JP2008050245A - Manufacturing method of artificial graphite powder and artificial graphite fine powder - Google Patents
Manufacturing method of artificial graphite powder and artificial graphite fine powder Download PDFInfo
- Publication number
- JP2008050245A JP2008050245A JP2006258013A JP2006258013A JP2008050245A JP 2008050245 A JP2008050245 A JP 2008050245A JP 2006258013 A JP2006258013 A JP 2006258013A JP 2006258013 A JP2006258013 A JP 2006258013A JP 2008050245 A JP2008050245 A JP 2008050245A
- Authority
- JP
- Japan
- Prior art keywords
- fine powder
- artificial graphite
- less
- particle size
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Carbon And Carbon Compounds (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、人造黒鉛微粉末およびその製造法に関し、電池、キャパシタ用の導電助剤、各種の導電性フィラ−材等の用途に有効な平均粒径約1μm以下あるいは3μm以下の人造黒鉛微粉末および製造法に関する。 TECHNICAL FIELD The present invention relates to artificial graphite fine powder and a method for producing the same, and relates to an artificial graphite fine powder having an average particle size of about 1 μm or less or 3 μm or less, which is effective for use in batteries, conductive assistants for capacitors, various conductive filler materials, and the like. And a manufacturing method.
従来より炭素材、黒鉛材の粉末が、電気伝導性、熱伝導性、摺動性等の特性を生かして各種の用途に使用されている。
これらの代表的なものとしては、カ−ボンブラック、天然黒鉛粉末、人造黒鉛粉末などがあり、最近では気相成長炭素繊維(VGCF)やカ−ボンナノチュ−ブ等も知られている。Conventionally, powders of carbon materials and graphite materials have been used for various applications taking advantage of properties such as electrical conductivity, thermal conductivity, and slidability.
Typical examples of these include carbon black, natural graphite powder, and artificial graphite powder. Recently, vapor grown carbon fiber (VGCF), carbon nanotube, and the like are also known.
カーボンブラックは石油や天然ガス等の炭化水素の不完全燃焼、あるいは熱分解によって生成した煤であり、得られる粒子は非常に細かいナノミクロンオ−ダの一次粒子が凝集した状態、即ち一次粒子が複数個繋がった形のストラクチャ−と言われる二次粒子を構成している。 Carbon black is generated by incomplete combustion of hydrocarbons such as petroleum and natural gas, or pyrolysis, and the resulting particles are agglomerated with very fine nano-micron primary particles, that is, a plurality of primary particles. It constitutes secondary particles called connected structures.
レーザ−回折式の粒度分布測定器により湿式で測定を行うと、サブミクロンオ−ダ−の平均粒子径測定値が得られるが、二次粒子あるいは、これらがさらに凝集したものを測定しているに過ぎない。
現実には一次粒子が1μm以下のカ−ボンブラックは存在しない。When wet measurement is performed with a laser-diffraction type particle size distribution analyzer, an average particle size measurement value of submicron order is obtained, but only secondary particles or aggregates of these are measured. Absent.
In reality, there is no carbon black having primary particles of 1 μm or less.
カーボンブラックの主な用途としては導電助剤、ゴム添加剤等がある。特に導電助剤の分野では、前記のストラクチャ−と言われる形態を有効に利用して被添加物の導電性向上に寄与しているが、一次粒子に解砕しての使用例はない。 Main applications of carbon black include conductive additives and rubber additives. Particularly in the field of conductive assistants, the above-mentioned structure is effectively used to contribute to improving the conductivity of the additive, but there is no example of use by breaking it into primary particles.
現在使用されているカーボンブラックの中でも特に導電性に優れるケチェンブラックは、一次粒子径が30nmで、吸油量が360〜500ml/100g、比表面積が800〜1050m2/gといずれも高吸油量、高比表面積である。
このため溶媒に分散させる場合に多量の溶媒が必要になり、これを用いて塗膜を形成する場合に端部の液だれを起こし易いなど作業上の問題がある。
また乾式で使用すると、凝集したままとなり、均一に分散させることが困難で、導電性等の特性を十分に付与できない欠点がある。Among the carbon blacks currently in use, Ketjen Black, which is particularly excellent in conductivity, has a primary particle size of 30 nm, an oil absorption of 360-500 ml / 100 g, and a specific surface area of 800-1050 m 2 / g, both of which have a high oil absorption. , High specific surface area.
For this reason, a large amount of solvent is required when dispersed in a solvent, and there is a problem in terms of work, such as the possibility of dripping at the edges when forming a coating film using this.
Moreover, when it is used in a dry process, it remains agglomerated, and it is difficult to uniformly disperse, and there are disadvantages that characteristics such as conductivity cannot be sufficiently provided.
その他に使用されている導電性カ−ボンブラックでは、三菱化学製のカ−ボンブラックが粒子径20〜50nm,吸油量130〜175ml/100g、東海カ−ボン製のカ−ボンブラックが粒子径18〜70nm、吸油量60〜130ml/100gであり、いずれも粒子径は数十nm以下で、吸油量は100ml/100gを超えるものである。Among other conductive carbon blacks, carbon black made by Mitsubishi Chemical has a particle size of 20-50 nm, oil absorption of 130-175 ml / 100 g, carbon black made by Tokai Carbon has a particle size of 18-70 nm, oil absorption 60-130 ml / 100 g, all have a particle size of several tens of nm or less, and the oil absorption exceeds 100 ml / 100 g.
従来のカーボンブラックの製造法は、基本的にミクロンオ−ダ−の一次粒子を得るのに適当な方法ではなく、また燃焼が不十分なものも多く、発ガン性を有する危険があるなどの問題もある。
さらに凝集体であるため、嵩密度が低く、例えばリチウムイオン電池負極材のように、所定の容積中に粉末を多量に充填することが特性向上のために必要な用途や、併用する分散媒の量が少量に限定される場合には適当な材料とならない。Conventional carbon black production methods are basically not suitable methods for obtaining micron-order primary particles, and there are many cases where combustion is insufficient and there is a risk of having carcinogenicity. There is also.
Furthermore, since it is an agglomerate, the bulk density is low. For example, a lithium ion battery negative electrode material, a large amount of powder in a predetermined volume is required for improving the characteristics, and the dispersion medium used in combination. When the amount is limited to a small amount, it is not a suitable material.
1μm程度の粒径で、上記のような欠点を解消できる程度に吸油量、比表面積が低いカーボンブラックは得られていない。 Carbon black having a particle size of about 1 μm and low oil absorption and specific surface area to such a degree that the above-mentioned drawbacks can be eliminated has not been obtained.
カーボンブラック以外では、天然黒鉛や人造黒鉛を粉砕、分級した黒鉛微粉末がある。 Other than carbon black, there are graphite fine powders obtained by pulverizing and classifying natural graphite and artificial graphite.
天然黒鉛は高度に結晶化した黒鉛で、リチウムイオン電池負極材に使用すると高い充放電容量を示す。
例えば、特開2000−200606にはリチウム二次電池負極材料用の黒鉛粉末として、天然黒鉛をジェットミルで粉砕後、900度以上の温度で加熱処理して得られる粉末が記載されている。(特許文献1)Natural graphite is highly crystallized graphite and exhibits high charge / discharge capacity when used as a negative electrode material for lithium ion batteries.
For example, Japanese Patent Laid-Open No. 2000-200606 describes a powder obtained by pulverizing natural graphite with a jet mill and heat-treating it at a temperature of 900 ° C. or more as a graphite powder for a lithium secondary battery negative electrode material. (Patent Document 1)
しかし、高度に結晶化した天然黒鉛は微粉末に粉砕すると、薄片状になりやすく、長径と短径の比が高くなる。
長径と短径の比が高いと配向し易く、特性に異方性が生じ易い。However, when highly crystallized natural graphite is pulverized to a fine powder, it tends to be flaky and the ratio of the major axis to the minor axis increases.
When the ratio of the major axis to the minor axis is high, orientation is easy and anisotropy tends to occur in the characteristics.
例えば、リチウムイオン二次電池負極材に使用した場合、配向することにより充放電によるサイクル特性を低下させたり、その他の電子用途の塗膜でも面方向に配向するため、等方的な導電性が要求される場合、不適当であるなどの欠点がある。 For example, when used as a negative electrode material for lithium ion secondary batteries, the cycle characteristics due to charge and discharge are reduced by orientation, and even in coating films for other electronic applications, it is oriented in the plane direction, so isotropic conductivity is obtained. If required, there are disadvantages such as inappropriateness.
例えば、中国製天然黒鉛微粉FS−4(青島古宇石墨製)は、平均粒径が3.6μm、長径と短径の比は2.8程度である。
1μm程度の粒径で、同程度の長径と短径の比の天然黒鉛粉末は他にも見当たらない。
平均粒子径は市販品では細粒品でも3〜4μm程度である。For example, natural graphite fine powder FS-4 (manufactured by Qingdao Koyu Shishiki) made in China has an average particle size of 3.6 μm, and the ratio of major axis to minor axis is about 2.8.
No other natural graphite powder having a particle diameter of about 1 μm and a ratio of the major axis to the minor axis is comparable.
The average particle diameter is about 3 to 4 μm even in the case of a commercially available product and a fine-grained product.
他には天然黒鉛の一種として土状黒鉛を粉砕したものとして、HOPシリ−ズ(日本黒鉛工業(株)製、平均粒径4μm)があるが嵩密度が0.15g/cm3と低い。In addition, HOP series (manufactured by Nippon Graphite Industry Co., Ltd., average particle diameter of 4 μm) is obtained by pulverizing earth graphite as a kind of natural graphite, but its bulk density is as low as 0.15 g / cm 3 .
人造黒鉛の製造法は、コ−クス、コ−クスとバインダ−ピッチの混合成形体、メソフェ−ズピッチ等の炭素前駆体を焼成および黒鉛化して得る方法である。 The method for producing artificial graphite is a method obtained by firing and graphitizing a carbon precursor such as coke, coke and binder-pitch mixed molded body, and mesophase pitch.
人造黒鉛は天然黒鉛に比べ、長径と短径の比の制御が容易で、以下のようなものがある。
人造黒鉛UF−J5(昭和電工製)は平均粒径3.0μm、嵩密度0.2g/cm3で、人造黒鉛SGシリ−ズ(エスイ−シ−製)は平均粒径1μm、比表面積16〜25m2/g、吸油量70〜120ml/100g、嵩密度0.2g/cm3のもの又は平均粒径3μm、比表面積5〜20m2/g、吸油量40〜120ml/100g、嵩比重0.2g/cm3のものがある。
人造黒鉛KS6(TIMCAL製)は平均粒径3μm、比表面積20m2/g、d0023.357Åであり、他に人造黒鉛CX−10000(中越黒鉛工業所製)が平均粒径3μmである。Artificial graphite is easier to control the ratio of the major axis to the minor axis than natural graphite, and includes the following.
Artificial graphite UF-J5 (manufactured by Showa Denko) has an average particle diameter of 3.0 μm and a bulk density of 0.2 g / cm 3 , and artificial graphite SG series (manufactured by SSC) has an average particle diameter of 1 μm and a specific surface area of 16 ˜25 m 2 / g, oil absorption 70-120 ml / 100 g, bulk density 0.2 g / cm 3 or average particle size 3 μm, specific surface area 5-20 m 2 / g, oil absorption 40-120 ml / 100 g, bulk specific gravity 0 There are 2 g / cm 3 .
Artificial graphite KS6 (manufactured by TIMCAL) has an average particle diameter of 3 μm, a specific surface area of 20 m 2 / g, d 002 3.357 mm, and artificial graphite CX-10000 (manufactured by Chuetsu Graphite Industries) has an average particle diameter of 3 μm.
これらは、いずれも人造黒鉛のブロックや粒子を切削あるいは粉砕し、さらに整粒して得られるものであるため、嵩密度が十分ではなく、また上記のカーボンブラックと同様に吸油量、比表面積が高い欠点がある。 These are all obtained by cutting or pulverizing artificial graphite blocks and particles, and further sizing them, so that the bulk density is not sufficient, and the oil absorption and specific surface area are the same as in the above carbon black. There are high drawbacks.
気相成長炭素繊維(VGCF)やカ−ボンナノチュ−ブは、長径と短径の比が大きく、電気伝導性の向上という点で優れているが高価であり、使途は限定されてしまう。また長径と短径の比が大きく、嵩密度も低いため、分散・混合に工夫を要する。 Vapor grown carbon fibers (VGCF) and carbon nanotubes have a large ratio of major axis to minor axis and are excellent in terms of improving electrical conductivity, but are expensive and have limited uses. In addition, since the ratio of the major axis to the minor axis is large and the bulk density is low, a device for dispersion and mixing is required.
以上に述べた以外も含め、炭素・黒鉛粉末は、それぞれの粒径、形状、その他の特性を生かし、それぞれが適した分野、方法で種々の用途に利用されている。
しかしながら、炭素材料、黒鉛材料の微粉末につき、1μm乃至3μm程度の粒径で、長径と短径の比が小さく、低比表面積で、吸油量が比較的小さく、嵩密度が高めの特性を有するものは得られていない。In addition to those described above, carbon / graphite powders are utilized in various fields and methods in various fields and methods, taking advantage of their respective particle sizes, shapes, and other characteristics.
However, the fine powder of carbon material and graphite material has a particle size of about 1 μm to 3 μm, a small ratio of the major axis to the minor axis, a low specific surface area, a relatively small oil absorption, and a high bulk density. Nothing has been obtained.
上記のような状況に鑑み、本発明は、粒径が1μm乃至3μm程度の微粉で、長径と短径の比が低く、十分な嵩密度を有し、かつ吸油量、比表面積が低い、優れた特性の人造黒鉛微粉末およびその製造方法を提供するものである。 In view of the situation as described above, the present invention is a fine powder having a particle size of about 1 μm to 3 μm, a ratio of the major axis to the minor axis is low, has a sufficient bulk density, and has a low oil absorption and specific surface area. An artificial graphite fine powder having the above characteristics and a method for producing the same are provided.
上記のような課題を解決するため、本発明が提案するのは、平均粒径が1μm±0.5μm以下、かつ最大粒径が7μm以下で、長径と短径の比が2以下の一次粒子で、結晶子サイズd002が3.37Å以下、DBP吸油量70ml/100g以下、比表面積20m2/g以下、嵩密度0.3g/cm3以上であることを特徴とする人造黒鉛微粉末である。
この製造法は、コ−クス、生コ−クス、メソフェ−スピッチ等の炭素前駆物質をそのまま、あるいは必要に応じて焼成した後、乾式粉砕し、更に必要に応じ湿式粉砕・乾燥して得た微粉末を黒鉛化するものである。
以下に本発明を詳細に説明する。In order to solve the above problems, the present invention proposes primary particles having an average particle size of 1 μm ± 0.5 μm or less, a maximum particle size of 7 μm or less, and a ratio of major axis to minor axis of 2 or less. And an artificial graphite fine powder having a crystallite size d 002 of 3.37 mm or less, a DBP oil absorption of 70 ml / 100 g or less, a specific surface area of 20 m 2 / g or less, and a bulk density of 0.3 g / cm 3 or more. is there.
This production method was obtained by subjecting carbon precursors such as coke, raw coke, and meso-face pitch to the same or after firing as necessary, followed by dry grinding and further wet grinding and drying as necessary. The fine powder is graphitized.
The present invention is described in detail below.
本発明の原料として使用する炭素前駆物質には各種のコ−クス、メソフェ−スピッチ、メソカ−ボンマイクロビ−ズなどが用いられる。 As the carbon precursor used as the raw material of the present invention, various cokes, meso face pitches, meso carbon micro beads and the like are used.
コークスでは、カルサインコ−クス、生コ−クスを直接粉砕して用いるのも可能だが、カルサインコ−クスは固くて粉砕しにくい。
また、生コ−クスは1μmに微粉砕(湿式)する時に、変形や凝集、造粒等が生じ、目的とする粒径の粉末が得られないことがある。
このため、粉砕を適切に行うために、生コ−クスを800〜1200℃で焼成したものが好ましい。In coke, calcine coke and raw coke can be directly pulverized, but calcine coke is hard and difficult to grind.
In addition, when raw coke is finely pulverized (wet) to 1 μm, deformation, aggregation, granulation, etc. may occur, and a powder having a desired particle size may not be obtained.
For this reason, in order to perform a grinding | pulverization appropriately, what baked raw coke at 800-1200 degreeC is preferable.
コークスの構造としては、フロ−構造、モザイク構造を持つものが好適である。
この構造により、粉砕後、黒鉛化後の長径と短径の比が変化するので、長径と短径の比のより小さい黒鉛粉末が必要な場合は、モザイク構造あるいはファインモザイク構造のものを使用するのが好ましい。具体的には黒鉛化したときの膨張係数が2×10−6/℃以上のものから、長径と短径の比のより小さい黒鉛粉末が必要な場合は、5×10−6/℃以上のものから選ぶのが好ましい。As the coke structure, those having a flow structure and a mosaic structure are suitable.
This structure changes the ratio of the major axis to the minor axis after graphitization after pulverization, so if a graphite powder with a smaller ratio of major axis to minor axis is required, use a mosaic or fine mosaic structure. Is preferred. Specifically, when a graphite powder having a smaller ratio of the major axis to the minor axis is required from those having an expansion coefficient of 2 × 10 −6 / ° C. or more when graphitized, it is 5 × 10 −6 / ° C. or more. It is preferable to choose from those.
目的の黒鉛微粉末を得るには、まず上記の炭素前駆物質を粉砕することから始める。
この粉砕は、目的とする粉末の粒径が1μm品か3μm品かにより、方法をやや異にする。
3μm品の場合は、各種の粉砕機を用いた乾式粉砕のみでも可能であるが、1μm品の場合は、乾式粉砕に引き続き、ビ−ズミルによる湿式粉砕が必要になる。
粉砕は、原料の粒径に応じて、粗粒、中粒、微粒、超微粉と次第に細かく粉砕していき、所望の粒度のものを得る。In order to obtain the target graphite fine powder, the above carbon precursor is first pulverized.
This pulverization is slightly different depending on whether the target powder has a particle size of 1 μm or 3 μm.
In the case of a 3 μm product, it is possible only by dry pulverization using various pulverizers. However, in the case of a 1 μm product, wet pulverization using a bead mill is required following dry pulverization.
The pulverization is gradually and finely pulverized into coarse particles, medium particles, fine particles, and ultrafine powders according to the particle size of the raw material to obtain a desired particle size.
乾式粉砕で用いる粉砕機は原料の大きさや硬度等に応じて、適宜選択する。
粒径が数cmの大きな塊は、まず高トルクタイプのオリエントミル((株)オリエント製)やロートプレックス、フェザ−ミル(以上ホソカワミクロン(株)製)カッタ−ミル(東京アトマイザ−(株))、ロ−ルクラッシャ−((株)マキノ他)等の粉砕機で中粉砕を行う。
次いで、より細かく粉砕するため、あるいは数mmの原料であれば最初からパルベライザイ−((株)ダルトン、東京アトマイザ−(株)他)、ハンマ−ミル、ACMパルベライザ−、ビクトリミル、コロプレックス、ウルトラプレックス(以上ホソカワミクロン(株))、タ−ボミル(タ−ボ工業(株))、インペラ−ミル((株)セイシン企業)、振動ミル(中央化工機(株))等の粉砕機で微粉砕を行う。
あるいは更に粒径を細かくするために、ジェット粉砕機(例えば(株)セイシン企業、ホソカワミクロン(株)、日本ニュ−マチック工業(株)製他)等で可能な限り細かい粒径に乾式粉砕を行う。The pulverizer used in the dry pulverization is appropriately selected according to the size and hardness of the raw material.
Large lumps with a particle size of several centimeters are high torque type Orient Mill (made by Orient Co., Ltd.), Rotoplex, Feather Mill (made by Hosokawa Micron Co., Ltd.) and Cutter Mill (Tokyo Atomizer Co., Ltd.). Medium crushing is performed by a crusher such as a roll crusher (Makino Co., Ltd.).
Next, in order to pulverize more finely, or if it is a raw material of several mm, from the beginning Pulverizer (-Dalton, Tokyo Atomizer, etc.), Hammer Mill, ACM Pulverizer, Victory Mill, Coroplex, Ultraplex (Hosokawa Micron Co., Ltd.), Tabo Mill (Tabo Industries Co., Ltd.), Impeller Mill (Seisin Enterprise Co., Ltd.), Vibrating Mill (Chuo Kako Co., Ltd.), etc. Do.
Alternatively, in order to further reduce the particle size, dry pulverization is performed to a particle size as fine as possible with a jet crusher (for example, Seisin Co., Ltd., Hosokawa Micron Co., Ltd., Nippon Numatic Kogyo Co., Ltd., etc.). .
その後は、必要であれば平均粒径が3μm以下、1μm以下になるまで、ビーズミル((株)シンマルエンタ−プライズ、アシザワファインテック(株)、日本アイリッヒ(株)他)により湿式粉砕する。 Thereafter, if necessary, wet grinding is performed with a bead mill (Shinmaru Enterprises, Ashizawa Finetech Co., Ltd., Nihon Eirich Co., Ltd., etc.) until the average particle size is 3 μm or less and 1 μm or less.
1μm品を製造する場合は、乾式粉砕法のみでは目的とする粒径に達するのは、困難なので、乾式粉砕に引き続いてビ−ズミルによる湿式粉砕が必要になる。湿式粉砕する場合の分散媒は特定されないが、水を用いることが、分散媒の価格、安全性、排水処理費等を考えると安価なので好ましい。 In the case of producing a 1 μm product, it is difficult to reach the target particle size only by the dry pulverization method, and therefore, wet pulverization with a bead mill is necessary following dry pulverization. Although the dispersion medium for wet pulverization is not specified, it is preferable to use water because it is inexpensive in consideration of the price of the dispersion medium, safety, wastewater treatment costs, and the like.
粉砕品の最大粒径は、焼成・黒鉛化時、乾燥時の凝集を考慮して、3μm品、1μm品でそれぞれ13μm以下、7μm以下とする。 The maximum particle size of the pulverized product is set to 13 μm or less and 7 μm or less for the 3 μm product and the 1 μm product, respectively, considering aggregation during firing / graphitization and drying.
湿式粉砕を行う場合は、引き続き乾燥が必要であるが、乾燥方法は乾燥後に凝集ができないような方式なら特に限定しない。 In the case of wet pulverization, subsequent drying is necessary. However, the drying method is not particularly limited as long as it does not cause aggregation after drying.
乾燥機としては、単に熱風により乾燥する熱風循環型乾燥機、振動乾燥機、流動層乾燥機、スプレ−ドライヤ−、スラリ−に気流を当てて分散させながら乾燥させる気流式乾燥機、さらには凍結乾燥機などがある。 As dryers, hot air circulation dryers that are simply dried with hot air, vibration dryers, fluidized bed dryers, spray dryers, air dryers that are sprayed and dispersed while applying air currents to a slurry, and freezers There are dryers.
これらの中でも、気流乾燥機が、凝集しないように分散させつつ乾燥を行えるので好ましい。但し、気流式乾燥機の中でも、フラッシュジェットドライヤ−は操業中に内部付着が起き易く、スプレ−ドライヤ−は造粒し易いなどの欠点があるので、操業条件を選ぶ必要がある。特に好ましいのは、マイクロミストドライヤ−で、これを用いると、湿式解砕後においても凝集体を生成することなく、乾燥が可能である。 Among these, the air dryer is preferable because it can be dried while being dispersed so as not to aggregate. However, among the air-flow dryers, the flash jet dryer has the drawbacks that internal adhesion is likely to occur during operation, and the spray dryer is easy to granulate, so it is necessary to select the operation conditions. Particularly preferred is a micro mist dryer, which can be dried without generating aggregates even after wet crushing.
他の乾燥機、即ち熱風循環型乾燥機、振動乾燥機等は、乾燥途中で凝集ができ易く、乾燥後の解砕工程が必要になり、好ましくない。また凝集が残ったまま黒鉛化を行うと強固な凝集が生成し、粒径が大きくなり過ぎたり、最後の湿式粉砕の後の乾燥において凝集体や造粒体が混入していると品質上問題が起きるなどの欠点がある。 Other dryers, i.e., hot-air circulating dryers, vibration dryers, etc., are not preferred because they tend to agglomerate during drying and require a crushing step after drying. If graphitization is performed with the agglomeration remaining, strong agglomeration will be generated, the particle size will become too large, or if aggregates or granules are mixed in the drying after the last wet pulverization, there will be a quality problem There are drawbacks such as
粉砕した後は、必要に応じて焼成する。
湿式粉砕の場合は、焼成後に粉砕、乾燥するのが適当である。After pulverization, firing is performed as necessary.
In the case of wet pulverization, it is appropriate to pulverize and dry after firing.
焼成は揮発分が多くて、微量にする必要がある場合に行うもので、既に800℃以上の熱履歴を受けている場合は、次工程の黒鉛化に直接進むことも可能である。
焼成条件は、非酸化性雰囲気下、焼成温度800〜1200℃で行うことが適当で、揮発成分が微量になる温度であれば、これより多少高温または低温でも差し支えない。 但し、1300〜1400℃程度での処理は、一般に炭素材料の硬度が一番高くなるところなので、その後に粉砕工程がある場合は、粉砕で苦労することになり,好ましくない。Firing is performed when there is a large amount of volatile matter and it is necessary to make it very small. When the heat history of 800 ° C. or higher is already received, it is possible to proceed directly to graphitization in the next step.
The firing conditions are suitably performed at a firing temperature of 800 to 1200 ° C. in a non-oxidizing atmosphere, and may be slightly higher or lower than this as long as the volatile components become a very small amount. However, the treatment at about 1300 to 1400 ° C. is generally a place where the hardness of the carbon material is the highest, so if there is a pulverization step thereafter, it will be difficult to pulverize, which is not preferable.
一般に炭素前駆体の熱分解による揮発分の発生は、600〜800℃が最も多い。揮発分が多い状態のままで黒鉛化を行うと、多量の揮発分の発生により炉の操業上不具合が発生したり、揮発分による凝集を引き起こす可能性があるので、800℃以上で揮発分が少なくなる温度で焼成するのが好ましい。 In general, the generation of volatile components by pyrolysis of the carbon precursor is most often 600 to 800 ° C. If graphitization is performed with a large amount of volatile matter, troubles may occur in the operation of the furnace due to the generation of a large amount of volatile matter, or agglomeration due to the volatile matter may occur. Baking is preferably performed at a reduced temperature.
焼成後はアチソン炉等で不活性ガスまたは還元性雰囲気中で黒鉛化する。黒鉛化温度は、2800〜3200℃が好ましい。2800℃以下では結晶化が不十分で得られた粉末の導電性が低く、3200℃を超えると実質的に黒鉛化できない。 After firing, it is graphitized in an inert gas or reducing atmosphere in an Atchison furnace or the like. The graphitization temperature is preferably 2800 to 3200 ° C. Below 2800 ° C, the conductivity of the powder obtained due to insufficient crystallization is low, and when it exceeds 3200 ° C, it cannot be substantially graphitized.
以上のようにして本発明の人造黒鉛微粉末が得られる。 The artificial graphite fine powder of the present invention is obtained as described above.
上記のようにして得られた人造黒鉛微粉末の特性は、1μm品は、長径と短径の比が2以下で、結晶子サイズd002が3.37Å以下、DBP吸油量70ml/100g以下、比表面積20m2/g以下、嵩密度0.3g/cm3以上である。
3μm品は長径と短径の比が2以下で、結晶子サイズd002が3.37Å以下、DBP吸油量35ml/100g以下、比表面積5m2/g以下、嵩密度0.9g/cm3以上である。The characteristics of the artificial graphite fine powder obtained as described above are as follows. In the 1 μm product, the ratio of the major axis to the minor axis is 2 or less, the crystallite size d 002 is 3.37 mm or less, the DBP oil absorption is 70 ml / 100 g or less, The specific surface area is 20 m 2 / g or less and the bulk density is 0.3 g / cm 3 or more.
The 3 μm product has a major axis / minor axis ratio of 2 or less, a crystallite size d 002 of 3.37 mm or less, a DBP oil absorption of 35 ml / 100 g or less, a specific surface area of 5 m 2 / g or less, and a bulk density of 0.9 g / cm 3 or more. It is.
本発明の人造黒鉛微粉末の用途としては以下のようなものに供せられる。
電池、キャパシタ、燃料電池用導電助剤。
樹脂、ゴム、インキ、セラミックス、金属、炭素質カ−ボン、複合材等へ導電性を賦与するか、または抵抗、帯電量等の電気特性を制御するためのフィラ−または構造部材。
樹脂、ゴム、インキ、セラミックス、金属、炭素質カ−ボン、複合材等の親水性、親油性を制御するためのフィラ−。
樹脂、ゴム、インキ、セラミックス、金属、炭素質カ−ボン、複合材等の硬度を制御するためのフィラ−。
樹脂、ゴム、インキ、セラミックス、金属、炭素質カ−ボン、複合材等の強度、破壊エネルギ−、摩擦係数等の機械的特性を制御するためのフィラ−。
CVD、メッキ等のコ−テング担体。Applications of the artificial graphite fine powder of the present invention are as follows.
Conductive aid for batteries, capacitors and fuel cells.
Filler or structural member for imparting conductivity to resin, rubber, ink, ceramics, metal, carbonaceous carbon, composite material, etc., or for controlling electric characteristics such as resistance and charge amount.
Filler for controlling hydrophilicity and lipophilicity of resins, rubbers, inks, ceramics, metals, carbonaceous carbon, composite materials, etc.
Filler for controlling the hardness of resin, rubber, ink, ceramics, metal, carbonaceous carbon, composite material, etc.
Filler for controlling mechanical properties such as strength, fracture energy, friction coefficient, etc. of resin, rubber, ink, ceramics, metal, carbonaceous carbon, composite material, etc.
Coating carrier such as CVD and plating.
本発明では、1μm程度の粒径の黒鉛微粉末につき、長径と短径の比が小さく、十分な嵩密度で、かつ吸油量、比表面積の低い優れた特性の微粉末を得ることができる。 In the present invention, a fine powder having excellent characteristics with a small ratio of major axis to minor axis, a sufficient bulk density, low oil absorption, and low specific surface area can be obtained for graphite fine powder having a particle diameter of about 1 μm.
次に本発明の実施形態について以下の実施例で述べる。 Next, embodiments of the present invention will be described in the following examples.
モザイク構造を有し熱膨張率が5.7×10−6/℃の石炭系ピッチ生コ−クスをオリエントミル((株)オリエント製)で平均粒径40〜60μm程度に粗粉砕後、さらにジェットミルSTJ−400((株)セイシン企業製)で粉砕し、4μm程度の粉末とした。
次にこの4μmの粉末を窒素雰囲気下1000℃で焼成した。
焼成後、ビ−ズミル((株)シンマルエンタ−プライズ製)により水を分散媒とし、微量の界面活性剤を添加し、混合分散させた状態で繰り返し処理を行い、平均粒径0.8μm、最大粒径7μm以下になるまで湿式粉砕した。
その後、気流式乾燥機フラッシュジェットドライヤ−により乾燥して得られた粉末を、アチソン炉で3000℃で黒鉛化した。
この後再び上記のビ−ズミルにより水を分散媒に使用し、微量の界面活性剤を添加し混合分散させた状態で繰り返し2回ビ−ズミルに通すことにより、湿式解砕をした。最終的に気流式乾燥機フラッシュジェットドライヤ−により乾燥して黒鉛微粉末を得た。
得られた黒鉛質粉末の粒度は平均粒径が1μm 、最大粒径が6.5μm であった。また各特性を測定したところ、比表面積は16m2/g、吸油量は59ml/100g、結晶子サイズd002は3.364Å、嵩密度は0.3g/cm3、長径と短径の比は1.7であった。After coarsely pulverizing coal-based pitch raw coke having a mosaic structure and a thermal expansion coefficient of 5.7 × 10 −6 / ° C. to an average particle size of about 40 to 60 μm using Orient Mill (manufactured by Orient) The powder was pulverized with a jet mill STJ-400 (manufactured by Seishin Enterprise Co., Ltd.) to obtain a powder of about 4 μm.
Next, this 4 μm powder was fired at 1000 ° C. in a nitrogen atmosphere.
After firing, water is used as a dispersion medium by a beads mill (manufactured by Shinmaru Enterprises), a small amount of surfactant is added, and the mixture is dispersed and processed repeatedly, with an average particle size of 0.8 μm, maximum Wet grinding was performed until the particle size became 7 μm or less.
Thereafter, the powder obtained by drying with an airflow type dryer flash jet dryer was graphitized at 3000 ° C. in an Atchison furnace.
Thereafter, water was used as a dispersion medium again by the above bead mill, and wet crushing was performed by repeatedly passing through the bead mill twice in a state where a small amount of surfactant was added and mixed and dispersed. Finally, it was dried by an airflow type dryer flash jet dryer to obtain fine graphite powder.
The resulting graphite powder had a mean particle size of 1 μm and a maximum particle size of 6.5 μm. Further, when each characteristic was measured, the specific surface area was 16 m 2 / g, the oil absorption was 59 ml / 100 g, the crystallite size d 002 was 3.364 Å, the bulk density was 0.3 g / cm 3 , and the ratio of the major axis to the minor axis was 1.7.
モザイク構造を有し熱膨張率が2×10−6/℃である石炭系生コ−クスをオリエントミル((株)オリエント製)で平均粒径40〜60μm程度に粗粉砕した後、さらに振動ミル(中央化工機(株)製次いでジエットミルSJT−400((株)セイシン企業製)にて粉砕し、4μm程度の粉末とした。
次にこの粉末を窒素雰囲気中1000℃で焼成した。
以後は、2回の乾燥工程でマイクロミストドライヤ(藤崎電機((株)製)を用いた以外は実施例1と同様の処理で黒鉛微粉末を得た。
得られた黒鉛微粉末の粒度は、平均粒径が1.1μm、最大粒径が6.5μmであった。各特性を測定したところ、比表面積は15m2/g、 吸油量は65ml/100g、結晶子サイズd002は3.363Å、嵩密度0.3g/cm3、長径と短径の比は1.9であった。Coarse raw coke having a mosaic structure and a thermal expansion coefficient of 2 × 10 −6 / ° C. is coarsely pulverized to an average particle size of about 40 to 60 μm with an Orient mill (manufactured by Orient), and further vibrated. The powder was pulverized with a mill (manufactured by Chuo Kakoki Co., Ltd. and then with a jet mill SJT-400 (manufactured by Seishin Enterprise Co., Ltd.)) to obtain a powder of about 4 μm.
Next, this powder was fired at 1000 ° C. in a nitrogen atmosphere.
Thereafter, a graphite fine powder was obtained in the same manner as in Example 1 except that a micro mist dryer (Fujisaki Electric Co., Ltd.) was used in two drying steps.
The obtained graphite fine powder had an average particle size of 1.1 μm and a maximum particle size of 6.5 μm. When measuring each characteristic, the specific surface area was 15 m 2 / g, the oil absorption was 65 ml / 100 g, the crystallite size d 002 was 3.363 mm, the bulk density was 0.3 g / cm 3 , and the ratio of the major axis to the minor axis was 1. It was 9.
実施例1で用いた生コ−クスを実施例1と同様な方法で乾式粉砕を行い、900℃で焼成した。
次に水を分散媒としてビ−ズミル(アシザワファインテック(株)製)により湿式粉砕をし、平均粒径0.8μm、最大粒径7μmになるまで粉砕した。
これをスラリ−をバットに薄く延ばし熱風乾燥機(エスペック製)により110℃で乾燥した。
得られた粉末をアチソン炉にて3000℃で黒鉛化し、以下実施例1と同様に湿式粉砕を行い、気流式乾燥機マイクロミストドライヤ(藤崎電機(株)製)を用いて最終の乾燥を行い黒鉛質微粉末を得た。
得られた粉末の粒度は、平均粒径が1.1μm、最大粒径が6.8μmであった。各特性を測定したところ、比表面積は15m2/g、吸油量は66ml/100g、結晶子サイズd002は3.364Å、嵩密度は0.3g/cm3、長径と短径の比は1.75であった。The raw coke used in Example 1 was dry pulverized in the same manner as in Example 1 and fired at 900 ° C.
Next, wet pulverization was performed with a bead mill (manufactured by Ashizawa Finetech Co., Ltd.) using water as a dispersion medium, and pulverization was performed until the average particle size became 0.8 μm and the maximum particle size became 7 μm.
The slurry was thinly spread on a bat and dried at 110 ° C. with a hot air dryer (manufactured by ESPEC).
The obtained powder was graphitized at 3000 ° C. in an Atchison furnace, and then wet pulverized in the same manner as in Example 1, followed by final drying using an airflow dryer Micromist dryer (manufactured by Fujisaki Electric Co., Ltd.). A fine graphite powder was obtained.
The obtained powder had an average particle size of 1.1 μm and a maximum particle size of 6.8 μm. When measuring each characteristic, the specific surface area was 15 m 2 / g, the oil absorption was 66 ml / 100 g, the crystallite size d 002 was 3.364 Å, the bulk density was 0.3 g / cm 3 , and the ratio of the major axis to the minor axis was 1. .75.
軟化点350℃のメソフェ−ズピッチを不融化後、実施例1と同様の方法でオリエントミルとジェットミルを使用して乾式粉砕し、平均粒径3.5μmとした後、空気中徐々に昇温し、最高320℃で30分の処理を行い不融化した。
これを、窒素気流中900℃で焼成した後、アチソン炉で3000℃の黒鉛化処理をした。
得られた粉末を気流式分級機にて分級し、さらに細粒側を超音波振動フルイにより、目開き25mの篩いを通過させて、黒鉛質微粉末を得た。
得られた粉末の粒度は、平均粒径3.0μm、最大粒径12μmであった。各特性を測定したところ、比表面積は4.9m2/g、吸油量は33ml/100g、結晶子サイズd002は3.364Å、嵩密度は0.9g/cm3、長径と短径の比は1.75であった。
(比較例1)After insolubilizing a mesophase pitch with a softening point of 350 ° C., dry grinding using an orientation mill and a jet mill in the same manner as in Example 1 to obtain an average particle size of 3.5 μm, and then gradually raising the temperature in air Then, it was infusibilized by treatment at a maximum of 320 ° C. for 30 minutes.
This was fired at 900 ° C. in a nitrogen stream, and then graphitized at 3000 ° C. in an Atchison furnace.
The obtained powder was classified with an airflow classifier, and the fine particle side was passed through a sieve having an opening of 25 m with an ultrasonic vibration sieve to obtain a fine graphite powder.
The obtained powder had an average particle size of 3.0 μm and a maximum particle size of 12 μm. When each characteristic was measured, the specific surface area was 4.9 m 2 / g, the oil absorption was 33 ml / 100 g, the crystallite size d 002 was 3.364 mm, the bulk density was 0.9 g / cm 3 , and the ratio of the major axis to the minor axis Was 1.75.
(Comparative Example 1)
モザイク構造を有し、熱膨張率が5.7×10−6/℃の石炭ピッチ系生コ−クスをオリエントミルで平均粒径40〜60μm程度に粗粉砕後、デットミルでさらに粉砕し、平均粒径4μmとした。
この粉末を窒素雰囲気下1000℃で焼成した。ビ−ズミルにより、水を分散媒に使用し、微量の界面活性剤を添加し、混合分散させた状態で繰り返し処理をおこない、平均粒径0.8μm、最大粒径7μm以下になるまで湿式粉砕した。得られたスラリ−をバットに移し熱風乾燥機中で乾燥した。乾燥後、オリエントミルで解砕してから黒鉛ルツボに移し3000℃で黒鉛化したが、手で潰せないくらいの硬い数mmの凝集が複製し、目的とする黒鉛微粉末を得ることができなかった。
(比較例2)Coal pitch-based coke having a mosaic structure and a thermal expansion coefficient of 5.7 × 10 −6 / ° C. is coarsely pulverized to an average particle size of about 40 to 60 μm with an orient mill, and then further pulverized with a dead mill. The particle size was 4 μm.
This powder was fired at 1000 ° C. in a nitrogen atmosphere. Using a bead mill, water is used as a dispersion medium, a small amount of surfactant is added, mixed and dispersed, and repeatedly treated. Wet grinding until an average particle size of 0.8 μm and a maximum particle size of 7 μm or less is achieved. did. The obtained slurry was transferred to a vat and dried in a hot air dryer. After drying, it was crushed with an orient mill, then transferred to a graphite crucible and graphitized at 3000 ° C. However, the hard aggregate of several mm that could not be crushed by duplication replicated, and the desired graphite fine powder could not be obtained. It was.
(Comparative Example 2)
デイレ−トコークスをオリエントミル、インペラ−ミルで乾式粉砕後、ビ−ズミル(アシザワファインテック(株)製)にて湿式粉砕を行った。しかしながら何時間処理を続けても平均粒径は0.6〜1.1μmとなるも、最大粒径は逆に時間の経過とともに大きくなり、7μmを下回るものを得ることができなかった。 The daily coke was dry pulverized with an orientation mill and an impeller mill, and then wet pulverized with a bead mill (manufactured by Ashizawa Finetech Co., Ltd.). However, although the average particle size becomes 0.6 to 1.1 μm even if the treatment is continued for a long time, the maximum particle size is conversely increased with the lapse of time, and a particle size of less than 7 μm could not be obtained.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006258013A JP2008050245A (en) | 2006-08-25 | 2006-08-25 | Manufacturing method of artificial graphite powder and artificial graphite fine powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006258013A JP2008050245A (en) | 2006-08-25 | 2006-08-25 | Manufacturing method of artificial graphite powder and artificial graphite fine powder |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008050245A true JP2008050245A (en) | 2008-03-06 |
Family
ID=39234629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006258013A Withdrawn JP2008050245A (en) | 2006-08-25 | 2006-08-25 | Manufacturing method of artificial graphite powder and artificial graphite fine powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008050245A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008204886A (en) * | 2007-02-22 | 2008-09-04 | Matsushita Electric Ind Co Ltd | Negative electrode active material, its evaluation method, negative electrode plate for nonaqueous electrolyte secondary battery using it, and nonaqueous electrolyte secondary battery |
KR101034046B1 (en) * | 2010-04-21 | 2011-05-11 | 주식회사 지앤씨에스 | Printed circuit board having expended graphite sheet and led lamp |
JP2012156100A (en) * | 2011-01-28 | 2012-08-16 | Daihatsu Motor Co Ltd | Electrode for secondary battery, and secondary battery |
US20150151361A1 (en) * | 2010-11-09 | 2015-06-04 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Mixed powder for powder metallurgy and manufacturing method thereof |
US20180179066A1 (en) * | 2016-12-28 | 2018-06-28 | Panasonic Intellectual Property Management Co.,Ltd | Carbon-metal composite |
WO2023058774A1 (en) * | 2021-10-08 | 2023-04-13 | Secカーボン株式会社 | Graphite particles |
-
2006
- 2006-08-25 JP JP2006258013A patent/JP2008050245A/en not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008204886A (en) * | 2007-02-22 | 2008-09-04 | Matsushita Electric Ind Co Ltd | Negative electrode active material, its evaluation method, negative electrode plate for nonaqueous electrolyte secondary battery using it, and nonaqueous electrolyte secondary battery |
KR101034046B1 (en) * | 2010-04-21 | 2011-05-11 | 주식회사 지앤씨에스 | Printed circuit board having expended graphite sheet and led lamp |
US20150151361A1 (en) * | 2010-11-09 | 2015-06-04 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Mixed powder for powder metallurgy and manufacturing method thereof |
US9868153B2 (en) * | 2010-11-09 | 2018-01-16 | Kobe Steel, Ltd. | Mixed powder for powder metallurgy and manufacturing method thereof |
JP2012156100A (en) * | 2011-01-28 | 2012-08-16 | Daihatsu Motor Co Ltd | Electrode for secondary battery, and secondary battery |
US20180179066A1 (en) * | 2016-12-28 | 2018-06-28 | Panasonic Intellectual Property Management Co.,Ltd | Carbon-metal composite |
WO2023058774A1 (en) * | 2021-10-08 | 2023-04-13 | Secカーボン株式会社 | Graphite particles |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5201313B2 (en) | Electrode for electrochemical device and method for producing the same | |
CN106170880B (en) | Amorphous carbon coating of carbonaceous particles from a dispersion comprising an amphiphilic organic compound | |
WO2012043367A1 (en) | Process for production of (vanadium phosphate)-lithium-carbon complex | |
JP5492980B2 (en) | Modified natural graphite particles and method for producing the same | |
JP2008050245A (en) | Manufacturing method of artificial graphite powder and artificial graphite fine powder | |
JP5986347B2 (en) | Method for producing graphite material for lithium ion secondary battery | |
CN111225888A (en) | Method for preparing negative active material and lithium secondary battery comprising same | |
CN102482095A (en) | Nanostructured silicon-carbon composites for battery electrodes | |
KR101612603B1 (en) | Carbon-silicon complex, negative active material for secondary battery including the same and method for preparing the same | |
WO2019218504A1 (en) | Composite carbon material, and preparation method therefor and application thereof | |
JP2008305661A (en) | Negative electrode material for lithium ion secondary battery, and its manufacturing method | |
JP2008282547A (en) | Anode material for lithium ion secondary battery and its manufacturing method | |
JP6630905B2 (en) | Method for granulating carbon having different bulk densities and method for producing granulated carbon | |
JP2012036048A (en) | Process of producing vanadium lithium phosphate carbon composite | |
JP2005505904A (en) | Electrochemical battery | |
JP2012036050A (en) | Process of producing vanadium lithium phosphate carbon composite | |
KR20210051878A (en) | Anode material for lithium secondary batteries, method for preparing the same, and lithium secondary battery comprising the same | |
TWI732774B (en) | Anode material for lithium ion secondary battery, its manufacturing method and lithium ion secondary battery | |
JP2015053291A (en) | Method for manufacturing graphite material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP5196365B2 (en) | Carbon particle powder for negative electrode material of lithium ion secondary battery, method for producing the same, and negative electrode material of lithium ion secondary battery | |
JP5229664B2 (en) | Composite carbon material for negative electrode material of lithium secondary battery and method for producing the same | |
JP2004319312A (en) | Negative electrode material for lithium secondary battery, negative electrode for lithium secondary battery, and its manufacturing method | |
CN115171946B (en) | Conductive agent and preparation method and application thereof | |
JP2002179419A (en) | Method for manufacturing reformed graphite particle and electrode material for secondary battery | |
JPH0124723B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20091110 |