JP2008049431A - Grinding condition deciding method - Google Patents

Grinding condition deciding method Download PDF

Info

Publication number
JP2008049431A
JP2008049431A JP2006227618A JP2006227618A JP2008049431A JP 2008049431 A JP2008049431 A JP 2008049431A JP 2006227618 A JP2006227618 A JP 2006227618A JP 2006227618 A JP2006227618 A JP 2006227618A JP 2008049431 A JP2008049431 A JP 2008049431A
Authority
JP
Japan
Prior art keywords
grinding
workpiece
maximum temperature
abrasive
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006227618A
Other languages
Japanese (ja)
Other versions
JP5151091B2 (en
Inventor
Yasuhei Yamada
泰平 山田
Hiroshi Morita
浩 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2006227618A priority Critical patent/JP5151091B2/en
Priority to US11/837,781 priority patent/US7869896B2/en
Priority to EP07114301.0A priority patent/EP1892059B1/en
Publication of JP2008049431A publication Critical patent/JP2008049431A/en
Application granted granted Critical
Publication of JP5151091B2 publication Critical patent/JP5151091B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a grinding condition deciding method capable of deciding the grinding condition quickly and free of dispersion and of suppressing generation of a grinding burn. <P>SOLUTION: The procedures of this grinding condition deciding method comprise section area acquiring processes S10 and S11 to acquire the abrasive grain section area A at the cut-in depth g from the outermost surface of abrasive grain, a tangent calculating process S12 to calculate the tangent tanα relative to the half vertex angle α in a conical model 30 for a cutting edge of a grain where the bottom area is the grain section area A and the height is the cut-in depth g, a parameter setting process S13 to set the grinding parameter, a tangent line grinding resistance calculating process S14 to calculate the tangent line grinding resistance Ft from the grinding parameter and the tangent, a grinding heat quantity calculating process S15 to calculate the grinding heat quantity Q from Ft, a maximum temperature calculating process S16 to calculate the maximum temperature θmax at the grinding point from the grinding heat quantity Q, and grinding burn judging processes S17, S18, S19 to judge if a grinding burn is generated through comparison of the maximum temperature θmax with the threshold. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、砥粒をボンドで結合した砥石層が円盤状コアの外周面に形成された砥石による研削条件決定方法に関する。   The present invention relates to a grinding condition determination method using a grindstone in which a grindstone layer in which abrasive grains are bonded by a bond is formed on the outer peripheral surface of a disk-shaped core.

従来、砥粒をボンドで結合した砥石層が円盤状コアの外周面に形成された砥石による研削条件を決定するには、作業者が実際に工作物を研削して研削焼けの評価を行い、所定の規格を満足しない場合は再度研削条件を設定するという方法がとられていた。しかし、この研削条件決定方法では、試行錯誤により研削条件を設定していたため、多くの時間が必要であった。また、作業者の経験に基づいて研削条件を設定していたため、作業者により研削条件のバラツキが生じ易かった。   Conventionally, in order to determine the grinding conditions by a grindstone in which a grindstone layer in which abrasive grains are bonded with a bond is formed on the outer peripheral surface of a disk-shaped core, an operator actually grinds a workpiece and evaluates grinding burn, When the predetermined standard is not satisfied, the grinding condition is set again. However, in this method for determining grinding conditions, the grinding conditions were set by trial and error, so a lot of time was required. Also, since the grinding conditions were set based on the experience of the operator, the grinding conditions were likely to vary by the operator.

これに対し、特許文献1記載の研削条件決定方法が提案されている。この研削条件決定方法を以下に示す。まず、法線研削抵抗と接線研削抵抗のうちの少なくとも一方及びその比の許容値を予め設定しておき、加工中に法線研削抵抗と接線研削抵抗とを測定し、その比を計算する。そして、その比が許容範囲内のときは法線研削抵抗と接線研削抵抗のうちの少なくとも一方の許容値と測定値とを比較して研削条件を決定する。   On the other hand, the grinding condition determination method of patent document 1 is proposed. This grinding condition determination method is shown below. First, at least one of a normal grinding resistance and a tangential grinding resistance and an allowable value of the ratio are set in advance, and the normal grinding resistance and the tangential grinding resistance are measured during processing, and the ratio is calculated. When the ratio is within the allowable range, the grinding condition is determined by comparing at least one of the normal grinding resistance and the tangential grinding resistance with the measured value.

特許文献1記載の研削条件決定方法によれば、試行錯誤や作業者の経験によることなく、短時間でかつバラツキのない研削条件を決定することができる。
特開平4−315571号公報
According to the grinding condition determination method described in Patent Document 1, it is possible to determine a grinding condition without variations in a short time without trial and error or operator experience.
JP-A-4-315571

しかし、上記特許文献1記載の研削条件決定方法では、許容値と研削焼けとの関係が不明確であり、研削焼けの評価について十分であるとはいい難い。   However, in the grinding condition determination method described in Patent Document 1, the relationship between the allowable value and the grinding burn is unclear, and it is difficult to say that the evaluation of the grinding burn is sufficient.

本発明は係る従来の問題点に鑑みてなされたものであり、短時間でかつバラツキがない研削条件を決定することができるとともに、研削焼けの発生を抑制することができる研削条件決定方法を提供するものである。   The present invention has been made in view of the conventional problems, and provides a grinding condition determination method capable of determining a grinding condition without variation in a short time and suppressing the occurrence of grinding burn. To do.

発明者は、上記課題解決のために鋭意研究を行い、砥粒の切れ刃を円錐モデル化して法線研削抵抗を計算すると実測値とよく一致することに着目し、以下の発明を完成するに至った。   The inventor has conducted earnest research to solve the above problems, paying attention to the fact that the normal grinding resistance is calculated by conic modeling the cutting edge of the abrasive grains, and the following invention is completed. It came.

すなわち、請求項1に係る研削条件決定方法の特徴は、砥粒をボンドで結合した砥石層が円盤状コアの外周面に形成された砥石による研削条件決定方法において、前記砥石の研削面を形成する砥粒の最表面から所定の深さにおける砥粒断面積を得る断面積取得工程と、該砥粒断面積を底面積、前記所定の深さを高さとする砥粒切れ刃の円錐モデルを想定し、該円錐モデルの頂角の1/2である半頂角に対する正接を計算する正接計算工程と、研削パラメータを設定するパラメータ設定工程と、該研削パラメータ及び前記正接から接線研削抵抗を計算する接線研削抵抗計算工程と、該接線研削抵抗から研削熱量を計算する研削熱量計算工程と、該研削熱量から研削点における最高温度を計算する最高温度計算工程と、該最高温度と閾値とを比較し、研削焼けを判断する研削焼け判定工程とを備えることである。   That is, the grinding condition determination method according to claim 1 is characterized in that in the grinding condition determination method using a grindstone in which a grindstone layer in which abrasive grains are bonded by a bond is formed on the outer peripheral surface of a disk-shaped core, the grinding surface of the grindstone is formed. A cross-sectional area obtaining step for obtaining a cross-sectional area of an abrasive grain at a predetermined depth from the outermost surface of the abrasive grain, and a cone model of an abrasive cutting edge having the cross-sectional area of the abrasive grain as a bottom area and the predetermined depth as a height. Assuming a tangent calculation step for calculating a tangent to a half apex angle that is ½ of the apex angle of the cone model, a parameter setting step for setting a grinding parameter, and calculating a tangential grinding resistance from the grinding parameter and the tangent The tangential grinding resistance calculation process, the grinding heat quantity calculation process for calculating the grinding heat quantity from the tangential grinding resistance, the maximum temperature calculation process for calculating the maximum temperature at the grinding point from the grinding heat quantity, and the maximum temperature and the threshold value are compared. Is to comprise a grinding burn determining step determines grinding burn.

請求項2に係る研削条件決定方法の特徴は、請求項1において、前記断面積取得工程は、レーザ顕微鏡により砥粒表面の3次元形状を表すデータ群を取得するデータ群取得工程と、該データ群に基づいて前記砥粒断面積を求める断面積計算工程とを備えていることである。   The grinding condition determination method according to claim 2 is characterized in that, in claim 1, the cross-sectional area acquisition step includes a data group acquisition step of acquiring a data group representing a three-dimensional shape of the abrasive grain surface with a laser microscope, and the data A cross-sectional area calculating step for obtaining the cross-sectional area of the abrasive grains based on a group.

請求項3に係る研削条件決定方法の特徴は、請求項1又は2において、前記研削パラメータは、比研削エネルギーCp、砥石周速度V、工作物1回転あたりの切込み量d、研削幅b、工作物速度v、砥粒と工作物との間の摩擦係数μ、砥石と工作物との接触長さL、工作物の密度ρ、工作物の比熱c、工作物の熱伝導率k、工作物への熱分配率aの少なくとも1つであり、前記円錐モデルの前記半頂角をα、定数をK1、K2とすると、
接線研削抵抗Ftは、
Ft=Cp(vdb/V)+μCp(πvdb/2V)tanα
研削熱量Qは、
Q=(FtV)/(Lb)
最高温度θmaxは、
θmax=K1{L/(ρckv)}K2×aQ
により求められることである。
The grinding condition determination method according to claim 3 is characterized in that, in claim 1 or 2, the grinding parameters include specific grinding energy Cp, grinding wheel peripheral speed V, cutting depth d per work rotation, grinding width b, work Work speed v, friction coefficient μ between abrasive grains and workpiece, contact length L between grinding wheel and workpiece, workpiece density ρ, specific heat c of workpiece, thermal conductivity k of workpiece, workpiece When the half apex angle of the conical model is α and the constants are K1 and K2,
Tangential grinding resistance Ft is
Ft = Cp (vdb / V) + μCp (πvdb / 2V) tanα
The amount of grinding heat Q is
Q = (FtV) / (Lb)
Maximum temperature θmax is
θmax = K1 {L / (ρckv)} K2 × aQ
It is required by.

請求項4に係る研削条件決定方法の特徴は、請求項1乃至3のいずれか1項において、前記所定の深さは、砥粒切れ刃の切込み深さであることである。   A feature of a grinding condition determination method according to a fourth aspect is that, in any one of the first to third aspects, the predetermined depth is a cutting depth of an abrasive cutting edge.

請求項1に係る研削条件決定方法においては、所定の工程を経て得られた最高温度が閾値以下となるように研削条件を決定しているため、試行錯誤や作業者の経験によることなく研削条件を決定することができる。また、この研削条件決定方法においては、砥粒の最表面から所定の深さにおける砥粒断面積を底面積、所定の深さを高さとする砥粒切れ刃の円錐モデルを想定すると、半頂角に対する正接及び研削パラメータから計算される法線研削抵抗は実測値とよく一致する。そのため、この円錐モデルに基づいて、法線研削抵抗から計算される接線研削抵抗、研削熱量及び最高温度も実際の値とよく一致すると考えられる。したがって、この研削条件決定方法によれば、短時間でかつバラツキがない研削条件を決定することができるとともに、研削焼けの発生を抑制することができる。   In the grinding condition determination method according to claim 1, since the grinding condition is determined so that the maximum temperature obtained through the predetermined process is equal to or lower than the threshold value, the grinding condition is determined without trial and error or operator experience. Can be determined. Further, in this grinding condition determination method, assuming a conical model of an abrasive grain cutting edge in which an abrasive grain cross-sectional area at a predetermined depth from the outermost surface of the abrasive grain is a bottom area and a predetermined depth is a height, The normal grinding resistance calculated from the tangent to the corner and the grinding parameters agrees well with the measured values. Therefore, based on this conical model, it is considered that the tangential grinding resistance, the amount of grinding heat and the maximum temperature calculated from the normal grinding resistance also agree well with the actual values. Therefore, according to this grinding condition determination method, it is possible to determine a grinding condition that does not vary in a short time, and to suppress the occurrence of grinding burn.

請求項2に係る研削条件決定方法においては、データ群取得工程においてレーザ顕微鏡により砥粒表面の3次元形状を表すデータ群を取得し、断面積計算工程においてこのデータ群に基づいて砥粒断面積を求めるため、砥粒の最表面から所定の深さにおける砥粒断面積を正確に測定することができる。   In the grinding condition determination method according to claim 2, a data group representing a three-dimensional shape of the abrasive grain surface is obtained by a laser microscope in the data group acquisition step, and the abrasive grain cross-sectional area is based on the data group in the cross-sectional area calculation step. Therefore, it is possible to accurately measure the abrasive cross-sectional area at a predetermined depth from the outermost surface of the abrasive grains.

請求項3に係る研削条件決定方法においては、比研削エネルギーCp、砥石周速度V、工作物1回転あたりの切込み量d、研削幅b、工作物速度v、砥粒と工作物との間の摩擦係数μ、砥石と工作物との接触長さL、工作物の密度ρ、工作物の比熱c、工作物の熱伝導率k、工作物への熱分配率a及び円錐モデルの半頂角αから接線研削抵抗Ft、研削熱量Q及び最高温度θmaxが計算されるため、容易に最高温度θmaxを求めることができる。   In the grinding condition determination method according to claim 3, the specific grinding energy Cp, the grinding wheel peripheral speed V, the cutting depth d per rotation of the workpiece, the grinding width b, the workpiece speed v, and between the abrasive grains and the workpiece. Friction coefficient μ, contact length L between grinding wheel and workpiece, workpiece density ρ, workpiece specific heat c, workpiece thermal conductivity k, workpiece heat distribution a, and cone model half apex angle Since tangential grinding resistance Ft, grinding heat quantity Q and maximum temperature θmax are calculated from α, the maximum temperature θmax can be easily obtained.

請求項4に係る研削条件決定方法においては、所定の深さが砥粒切れ刃の切込み深さであるため、妥当な円錐モデルとなり、接線研削抵抗Ft、研削熱量Q及び最高温度θmaxを正確に求めることができる。   In the grinding condition determination method according to the fourth aspect, since the predetermined depth is the cutting depth of the abrasive cutting edge, it becomes an appropriate conical model, and the tangential grinding resistance Ft, the grinding heat quantity Q, and the maximum temperature θmax are accurately determined. Can be sought.

本発明に係る研削条件決定方法を具体化した実施形態を図面に基づいて以下に説明する。図1は、この研削条件決定方法に用いる研削盤を表している。この研削盤では、工作物1が主軸台5の主軸5aと心押し台6の心押し棒6aとで押さえられて支持されている。また、砥石台7の回転軸7aには砥石10が固着され、回転軸7a及び砥石10はモータ8より高速で回転駆動される。そして、砥石10が工作物1に当接することにより、工作物1が研削加工される。ここで、研削幅をbで表す。   An embodiment embodying a grinding condition determination method according to the present invention will be described below with reference to the drawings. FIG. 1 shows a grinding machine used in this grinding condition determination method. In this grinding machine, the workpiece 1 is pressed and supported by the spindle 5 a of the spindle stock 5 and the tailstock 6 a of the tailstock 6. A grindstone 10 is fixed to the rotary shaft 7 a of the grindstone table 7, and the rotary shaft 7 a and the grindstone 10 are driven to rotate at a higher speed than the motor 8. Then, when the grindstone 10 contacts the workpiece 1, the workpiece 1 is ground. Here, the grinding width is represented by b.

砥石10と工作物1との関係を図2に示す。砥石10は、CBN(立方晶窒化ホウ素)やダイヤモンドの超砥粒をボンドで結合した砥石層12が円盤状コア11の外周面に形成されている。砥石層12は複数の砥石チップ13からなっている。ここで、砥石周速度をV、工作物速度をv、工作物1の1回転あたりの切込み量をd、砥石10と工作物1との接触長さをLで表す。   The relationship between the grindstone 10 and the workpiece 1 is shown in FIG. In the grindstone 10, a grindstone layer 12 in which superabrasive grains of CBN (cubic boron nitride) or diamond are bonded together is formed on the outer peripheral surface of the disk-shaped core 11. The grindstone layer 12 is composed of a plurality of grindstone chips 13. Here, the grindstone peripheral speed is represented by V, the workpiece speed is represented by v, the cutting depth per rotation of the workpiece 1 is represented by d, and the contact length between the grindstone 10 and the workpiece 1 is represented by L.

図3は、実施形態の研削条件決定方法に用いる研削条件決定装置を表している。この研削条件決定装置は、レーザ顕微鏡20と制御装置21とを備えている。レーザ顕微鏡20は、砥石チップ13にレーザを照射するレーザ投光器20aと、砥石チップ13から反射されたレーザを検知するCCDカメラ20bとを備えている。レーザ顕微鏡20と制御装置21とは電気的に接続されている。   FIG. 3 shows a grinding condition determining apparatus used in the grinding condition determining method of the embodiment. This grinding condition determination device includes a laser microscope 20 and a control device 21. The laser microscope 20 includes a laser projector 20 a that irradiates the grindstone chip 13 with laser and a CCD camera 20 b that detects the laser reflected from the grindstone chip 13. The laser microscope 20 and the control device 21 are electrically connected.

次に、研削条件決定方法について、図4に示す研削条件決定プログラムのフローチャートにより説明する。研削条件決定装置は研削盤の、例えば砥石10の後側等の、所定の位置に設けられる。そして、図示しないスタートスイッチを押すことにより、図4に示す研削条件決定プログラムの実行が開始される。   Next, the grinding condition determination method will be described with reference to the flowchart of the grinding condition determination program shown in FIG. The grinding condition determination device is provided at a predetermined position on the grinding machine, for example, on the rear side of the grinding wheel 10. Then, by pressing a start switch (not shown), execution of the grinding condition determination program shown in FIG. 4 is started.

図4に示す研削条件決定プログラムの実行が開始されると、まず、ステップS10において、砥石チップ13の所定の領域の3次元形状を表すデータ群が取得される。具体的には、制御処理装置21からの指令により、レーザ投光器20aからレーザが砥石チップ13に照射される。また、CCDカメラ20bにより、砥石チップ13から反射されたレーザが検知され、そのデータが制御処理装置21に転送される。なお、このデータは、砥粒の研削面を基準XY平面としたとき、砥石チップ13表面の基準XY平面からのZ軸方向距離を表している。こうして、CCDカメラ20bから制御処理装置21に転送されたデータは、砥石チップ13の所定の領域の3次元形状を表すデータ群とされ、制御処理装置21のメモリに記憶される。このデータ群は、図5に示すように、X軸方向及びY軸方向とも所定間隔で区切られたメッシュ毎に1個ずつ取得され、マトリックスデータとして記憶される。ただし、図5においては便宜上、マトリックスの行をb1〜b10、列をa1〜a10としている。ここで、ステップS10がデータ群取得工程である。   When the execution of the grinding condition determination program shown in FIG. 4 is started, first, in step S10, a data group representing a three-dimensional shape of a predetermined region of the grindstone tip 13 is acquired. Specifically, the grindstone chip 13 is irradiated with laser from the laser projector 20 a according to a command from the control processing device 21. Further, the laser reflected from the grindstone chip 13 is detected by the CCD camera 20 b, and the data is transferred to the control processing device 21. This data represents the distance in the Z-axis direction from the reference XY plane of the surface of the grindstone tip 13 when the grinding surface of the abrasive grains is the reference XY plane. Thus, the data transferred from the CCD camera 20 b to the control processing device 21 is a data group representing a three-dimensional shape of a predetermined area of the grindstone chip 13 and is stored in the memory of the control processing device 21. As shown in FIG. 5, one data group is acquired for each mesh divided at predetermined intervals in the X-axis direction and the Y-axis direction, and stored as matrix data. However, in FIG. 5, for convenience, the matrix rows are b1 to b10 and the columns are a1 to a10. Here, step S10 is a data group acquisition step.

ステップS11においては、データ群に基づいて、砥粒最表面から砥粒切れ刃の切込み深さgにおける砥粒断面積Aを計算する。具体的には、図5に示すデータ群のうち切込み深さgを表すデータで囲まれた面積が砥粒断面積Aとされる。このようにして、砥粒切れ刃の切込み深さgにおける砥粒断面積Aを正確に測定することができる。なお、切込み深さgは、10μm以下であり、通常3〜5μm程度である。また、砥粒断面積Aを得る砥粒最表面からの位置は任意であるが、これを砥粒切れ刃の切込み深さgとすると計算値と実測値とがより一致するので好ましい。ここで、ステップS11が断面積計算工程である。また、ステップS10とステップS11とが断面積取得工程である。   In step S11, based on the data group, the abrasive grain cross-sectional area A at the cutting depth g of the abrasive grain cutting edge is calculated from the abrasive grain outermost surface. Specifically, the area surrounded by the data representing the cutting depth g in the data group shown in FIG. In this way, the abrasive grain cross-sectional area A at the cutting depth g of the abrasive grain cutting edge can be accurately measured. In addition, the cutting depth g is 10 micrometers or less, and is about 3-5 micrometers normally. Further, the position from the outermost surface of the abrasive grains for obtaining the abrasive grain cross-sectional area A is arbitrary, but if this is the cutting depth g of the abrasive grain cutting edge, it is preferable because the calculated value and the measured value are more consistent. Here, step S11 is a cross-sectional area calculation step. Moreover, step S10 and step S11 are cross-sectional area acquisition processes.

ステップS12においては、砥粒の切れ刃を円錐モデル30で仮定し、半頂角αの正接tanαを計算する。すなわち、図6に示すように、砥粒断面積Aを半径rの底面積、切込み深さgを高さとする砥粒の切れ刃の円錐モデル30を想定し、この円錐モデル30の頂角の1/2である半頂角αに対する正接tanαを下記数4に示す式により計算して求める。図6において、Ftが工作物1を研削するのに必要な力である接線研削抵抗である。また、Fnが砥粒を工作物1に貫入させるのに必要な力である法線研削抵抗である。ここで、ステップS12が正接計算工程である。   In step S12, the cutting edge of the abrasive grain is assumed by the conical model 30, and the tangent tan α of the half apex angle α is calculated. That is, as shown in FIG. 6, assuming a conical model 30 of an abrasive cutting edge having an abrasive grain cross-sectional area A as a bottom area with a radius r and a cutting depth g as a height, the apex angle of the conical model 30 is assumed. The tangent tan α with respect to the half apex angle α, which is 1/2, is calculated by the following equation (4). In FIG. 6, Ft is a tangential grinding resistance that is a force necessary to grind the workpiece 1. Further, Fn is a normal grinding resistance which is a force necessary for penetrating the abrasive grains into the workpiece 1. Here, step S12 is a tangent calculation step.

Figure 2008049431
Figure 2008049431

ステップS13においては、研削パラメータを設定する。研削パラメータは、比研削エネルギーCp、砥石周速度V、工作物1回転あたりの切込み量d、研削幅b、工作物速度v、砥粒と工作物との間の摩擦係数μ、砥石と工作物との接触長さL、工作物の密度ρ、工作物の比熱c、工作物の熱伝導率k、工作物への熱分配率aの少なくとも1つである。ただし、工作物1により自動的に決定される研削パラメータについては、最初に一度だけ設定すればよい。ここで、ステップS13がパラメータ設定工程である。   In step S13, grinding parameters are set. The grinding parameters are specific grinding energy Cp, grinding wheel peripheral speed V, cutting depth d per work rotation, grinding width b, work speed v, friction coefficient μ between the abrasive grains and the work piece, grinding wheel and work piece. At least one of a contact length L, a density ρ of the workpiece, a specific heat c of the workpiece, a thermal conductivity k of the workpiece, and a heat distribution ratio a to the workpiece. However, the grinding parameters automatically determined by the workpiece 1 need only be set once at the beginning. Here, step S13 is a parameter setting step.

ステップS14においては、接線研削抵抗Ftを計算する。前述のように研削パラメータを設定すると、研削パラメータ及び半頂角αの正接tanαから法線研削抵抗Fnが下記数5に示す式により計算される。また、接線研削抵抗Ftが下記数6に示す式により計算される。そして、数5及び数6に示す式より、接線研削抵抗Ftが下記数7に示す式で求められる。これにより、1個の砥粒についての接線研削抵抗Ftが求まる。ここで、ステップS14が接線研削抵抗計算工程である。本実施形態では、10個の砥粒についての接線研削抵抗Ftを求めている。   In step S14, the tangential grinding resistance Ft is calculated. When the grinding parameters are set as described above, the normal grinding resistance Fn is calculated from the grinding parameters and the tangent tan α of the half apex angle α according to the following equation (5). Further, the tangential grinding resistance Ft is calculated by the equation shown in the following formula 6. Then, the tangential grinding resistance Ft is obtained by the following equation (7) from the equations (5) and (6). Thereby, the tangential grinding resistance Ft about one abrasive grain is obtained. Here, step S14 is a tangential grinding resistance calculation step. In this embodiment, the tangential grinding resistance Ft for 10 abrasive grains is obtained.

Figure 2008049431
Figure 2008049431

Figure 2008049431
Figure 2008049431

Figure 2008049431
Figure 2008049431

ステップS15においては、研削熱量Qを計算する。研削熱量Qは下記数8に示す式により計算される。ステップS15が研削熱量計算工程である。   In step S15, the grinding heat quantity Q is calculated. The amount Q of grinding heat is calculated by the equation shown in the following equation (8). Step S15 is a grinding heat quantity calculation step.

Figure 2008049431
Figure 2008049431

ステップS16においては、最高温度θmaxを計算する。最高温度θmaxは下記数9に示す式により求められる。ただし、本実施形態においては、K1を1.1128、K2を0.5として、下記数10に示す式により計算される。ステップS16が最高温度計算工程である。   In step S16, the maximum temperature θmax is calculated. The maximum temperature θmax is obtained by the equation shown in the following equation (9). However, in the present embodiment, K1 is 1.1128 and K2 is 0.5, and calculation is performed according to the following equation (10). Step S16 is a maximum temperature calculation step.

Figure 2008049431
Figure 2008049431

Figure 2008049431
Figure 2008049431

この研削条件決定方法においては、比研削エネルギーCp、砥石周速度V、工作物1回転あたりの切込み量d、研削幅b、工作物速度v、砥粒と工作物との間の摩擦係数μ、砥石と工作物との接触長さL、工作物の密度ρ、工作物の比熱c、工作物の熱伝導率k、工作物への熱分配率a及び円錐モデルの前記半頂角α、定数K1、K2から接線研削抵抗Ft、研削熱量Q及び最高温度θmaxが計算されるため、容易に最高温度θmaxを求めることができる。   In this grinding condition determination method, the specific grinding energy Cp, the grinding wheel circumferential speed V, the cutting depth d per rotation of the workpiece, the grinding width b, the workpiece speed v, the friction coefficient μ between the abrasive grains and the workpiece, Contact length L between the grindstone and the workpiece, the density ρ of the workpiece, the specific heat c of the workpiece, the thermal conductivity k of the workpiece, the heat distribution rate a to the workpiece, the half apex angle α of the cone model, the constant Since the tangential grinding resistance Ft, the grinding heat quantity Q and the maximum temperature θmax are calculated from K1 and K2, the maximum temperature θmax can be easily obtained.

半頂角αの正接tanαと法線研削抵抗との関係を表すグラフを図7に示す。G1が計算値のグラフであり、G2が実測値のグラフである。図7によれば、計算値と実測値との間に相関があることが分かる。   A graph showing the relationship between the tangent tan α of the half apex angle α and the normal grinding resistance is shown in FIG. G1 is a calculated value graph, and G2 is a measured value graph. FIG. 7 shows that there is a correlation between the calculated value and the actually measured value.

ステップS17においては、最高温度θmaxと閾値とを比較する。ただし、最高温度θmaxは10個の砥粒についての平均値である。最高温度θmaxが閾値より小さい場合(YES)、研削焼けが発生しないと判断し、ステップS18に進む。また、最高温度θmaxが閾値以上である場合(NO)、研削焼けが発生すると判断し、ステップS19に進む。この際、半頂角αと最高温度θmaxとの関係を図8に示す。図8において、最高温度θmaxがθ0以上で研削焼けが発生するとすれば(すなわちθ0を閾値とすると)、半頂角αがα0以上で研削焼けが発生することを示している。   In step S17, the maximum temperature θmax is compared with a threshold value. However, the maximum temperature θmax is an average value for 10 abrasive grains. When the maximum temperature θmax is smaller than the threshold value (YES), it is determined that grinding burn does not occur, and the process proceeds to step S18. If the maximum temperature θmax is equal to or higher than the threshold (NO), it is determined that grinding burn will occur, and the process proceeds to step S19. At this time, the relationship between the half apex angle α and the maximum temperature θmax is shown in FIG. In FIG. 8, if grinding burn occurs when the maximum temperature θmax is equal to or greater than θ0 (that is, θ0 is set as a threshold value), it indicates that grinding burn occurs when the half apex angle α is equal to or greater than α0.

ステップS18においては、研削焼けが発生しない研削条件である旨を制御装置21のモニタに表示してプログラムの実行を終了する。また、ステップS19においては、研削焼けが発生する研削条件である旨を制御装置21のモニタに表示してステップS13に戻り、再度研削パラメータを設定する。したがって、最高温度θmaxがθ0より小さくなるまで、研削パラメータの設定をし直すことになる。ただし、設定をし直す研削パラメータは、工作物1により自動的に決定されるもの以外のものであり、主に工作物速度v及び切込み量dである。ここで、ステップS17、S18、S19が研削焼け判定工程である。なお、研削条件決定プログラムは、研削作業開始前及びツルーイング間の所定時間毎に、あるいは所定の個数の工作物1を研削する毎に実行される。   In step S18, the fact that the grinding conditions do not cause grinding burn is displayed on the monitor of the control device 21, and the execution of the program is terminated. Further, in step S19, the fact that the grinding condition is caused by grinding burn is displayed on the monitor of the control device 21, the process returns to step S13, and the grinding parameters are set again. Therefore, the grinding parameters are reset until the maximum temperature θmax becomes smaller than θ0. However, the grinding parameters to be reset are other than those automatically determined by the workpiece 1, and are mainly the workpiece speed v and the cutting depth d. Here, steps S17, S18, and S19 are grinding burn determination steps. The grinding condition determination program is executed before starting the grinding operation and every predetermined time between truing operations or every time a predetermined number of workpieces 1 are ground.

本実施形態の研削条件決定方法においては、所定の工程を経て得られた最高温度θmaxが閾値以下となるように研削条件を決定しているため、試行錯誤や作業者の経験によることなく研削条件を決定することができる。また、この研削条件決定方法においては、砥粒最表面から砥粒切れ刃の切込み深さgにおける砥粒断面積Aを底面積、切込み深さgを高さとする砥粒の切れ刃の円錐モデル30を想定すると、半頂角αに対する正接tanα及び研削パラメータから計算される法線研削抵抗Fnは実測値とよく一致する。そのため、この円錐モデル30に基づいて、法線研削抵抗Fnから計算される接線研削抵抗Ft、研削熱量Q及び最高温度θmaxも実際の値とよく一致すると考えられる。したがって、本実施形態の研削条件決定方法によれば、短時間でかつバラツキがない研削条件を決定することができるとともに、研削焼けの発生を抑制することができる。   In the grinding condition determination method of the present embodiment, since the grinding conditions are determined so that the maximum temperature θmax obtained through a predetermined process is equal to or less than the threshold value, the grinding conditions are determined without trial and error or operator experience. Can be determined. Further, in this grinding condition determination method, a conical model of an abrasive cutting edge in which the abrasive grain cross-sectional area A from the outermost surface of the abrasive grain to the cutting depth g of the abrasive grain is the bottom area and the cutting depth g is the height. Assuming 30, the normal grinding resistance Fn calculated from the tangent tan α to the half apex angle α and the grinding parameters is in good agreement with the measured value. Therefore, based on the cone model 30, it is considered that the tangential grinding resistance Ft, the grinding heat quantity Q, and the maximum temperature θmax calculated from the normal grinding resistance Fn agree well with the actual values. Therefore, according to the grinding condition determination method of the present embodiment, it is possible to determine a grinding condition that does not vary in a short time, and it is possible to suppress the occurrence of grinding burn.

なお、本実施形態においては、砥石チップ13の所定の領域の3次元形状を測定して砥粒断面積Aを求めているが、工作物1の所定の領域の3次元形状を測定して砥粒断面積Aを求めてもよい。また、砥粒表面に金蒸着を施しておき、研削により剥がれた金の面積を測定して砥粒断面積Aを求めてもよい。さらに、触針を用いて機械的に工作物1の所定の領域の3次元形状を測定して砥粒断面積Aを求めてもよい。また、砥粒断面積Aを求めるに際し、研削盤を停止させてもよいし、停止させなくてもよい。   In the present embodiment, the three-dimensional shape of a predetermined region of the grindstone tip 13 is measured to obtain the abrasive grain cross-sectional area A. However, the three-dimensional shape of the predetermined region of the workpiece 1 is measured to obtain an abrasive. The grain cross-sectional area A may be obtained. Alternatively, the surface of the abrasive grain may be subjected to gold vapor deposition, and the area of the gold peeled off by grinding may be measured to obtain the abrasive grain cross-sectional area A. Further, the abrasive grain cross-sectional area A may be obtained by mechanically measuring a three-dimensional shape of a predetermined region of the workpiece 1 using a stylus. Moreover, when calculating | requiring the abrasive grain cross-sectional area A, a grinding machine may be stopped and it does not need to be stopped.

以上、本発明の研削条件決定方法を実施形態に即して説明したが、本発明はこれらに制限されるものではなく、本発明の技術的思想に反しない限り、適宜変更して適用できることはいうまでもない。   As mentioned above, although the grinding condition determination method of the present invention has been described according to the embodiment, the present invention is not limited to these, and it can be applied with appropriate modifications as long as it is not contrary to the technical idea of the present invention. Needless to say.

実施形態に係り、研削盤の概要図。The outline figure of a grinding machine concerning an embodiment. 実施形態に係り、砥石と工作物との関係を示す図。The figure which concerns on embodiment and shows the relationship between a grindstone and a workpiece. 実施形態に係り、研削条件決定装置の概要図。1 is a schematic diagram of a grinding condition determination device according to an embodiment. 実施形態に係り、研削条件決定プログラムのフローチャート。The flowchart of the grinding condition determination program according to the embodiment. 実施形態に係り、砥石チップ表面の3次元形状を表すデータ群の図。The figure of the data group which concerns on embodiment and represents the three-dimensional shape of the grindstone chip surface. 実施形態に係り、砥粒の切れ刃の円錐モデルの斜視図。The perspective view of the cone model of the cutting edge of an abrasive grain according to an embodiment. 実施形態に係り、半頂角の正接と法線研削抵抗とのグラフ。The graph of a tangent of a half apex angle and a normal grinding resistance according to the embodiment. 実施形態に係り、半頂角と最高温度とのグラフ。The graph of a half apex angle and the maximum temperature according to the embodiment.

符号の説明Explanation of symbols

11…円盤状コア、12…砥石層、20…レーザ顕微鏡、30…円錐モデル、S10、S11…断面積取得工程(S10…データ群取得工程、S11…断面積計算工程)、S12…正接計算工程、S13…パラメータ設定工程、S14…接線研削抵抗計算工程、S15…研削熱量計算工程、S16…最高温度計算工程、S17、S18、S19…研削焼け判定工程、21…制御装置)、Ft…接線研削抵抗、α…半頂角、A…砥粒断面積、g…切込み深さ、d…切込み量、Cp…比研削エネルギー、V…砥石周速度、v…工作物速度、b…研削幅、L…接触長さ、μ…摩擦係数、ρ…密度、c…比熱、k…熱伝導率、a…熱分配率、Q…研削熱量、Qmax…最高温度。   DESCRIPTION OF SYMBOLS 11 ... Disk shaped core, 12 ... Grinding stone layer, 20 ... Laser microscope, 30 ... Conical model, S10, S11 ... Cross-sectional area acquisition process (S10 ... Data group acquisition process, S11 ... Cross-sectional area calculation process), S12 ... Tangent calculation process , S13 ... parameter setting step, S14 ... tangential grinding resistance calculation step, S15 ... grinding heat quantity calculation step, S16 ... maximum temperature calculation step, S17, S18, S19 ... grinding burn judgment step, 21 ... control device), Ft ... tangential grinding Resistance, α: Half apex angle, A: Abrasive cross section, g: Depth of cut, d: Depth of cut, Cp: Specific grinding energy, V: Grinding wheel peripheral speed, v: Workpiece speed, b: Grinding width, L ... contact length, μ ... friction coefficient, ρ ... density, c ... specific heat, k ... thermal conductivity, a ... heat distribution rate, Q ... grinding heat quantity, Qmax ... maximum temperature.

Claims (4)

砥粒をボンドで結合した砥石層が円盤状コアの外周面に形成された砥石による研削条件決定方法において、
前記砥石の研削面を形成する砥粒の最表面から所定の深さにおける砥粒断面積を得る断面積取得工程と、
該砥粒断面積を底面積、前記所定の深さを高さとする砥粒切れ刃の円錐モデルを想定し、該円錐モデルの頂角の1/2である半頂角に対する正接を計算する正接計算工程と、
研削パラメータを設定するパラメータ設定工程と、
該研削パラメータ及び前記正接から接線研削抵抗を計算する接線研削抵抗計算工程と、
該接線研削抵抗から研削熱量を計算する研削熱量計算工程と、
該研削熱量から研削点における最高温度を計算する最高温度計算工程と、
該最高温度と閾値とを比較し、研削焼けを判断する研削焼け判定工程とを備えることを特徴とする研削条件決定方法。
In the grinding condition determination method by the grindstone in which the grindstone layer in which the abrasive grains are bonded by the bond is formed on the outer peripheral surface of the disk-shaped core,
A cross-sectional area acquisition step of obtaining an abrasive cross-sectional area at a predetermined depth from the outermost surface of the abrasive grains forming the grinding surface of the grindstone;
Assuming a conical model of an abrasive cutting edge with the abrasive grain cross-sectional area as a bottom area and the predetermined depth as a height, a tangent for calculating a tangent to a half apex angle that is ½ of the apex angle of the conical model Calculation process;
A parameter setting process for setting grinding parameters;
A tangential grinding resistance calculation step of calculating a tangential grinding resistance from the grinding parameters and the tangent;
A grinding heat quantity calculating step for calculating a grinding heat quantity from the tangential grinding resistance;
A maximum temperature calculation step of calculating the maximum temperature at the grinding point from the amount of grinding heat;
A grinding condition determination method comprising: a grinding burn determination step of comparing the maximum temperature with a threshold value to determine grinding burn.
請求項1において、前記断面積取得工程は、レーザ顕微鏡により砥粒表面の3次元形状を表すデータ群を取得するデータ群取得工程と、該データ群に基づいて前記砥粒断面積を求める断面積計算工程とを備えていることを特徴とする研削条件決定方法。   In Claim 1, the cross-sectional area acquisition step includes a data group acquisition step of acquiring a data group representing a three-dimensional shape of the abrasive grain surface by a laser microscope, and a cross-sectional area for obtaining the abrasive cross-sectional area based on the data group. A grinding condition determination method comprising: a calculation step. 請求項1又は2において、前記研削パラメータは、比研削エネルギーCp、砥石周速度V、工作物1回転あたりの切込み量d、研削幅b、工作物速度v、砥粒と工作物との間の摩擦係数μ、砥石と工作物との接触長さL、工作物の密度ρ、工作物の比熱c、工作物の熱伝導率k、工作物への熱分配率aの少なくとも1つであり、前記円錐モデルの前記半頂角をα、定数をK1、K2とすると、接線研削抵抗Ftは下記の数1の式、研削熱量Qは下記の数2の式、最高温度θmaxは下記の数3の式により求められることを特徴とする研削条件決定方法。
(数1)
Ft=Cp(vdb/V)+μCp(πvdb/2V)tanα
(数2)
Q=(FtV)/(Lb)
(数3)
θmax=K1{L/(ρckv)}K2×aQ
3. The grinding parameter according to claim 1, wherein the grinding parameters include specific grinding energy Cp, grinding wheel peripheral speed V, depth of cut d per workpiece rotation, grinding width b, workpiece speed v, and between the abrasive grains and the workpiece. The friction coefficient μ, the contact length L between the grindstone and the workpiece, the density ρ of the workpiece, the specific heat c of the workpiece, the thermal conductivity k of the workpiece, and the heat distribution ratio a to the workpiece, Assuming that the half apex angle of the conical model is α and the constants are K1 and K2, the tangential grinding resistance Ft is the following formula 1, the grinding heat quantity Q is the following formula 2, and the maximum temperature θmax is the following formula 3. The grinding condition determination method characterized by being calculated | required by the type | formula of this.
(Equation 1)
Ft = Cp (vdb / V) + μCp (πvdb / 2V) tanα
(Equation 2)
Q = (FtV) / (Lb)
(Equation 3)
θmax = K1 {L / (ρckv)} K2 × aQ
請求項1乃至3のいずれか1項において、前記所定の深さは、砥粒切れ刃の切込み深さであることを特徴とする研削条件決定方法。   4. The grinding condition determination method according to claim 1, wherein the predetermined depth is a cutting depth of an abrasive cutting edge.
JP2006227618A 2006-08-24 2006-08-24 Grinding condition determination method Expired - Fee Related JP5151091B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006227618A JP5151091B2 (en) 2006-08-24 2006-08-24 Grinding condition determination method
US11/837,781 US7869896B2 (en) 2006-08-24 2007-08-13 Tangential grinding resistance measuring method and apparatus, and applications thereof to grinding condition decision and wheel life judgment
EP07114301.0A EP1892059B1 (en) 2006-08-24 2007-08-14 Tangential grinding resistance measuring method and apparatus, and applications thereof to grinding condition decision and wheel life judgment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006227618A JP5151091B2 (en) 2006-08-24 2006-08-24 Grinding condition determination method

Publications (2)

Publication Number Publication Date
JP2008049431A true JP2008049431A (en) 2008-03-06
JP5151091B2 JP5151091B2 (en) 2013-02-27

Family

ID=39233946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006227618A Expired - Fee Related JP5151091B2 (en) 2006-08-24 2006-08-24 Grinding condition determination method

Country Status (1)

Country Link
JP (1) JP5151091B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018525235A (en) * 2015-07-08 2018-09-06 スカニア シーブイ アクチボラグ Method for grinding a workpiece having a cylindrical bearing surface and method for determining processing parameters
CN116628784A (en) * 2023-07-19 2023-08-22 天河超级计算淮海分中心 Optimization method for parameters of gyratory grinding equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8012219B2 (en) 2002-08-09 2011-09-06 Visto Corporation System and method for preventing access to data on a compromised remote device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54156290A (en) * 1978-05-31 1979-12-10 Saito Katsumasa Characteristic detecting method and device of working surface of grinding stone
JPH01153271A (en) * 1987-12-08 1989-06-15 Toyoda Mach Works Ltd Grinder equipped with grinding resistance detector
JPH10180629A (en) * 1996-12-18 1998-07-07 Fuji Xerox Co Ltd Method for detecting very small projection
JP2003071685A (en) * 2001-09-03 2003-03-12 Nissan Motor Co Ltd Method of machining integral power roller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54156290A (en) * 1978-05-31 1979-12-10 Saito Katsumasa Characteristic detecting method and device of working surface of grinding stone
JPH01153271A (en) * 1987-12-08 1989-06-15 Toyoda Mach Works Ltd Grinder equipped with grinding resistance detector
JPH10180629A (en) * 1996-12-18 1998-07-07 Fuji Xerox Co Ltd Method for detecting very small projection
JP2003071685A (en) * 2001-09-03 2003-03-12 Nissan Motor Co Ltd Method of machining integral power roller

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6011054980; 河村末久,矢野章成,樋口誠宏,杉田忠彰: 加工学基礎(2) 研削加工と砥粒加工 初版8刷, 19941005, 第24乃至57頁, 共立出版株式会社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018525235A (en) * 2015-07-08 2018-09-06 スカニア シーブイ アクチボラグ Method for grinding a workpiece having a cylindrical bearing surface and method for determining processing parameters
CN116628784A (en) * 2023-07-19 2023-08-22 天河超级计算淮海分中心 Optimization method for parameters of gyratory grinding equipment
CN116628784B (en) * 2023-07-19 2023-10-27 天河超级计算淮海分中心 Optimization method for parameters of gyratory grinding equipment

Also Published As

Publication number Publication date
JP5151091B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
US7869896B2 (en) Tangential grinding resistance measuring method and apparatus, and applications thereof to grinding condition decision and wheel life judgment
JP2022525521A (en) Method for automatic process monitoring during continuous creation grinding
JP6068772B2 (en) Rotating tool processing method and apparatus provided with a plurality of abrasive grains
TWI458593B (en) Polishing apparatus and polishing determining method of substrate end face
TW200539335A (en) Torque-based end point detection methods for chemical mechanical polishing tool which uses ceria-based CMP slurry to polish to protective pad layer
JP5151091B2 (en) Grinding condition determination method
JP2020179431A (en) Dressing method for grinding wheel and correction device for grinding wheel
CN107457703B (en) A kind of bronze boart boart wheel disc precise dressing method of the end surface full jumping better than 2 μm
JP6649135B2 (en) Wafer processing apparatus and wafer processing method
JP5300939B2 (en) Machining method using finishing tools
JP2008073837A (en) Tangential grinding resistance measuring method for grinding wheel, grinding wheel life judging method, truing completion verification method, grinding wheel life judging device, and truing completion verification device
JP2017208432A (en) Method for determining physical property of monocrystalline silicon carbide substrate and method for manufacturing monocrystalline silicon carbide substrate
JP5589717B2 (en) Grinding method and grinding machine
JP3714169B2 (en) Machine tool control system and recording medium
JP2007260880A (en) Method of truing grinding wheel, and grinding machine
TWI418431B (en) Phase alignment method and phase alignment device of helical wheel
JP3690994B2 (en) Electrodeposition tool manufacturing method
JP5521581B2 (en) Grinder
JP2007260881A (en) Method of truing grinding wheel
JP2020069639A (en) Grinding surface state evaluation apparatus and grinding device
Pilny et al. Validation of in-line surface characterization by light scattering in Robot Assisted Polishing
JP2001038506A (en) Single crystal diamond tool and manufacture thereof
JP5793611B1 (en) Automatic flake polisher
Uchida et al. Evaluation of Dressing Condition Based on Quantification of Grinding Wheel Surface Conditions
JP4118829B2 (en) Super smooth grinding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5151091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees