as not completely flowing.
In the second method, there is a problem that the bypass tunnel becomes long. For example, when the bypass of the reservoir of the Sakuma Dam is completely bypassed, the length of the tunnel extends to about 20 km. Moreover, since the amount of earth and sand discharged is smaller than the amount of water used, the sand discharge efficiency is poor, and it is necessary to treat the coarse particles of the branch weir by land transport after flooding.
In the third method, there is a problem that the construction cost for forming the discharge port in the levee body is high and it is difficult to discharge the coarse particles.
Moreover, as a common problem from the first method to the third method, the sediment already deposited in the reservoir is difficult to treat, and it is impossible to collect the sediment from the reservoir during a flood.

なお、バイパストンネルを設ける排砂方法は特許文献1に記載されており、堤体に排砂設備を設けるものは特許文献2及び特許文献3に記載されている。これら特許文献に記載された発明に関しても、上述した課題を十分に解決するものではない。
特開2001−73349号公報 特開平11−93147号公報 特開2005−226301号公報
In addition, the sand removal method which provides a bypass tunnel is described in Patent Document 1, and those which provide sand discharge equipment on a bank body are described in Patent Document 2 and Patent Document 3. The inventions described in these patent documents also do not sufficiently solve the above-described problems.
JP 2001-73349 A Japanese Patent Laid-Open No. 11-93147 JP 2005-226301 A

以上のような現状を鑑みて本発明の目的は、土砂の陸上運搬に伴う環境公害がなく、仮置きした土砂を十分に下流へ流すことができて、従来のものよりトンネル延長距離を短くすることが可能であり、排砂効率が良好なダムの堆積物排出システムを提供することにある。   In view of the current situation as described above, the object of the present invention is that there is no environmental pollution associated with land transportation of earth and sand, the temporarily placed earth and sand can be sufficiently flowed downstream, and the tunnel extension distance is shorter than the conventional one. It is possible to provide a sediment discharge system for a dam with good sand discharge efficiency.

本発明では、ダム貯水池の堆積物を水と共に下流まで流すため、ダム貯水池の底付近に設けられた呑口からダム下流の吐口まで連通し、途中に開閉可能なゲートが設けられた排出トンネルと、当該排出トンネルの呑口へ堆積物を水と共に導くためダム貯水池の底に設けられた潜堤と、前記排出トンネルに連通するようにダムの岸からほぼ垂直に形成された立坑と、貯水池の底から浚渫された堆積物を仮置きするため、立坑の在る岸に設けられた堆積物置場と、当該堆積物置場の堆積物を圧送して立坑に投入するための手段とを備えることを特徴とするダムの堆積物排出システムが提供される。   In the present invention, in order to flow the sediment of the dam reservoir to the downstream with the water, it communicates from the mouth provided near the bottom of the dam reservoir to the outlet downstream of the dam, and a discharge tunnel provided with a gate that can be opened and closed in the middle, From the bottom of the dam reservoir, a submerged dike provided at the bottom of the dam reservoir to guide the sediment along with the water to the mouth of the discharge tunnel, a vertical shaft formed from the dam shore so as to communicate with the discharge tunnel, and from the bottom of the reservoir In order to temporarily store the dredged sediment, the deposit storage facility provided on the shore where the shaft is located, and means for pumping the deposit of the deposit storage site into the shaft are provided. A dam sediment discharge system is provided.

ここで、堆積物置場の堆積物を圧送して立坑に投入するための手段は、堆積物置場の堆積物を収容する集積槽と、ダム貯水池の水を集積槽付近まで比較的高い圧力で供給する高圧水供給管と、当該高圧水供給管から高圧水の供給を受け、前記集積槽から延びる吸引管が接続され、空気導入孔が設けられたエジェクタと、当該エジェクタから噴き出される水、空気及び前記堆積物の混合物を通過させて前記立坑まで導く吐出し管とを含む構成とすることが可能である。   Here, the means for pumping the sediment in the sediment storage area and feeding it into the shaft is to supply the accumulation tank for storing the sediment in the sediment storage area and the water in the dam reservoir at a relatively high pressure to the vicinity of the accumulation tank. A high-pressure water supply pipe, a high-pressure water supply from the high-pressure water supply pipe, connected to a suction pipe extending from the accumulation tank, and provided with an air introduction hole, and water and air ejected from the ejector And a discharge pipe that allows the mixture of deposits to pass through to the shaft.

本発明では、平常時に貯水池の底から堆積物を浚渫して堆積物置場に仮置きする。この堆積物置場では、堆積物の粒径による選別を行うことが可能である。また出水時には、排出トンネルのゲートを開くことにより、粘土、シルト及び土砂を含む堆積物が潜堤により呑口へ導かれて排出トンネルに流入する。このとき、堆積物置場に仮置きされている堆積物、特に下流への土砂還元に必要とされる砂分を主体とする土砂を立坑に投入すれば、土砂は排出トンネルを流れる泥水に合流し、洪水ともに下流に流すことができる。
したがって、本発明のシステムでは、土砂を排出トンネルへ投入する作業を降雨等の天候に左右されることなく、比較的高い安全性と信頼性のもとに進めることが可能である。
また本発明のシステムは、ただ単に立坑を有するだけではなく、この立坑まで堆積物を圧送して投入する手段をも有するものであるため、比較的大量の土砂を短時間に排出トンネルへ投入することが可能になり、貯水池から放出される水量に比べて排出土砂量を多くできて、従来のシステムよりも排砂効率を格段に向上させることができる。
さらに、本発明のシステムは、呑口を貯水池の最上流部ではなく、貯水池の中間部の任意の地点に設けるものであるため、排出トンネルを従来の排砂システムのものより短くすることが可能になった。
In the present invention, the sediment is poured from the bottom of the reservoir during normal times and temporarily placed in the deposit storage area. In this deposit storage area, it is possible to sort by the particle size of the deposit. In addition, at the time of flooding, by opening the gate of the discharge tunnel, sediment containing clay, silt and earth and sand is led to the pier by a submerged dike and flows into the discharge tunnel. At this time, if the sediment temporarily stored in the sediment storage site, especially the sediment mainly composed of sand required for sediment reduction downstream, is put into the shaft, the sediment will join the mud flowing through the discharge tunnel. Both floods can flow downstream.
Therefore, in the system of the present invention, it is possible to proceed the work of putting earth and sand into the discharge tunnel with relatively high safety and reliability without being influenced by the weather such as rainfall.
In addition, the system of the present invention not only has a shaft, but also has means for pumping deposits into the shaft, so that a relatively large amount of earth and sand is introduced into the discharge tunnel in a short time. As a result, the amount of discharged sediment can be increased compared to the amount of water discharged from the reservoir, and the sand discharge efficiency can be significantly improved over the conventional system.
Furthermore, since the system of the present invention is provided with the shed at an arbitrary point in the middle of the reservoir rather than at the uppermost stream of the reservoir, the discharge tunnel can be made shorter than that of the conventional sand removal system. became.

以下、本発明の実施の形態を添付図面に基づいて説明するが、本発明はこれに限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings, but the present invention is not limited thereto.

本発明のダムの堆積物排出システム10は、図1の平面図及び図2の断面図に示したように、排出トンネル11と、潜堤12と、立坑13と、ストックヤード14と、堆積物を立坑13に投入するための堆積物圧送装置30とを主要な構成として備えるものであり、平常時、すなわち洪水時以外の時にダム貯水池20の底にある堆積物21を浚渫し、この堆積物21をストックヤード14に仮置きし、この堆積物21を洪水時に立坑13を通して排出トンネル11に投入し、ダム貯水池20の下流に放出し得るものである。   As shown in the plan view of FIG. 1 and the cross-sectional view of FIG. 2, the dam deposit discharge system 10 of the present invention includes a discharge tunnel 11, a submerged dam 12, a shaft 13, a stock yard 14, and a deposit. Is provided as a main component with a sediment pumping device 30 for injecting the shaft into the shaft 13, and the sediment 21 at the bottom of the dam reservoir 20 is dredged during normal times, that is, other than during a flood. 21 is temporarily placed in the stock yard 14, and the deposit 21 can be thrown into the discharge tunnel 11 through the shaft 13 during a flood and discharged downstream of the dam reservoir 20.

ここで、前記排出トンネル11は、洪水時にダム貯水池20の堆積物21を水と共に下流まで通過させるためのものであり、ダム貯水池の底付近に設けられた呑口11aからダム下流の吐口11bまで連通している。排出トンネル11の呑口11aは、ダム貯水池20における中間部の任意の地点で上流からの洪水流を無理なく導き入れる位置に設けられ、ダム下流の吐口11bは、ダム堤体より下流で排水トンネルから出る洪水流が下流河川に無理なく合流できるような位置に設けられる。排出トンネル11には、立坑13との接続部よりも上流に開閉可能なゲート11cが設けられる。
なお、排出トンネル11の施工方法については、特に限定されるものではないが、呑口予定箇所付近に仮締切り(図示せず)を構築することにより作業空間を確保し、吐口側から作業空間に向けて地山を掘削してトンネルを形成することが可能である。
Here, the discharge tunnel 11 is used to allow the sediment 21 of the dam reservoir 20 to pass downstream along with water during a flood. The discharge tunnel 11 communicates from a pier 11a provided near the bottom of the dam reservoir to a spout 11b downstream of the dam. is doing. The outlet 11a of the discharge tunnel 11 is provided at a position where the flood flow from the upstream can be easily introduced at an arbitrary point in the middle of the dam reservoir 20, and the outlet 11b downstream of the dam is from the drainage tunnel downstream from the dam body. It will be installed at a location where the outflowing flood can easily join the downstream river. The discharge tunnel 11 is provided with a gate 11 c that can be opened and closed upstream of the connection portion with the shaft 13.
The construction method of the discharge tunnel 11 is not particularly limited, but a work space is secured by constructing a temporary cut-off (not shown) in the vicinity of the planned mouth opening, and from the outlet side toward the work space. It is possible to excavate natural ground and form a tunnel.

前記潜堤12は、上流からダム貯水池20に流入した粘土、シルト及び土砂を含む堆積物21を堤体22に達する前に堰き止めると共に、排出トンネル11の呑口11aへ導くためのものである。潜堤12はダム軸に直交しないような角度、且つ排出トンネル11の呑口11aに向けて角度付けられるように左右の地山23a,23b間に設けられる。また潜堤12は、ダム貯水池20における中間部の任意の位置で、貯水池20の形状と洪水流の流れ方等を考慮して、洪水流を呑口11aへ無理なく導けるように配置される。   The submerged dam 12 is used to dam the sediment 21 containing clay, silt, and earth and sand that has flowed into the dam reservoir 20 from the upstream before reaching the dam body 22 and to guide to the pier 11 a of the discharge tunnel 11. The submerged dike 12 is provided between the left and right grounds 23a and 23b so that the submerged dike 12 is not perpendicular to the dam axis and is angled toward the pier 11a of the discharge tunnel 11. In addition, the submerged dike 12 is arranged at an arbitrary position in the middle of the dam reservoir 20 so that the flood flow can be easily guided to the pier 11a in consideration of the shape of the reservoir 20 and the flow of the flood flow.

前記ストックヤード14は、貯水池20の底から浚渫された堆積物21を仮置きするための場所であり、ここから堆積物21が立坑13に送り出される。したがって、ストックヤード14は左右岸のいずれか一方における、貯水池20に極めて近接した位置、且つ立坑13に可能な限り近い位置に設けることが好ましい。ストックヤード14には、砂分を主体とする土砂を他の成分から選別したり、あるいは堆積物を粒径により選別したりする装置(図示せず)を設けることが可能であり、この場合、下流への土砂還元に必要とされる砂分を主体とする土砂を効率的にダム下流へ供給できる。また堆積物21を選別する装置に加えて、ストックヤード14には、ブルドーザ16等の堆積物を移動させる装置を設けることが好ましく、このブルドーザ16等により堆積物21が後述の土砂投入ホッパー31に投入される。
またストックヤード14に近接させ得る付加的な設備としては、例えば、台船17等の浚渫装置を接岸し、台船17等から堆積物を荷揚げするための構台18が挙げられる。この構台18には、クレーン19等の荷揚げ機械を設置すれば、これにより堆積物を台船17上から荷揚げし、そのままストックヤード14へと荷降ろしすることが可能なる。
The stock yard 14 is a place for temporarily placing the sediment 21 dredged from the bottom of the reservoir 20, from which the sediment 21 is sent out to the shaft 13. Therefore, it is preferable to provide the stock yard 14 at a position very close to the reservoir 20 and as close as possible to the shaft 13 on either one of the left and right banks. In the stock yard 14, it is possible to provide a device (not shown) for sorting earth and sand mainly composed of sand from other components, or sorting deposits by particle size. Sediment mainly composed of sand required for sediment reduction downstream can be efficiently supplied downstream of the dam. In addition to the device for sorting the deposit 21, it is preferable to provide a device for moving the deposit such as the bulldozer 16 in the stock yard 14. It is thrown.
Further, as an additional facility that can be brought close to the stock yard 14, for example, there is a gantry 18 for docking a dredging device such as a carriage 17 and unloading deposits from the carriage 17. If an unloading machine such as a crane 19 is installed on the gantry 18, the deposit can be unloaded from the trolley 17 and unloaded to the stock yard 14 as it is.

前記立坑13は、呑口11aから吐口11bまでの排出トンネル11の途中に連通するようにダムの岸からほぼ垂直に形成されるものであり、ストックヤード14に仮置きされた堆積物21を排出トンネル11に投下するための通路である。立坑13の地上開口は、特に限定されるものではないが、ストックヤード14に近く配置することが望ましい。なお、立坑13の施工方法については、特に限定されるものではないが、排出トンネル11の所定位置においてリーミング機械等(図示せず)によりほぼ垂直上方に向けて掘削すれば、立坑13を構築することが可能である。   The shaft 13 is formed substantially vertically from the dam shore so as to communicate with the middle of the discharge tunnel 11 from the pier 11a to the discharge port 11b, and the deposit 21 temporarily placed in the stock yard 14 is discharged from the tunnel. 11 is a passage for dropping to 11. The ground opening of the shaft 13 is not particularly limited, but it is desirable to arrange it close to the stock yard 14. Although the construction method of the shaft 13 is not particularly limited, the shaft 13 is constructed if excavation is performed substantially vertically upward by a reaming machine or the like (not shown) at a predetermined position of the discharge tunnel 11. It is possible.

前記堆積物圧送装置30は、ストックヤード14に仮置きされた堆積物21を圧送して立坑13に投入するための手段であり、土砂投入ホッパー31と、高圧水供給管32と、エジェクタ33と、吐出し管34とを主要な構成として備えるものである。   The sediment pumping device 30 is a means for pumping the sediment 21 temporarily placed in the stock yard 14 and putting it in the shaft 13. The sediment loading hopper 31, the high-pressure water supply pipe 32, the ejector 33, The discharge pipe 34 is provided as a main configuration.

ここで、堆積物圧送装置30の各構成について、さらに詳細に説明すれば、土砂投入ホッパー31は、ストックヤード14に仮置きされた堆積物21をブルドーザ等により移動して投入し、一時的に収容するためのものであり、ストックヤード14内、あるいはストックヤード14に隣接して設けられるものである。この土砂投入ホッパー31の下端には配管35を介してエジェクタ33が接続される。   Here, each configuration of the deposit pumping apparatus 30 will be described in more detail. The earth and sand injection hopper 31 moves the deposit 21 temporarily placed in the stock yard 14 by using a bulldozer or the like, and temporarily inserts it. It is for housing and is provided in the stock yard 14 or adjacent to the stock yard 14. An ejector 33 is connected to the lower end of the earth and sand charging hopper 31 through a pipe 35.

高圧水供給管32は、ダム貯水池内からストックヤード付近まで延設された管体であり、その途中あるいはダム貯水池内にエンジンポンプ32aが設けられたものである。エンジンポンプは、ダム貯水池の水を高圧力でストックヤード付近まで供給するためのものである。   The high-pressure water supply pipe 32 is a pipe extending from the dam reservoir to the vicinity of the stockyard, and an engine pump 32a is provided in the middle of the dam reservoir or in the dam reservoir. The engine pump is for supplying water from the dam reservoir to the vicinity of the stockyard at high pressure.

エジェクタ33は、従来から圧縮機や真空ポンプとして慣用されている機器であり、高圧噴射水を駆動源とし、機械的駆動部の無い真空ポンプであり、その原理は、ノズルから高圧水を噴出させ、その運動エネルギーにより他の流体(ここでは、土砂)を吸引し、圧送するものである。すなわち、図5に示したように、本体部33aの上流端にノズル33bが設けられ、ノズル33bよりも若干下流側に空気導入孔33c及び吸引管33dが設けられ、本体部33a内には内装管33eが固定され、下流端33fに吐出し管34が接続されている。ノズル33bは、高圧水供給管32を通して送られてきた高圧水を噴き出すノズルである。空気導入孔33cからは、自動制御されて最適量の空気が導入され、キャビテーションの抑制に効果的である。吸引管33dには、土砂投入ホッパー31の下端付近から延びる配管35が接続され、高圧水の噴出による吸引エネルギーを土砂まで伝達し、これにより、土砂をエジェクタ33の本体部33aまで吸引する。内装管33eはその取換えの容易性から、本体部33aの管体の磨耗対策として効果的なものである。
エジェクタ33の本体部33a内では土砂、空気及び水が混合され、この混合物が、さらに吐出し管34を介して立坑13まで圧送され、立坑13の地上開口から投入される。
The ejector 33 is a device that has been conventionally used as a compressor or a vacuum pump. The ejector 33 is a vacuum pump that uses high-pressure jet water as a drive source and does not have a mechanical drive unit. The principle of the ejector 33 is to eject high-pressure water from a nozzle. The other fluid (here, earth and sand) is sucked and pumped by the kinetic energy. That is, as shown in FIG. 5, the nozzle 33b is provided at the upstream end of the main body portion 33a, the air introduction hole 33c and the suction pipe 33d are provided slightly downstream from the nozzle 33b, and the interior of the main body portion 33a is provided with an interior. The pipe 33e is fixed, and the discharge pipe 34 is connected to the downstream end 33f. The nozzle 33 b is a nozzle that ejects the high-pressure water sent through the high-pressure water supply pipe 32. The air introduction hole 33c is automatically controlled to introduce an optimum amount of air, which is effective for suppressing cavitation. A pipe 35 extending from the vicinity of the lower end of the earth and sand charging hopper 31 is connected to the suction pipe 33d, and the suction energy generated by the ejection of high-pressure water is transmitted to the earth and sand, thereby sucking the earth and sand to the main body 33a of the ejector 33. The inner pipe 33e is effective as a measure against the wear of the pipe body of the main body 33a because of its easy replacement.
In the main body portion 33 a of the ejector 33, earth and sand, air, and water are mixed, and this mixture is further pumped to the shaft 13 through the discharge pipe 34 and introduced from the ground opening of the shaft 13.

次に、本発明の堆積物排出システム10の稼動方法及び作用について説明する。
本発明のシステムでは、平常時にダム貯水池20の底から堆積物21を浚渫してストックヤード14に仮置きする。堆積物21からは下流への土砂還元に必要とされる砂分を主体とする土砂を選別することが可能であり、この土砂をストックヤード14における立坑13に近い区画、あるいは土砂投入ホッパー31に近い区画に配置しておく。
一方、出水時には、排出トンネル11のゲート11cを開放し、粘土、シルト及び土砂を含む堆積物と共に水を呑口11aから排出トンネル11に流し込み、同時に、堆積物圧送装置30を稼動させる。
すなわち、ストックヤード14に仮置きした土砂をブルドーザ16等により移動し、土砂投入ホッパー31に投入する。このとき、エジェクタ33の本体部33aには、高圧水供給管32から高圧水が噴き出され、空気導入孔33cから空気が導入され、これらにより生じた吸引力により、吸引管33dを介して土砂投入ホッパー31から土砂が吸引される。この吸引された土砂は、本体部33a内で水と空気と混合されて吐出し管34から送り出され、立坑13に投入される。土砂は、エジェクタ33により高圧で水と空気と混合されることにより流動性が高くなるため、かなり高い濃度でも圧送が可能になり、比較的大量の土砂を短時間に立坑13に投入することが可能になり、ダム貯水池20から放出される水量に比べて排出土砂量を多くできて、従来のシステムよりも排砂効率を格段に向上させることができる。
土砂は、立坑13に投入されると、排出トンネル11内を流れる洪水に合流し、吐口11bからダム下流に放流される。
Next, the operation method and operation of the deposit discharge system 10 of the present invention will be described.
In the system of the present invention, the sediment 21 is dredged from the bottom of the dam reservoir 20 in a normal state and temporarily placed in the stock yard 14. It is possible to sort out sediment mainly composed of sand required for sediment reduction downstream from the deposit 21, and this sediment is placed in a section near the shaft 13 in the stock yard 14 or in the sediment input hopper 31. Place it in a nearby compartment.
On the other hand, at the time of water discharge, the gate 11c of the discharge tunnel 11 is opened, and water is poured into the discharge tunnel 11 from the well 11a together with deposits including clay, silt, and earth and sand, and at the same time, the deposit pumping device 30 is operated.
That is, the earth and sand temporarily placed in the stock yard 14 is moved by the bulldozer 16 or the like and is put into the earth and sand charging hopper 31. At this time, high-pressure water is ejected from the high-pressure water supply pipe 32 to the main body 33a of the ejector 33, and air is introduced from the air introduction holes 33c. Sediment is sucked from the charging hopper 31. The sucked earth and sand are mixed with water and air in the main body 33 a, sent out from the discharge pipe 34, and put into the shaft 13. Since the sediment is highly fluidized by being mixed with water and air at a high pressure by the ejector 33, it can be pumped even at a considerably high concentration, and a relatively large amount of sediment can be thrown into the shaft 13 in a short time. This makes it possible to increase the amount of discharged sediment compared to the amount of water discharged from the dam reservoir 20, and to significantly improve the sand discharge efficiency as compared with the conventional system.
When the earth and sand are thrown into the shaft 13, they join the flood flowing through the discharge tunnel 11, and are discharged from the outlet 11b downstream of the dam.

本発明にかかるダムの堆積物排出システムの平面図である。It is a top view of the sediment discharge system of the dam concerning this invention. 本発明にかかるダムの堆積物排出システムの断面図である。It is sectional drawing of the deposit discharge system of the dam concerning this invention. 図1を部分的に拡大した平面図である。FIG. 2 is a partially enlarged plan view of FIG. 1. 図2を部分的に拡大した断面図である。FIG. 3 is a partially enlarged cross-sectional view of FIG. 2. 本発明に用いるエジェクタの側面図である。It is a side view of the ejector used for this invention.

符号の説明Explanation of symbols

10 ダムの堆積物排出システム
11 排出トンネル
11a 呑口
11b 吐口
11c ゲート
12 潜堤
13 立坑
14 ストックヤード(堆積物置場)
20 ダム貯水池
21 堆積物
30 堆積物圧送装置(堆積物を圧送して立坑に投入するための手段)
31 土砂投入ホッパー(集積槽)
32 高圧水供給管
33 エジェクタ
33b ノズル
33c 空気導入孔
33d 吸引管
33e 内装管
34 吐出し管
DESCRIPTION OF SYMBOLS 10 Dam sediment discharge system 11 Discharge tunnel 11a Anchor 11b Discharge 11c Gate 12 Submerged dike 13 Shaft 14 Stockyard (sediment storage)
20 Dam Reservoir 21 Sediment 30 Sediment Pumping Device (Means for Pumping Sediment and Putting it in a Vertical Shaft)
31 Sediment input hopper (accumulation tank)
32 High-pressure water supply pipe 33 Ejector 33b Nozzle 33c Air introduction hole 33d Suction pipe 33e Interior pipe 34 Discharge pipe

Claims (2)

ダム貯水池の堆積物を水と共に下流まで流すため、ダム貯水池の底付近に設けられた呑口からダム下流の吐口まで連通し、途中に開閉可能なゲートが設けられた排出トンネルと、当該排出トンネルの呑口へ堆積物を水と共に導くためダム貯水池の底に設けられた潜堤と、前記排出トンネルに連通するようにダムの岸からほぼ垂直に形成された立坑と、貯水池の底から浚渫された堆積物を仮置きするため、立坑の在る岸に設けられた堆積物置場と、当該堆積物置場の堆積物を圧送して立坑に投入するための手段とを備えることを特徴とするダムの堆積物排出システム。   In order to allow the sediment in the dam reservoir to flow downstream along with the water, there is a discharge tunnel with a gate that can be opened and closed in the middle of the dam reservoir. A submerged embankment at the bottom of the dam reservoir to guide sediment along with the water to the estuary, a vertical shaft formed almost vertically from the dam shore to communicate with the discharge tunnel, and a sediment dredged from the bottom of the reservoir In order to temporarily place an object, there is provided a deposit yard provided on the shore where the shaft is located, and means for pumping the deposit of the deposit yard and feeding it into the shaft, Waste discharge system. 前記堆積物を立坑に投入する手段が、堆積物置場の堆積物を収容する集積槽と、ダム貯水池の水を集積槽付近まで比較的高い圧力で供給する高圧水供給管と、当該高圧水供給管から高圧水の供給を受け、前記集積槽から延びる吸引管が接続され、空気導入孔が設けられたエジェクタと、当該エジェクタから噴き出される水、空気及び前記堆積物の混合物を通過させて前記立坑まで導く吐出し管とを含むことを特徴とする請求項1に記載のダムの堆積物排出システム。   The means for introducing the sediment into the shaft is a collection tank for storing the deposit in the sediment storage site, a high-pressure water supply pipe for supplying water in the dam reservoir to the vicinity of the accumulation tank at a relatively high pressure, and the high-pressure water supply A suction pipe extending from the accumulation tank, connected to a suction pipe connected to the collection tank and having an air introduction hole, and a mixture of water, air and the deposits ejected from the ejector, The dam sediment discharge system according to claim 1, further comprising a discharge pipe that leads to the shaft.
JP2006225376A 2006-08-22 2006-08-22 Dam sediment discharge system Active JP4658880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006225376A JP4658880B2 (en) 2006-08-22 2006-08-22 Dam sediment discharge system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006225376A JP4658880B2 (en) 2006-08-22 2006-08-22 Dam sediment discharge system

Publications (2)

Publication Number Publication Date
JP2008050770A true JP2008050770A (en) 2008-03-06
JP4658880B2 JP4658880B2 (en) 2011-03-23

Family

ID=39235085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006225376A Active JP4658880B2 (en) 2006-08-22 2006-08-22 Dam sediment discharge system

Country Status (1)

Country Link
JP (1) JP4658880B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012158970A (en) * 2011-01-31 2012-08-23 Yutaka Shigekawa Water discharge controller by water emitted at high speed from shower nozzle
CN102677623A (en) * 2012-05-25 2012-09-19 黄河勘测规划设计有限公司 Intake tower arranging method for reservoir
CN103882838A (en) * 2014-02-27 2014-06-25 黄河水利委员会黄河水利科学研究院 Sediment releasing method for water intake of low-head river channel pivotal power station
JP2014148790A (en) * 2013-01-31 2014-08-21 Hazama Ando Corp Method for preventing sediment accumulation in river and sediment discharge system used in the same
JP2015158089A (en) * 2014-02-24 2015-09-03 株式会社大林組 sediment discharge system and sediment discharge method
CN107167578A (en) * 2017-06-08 2017-09-15 西北农林科技大学 A kind of Field simulation engineering accumulation body soil erosion experimental rig
CN113139230A (en) * 2021-04-30 2021-07-20 黄河勘测规划设计研究院有限公司 Design method for reducing silt of submerged dam of urban small and medium drift river
CN113279375A (en) * 2021-05-28 2021-08-20 河海大学 Flap gate with self-propelled dirt collecting box

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50139531A (en) * 1974-04-26 1975-11-07
JPS5585796A (en) * 1978-12-21 1980-06-28 Shimizu Construction Co Ltd Aggregate gathering facility
JPH10204851A (en) * 1997-01-23 1998-08-04 Bridgestone Corp Rise and fall controller for flexible film structure
JP2006118123A (en) * 2004-10-19 2006-05-11 Ishikawajima Harima Heavy Ind Co Ltd Sediment transport method in water reservoir and its device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50139531A (en) * 1974-04-26 1975-11-07
JPS5585796A (en) * 1978-12-21 1980-06-28 Shimizu Construction Co Ltd Aggregate gathering facility
JPH10204851A (en) * 1997-01-23 1998-08-04 Bridgestone Corp Rise and fall controller for flexible film structure
JP2006118123A (en) * 2004-10-19 2006-05-11 Ishikawajima Harima Heavy Ind Co Ltd Sediment transport method in water reservoir and its device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012158970A (en) * 2011-01-31 2012-08-23 Yutaka Shigekawa Water discharge controller by water emitted at high speed from shower nozzle
CN102677623A (en) * 2012-05-25 2012-09-19 黄河勘测规划设计有限公司 Intake tower arranging method for reservoir
JP2014148790A (en) * 2013-01-31 2014-08-21 Hazama Ando Corp Method for preventing sediment accumulation in river and sediment discharge system used in the same
JP2015158089A (en) * 2014-02-24 2015-09-03 株式会社大林組 sediment discharge system and sediment discharge method
CN103882838A (en) * 2014-02-27 2014-06-25 黄河水利委员会黄河水利科学研究院 Sediment releasing method for water intake of low-head river channel pivotal power station
CN103882838B (en) * 2014-02-27 2015-12-02 黄河水利委员会黄河水利科学研究院 A kind of sand discharge method of low water head river channel hinge powerplant intakes
CN107167578A (en) * 2017-06-08 2017-09-15 西北农林科技大学 A kind of Field simulation engineering accumulation body soil erosion experimental rig
CN107167578B (en) * 2017-06-08 2023-02-28 西北农林科技大学 Open-air simulation engineering accumulation body soil erosion and water loss test device
CN113139230A (en) * 2021-04-30 2021-07-20 黄河勘测规划设计研究院有限公司 Design method for reducing silt of submerged dam of urban small and medium drift river
CN113279375A (en) * 2021-05-28 2021-08-20 河海大学 Flap gate with self-propelled dirt collecting box

Also Published As

Publication number Publication date
JP4658880B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
JP4658880B2 (en) Dam sediment discharge system
CN205116250U (en) Sediment removal device of reservoir among hydraulic engineering
US10094091B1 (en) Sediment suction sink and method for sediment control in rivers, streams, and channels
EP2236679A2 (en) Method for sediment transport excavation and trailing suction dredger for executing the method
CN106320417B (en) Utilize the portable pneumatic carrying eddy flow desilting equipment and method of water body nature kinetic energy
CN107386195A (en) A kind of Dredging Construction method for the canal that drains off floodwaters
US9816240B1 (en) Sediment suction sink and method for sediment control in rivers, streams, and channels
MXPA03005839A (en) Method for hydraulic subsea dredging.
JP2007002437A (en) Transportation system of dredged sediment
JP4663145B2 (en) Underwater sediment flow method using hydrostatic pressure, pipe with opening and underwater sediment flow facility
JP4195214B2 (en) A dredge apparatus using a pipe having an opening at a bent portion
JP6147010B2 (en) Method of preventing sediment accumulation in rivers and sediment discharge system used therefor
JP4610292B2 (en) Method and apparatus for transporting earth and sand in a reservoir
JP4173932B2 (en) Bottom sediment discharge method
JP5717564B2 (en) Underwater sediment suction conveyance device and underwater sediment suction conveyance method
JP4675061B2 (en) Sediment flow transfer equipment
JP2008308894A (en) Triple lake dam structure
JP2010281153A (en) Equipment for transporting and discharging deposit in liquid
JP3999788B2 (en) Long-distance transportation system for dredged soil and its transportation method
JP5100705B2 (en) Sediment flow transfer equipment
JP6083729B2 (en) Sediment transport system and sand covering method using the same
JPH11324008A (en) Removing method for sediment in dam
KR100812820B1 (en) Apparatus for transporting reclamation soil
JP3418567B2 (en) Clay layer propulsion method and apparatus
KR100511442B1 (en) Transporting method of soil loaded in a boat

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4658880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250