JP2008049322A - Electrolytic water making apparatus and sink equipped with it - Google Patents

Electrolytic water making apparatus and sink equipped with it Download PDF

Info

Publication number
JP2008049322A
JP2008049322A JP2006231359A JP2006231359A JP2008049322A JP 2008049322 A JP2008049322 A JP 2008049322A JP 2006231359 A JP2006231359 A JP 2006231359A JP 2006231359 A JP2006231359 A JP 2006231359A JP 2008049322 A JP2008049322 A JP 2008049322A
Authority
JP
Japan
Prior art keywords
water
amount
electrode
electrolytic cell
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006231359A
Other languages
Japanese (ja)
Other versions
JP4730258B2 (en
Inventor
Toshiaki Hirai
利明 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2006231359A priority Critical patent/JP4730258B2/en
Publication of JP2008049322A publication Critical patent/JP2008049322A/en
Application granted granted Critical
Publication of JP4730258B2 publication Critical patent/JP4730258B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Domestic Plumbing Installations (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolytic water making apparatus which discharges acidic ion water containing hypochlorous acid at a water circulation initial stage to wash the interior of a water discharge pipe and always properly holds the amount of water for sterilization washing corresponding to the concentration of hypochlorous acid. <P>SOLUTION: The electrolytic water making apparatus is equipped with an electrolytic current detection means 22 for detecting the value of the current flowing across electrodes 15 and 17 at the time of application of predetermined voltage and a flow rate detection means 10 for detecting the amount of the water introduced into an electrolytic cell 11. The application of polar DC voltage across the electrodes is started so as to supply acidic ion water to the water discharge pipe corresponding to the start of the supply of water by a control means 6 and the application of voltage across the electrodes is matched with target water quality at the point of time when the integration of the electrolytic current value detected by an electrolytic current value detection means and the integrated discharged water amount from the start of the supply of water exceeds a preset lower limit washing amount. Since the electrolytic current value is almost proportional to the concentration of hypochlorous acid, always stable washing can be performed regardless of the production concentration of hypochlorous acid. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、水道水等を電気分解してアルカリイオン水と酸性イオン水を連続的に生成する電解水生成装置とこれを備えた流し台に関するものである。   The present invention relates to an electrolyzed water generating device that electrolyzes tap water or the like to continuously generate alkaline ionized water and acidic ionized water, and a sink equipped with the same.

電解水生成装置は、一般に原水の汚濁物質を除去する浄水部と、浄水部で浄化した水を電気分解する電解槽と、水栓から前記電解槽に水を供給する給水管と前記電解槽で生成したアルカリイオン水または酸性イオン水を吐出する吐水管と、電解槽内の水を排出する排水管とを備えるとともに、電解槽の制御のために、通水状態か否かを判定するための検知手段を給水管の途中に配設したものとなっている。   The electrolyzed water generator generally includes a water purification unit that removes pollutants from raw water, an electrolyzer that electrolyzes water purified by the water purifier, a water supply pipe that supplies water from a faucet to the electrolyzer, and the electrolyzer. A discharge pipe for discharging the generated alkaline ionized water or acidic ionized water and a drain pipe for discharging water in the electrolytic cell, and for determining whether or not the water is passed for controlling the electrolytic cell. The detection means is arranged in the middle of the water supply pipe.

そして原水を供給したならば、上記検知手段による通水状態の検知信号を受けて制御手段が電解槽内部の隔膜を挟んで対向する位置に配設された一対の電極に電圧を印加するために電解槽での電気分解が実施され、電気分解された水は使用目的によりアルカリイオン水若しくは酸性イオン水のうちいずれかが吐水管より吐出され、目的に合わない水は排水管より排出される。そして水栓を閉じる等の操作によって原水の供給を停止すれば、上記検知手段による止水状態の検知を受けて、制御手段は電解槽での電気分解を停止する。   And if raw water is supplied, in order to apply a voltage to a pair of electrodes arranged at positions facing each other across the diaphragm inside the electrolytic cell in response to the detection signal of the water flow state by the detection means Electrolysis is performed in the electrolytic cell, and the electrolyzed water is discharged from the water discharge pipe, either alkali ion water or acidic ion water, depending on the purpose of use, and water that does not meet the purpose is discharged from the drain pipe. If the supply of raw water is stopped by an operation such as closing the faucet, the control means stops the electrolysis in the electrolytic cell in response to the detection of the water stop state by the detection means.

ところで、電解水生成装置は汚れた食器や食材の洗浄や調理を行う場所である流し台にに設置されることが多く、場合によっては本体内部の水を排水する際、吐水管の末端である開口端から設置場所周辺の汚れた水の滴やミストを空気と一緒に吸入するおそれがあり、微生物そのものや微生物にとって栄養価の高い汚れた水が吐水管を介して給水管や電解槽の内部に吸入された場合、内部で微生物の繁殖を招くおそれがある。   By the way, the electrolyzed water generating device is often installed in a sink that is a place for cleaning and cooking dirty dishes and ingredients, and in some cases, when draining the water inside the main body, an opening that is the end of the water discharge pipe There is a risk of inhaling dirty water drops and mist around the installation site from the edge together with air, and the microorganisms themselves and dirty water with high nutritional value for microorganisms enter the water supply pipes and electrolyzers through the water discharge pipes. Inhalation may lead to microbial growth inside.

このために、装置本体内に残った滞留水中での細菌等微生物の繁殖を防止するために、電解槽内部の水は吐水管末端の開口端と排水管末端の開口端の水頭差によって排水管から排出されるようにしているが、滞留水を完全に無くすことは困難であり、場合によっては部分的に細菌に汚染される場合があることから、特許文献1においては、電解槽より上流側の給水管にバルブを設け、電解水生成を停止するに際し、吐水管側に連通する電解室内の電極を陽極として上記バルブで間欠通水しながら次亜塩素酸を含む酸性イオン水にて吐水管内部を洗浄している。   For this reason, in order to prevent the growth of microorganisms such as bacteria in the remaining water remaining in the main body of the device, the water inside the electrolytic cell is drained by a water head difference between the open end of the discharge pipe end and the open end of the drain pipe end. However, it is difficult to completely eliminate the accumulated water, and in some cases, it may be partially contaminated with bacteria. When a water supply pipe is provided with a valve and the generation of electrolyzed water is stopped, the electrode in the electrolytic chamber communicating with the water discharge pipe side is used as an anode and the water discharge pipe is formed with acidic ion water containing hypochlorous acid while intermittently passing water through the valve. The inside is washed.

また原水を一旦タンクに貯水し、この貯水した原水をポンプで送水し電解槽へ送って電解することで次亜塩素酸を含む水を生成して吐水管内部を洗浄するものも提案されている(例えば特許文献2参照)。   Also proposed is a method in which raw water is temporarily stored in a tank, and the stored raw water is pumped, sent to an electrolytic cell, and electrolyzed to generate water containing hypochlorous acid to clean the inside of the discharge pipe. (For example, refer to Patent Document 2).

しかし、間欠通水可能にするために止水時におけるウォーターハンマー等の衝撃に耐え得る耐水圧構造を強固に設けるため補強部品を追加したり、貯水用のタンクを設ける必要があり、装置自体の構成が大きなものとなってしまう。電解水生成装置は流し台等の限られたスペースに設けられる場合が多いために小型化が望まれているのに対して、この要求を満たすことが困難である。   However, in order to allow intermittent water flow, it is necessary to add a reinforcing part to provide a water pressure resistant structure that can withstand the impact of a water hammer or the like when the water is stopped, or to provide a tank for water storage. The configuration becomes large. Since the electrolyzed water generating device is often provided in a limited space such as a sink, miniaturization is desired, but it is difficult to satisfy this requirement.

また水質も使用場所によって様々であり、たとえ水道水であっても、次亜塩素酸を生成するための原水中の塩素イオン濃度が大きく異なる場合があるために、殺菌洗浄に必要な水量は不定となる。つまり、常に確実に殺菌洗浄を行うことができるとは限らないことになる。   In addition, the water quality varies depending on the location of use, and even for tap water, the concentration of chlorine ions in the raw water used to produce hypochlorous acid may vary greatly. It becomes. That is, it is not always possible to reliably perform sterilization cleaning.

この点に対処するために、塩化ナトリウムのような塩素イオンを含む化合物を添加して電解することで、原水中の塩素イオン濃度をあげることも提案されているが、水に対する溶解度が高いため短時間で溶解してしまって濃度を安定させることは困難であり、洗浄の都度添加して使用するという手間のかかる方法となってしまい、実使用には適さない。   In order to cope with this point, it has also been proposed to increase the chlorine ion concentration in the raw water by adding a compound containing chlorine ions such as sodium chloride and performing electrolysis. It is difficult to stabilize the concentration after dissolving in time, and it becomes a time-consuming method of adding and using it every time it is washed, which is not suitable for actual use.

予め塩素化合物を所定の濃度に溶解させたタンクを設けるとともに給水管から分岐したタンクから給水管へ連結する配管上にポンプを設けて、ポンプにて所定濃度の塩素イオンを含む溶液を一定量混入させる方法も提案されているが、装置自体が大きくかっ複雑な構造となる。
特開平09−262585号公報 特開平09−155351号公報
A tank in which a chlorine compound is dissolved in a predetermined concentration is provided in advance, and a pump is provided on a pipe connected from the tank branched from the water supply pipe to the water supply pipe. Although the method of making it is proposed, the apparatus itself becomes a large and complicated structure.
JP 09-262585 A JP 09-155351 A

本発明はこのような点に鑑みなされたもので、通水開始初期に次亜塩素酸を含有する酸性イオン水を吐出させて吐水管内部を洗浄するとともに、この時の殺菌洗浄のための水量を次亜塩素酸濃度や塩素イオン濃度に応じて常に適切に保つことができる電解水生成装置及びこれを備えた流し台を手強することを課題とするものである。   The present invention has been made in view of such points, and discharges acidic ion water containing hypochlorous acid at the beginning of water flow to wash the inside of the water discharge pipe, and the amount of water for sterilization washing at this time It is an object of the present invention to fortify an electrolyzed water generating apparatus that can always keep the water content appropriately according to hypochlorous acid concentration and chlorine ion concentration, and a sink equipped with the same.

上記課題を解決するために本発明に係る電解水生成装置は、原水を電気分解する電極を備えた通水型電解槽と、前記電極への直流電圧の印加を制御する制御手段と、原水を電解槽に供給する給水管と、電解槽で生成されたアルカリイオン水や酸性イオン水の吐出用の吐水管及び排出用の排水管とを有している電解水生成装置であって、所定電圧印加時における上記電極間に流れる電流値を検知する電解電流検知手段と、電解槽に導入される水量を検出する流量検知手段とを備え、前記制御手段は通水開始に応じて吐水管へ酸性イオン水を供給することになる極性の直流電圧の前記電極への印加を開始するとともに、上記電解電流検知手段で検出した電解電流値と通水開始からの積算吐水量との積が予め設定した下限洗浄量を越えた時点で前記電極への電圧印加を目的の水質に合わせたものとするものであることに特徴を有している。   In order to solve the above-mentioned problems, an electrolyzed water generating apparatus according to the present invention comprises a water-flowing electrolyzer equipped with an electrode for electrolyzing raw water, a control means for controlling application of a DC voltage to the electrode, and raw water. An electrolyzed water generating device having a water supply pipe to be supplied to an electrolyzer, a discharge pipe for discharging alkaline ion water and acidic ion water generated in the electrolyzer and a drain pipe for discharging, and having a predetermined voltage An electrolysis current detection means for detecting a current value flowing between the electrodes at the time of application; and a flow rate detection means for detecting the amount of water introduced into the electrolytic cell, wherein the control means is acidified to the water discharge pipe in response to the start of water flow. A product of the electrolytic current value detected by the electrolysis current detecting means and the integrated water discharge amount from the start of water flow is set in advance while applying to the electrode a DC voltage of polarity that will supply ionic water. When the lower limit cleaning amount is exceeded, It is characterized in that it is an to the combined application of voltage to the electrode water quality objectives.

通水開始初期に吐水管の洗浄を行うものであり、またこの洗浄動作は、酸性イオン水中の次亜塩素酸の生成濃度に相関のある電解電流値に応じて積算吐水量を増減させるために、下限洗浄量を超える次亜塩素酸量を必ず吐水管に流すものであるために、次亜塩素酸の生成濃度に関わらず常に洗浄の程度を安定して確保でき、吐水管等の汚染が万一発生しても清浄で安全な水を得ることができる。   The water discharge pipe is cleaned at the beginning of water flow, and this cleaning operation is performed to increase or decrease the integrated water discharge amount according to the electrolysis current value correlated with the concentration of hypochlorous acid in acidic ion water. Because the amount of hypochlorous acid exceeding the lower limit washing amount is always passed through the water discharge pipe, the degree of cleaning can always be secured stably regardless of the concentration of hypochlorous acid produced, and contamination of the water discharge pipe etc. Even if it occurs, clean and safe water can be obtained.

また本発明は、給水管途中に設けられて電解槽に導入される水の導電率を測定する導電率検出手段と、電解槽に導入される水量を検出する流量検知手段とを備え、
前記制御手段は通水開始に応じて吐水管へ酸性イオン水を供給することになる極性の直流電圧の前記電極への印加を開始するとともに、上記導電率検出手段で検出した導電率と通水開始からの積算吐水量との積が予め設定した下限洗浄量を越えた時点で前記電極への電圧印加を目的の水質に合わせたものとするものであることに他の特徴を有している。
Further, the present invention comprises a conductivity detecting means for measuring the conductivity of water introduced into the electrolytic cell provided in the middle of the water supply pipe, and a flow rate detecting means for detecting the amount of water introduced into the electrolytic cell,
The control means starts application of a polarity direct-current voltage to the electrode to supply acidic ion water to the water discharge pipe in response to the start of water flow, and the conductivity and water flow detected by the conductivity detection means. When the product of the integrated water discharge amount from the start exceeds the preset lower limit washing amount, the voltage application to the electrode is adapted to the target water quality and has another feature. .

この場合においても、通水開始初期に吐水管の洗浄を行うものである上に、この洗浄動作は、酸性イオン水中の次亜塩素酸の生成濃度に相関のある導電率に応じて積算通水量を増減させることで一定の次亜塩素酸量を吐水管に流すために、導電率の値の如何に関わらず常に同一レベルの洗浄を安定して実施できる。   Even in this case, the water discharge pipe is washed at the beginning of water flow, and this washing operation is performed in accordance with the conductivity correlated to the concentration of hypochlorous acid in the acidic ion water. Since a certain amount of hypochlorous acid is caused to flow through the water discharge pipe by increasing / decreasing the value, the same level of cleaning can always be performed stably regardless of the conductivity value.

この時、通水間隔を計測する通水間隔検出手段を備えて、制御手段は前記通水間隔計測手段で計測された通水間隔時間に応じて下限洗浄量を決定しているものであれば、止水状態での放置時間に適した洗浄量が自動的に選択されることになり、止水状態での放置時間が長くなっても常に洗浄後の清浄度を安定して確保できる。   At this time, provided with a water flow interval detecting means for measuring the water flow interval, the control means determines the lower limit washing amount according to the water flow interval time measured by the water flow interval measuring means. The amount of cleaning suitable for the standing time in the still water state is automatically selected, and even after the standing time in the still water state becomes longer, the cleanliness after the cleaning can always be secured stably.

そして本発明にかかる流し台は、上述の電解水生成装置を備えていることに特徴を有している。   And the sink concerning this invention has the characteristics in having the above-mentioned electrolyzed water generating apparatus.

本発明は、通水時の初期に洗浄を行うものであるとともに、この洗浄動作は、次亜塩素酸の生成濃度に相関がある電解電流値や導電率に応じた水量で行われるために、使用場所の水質や使用流量に関わらず常に所定の条件で洗浄することができるものであり、吐水管に外部からの汚染物質の侵入が発生した場合でも、衛生的で清浄な水を供給することができる。   In the present invention, cleaning is performed at the initial stage of passing water, and this cleaning operation is performed with an amount of water corresponding to an electrolysis current value or conductivity that correlates with a hypochlorous acid production concentration. Regardless of the water quality and flow rate at the place of use, it can always be washed under the specified conditions, and even if there is an entry of contaminants from the outside into the water discharge pipe, hygienic and clean water should be supplied. Can do.

また本発明にかかる流し台は、上記電解水生成装置によって衛生的な電解水を得ることができる。   Moreover, the sink concerning this invention can obtain sanitary electrolyzed water by the said electrolyzed water generating apparatus.

以下、本発明を添付図面に示す実施形態に基いて説明すると、図1において、一端の給水口2が水路切換え弁1を介して市井に接続される給水管3は、途中に浄水部4及び水流検知用としての圧力センサ5を有するとともに給水管分岐部7にて第1給水分岐管8と第2給水分岐管9とに分岐しており、電解槽11に連結される第1給水分岐管8の途中には流量センサ10が設けられている。第2給水分岐管9は電解補助剤添加部12を経由して電解槽11へ連結されてる。また、給水管3における浄水部4と給水管分岐部7との間に上記圧力センサ5が設けられている。浄水の水圧は圧力センサ5で検知されて制御手段6に送られる。   Hereinafter, the present invention will be described based on an embodiment shown in the accompanying drawings. In FIG. 1, a water supply pipe 3 in which a water supply port 2 at one end is connected to a city well via a water channel switching valve 1 includes a water purification unit 4 and A first water supply branch pipe having a pressure sensor 5 for detecting water flow and branching into a first water supply branch pipe 8 and a second water supply branch pipe 9 at a water supply pipe branching section 7 and connected to an electrolytic cell 11. 8 is provided with a flow rate sensor 10. The second water supply branch pipe 9 is connected to the electrolytic cell 11 via the electrolytic auxiliary agent addition unit 12. Further, the pressure sensor 5 is provided between the water purification unit 4 and the water supply pipe branching part 7 in the water supply pipe 3. The water pressure of the purified water is detected by the pressure sensor 5 and sent to the control means 6.

電解槽11内はイオン透過性の隔膜13によって第1電解室14と第2電解室16に仕切られており、第1電解室14には第1電極15が配設され、第2電解室16には第2電極17が配設されている。この第1電極15と第2電極17は、制御手段6によって印加される直流電圧の高さと極性とが制御される。また、第1電極15と第2電極17との間に直流電圧が印加されて水の電解が行われる時に両電極15,17間に流れる電解電流値を計測する電解電流センサ22が設けられており、該電解電流センサ22からの信号は制御手段6に送られる。   The inside of the electrolytic cell 11 is divided into a first electrolysis chamber 14 and a second electrolysis chamber 16 by an ion-permeable diaphragm 13, and a first electrode 15 is disposed in the first electrolysis chamber 14, and the second electrolysis chamber 16. The 2nd electrode 17 is arrange | positioned. The first electrode 15 and the second electrode 17 are controlled in height and polarity of the DC voltage applied by the control means 6. An electrolytic current sensor 22 is provided for measuring the value of the electrolytic current flowing between the electrodes 15 and 17 when a direct current voltage is applied between the first electrode 15 and the second electrode 17 to electrolyze water. The signal from the electrolytic current sensor 22 is sent to the control means 6.

そして電解槽9の第1電解室14側には上記第1給水分岐管8が接続されているとともに吐水管18が接続され、第2電解室14側には上記第2給水分岐管が接続されているとともに配水管19が接続されている。   The first water supply branch pipe 8 and the water discharge pipe 18 are connected to the first electrolysis chamber 14 side of the electrolytic cell 9, and the second water supply branch pipe is connected to the second electrolysis chamber 14 side. And a water pipe 19 is connected.

図中23は第1給水分岐管8と排水管19とを接続するバイパス管23であり、このバイパス管23には絞り部24が途中に設けられている。また、図中25は入力キー及び表示部を備えた操作表示部であり、本体ケース26の外面に配設されている。吐出する水質の選択は該操作表示部25上の入力キーにて行われる。また吐出する水の水質の表示が該操作表示部25において行われる。図中27は電源プラグ、28は交流電源を直流電源に変換する電源部である。   In the figure, reference numeral 23 denotes a bypass pipe 23 that connects the first water supply branch pipe 8 and the drain pipe 19, and the bypass pipe 23 is provided with a throttle portion 24 in the middle. In the figure, reference numeral 25 denotes an operation display unit having an input key and a display unit, which is disposed on the outer surface of the main body case 26. Selection of the water quality to be discharged is performed by an input key on the operation display unit 25. The operation display unit 25 displays the water quality of the discharged water. In the figure, 27 is a power plug, and 28 is a power supply unit for converting an AC power source into a DC power source.

ここにおいて、前記電解電流センサ22は、生成される次亜塩素酸の量が電解電流値にほぼ比例することから、生成される次亜塩素酸の量の代替値としての電解電流値を求めるために設けたものである。すなわち、次亜塩素酸は、電解槽11内における水の電解によって供給されるが、具体的には電解電流によって下記の一連の反応式に従い生成される。
20→1/2・02(気体)+2H++2e-
2Cl-→Cl2(気体)+2e-
Cl2(溶解)+H2O→HCl+HClO
-は電子であり、この電子は実施例に示す装置内部においては陽極となる第1電極15表面で受け取られ、結果として電解電流値X1として計測される。
Here, the electrolytic current sensor 22 determines an electrolytic current value as an alternative value of the amount of hypochlorous acid generated since the amount of hypochlorous acid generated is substantially proportional to the electrolytic current value. Is provided. That is, hypochlorous acid is supplied by electrolysis of water in the electrolytic cell 11, and specifically, is generated according to the following series of reaction formulas by an electrolysis current.
H 2 0 → 1/2 · 0 2 (Gas) + 2H + + 2e
2Cl → Cl 2 (gas) + 2e
Cl 2 (dissolved) + H 2 O → HCl + HClO
e is an electron, and this electron is received by the surface of the first electrode 15 serving as an anode in the apparatus shown in the embodiment, and as a result, measured as an electrolytic current value X1.

従って、電解電流値X1が多いほど次亜塩素酸生成濃度が高くなり、電解電流値X1が少ないほど次亜塩素酸生成濃度は低くなる。本実施例の装置において電解電流値X1と次亜塩素酸生成濃度との相関を確認した試験結果の一例を図4に示す。縦軸は次亜塩素酸生成濃度、横軸は電解電流値であり、電解電流値と次亜塩素酸生成濃度とがほぼ比例関係にあることがわかる。この相関関係を利用して次亜塩素酸の推定濃度Cpを
Cp=A・X1+B
として導くことができる。ただし、A,Bは装置構成によって決定される定数である。また、上記相関関係式は電解槽11を含めた装置配管の影響で変化するため、事前に試験等により確認しておく必要がある。例えば第1電極15と第2電極17との間の距離が短いと他の条件を同一にしても、電解電流値は大きくなる。また、隔膜13の材質等によって電極15,17間の電圧印加時の抵抗値が変化するため、予め試験等により確認しておくことが望ましい。
Therefore, as the electrolysis current value X1 increases, the hypochlorous acid generation concentration increases, and as the electrolysis current value X1 decreases, the hypochlorous acid generation concentration decreases. FIG. 4 shows an example of test results for confirming the correlation between the electrolysis current value X1 and the hypochlorous acid production concentration in the apparatus of this example. The vertical axis represents the hypochlorous acid production concentration, and the horizontal axis represents the electrolysis current value. It can be seen that the electrolysis current value and the hypochlorous acid production concentration are in a substantially proportional relationship. Using this correlation, the estimated concentration Cp of hypochlorous acid is calculated as Cp = A · X1 + B
Can be guided as. However, A and B are constants determined by the device configuration. Moreover, since the said correlation formula changes with the influence of apparatus piping including the electrolytic cell 11, it is necessary to confirm by a test etc. in advance. For example, if the distance between the first electrode 15 and the second electrode 17 is short, the electrolytic current value increases even if other conditions are the same. In addition, since the resistance value at the time of voltage application between the electrodes 15 and 17 varies depending on the material of the diaphragm 13 and the like, it is desirable to confirm in advance by a test or the like.

次に上記電解水生成装置の動作について図2及び図3に基づいて説明すると、操作表示部25上のキー操作で吐出する水の水質を選択すれば、選択水質信号が操作表示部25から制御手段6に送られる(ステップST1)。次に使用者が水路切換え弁1を操作することで原水を給水管2に導入する(ステップST2)と、この原水は浄水部(浄水カートリッジ)4においてカビ臭やトリハロメタン等の溶存物質や鉄サビや微生物等の懸濁物が除去されて浄化(ステップST3)され、圧力センサ5を経て給水管分岐部4に至り、第1給水分岐管5及び第2給水分岐管6の各々に分配されて、第1給水分岐管8に導入された浄水は流量センサ10を通過して電解槽11の第1電解室14内へと送られる。第2給水分岐管9へと導入された浄水は電解補助剤添加部12を介して電解槽11の第2電解室16内に導入される。また、第1給水分岐管8に導入された浄水の一部はバイパス管23の絞り部24を経て排水管19に送られて、排水口21から排出される。   Next, the operation of the electrolyzed water generating apparatus will be described with reference to FIGS. 2 and 3. If the water quality to be discharged is selected by key operation on the operation display unit 25, the selected water quality signal is controlled from the operation display unit 25. It is sent to the means 6 (step ST1). Next, when the user operates the water channel switching valve 1 to introduce the raw water into the water supply pipe 2 (step ST2), the raw water is dissolved in the water purification unit (purified water cartridge) 4 such as a musty odor or trihalomethane, or iron rust. Suspensions such as water and microorganisms are removed and purified (step ST3), reach the water supply branch 4 through the pressure sensor 5, and are distributed to the first water supply branch 5 and the second water supply branch 6 respectively. The purified water introduced into the first water supply branch pipe 8 passes through the flow sensor 10 and is sent into the first electrolysis chamber 14 of the electrolytic cell 11. The purified water introduced into the second water supply branch pipe 9 is introduced into the second electrolysis chamber 16 of the electrolytic cell 11 via the electrolysis auxiliary agent addition unit 12. A part of the purified water introduced into the first water supply branch pipe 8 is sent to the drain pipe 19 through the throttle part 24 of the bypass pipe 23 and discharged from the drain port 21.

この時、圧力センサ5で検出される水圧P1が所定水圧P2以上となれば(ステップST5)、制御手段6は電解槽11内に配設された電極15,17に直流電圧を印加する(ステップST6)。ただし、この時点で印加するのは、吐水管18に連通する第1電解室14内の第1電極15を陽極、排水管19に連通する第2電解室16内の第2電極17を陰極とする極性の所定電圧E1である。この電圧印加により第1電極15及び第2電極17表面において浄水の電気分解が開始され、第1電極15近傍では酸素ガスの発生、pHの低下及び次亜塩素酸の生成が行われ、第2電極17近傍では水素ガスの発生及びpHの上昇が行われる。   At this time, if the water pressure P1 detected by the pressure sensor 5 is equal to or higher than the predetermined water pressure P2 (step ST5), the control means 6 applies a DC voltage to the electrodes 15 and 17 disposed in the electrolytic cell 11 (step ST5). ST6). However, what is applied at this point is that the first electrode 15 in the first electrolysis chamber 14 communicating with the water discharge pipe 18 is the anode, and the second electrode 17 in the second electrolysis chamber 16 communicating with the drain pipe 19 is the cathode. This is a predetermined voltage E1 having a polarity to be applied. By applying this voltage, electrolysis of purified water is started on the surfaces of the first electrode 15 and the second electrode 17, in the vicinity of the first electrode 15, oxygen gas is generated, pH is lowered, and hypochlorous acid is generated. In the vicinity of the electrode 17, hydrogen gas is generated and pH is increased.

そして第1電極15で生成された次亜塩素酸を含むpHの低い酸性イオン水は、吐水管18へと送られて吐水口20から放出されるが、制御手段6は上記電圧E1の印加を開始してからの経過時間T1が予め設定した所定の第1放流時間T2に達した時点(ステップST8)で電解電流センサ22から電解電流値X1の情報を取り込んで(ステップST9)、この電解電流値X1を基に次亜塩素酸推定濃度Cpを算出し(ステップST10)、更に予め設定されている下限洗浄量N2と次亜塩素酸推定濃度Cpとから次式
Q1=N2/Cp
に基づいて積算洗浄流量Q1を求める(ステップST11)。
Then, the low-pH acidic ion water containing hypochlorous acid generated by the first electrode 15 is sent to the water discharge pipe 18 and released from the water discharge port 20, but the control means 6 applies the voltage E1. When the elapsed time T1 from the start reaches a predetermined first discharge time T2 (step ST8), information on the electrolysis current value X1 is taken from the electrolysis current sensor 22 (step ST9). The hypochlorous acid estimated concentration Cp is calculated based on the value X1 (step ST10), and the following formula Q1 = N2 / Cp is calculated from the preset lower limit cleaning amount N2 and hypochlorous acid estimated concentration Cp.
Based on the above, an integrated cleaning flow rate Q1 is obtained (step ST11).

また、制御手段6は、第1給水分岐管8を介して第1電解室14に導入され電気分解される浄水の流量情報を流量センサ10から求めて、累積の通水流量である積算吐水量Q2を計測し(ステップST12)、上記の直流電圧E1印加開始後の積算吐水量Q2が、求められた積算洗浄流量Q1以上に到達したか否かを判定する(ステップST13)。   Further, the control means 6 obtains flow rate information of the purified water introduced into the first electrolysis chamber 14 through the first water supply branch pipe 8 and electrolyzed from the flow rate sensor 10, and the accumulated water discharge amount that is a cumulative water flow rate. Q2 is measured (step ST12), and it is determined whether or not the integrated water discharge amount Q2 after the application of the DC voltage E1 has reached the calculated integrated cleaning flow rate Q1 or more (step ST13).

この積算吐水量Q2が積算洗浄流量Q1以上に到達したならば、制御手段6はそれまでの上記極性の電圧E1の印加状態から、使用者が操作表示部25のキー入力によって選択した水質に適合する極性及び電圧E2の印加状態に変更する(ステップST14)。そしてこの印加状態としてからの経過時間T3が予め設定してある使用待ち時間T4に達したならば(ステップST16)、制御手段6は操作表示部25上の表示パネルに使用可能な状態にあることを、つまりは選択された使用者が選択した水質の水が吐水口20から吐出されていることを表示する(ステップST17)。   If the accumulated water discharge amount Q2 reaches the accumulated washing flow rate Q1 or more, the control means 6 is adapted to the water quality selected by the user by the key input of the operation display unit 25 from the application state of the voltage E1 having the above polarity. The polarity is changed to the applied state of the polarity and voltage E2 (step ST14). If the elapsed time T3 after the application state has reached a preset use waiting time T4 (step ST16), the control means 6 is ready to be used on the display panel on the operation display unit 25. In other words, it is displayed that the water of the quality selected by the selected user is being discharged from the spout 20 (step ST17).

本実施例によれば、使用者が望む水質の水の吐出に先立って、一連の洗浄動作が行われて最も外部からの汚染に晒されやすい吐水管18を含む配管経路に、所定量の次亜塩素酸を含む酸性イオン水を流すことによる洗浄を行うものであり、このために通水路内部を常に衛生的な状態で使用することができ、装置配管の衛生性を著しく向上できる。   According to the present embodiment, prior to discharging the water of the quality desired by the user, a series of cleaning operations are performed and the pipe path including the water discharge pipe 18 that is most easily exposed to contamination from the outside is provided with a predetermined amount of water. Cleaning is performed by flowing acidic ionic water containing chlorous acid. For this reason, the inside of the water passage can always be used in a hygienic state, and the hygiene of the apparatus piping can be remarkably improved.

また、アルカリイオン水生成時において吐水管に連通する側の陰極となる電極表面に水中のカルシウム等が析出する難水溶性の塩も、極性を逆転させて洗浄を行うことにより溶解させて排出させることができ、電極表面や吐水管を含む配管内表面に付着した難水溶性塩を溶解させて清浄な状態を維持できる。   In addition, poorly water-soluble salts in which calcium in the water precipitates on the surface of the electrode serving as the cathode communicating with the water discharge pipe during the production of alkaline ionized water are dissolved and discharged by washing with reverse polarity. It is possible to maintain a clean state by dissolving the hardly water-soluble salt adhering to the electrode surface and the pipe inner surface including the water discharge pipe.

さらに、汚染物質を酸化分解・洗浄する次亜塩素酸の濃度を電解電流値を基に求めているために、精密な洗浄動作の制御が可能となり、必要最小限の水量で高い洗浄効果を得ることができて、無駄な洗浄水を消費することがない。   Furthermore, since the concentration of hypochlorous acid that oxidatively decomposes and cleans pollutants is determined based on the value of the electrolysis current, precise cleaning operations can be controlled, and a high cleaning effect can be obtained with the minimum amount of water required. Can be used, and wasteful washing water is not consumed.

なお、本実施例における下限洗浄量N2は、予め試験により人為的に汚染された装置等を用いて確認して設定される値である。一般的に浄水場等で実施される塩素処理の場合、水に対する必要な殺菌用塩素の投入量の目安として塩素要求量という考え方がある。これは、被処理水中に存在する被酸化成分による次亜塩素酸の消費量を示す数値であり、殺菌のためにはこれに0.1〜0.5mg/L程度の余分の次亜塩素酸を加えて、水道配管末端までの次亜塩素酸による衛生性を確保するのを目安としている。   Note that the lower limit cleaning amount N2 in the present embodiment is a value that is set by confirmation using an apparatus or the like that has been artificially contaminated by a test in advance. In the case of chlorination generally carried out at a water purification plant or the like, there is a concept of chlorine demand as a guide for the amount of sterilizing chlorine required for water. This is a numerical value indicating the amount of hypochlorous acid consumed by the oxidizable components present in the water to be treated. For sterilization, an excess of hypochlorous acid of about 0.1 to 0.5 mg / L is added thereto. In addition, the standard is to ensure hygiene by hypochlorous acid to the end of the water pipe.

これは次亜塩素酸による水処理が酸化還元反応の原則に則った化学反応であり、一定量の汚染物質である被酸化成分(還元成分)を含有する被処理水量に対し(還元成分)、消費される酸化剤である次亜塩素酸量は一定となることを利用した浄水処理方法である。   This is a chemical reaction in which water treatment with hypochlorous acid follows the principle of oxidation-reduction reaction. For the amount of water to be treated containing a certain amount of oxidizable component (reducing component) that is a pollutant (reducing component), This is a water purification method utilizing the fact that the amount of hypochlorous acid that is an oxidant consumed is constant.

但し、次亜塩素酸と反応する量は成分ごとに異なるため、水中に含有される成分の種類や濃度で次亜塩素酸の消費される量が変化する。このために予め塩素要求量を測定して原水による次亜塩素酸の消費量を把握して添加する必要がある。   However, since the amount reacting with hypochlorous acid varies from component to component, the amount of hypochlorous acid consumed varies depending on the type and concentration of components contained in water. For this purpose, it is necessary to measure the chlorine demand in advance and grasp the amount of hypochlorous acid consumed by the raw water and add it.

本実施例に示す電解水生成装置はこの方法を応用したものであり、装置配管の汚染物質として使用環境における配管の開口端(吐水口20)からの一定量以下の汚染物質が混入する可能性を考慮し、予め試験等により求めた次亜塩素酸の必要量から設定した一定量の下限洗浄量の酸性イオン水にて洗浄処理を行うものである。   The electrolyzed water generating apparatus shown in the present embodiment is an application of this method, and there is a possibility that a certain amount or less of pollutants from the open end (water outlet 20) of the piping in the usage environment may be mixed as pollutants of the apparatus piping. In consideration of the above, the washing treatment is performed with a certain amount of lower limit washing amount of acidic ionic water set from the required amount of hypochlorous acid obtained in advance by a test or the like.

これによれば、一定量以下の汚染物質で汚染されると予想された配管を洗浄するためには、一定量の次亜塩素酸を反応させればよく、万が一配管内部に汚染物質が混入した場合でも所定量の次亜塩素酸を作用させることにより洗浄が可能である。従って下限洗浄量N2は、予め想定される汚染の可能性を考慮して試験等により確認され導かれた次亜塩素酸の必要量から設定する。   According to this, in order to clean the piping that is expected to be contaminated with a certain amount of contaminants, a certain amount of hypochlorous acid should be reacted, and in the unlikely event that contaminants are mixed inside the piping. Even in this case, cleaning can be performed by applying a predetermined amount of hypochlorous acid. Therefore, the lower limit cleaning amount N2 is set from the required amount of hypochlorous acid confirmed and derived by a test or the like in consideration of the possibility of contamination assumed in advance.

但し、下限洗浄量N2は、実際の装置の配管材料、構造、長さ等の影響を受けるため、配管構成に応じた値を設定する必要がある。例えば、電解補助剤として利用されるカルシウム剤に有機成分が含有されている場合、吐水中にこの有機成分が混入するとそれに相当する下限洗浄量N2を上乗せして設定しておく必要がある。また、軟質樹脂等の配管材料を使用している場合には、可塑剤等の溶出も考慮しておく必要がある。   However, since the lower limit cleaning amount N2 is affected by the piping material, structure, length, etc. of the actual apparatus, it is necessary to set a value corresponding to the piping configuration. For example, in the case where an organic component is contained in a calcium agent used as an electrolysis auxiliary agent, when this organic component is mixed into the water discharge, it is necessary to set a lower limit cleaning amount N2 corresponding thereto. In addition, when a piping material such as a soft resin is used, it is necessary to consider elution of a plasticizer or the like.

さらに、実際の使用環境によって装置汚染の可能性が異なるため、下限洗浄量N2は配管構成を考慮して導き出した値に使用環境でのばらつきを考慮して、十分洗浄可能なように余裕を持たせた予測値を設定するのがよい。   Furthermore, since the possibility of equipment contamination varies depending on the actual usage environment, the lower limit cleaning amount N2 has a margin so that it can be cleaned sufficiently by taking into account variations in the usage environment to the value derived in consideration of the piping configuration. It is better to set the predicted value.

また、電解電流センサ22により検知された電解電流値X1から導いた次亜塩素酸推定濃度Cpと、予め設定された下限洗浄量N2とから積算洗浄流量Q1を求める際、検知された電解電流値X1が非常に高い場合には、求められた積算洗浄量Q1は極端に短い時間となる。装置の吐水管20の構造等によっては、水流によって洗浄され難い部分を備える場合があるため、積算洗浄量Q1には予め試験等により導いた下限値を設け、下限値未満の積算洗浄量Q1が求められた場合には、下限値を積算洗浄量Q1とする制御を行うことが望ましい。   Further, when the integrated cleaning flow rate Q1 is obtained from the hypochlorous acid estimated concentration Cp derived from the electrolytic current value X1 detected by the electrolytic current sensor 22 and the preset lower limit cleaning amount N2, the detected electrolytic current value is detected. When X1 is very high, the obtained integrated cleaning amount Q1 is extremely short. Depending on the structure of the water discharge pipe 20 of the apparatus and the like, there may be a portion that is difficult to be cleaned by the water flow. Therefore, the integrated cleaning amount Q1 is provided with a lower limit value previously derived by a test or the like. When it is determined, it is desirable to perform control so that the lower limit value is the integrated cleaning amount Q1.

前記の所定水圧P2は、水の電気分解時に電解槽11内への水供給が確実に行われる水圧以上であればよく、所定水圧P2以上の継続時間を計測し、所定水圧P2が所定時間以上継続した場合に次のステップヘ進むようにすると更に好ましい。また、上限水圧を設定しておくとともに、検知した水圧が上限水圧を超えた場合に操作表示部25の表示パネルに水圧過剰の警告を与えるようにしてもよい。供給水圧過剰による水漏れや装置内配管の破損等を未然に防ぐことができ、装置の安全性を高めることができる。   The predetermined water pressure P2 only needs to be equal to or higher than the water pressure at which water is reliably supplied into the electrolytic cell 11 during electrolysis of water, and the duration of the predetermined water pressure P2 or more is measured, and the predetermined water pressure P2 is equal to or longer than the predetermined time. It is more preferable to proceed to the next step when continuing. Moreover, while setting an upper limit water pressure, when the detected water pressure exceeds the upper limit water pressure, a warning of excessive water pressure may be given to the display panel of the operation display unit 25. It is possible to prevent water leakage due to excessive supply water pressure, breakage of piping in the apparatus, etc., and increase the safety of the apparatus.

電圧E1印加開始後の第1放流時間T2は、電圧印加を開始してから電解槽11の第1電解室14内部で生成された次亜塩素酸を含む酸性イオン水が、吐水管18を経由して吐水口20から吐出され、さらに吐出された酸性イオン水中の次亜塩素酸濃度が一定の値に安定するために必要な時間を予め計測することで設定するのがよい。   The first discharge time T2 after starting the application of the voltage E1 is that the acidic ion water containing hypochlorous acid generated in the first electrolysis chamber 14 of the electrolytic cell 11 after starting the voltage application passes through the water discharge pipe 18. The time required for the hypochlorous acid concentration in the discharged acidic ion water to be stabilized at a constant value is preferably set by measuring in advance.

同様に使用待ち時間T4も、第1電極15と第2電極17間に印加される直流電圧が、使用者の選択した水質に適合する電圧に変更されて制御され、電解槽11の第1電解室14内部から吐水管18を経由して吐水口20から吐出されるとき、吐出水の水質が選択された水質となりかつ安定した水質となるまでの時間を予め試験等により求めて設定するのがよい。   Similarly, the use waiting time T4 is controlled by changing the DC voltage applied between the first electrode 15 and the second electrode 17 to a voltage suitable for the water quality selected by the user, and the first electrolysis in the electrolytic cell 11 is controlled. When the discharge water is discharged from the interior of the chamber 14 via the water discharge pipe 18 from the water discharge port 20, the time until the water quality of the discharge water becomes the selected water quality and becomes a stable water quality is obtained by a test or the like in advance. Good.

本実施例における操作表示部25は本体ケース26の上部に配置しているが、使用者がキー操作による入力を行う際に操作しやすく且つ見やすい位置であれば、どこに設けたものであってもよい。   The operation display unit 25 in the present embodiment is arranged at the upper part of the main body case 26. However, the operation display unit 25 is provided anywhere as long as it is easy to operate and view when the user performs input by key operation. Good.

また、上記操作表示部25としては、使用者による水質の選択項目として水質に加えpHもしくは電解電圧の選択が可能なものとを好適に用いることができる。アルカリイオン水、酸性イオン水、浄水の水質の選択に加え、アルカリイオン水または酸性イオン水選択時のpHの選択が可能となり、使い勝手が向上する。操作表示部25による表示には、選択した通りの使用可能な水質の水が吐出されていることの他に、選択していない水質の水が吐水管18から吐出されている時、使用できない水質であることを表示するようにしてもよい。これにより、使用者が選択した水質に調節されていない水を誤って使用することをより確実に回避できる。   As the operation display unit 25, a user can select a water quality selection item that can select pH or electrolysis voltage in addition to water quality. In addition to selecting the quality of alkaline ionized water, acidic ionized water, or purified water, it is possible to select pH when selecting alkaline ionized water or acidic ionized water, which improves usability. In the display by the operation display unit 25, in addition to the fact that usable water quality is discharged as selected, water quality that cannot be used when unselected water quality water is being discharged from the water discharge pipe 18. May be displayed. Thereby, it can avoid more reliably using the water which is not adjusted to the water quality which the user selected accidentally.

本実施例における圧力センサ5は、装置配管内部への水の導入を検知する水流検知手段として設けたものであり、水流を検知可能な他の手段に置き換えることは可能である。例えば、流量センサを本実施例の圧力センサ5と同じ位置に構成し、検知した流量と予め設定した所定流量の比較による制御に置き換えることも可能である。   The pressure sensor 5 in the present embodiment is provided as a water flow detection means for detecting the introduction of water into the apparatus pipe, and can be replaced with other means capable of detecting the water flow. For example, the flow rate sensor can be configured at the same position as the pressure sensor 5 of the present embodiment, and can be replaced with control by comparing the detected flow rate with a preset predetermined flow rate.

圧力センサ5の配設位置も給水管3の部分に限定するものではなく、装置内部の配管構成上、圧力損失が経時的に変化する浄水部4のような構成部材の上流側以外で安定して圧力が検知できる位置ならばどこでもよい。   The arrangement position of the pressure sensor 5 is not limited to the portion of the water supply pipe 3, and is stable except for the upstream side of the structural member such as the water purification unit 4 in which the pressure loss changes over time due to the piping configuration inside the apparatus. Any location where pressure can be detected is acceptable.

また、電極は第1電極15及び第2電極17の1対の対向電極としたが、電極の枚数はこれに限定されるものではなく、対向配置される構造であれば枚数に制限はない。   In addition, the electrodes are a pair of counter electrodes of the first electrode 15 and the second electrode 17, but the number of electrodes is not limited to this, and the number of electrodes is not limited as long as the electrodes are arranged to face each other.

更に、流量センサ10としては羽根車型のものを好適に用いることができるが、カルマン渦式、電磁式、超音波式、圧電式等の形式のものを用いてもよい。電解電流センサ22は第1電極15と第2電極17との間に流れる電流値を計測できる位置に設けられておればよい。   Further, an impeller type sensor can be suitably used as the flow sensor 10, but a Karman vortex type, electromagnetic type, ultrasonic type, piezoelectric type or the like may be used. The electrolytic current sensor 22 only needs to be provided at a position where the current value flowing between the first electrode 15 and the second electrode 17 can be measured.

図5以下に他例を示す。上記実施例と比較すると、第1給水分岐管8の途中に設けた流量センサ10に水流検知手段としての役割も持たせている点と、第1給水分岐管8途中に導電率センサ29を設けた点、第1給水分岐管8と排水管19を連結するバイパス管23途中に排水制御弁30を設けた点、さらに流量センサ10により検知された水の供給停止から次に流量センサ10により検知された水の供給開始までの時間を計測するタイマー31を設けた点が異なっている。   Other examples are shown in FIG. Compared to the above embodiment, the flow rate sensor 10 provided in the middle of the first water supply branch pipe 8 also has a role as a water flow detecting means, and the conductivity sensor 29 is provided in the middle of the first water supply branch pipe 8. The point that the drainage control valve 30 is provided in the middle of the bypass pipe 23 that connects the first water supply branch pipe 8 and the drainage pipe 19, and further, the flow rate sensor 10 detects from the stop of the water supply detected by the flow rate sensor 10. The point which provided the timer 31 which measures the time until the supply start of the performed water differs.

上記導電率センサ29は、第1電解質14に供給される浄水の導電率X1’を測定するものであるが、これは導電率X1’が電解電流値X1にほぼ比例することから、前述の電解電流値X1の値が生成される次亜塩素酸濃度にほぼ比例するという点と併せて、導電率X1’を基に次亜塩素酸推定濃度Cp’を算出することができるということに基づいて設けたものである。図10は実施例の装置における導電率と電解電流値との相関を試験によって求めたものを示しているが、両者がほぼ比例関係にあることがわかる。このために、導電率X1’を基に次亜塩素酸の推定濃度Cp’を
Cp’=A’・X1’+B’
で求めることができる。なお、A’,B’は装置構成により決定される定数であり、前記実施例におけるA,Bと同様に事前に試験等により確認しておく。導電率センサ29としては、2極式の交流電圧電流方式電極を使用することができるが、このほか、ブリッジ方式の電極や、電磁誘導法を用いたものであってもよく、原水の水質に応じて適当な方式のものを選択することが好ましい。また、導電率センサ29を設ける位置も第1給水分岐管8の途中に限るものではなく、浄水もしくは原水の導電率を測定可能な位置にあればよい。ただし、浄水部4に原水中のイオンを吸着する材料が使用されている場合にはその下流の給水管3から電解槽11にいたる配管上に設けておくことが好ましい。また、電解補助剤添加部12から溶出した電解補助剤に含有されるイオンが直接または第1給水分岐管8と合流後に第1電解室14内に導入される場合には、その電解補助剤由来のイオンを含む浄水が通過する経路上に設けておくことが好ましい。
The conductivity sensor 29 measures the conductivity X1 ′ of the purified water supplied to the first electrolyte 14. This is because the conductivity X1 ′ is substantially proportional to the electrolysis current value X1. Based on the fact that the hypochlorous acid estimated concentration Cp ′ can be calculated based on the conductivity X1 ′ in addition to the fact that the value of the current value X1 is substantially proportional to the generated hypochlorous acid concentration. It is provided. FIG. 10 shows the correlation between the electrical conductivity and the electrolytic current value obtained by the test in the apparatus of the example, and it can be seen that the two are substantially proportional. For this purpose, the estimated concentration Cp ′ of hypochlorous acid based on the conductivity X1 ′ is calculated as Cp ′ = A ′ · X1 ′ + B ′.
Can be obtained. A ′ and B ′ are constants determined by the apparatus configuration, and are confirmed in advance by a test or the like in the same manner as A and B in the above embodiment. As the conductivity sensor 29, a bipolar AC voltage current type electrode can be used, but in addition to this, a bridge type electrode or an electromagnetic induction method may be used. Accordingly, it is preferable to select an appropriate method. Further, the position where the conductivity sensor 29 is provided is not limited to the middle of the first water supply branch pipe 8 and may be located at a position where the conductivity of purified water or raw water can be measured. However, when the material which adsorb | sucks the ion in raw | natural water is used for the water purification part 4, it is preferable to provide on the piping from the downstream water supply pipe | tube 3 to the electrolytic cell 11. FIG. Moreover, when the ion contained in the electrolysis adjuvant eluted from the electrolysis adjuvant addition part 12 is introduced into the 1st electrolysis chamber 14 directly or after joining the 1st feed water branch pipe 8, it originates in the electrolysis adjuvant It is preferable to provide on the path | route through which the purified water containing this ion passes.

このものにおける動作を順に説明すると、操作表示部25上のキー操作によって水質を選択し(ステップST21)、水路切換え弁1の操作で給水口2に接続された給水管3に原水を導入すれば(ステップST22)、原水は浄水部4で浄化され(ステップST23)、給水管分岐部7で第1給水分岐管8と第2給水分岐管9とにそれぞれ分配され、第1給水分岐管8に導入された浄水は流量センサ10の通過時に流量が測定され(ステップST24)た後、導電率センサ29を経て電解槽11の第1電解室14内へと送られ、さらに吐水管18を介して吐水口20より吐出される。第1給水分岐管8に導入された浄水の一部は排水管19に通ずるバイパス管23に入るが、この時は排水制御弁30が閉じられているために、浄水が排水管19に流れることはない。   The operation in this unit will be described in order. If the water quality is selected by key operation on the operation display unit 25 (step ST21), and raw water is introduced into the water supply pipe 3 connected to the water supply port 2 by operation of the water channel switching valve 1, (Step ST22), the raw water is purified by the water purification unit 4 (Step ST23), distributed to the first water supply branching tube 8 and the second water supply branching tube 9 by the water supply branching unit 7, respectively. After the flow rate of the introduced purified water passes through the flow rate sensor 10 (step ST24), the purified water is sent into the first electrolysis chamber 14 of the electrolytic cell 11 through the conductivity sensor 29, and further through the water discharge pipe 18. It is discharged from the water outlet 20. A part of the purified water introduced into the first water supply branch pipe 8 enters the bypass pipe 23 leading to the drain pipe 19, but at this time the drain control valve 30 is closed so that the purified water flows into the drain pipe 19. There is no.

また、第2給水分岐管9へと導入された浄水は電解補助剤添加部12を通過して電解槽11の第2電解室16内に導入され、排水管19を介して排水管開口端20より排出される。   Further, the purified water introduced into the second water supply branch pipe 9 passes through the electrolysis auxiliary agent adding section 12 and is introduced into the second electrolysis chamber 16 of the electrolytic cell 11, and the drain pipe open end 20 is passed through the drain pipe 19. More discharged.

一方、制御手段6は上記流量センサ10で検知された流量F1が予め設定された第1下限流量F2以上となった時点(ステップST25)でタイマー31の計測を停止させて、計測した間隔時間I1の信号を受信する(ステップST26)。この時、タイマー31の計測時間はリセットされ、制御手段6からの信号による次の時間計測開始まで待機状態となる。   On the other hand, the control means 6 stops the measurement of the timer 31 when the flow rate F1 detected by the flow rate sensor 10 becomes equal to or higher than the first lower limit flow rate F2 set in advance (step ST25), and the measured interval time I1. Is received (step ST26). At this time, the measurement time of the timer 31 is reset, and it will be in a standby state until the next time measurement start by the signal from the control means 6.

そして制御手段6は、間隔時間I1の計測結果に対し、予め設定されたいくつかの時間範囲に区切られた通水間隔時間範囲(Ia未満,Ib未満,Ic未満,及びいずれにも該当しないI1)と下限洗浄量N)の相関表から、該当する通水間隔時間範囲の一つを選択し、選択した通水間隔時間範囲Iに相当する下限洗浄量N2’を導く(ステップST27)。   And the control means 6 is the water flow interval time range (less than Ia, less than Ib, less than Ic, and I1 which does not correspond to any) divided into some preset time ranges with respect to the measurement result of the interval time I1. ) And the lower limit cleaning amount N), one of the corresponding water passage interval time ranges is selected, and a lower limit cleaning amount N2 ′ corresponding to the selected water passage interval time range I is derived (step ST27).

この後、制御手段6は初期放流時間である経過時間T1’の計測を開始し(ステップST31)、経過時間T1’が予め設定された第1放流時間T2’を越えたならば(ステップST32)、制御手段6が導電率センサ29から浄水の導電率X1’についての情報を取り込み(ステップST33)、この導電率X1’を基に生成されるであろう次亜塩素酸の推定濃度Cp’を算出(ステップST34)し、更に下限洗浄量N2’と次亜塩素酸推定濃度Cp’とから
Q1’=N2’/Cp’
の演算式によって積算洗浄流量Q1’を求める(ステップST35)。
Thereafter, the control means 6 starts measuring the elapsed time T1 ′, which is the initial discharge time (step ST31), and if the elapsed time T1 ′ exceeds a preset first discharge time T2 ′ (step ST32). Then, the control means 6 takes in information on the conductivity X1 ′ of the purified water from the conductivity sensor 29 (step ST33), and calculates the estimated hypochlorous acid concentration Cp ′ that will be generated based on this conductivity X1 ′. Calculate (step ST34), and further from the lower limit cleaning amount N2 ′ and hypochlorous acid estimated concentration Cp ′, Q1 ′ = N2 ′ / Cp ′
The integrated cleaning flow rate Q1 ′ is obtained by the following equation (step ST35).

また制御手段6は、電解槽11内の第1電極15及び第2電極17に直流電圧を印加するが、この時の電極の極性は吐水管18に連通する第1電解室14内の第1電極15を陽極、排水管19に連通する第2電解室15内の第2電極17を陰極として、所定電圧E1を印加する(ステップST36)とともに経過時間T3’の計測を開始する。   The control means 6 applies a DC voltage to the first electrode 15 and the second electrode 17 in the electrolytic cell 11, and the polarity of the electrode at this time is the first in the first electrolysis chamber 14 communicating with the water discharge pipe 18. A predetermined voltage E1 is applied using the electrode 15 as an anode and the second electrode 17 in the second electrolysis chamber 15 communicating with the drain pipe 19 as a cathode (step ST36), and the measurement of the elapsed time T3 ′ is started.

上記極性の所定電圧E1の印加により、第1電極15近傍では酸素ガスの発生、pHの低下及び浄水中の塩素イオンからの次亜塩素酸の生成が行われ、第2電極17近傍では水素ガスの発生及びpHの上昇が行われ、夫々で生成された酸性イオン水及びアルカリイオン水は吐水管18と排水管19とに送られる。このために吐水管18は次亜塩素酸を含む酸性イオン水によって殺菌されることになる。   By applying the predetermined voltage E1 having the above polarity, oxygen gas is generated near the first electrode 15, pH is lowered, and hypochlorous acid is generated from chlorine ions in the purified water. Hydrogen gas is generated near the second electrode 17. Is generated and the pH is raised, and the acid ion water and alkali ion water generated in each are sent to the water discharge pipe 18 and the drain pipe 19. For this reason, the water discharge pipe 18 is sterilized by the acidic ion water containing hypochlorous acid.

そして上記経過時間T3’が予め設定された第2放流時間T4’に達したならば(ステップST38)、制御手段6は流量センサ10からの流量情報に基づいて上記所定電圧E1を開始してからの積算吐水量Q2’が前記積算洗浄流量Q1’に到達したか否かを判定(ステップST42)し、積算洗浄流量Q1’以上に到達した場合には、それまでの上記極性及び電圧E1の印加状態から、使用者が操作表示部25のキー入力によって選択した水質に適合する極性及び電圧E2の印加状態に変更する(ステップST43)とともに、経過時間T5の計測を開始し、この経過時間T5が予め設定された使用待ち時間T6以上になれば(ステップST45)、制御手段6は操作表示部25上に設けられた表示パネルに選択された水質が吐出されて使用可能であることを表示する(ステップST46)。   If the elapsed time T3 ′ has reached a preset second discharge time T4 ′ (step ST38), the control means 6 starts the predetermined voltage E1 based on the flow rate information from the flow rate sensor 10. It is determined whether or not the cumulative water discharge amount Q2 ′ has reached the integrated cleaning flow rate Q1 ′ (step ST42). The state is changed to the application state of the polarity and voltage E2 that matches the water quality selected by the key input of the operation display unit 25 from the state (step ST43), and the measurement of the elapsed time T5 is started. When the preset use waiting time T6 is reached (step ST45), the control means 6 discharges the selected water quality to the display panel provided on the operation display unit 25. It shows that it is possible use (step ST46).

この後、使用者が装置の使用を停止するため、水路切換え弁1の操作によって給水口2への原水の供給を停止すれば(ステップST51)、給水管3から浄水部4及び給水管分岐部7を経て第1給水分岐管8と第2給水分岐管9とに供給されていた水流が停止することから、第1給水分岐管8に設けられた流量センサ10で検出される流量F3が低下するとともに、この流量F3が予め設定された第2下限流量F4より低くなった時点で制御手段6は第1電極15と第2電極17への直流電圧の印加を停止する(ステップST54)とともに、排水制御弁30を開いて、装置配管内部の残留水を排水管19へと導いて排水管口21より排出させる(ステップST55)。   After that, if the user stops the use of the apparatus, if the supply of raw water to the water supply port 2 is stopped by operating the water channel switching valve 1 (step ST51), the water purification pipe 4 and the water supply pipe branching section from the water supply pipe 3 7, the water flow supplied to the first water supply branch pipe 8 and the second water supply branch pipe 9 is stopped, so that the flow rate F3 detected by the flow sensor 10 provided in the first water supply branch pipe 8 decreases. At the same time, when the flow rate F3 becomes lower than the preset second lower limit flow rate F4, the control means 6 stops applying the DC voltage to the first electrode 15 and the second electrode 17 (step ST54). The drain control valve 30 is opened, and the residual water inside the apparatus pipe is guided to the drain pipe 19 and discharged from the drain pipe port 21 (step ST55).

また、制御手段6は排水制御弁30が開いている排水時間T7を計測し(ステップST56)、計測した排水時間T7が予め設定した排水待ち時間T8を越えたならば(ステップST57)、排水制御弁30を閉じて(ステップST58)排水を停止する。そして制御手段6は、タイマー31に次の通水時までの通水間隔時間I1の計測を開始させる(ステップST59)。   Further, the control means 6 measures the drainage time T7 when the drainage control valve 30 is open (step ST56), and if the measured drainage time T7 exceeds the preset drainage waiting time T8 (step ST57), the drainage control. The valve 30 is closed (step ST58) and the drainage is stopped. And the control means 6 makes the timer 31 start measurement of the water flow interval time I1 until the next water flow (step ST59).

次に使用者により通水を開始される場合には、前述の水路切換え弁の切換え操作からこれまでの動作が再開される(ステップST22)。但し、使用者により新たに操作表示部25のキー操作によって水質の選択がなされた場合には最初のステップからの動作を開始する(ステップST21)。   Next, when water flow is started by the user, the operation so far is resumed from the switching operation of the waterway switching valve (step ST22). However, if the water quality is newly selected by the user through the key operation of the operation display unit 25, the operation from the first step is started (step ST21).

また、通水間隔時間Iが長くなるほど汚染に晒される可能性が高くなるとともに汚染物質が蓄積して汚染物質量が増加するおそれがあることから、通水間隔時間Iと下限洗浄量N2’とは、長い通水時間間隔Iに相当する下限洗浄量N2’は多く、短い通水時間間隔Iに相当する下限洗浄量N2’は少ない値となるように相関づけている。   In addition, the longer the water flow interval time I, the higher the possibility of being exposed to contamination, and there is a risk that the amount of pollutants accumulates and the amount of pollutants increases, so the water flow interval time I and the lower limit cleaning amount N2 ′ Are correlated such that the lower limit cleaning amount N2 ′ corresponding to the long water passage time interval I is large and the lower limit cleaning amount N2 ′ corresponding to the short water passage time interval I is a small value.

但し、実際の使用環境によって装置汚染の可能性が異なるため、各下限洗浄量N2’は実施例1で述べたように配管構成による次亜塩素酸の消費を考慮して導き出した値に、使用環境での汚染状態のばらつきを考慮して、十分洗浄可能なように余裕を持たせた値を設定するのがよい。   However, since the possibility of equipment contamination differs depending on the actual usage environment, each lower limit cleaning amount N2 ′ is used to the value derived in consideration of the consumption of hypochlorous acid due to the piping configuration as described in Example 1. Considering the variation of the contamination state in the environment, it is preferable to set a value with a margin so that it can be cleaned sufficiently.

なお、本実施例に示した通水間隔時間Iと下限洗浄量N2’の関係を相関表に基づいて求めることに限定するものではなく、通水間隔時間Iから下限洗浄量N2’が一意的に導きだされる関係が条件として定められたデータであればよいために、例えば通水間隔時間Iと下限洗浄量N2’の演算式を設定してもよい。   Note that the relationship between the water flow interval time I and the lower limit cleaning amount N2 ′ shown in the present embodiment is not limited to the determination based on the correlation table, and the lower limit cleaning amount N2 ′ is unique from the water flow interval time I. Therefore, for example, an arithmetic expression for the water flow interval time I and the lower limit cleaning amount N2 ′ may be set.

いずれにせよ、本実施例によれば、外部からの汚染に最も晒されやすい吐水管18を含む配管経路に、次亜塩素酸を含む酸性イオン水を使用頻度に応じて適切な量だけ流すことができる。   In any case, according to the present embodiment, an appropriate amount of acidic ionic water containing hypochlorous acid is allowed to flow through the piping path including the water discharge pipe 18 that is most easily exposed to external contamination according to the frequency of use. Can do.

排水制御弁30にはソレノイドに通電して開閉を制御する電磁弁が好適であるが、バイパス管23の開閉を制御可能なものであればその方式は限定しない。但しソレノイドに通電制御するものである場合、通電時の発熱及び通常の放置時間を考慮すると、未使用時には常閉タイプのものを用いることで発熱を少なくすることができるとともに消費電力も少なくすることができる。   The drainage control valve 30 is preferably an electromagnetic valve that controls opening and closing by energizing a solenoid, but the method is not limited as long as the opening and closing of the bypass pipe 23 can be controlled. However, when the solenoid is energized and controlled, the heat generated during energization and the normal standing time can be taken into account, and when not in use, the normally closed type can be used to reduce heat generation and power consumption. Can do.

流量センサ10の配設位置は、第1給水分岐管8の途中に限定するものではないが、第1電解室14から吐水管18を通過する流量を検知する目的で設けるものであるために、例えば浄水部4から給水管分岐部7にいたる給水管3の途中に設ける場合は、予め試験等により給水管3で検知される流量と第1給水分岐管8で検知される流量の相関関係を確認し、検知された流量から第1給水分岐管8内の流量を演算により導き出せるようにしておく。   The arrangement position of the flow rate sensor 10 is not limited to the middle of the first water supply branch pipe 8, but is provided for the purpose of detecting the flow rate passing through the water discharge pipe 18 from the first electrolysis chamber 14, For example, when providing in the middle of the water supply pipe 3 from the water purification part 4 to the water supply pipe branch part 7, the correlation between the flow rate detected by the water supply pipe 3 in advance by a test or the like and the flow rate detected by the first water supply branch pipe 8 is obtained. The flow rate in the 1st feed water branch pipe 8 can be derived by calculation from the detected flow rate.

第1放流時間T2’には、流量センサ10から第1給水分岐管8、電解槽11の第1電解室14及び吐水管18を順に通過して吐出口20から吐出される浄水中のイオン濃度が安定するまでの十分な時間を設定する。   During the first discharge time T2 ′, the ion concentration in the clean water discharged from the discharge port 20 through the flow sensor 10 through the first feed water branch pipe 8, the first electrolysis chamber 14 of the electrolytic cell 11 and the water discharge pipe 18 in this order. Set enough time for the to stabilize.

また、第2放流時間T4’には、電解槽11の第1電解室14にて生成された次亜塩素酸を含む水が吐出口20から吐出される時の吐水中における次亜塩素酸の濃度が安定するまでの時間を予め試験等により確認して設定する。   Further, during the second discharge time T4 ′, hypochlorous acid in the discharged water when water containing hypochlorous acid generated in the first electrolysis chamber 14 of the electrolytic cell 11 is discharged from the discharge port 20 is used. The time until the concentration stabilizes is set by confirming in advance by a test or the like.

使用待ち時間T6も同様に、使用者が選択した水質に調節された水が吐水口20から吐出される時の吐出水水質が安定するまでに必要な時間を設定しておく。   Similarly, the use waiting time T6 sets a time required until the quality of the discharged water is stabilized when the water adjusted to the water quality selected by the user is discharged from the spout 20.

排水電磁弁30を開いて排水する時、内部の残留水が吐出管開口端20から電解槽11の第1電解室14、第1給水分岐管8を介してバイパス管23へと導入され、開状態の排水制御弁30を通過して排水管19に導かれて排水される。また、一部は第1給水分岐管8から給水管分岐部7を介して第2給水分岐管9、第2電解室16から排水管へ導入されて排水される。この一連の排水に要する時間は装置配管構造等により著しく変化するために、排水待ち時間T8も試験等により十分に排水が完了する時間を予め確認して設定するのが好ましい。   When the drain electromagnetic valve 30 is opened and drained, the residual water inside is introduced from the discharge pipe opening end 20 into the bypass pipe 23 via the first electrolysis chamber 14 and the first water supply branch pipe 8 of the electrolytic cell 11 and opened. It passes through the drainage control valve 30 in the state and is led to the drain pipe 19 to be drained. Further, a part of the water is introduced from the first water supply branch pipe 8 through the water supply pipe branching section 7 to the second water supply branch pipe 9 and the second electrolysis chamber 16 to the drain pipe and drained. Since the time required for this series of drainage changes significantly depending on the apparatus piping structure and the like, it is preferable to set the drain waiting time T8 by confirming in advance the time for which drainage is sufficiently completed by a test or the like.

なお、本発明にかかる流し台は、上記のいずれかの電解水生成装置と、上記水路切換え弁1と水栓とを備えたものであり、水路切換え弁1によって原水の供給が電解水生成装置側か水栓側かに切り換えられるものとなっている。このために水路切換え弁1の切換え操作により、電解水を得ることができる。   The sink according to the present invention includes any one of the above electrolyzed water generating devices, the water channel switching valve 1 and the water faucet, and the water channel switching valve 1 supplies raw water to the electrolyzed water generating device side. It can be switched to the faucet side. For this reason, electrolyzed water can be obtained by the switching operation of the water channel switching valve 1.

本発明の実施の形態の一例におけるブロック配管図である。It is a block piping figure in an example of an embodiment of the invention. 同上の動作を示すフローチャートである。It is a flowchart which shows operation | movement same as the above. 同上の動作を示すフローチャートである。It is a flowchart which shows operation | movement same as the above. 電解電流値と次亜塩素酸生成濃度との相関を示す説明図である。It is explanatory drawing which shows the correlation with an electrolysis electric current value and hypochlorous acid production | generation density | concentration. 他例におけるブロック配管図である。It is a block piping figure in other examples. 同上の動作を示すフローチャートである。It is a flowchart which shows operation | movement same as the above. 同上の動作を示すフローチャートである。It is a flowchart which shows operation | movement same as the above. 同上の動作を示すフローチャートである。It is a flowchart which shows operation | movement same as the above. 同上の動作を示すフローチャートである。It is a flowchart which shows operation | movement same as the above. 原水導電率と電解電流値との相関を示す説明図である。It is explanatory drawing which shows the correlation with raw | natural water electrical conductivity and an electrolysis electric current value.

符号の説明Explanation of symbols

1 水路切換え弁
2 給水口
3 給水管
4 浄水部
5 圧力センサ
6 制御手段
8 第1給水分岐管
9 第2給水分岐管
10 流量センサ
11 電解槽
14 第1電解室
15 第1電極
16 第2電解室
17 第2電極
22 電解電流センサ
23 バイパス管
24 絞り部
25 操作表示部
29 導電率センサ
30 排水制御弁
31 タイマー
DESCRIPTION OF SYMBOLS 1 Waterway switching valve 2 Water supply port 3 Water supply pipe 4 Water purifier 5 Pressure sensor 6 Control means 8 1st water supply branch pipe 9 2nd water supply branch pipe 10 Flow rate sensor 11 Electrolysis tank 14 1st electrolysis chamber 15 1st electrode 16 2nd electrolysis Chamber 17 Second electrode 22 Electrolytic current sensor 23 Bypass pipe 24 Restriction section 25 Operation display section 29 Conductivity sensor 30 Drainage control valve 31 Timer

Claims (4)

原水を電気分解する電極を備えた通水型電解槽と、前記電極への直流電圧の印加を制御する制御手段と、原水を電解槽に供給する給水管と、電解槽で生成されたアルカリイオン水や酸性イオン水の吐出用の吐水管及び排出用の排水管とを有している電解水生成装置であって、所定電圧印加時における上記電極間に流れる電流値を検知する電解電流検知手段と、電解槽に導入される水量を検出する流量検知手段とを備え、
前記制御手段は通水開始に応じて吐水管へ酸性イオン水を供給することになる極性の直流電圧の前記電極への印加を開始するとともに、上記電解電流検知手段で検出した電解電流値と通水開始からの積算吐水量との積が予め設定した下限洗浄量を越えた時点で前記電極への電圧印加を目的の水質に合わせたものとするものであることを特徴とする電解水生成装置。
A flow-through electrolytic cell equipped with an electrode for electrolyzing raw water, a control means for controlling application of a DC voltage to the electrode, a water supply pipe for supplying raw water to the electrolytic cell, and alkali ions generated in the electrolytic cell An electrolyzed water generating device having a water discharge pipe for discharging water or acidic ion water and a drain pipe for discharging, and an electrolysis current detecting means for detecting a current value flowing between the electrodes when a predetermined voltage is applied And a flow rate detecting means for detecting the amount of water introduced into the electrolytic cell,
The control means starts application of a polarity direct voltage to the electrode to supply acidic ion water to the water discharge pipe in response to the start of water flow, and communicates with the electrolytic current value detected by the electrolytic current detection means. An electrolyzed water generator characterized in that, when the product of the integrated water discharge amount from the start of water exceeds a preset lower limit washing amount, voltage application to the electrode is adapted to the target water quality .
原水を電気分解する電極を備えた通水型電解槽と、前記電極への直流電圧の印加を制御する制御手段と、原水を電解槽に供給する給水管と、電解槽で生成されたアルカリイオン水や酸性イオンの水吐出用の吐水管及び排出用の排水管とを有している電解水生成装置であって、上記給水管途中に設けられて電解槽に導入される水の導電率を測定する導電率検出手段と、電解槽に導入される水量を検出する流量検知手段とを備え、
前記制御手段は通水開始に応じて吐水管へ酸性イオン水を供給することになる極性の直流電圧の前記電極への印加を開始するとともに、上記導電率検出手段で検出した導電率と通水開始からの積算吐水量との積が予め設定した下限洗浄量を越えた時点で前記電極への電圧印加を目的の水質に合わせたものとするものであることを特徴とする電解水生成装置。
A flow-through electrolytic cell equipped with an electrode for electrolyzing raw water, a control means for controlling application of a DC voltage to the electrode, a water supply pipe for supplying raw water to the electrolytic cell, and alkali ions generated in the electrolytic cell An electrolyzed water generating device having a water discharge pipe for discharging water and acidic ions and a drain pipe for discharging water, wherein the conductivity of water introduced into the electrolytic cell provided in the water supply pipe is determined. A conductivity detecting means for measuring, and a flow rate detecting means for detecting the amount of water introduced into the electrolytic cell,
The control means starts application of a polarity direct-current voltage to the electrode to supply acidic ion water to the water discharge pipe in response to the start of water flow, and the conductivity and water flow detected by the conductivity detection means. An electrolyzed water generating apparatus characterized in that voltage application to the electrode is adapted to the target water quality when the product of the integrated water discharge amount from the start exceeds a preset lower limit washing amount.
通水間隔を計測する通水間隔検出手段を備えて、制御手段は前記通水間隔計測手段で計測された通水間隔時間に応じて下限洗浄量を決定していることを特徴とする請求項1または2記載の電解水生成装置。   The water flow interval detecting means for measuring the water flow interval is provided, and the control means determines the lower limit washing amount according to the water flow interval time measured by the water flow interval measuring means. The electrolyzed water generating apparatus according to 1 or 2. 請求項1から3のいずれかに記載の電解水生成装置を備えていることを特徴とする流し台。   A sink provided with the electrolyzed water generating device according to any one of claims 1 to 3.
JP2006231359A 2006-08-28 2006-08-28 Electrolyzed water generator and sink equipped with the same Expired - Fee Related JP4730258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006231359A JP4730258B2 (en) 2006-08-28 2006-08-28 Electrolyzed water generator and sink equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006231359A JP4730258B2 (en) 2006-08-28 2006-08-28 Electrolyzed water generator and sink equipped with the same

Publications (2)

Publication Number Publication Date
JP2008049322A true JP2008049322A (en) 2008-03-06
JP4730258B2 JP4730258B2 (en) 2011-07-20

Family

ID=39233850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006231359A Expired - Fee Related JP4730258B2 (en) 2006-08-28 2006-08-28 Electrolyzed water generator and sink equipped with the same

Country Status (1)

Country Link
JP (1) JP4730258B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010194459A (en) * 2009-02-25 2010-09-09 Kyushu Hitachi Maxell Ltd Water treatment apparatus
CN105858826A (en) * 2015-02-10 2016-08-17 Lg电子株式会社 Method for sterilizing water supply apparatus
CN105858945A (en) * 2015-02-10 2016-08-17 Lg电子株式会社 Sterilization system
JP2017172123A (en) * 2016-03-22 2017-09-28 Toto株式会社 Sterilization water discharge device
JP7092961B1 (en) * 2021-07-06 2022-06-28 株式会社エナジックインターナショナル Control method of electrolyzed water generator and electrolyzed water generator

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102888A (en) * 1985-10-28 1987-05-13 Toyo Kagaku Kenkyusho:Kk Method for sterilizing and cleaning water purifier or the like
JPH06165983A (en) * 1992-11-30 1994-06-14 Nippon Intetsuku Kk Electrolytically ionized water forming device
JPH06165984A (en) * 1992-11-30 1994-06-14 Nippon Intetsuku Kk Electrolytically ionized water forming device
JPH06335680A (en) * 1993-05-31 1994-12-06 Matsushita Electric Ind Co Ltd Alkaline ion water regulator
JPH0724460A (en) * 1993-07-05 1995-01-27 Brother Ind Ltd Ionized water generator
JPH07171570A (en) * 1993-12-21 1995-07-11 Janome Sewing Mach Co Ltd Electrolytic ionic water generating device
JPH07195077A (en) * 1994-01-12 1995-08-01 Funai Electric Co Ltd Strongly acidic water forming device
JPH07256256A (en) * 1994-03-22 1995-10-09 Hoshizaki Electric Co Ltd Apparatus for forming electrolytic ionic water
JPH09262585A (en) * 1995-04-27 1997-10-07 Tatsuo Okazaki Sterilizing and bacteriostatic method of continuous electrolytic water making apparatus and apparatus therefor
JPH1043761A (en) * 1996-08-06 1998-02-17 Matsushita Electric Ind Co Ltd Alkaline ion water conditioning device
JPH10192855A (en) * 1996-12-27 1998-07-28 Matsushita Electric Works Ltd Electrolytic water making apparatus
JPH10296255A (en) * 1997-04-25 1998-11-10 Matsushita Electric Ind Co Ltd Built-in alkali water preparation apparatus
JP2008006347A (en) * 2006-06-27 2008-01-17 Matsushita Electric Works Ltd Electrolytic water generator and sink equipped with this

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102888A (en) * 1985-10-28 1987-05-13 Toyo Kagaku Kenkyusho:Kk Method for sterilizing and cleaning water purifier or the like
JPH06165983A (en) * 1992-11-30 1994-06-14 Nippon Intetsuku Kk Electrolytically ionized water forming device
JPH06165984A (en) * 1992-11-30 1994-06-14 Nippon Intetsuku Kk Electrolytically ionized water forming device
JPH06335680A (en) * 1993-05-31 1994-12-06 Matsushita Electric Ind Co Ltd Alkaline ion water regulator
JPH0724460A (en) * 1993-07-05 1995-01-27 Brother Ind Ltd Ionized water generator
JPH07171570A (en) * 1993-12-21 1995-07-11 Janome Sewing Mach Co Ltd Electrolytic ionic water generating device
JPH07195077A (en) * 1994-01-12 1995-08-01 Funai Electric Co Ltd Strongly acidic water forming device
JPH07256256A (en) * 1994-03-22 1995-10-09 Hoshizaki Electric Co Ltd Apparatus for forming electrolytic ionic water
JPH09262585A (en) * 1995-04-27 1997-10-07 Tatsuo Okazaki Sterilizing and bacteriostatic method of continuous electrolytic water making apparatus and apparatus therefor
JPH1043761A (en) * 1996-08-06 1998-02-17 Matsushita Electric Ind Co Ltd Alkaline ion water conditioning device
JPH10192855A (en) * 1996-12-27 1998-07-28 Matsushita Electric Works Ltd Electrolytic water making apparatus
JPH10296255A (en) * 1997-04-25 1998-11-10 Matsushita Electric Ind Co Ltd Built-in alkali water preparation apparatus
JP2008006347A (en) * 2006-06-27 2008-01-17 Matsushita Electric Works Ltd Electrolytic water generator and sink equipped with this

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010194459A (en) * 2009-02-25 2010-09-09 Kyushu Hitachi Maxell Ltd Water treatment apparatus
CN105858826A (en) * 2015-02-10 2016-08-17 Lg电子株式会社 Method for sterilizing water supply apparatus
CN105858945A (en) * 2015-02-10 2016-08-17 Lg电子株式会社 Sterilization system
JP2017172123A (en) * 2016-03-22 2017-09-28 Toto株式会社 Sterilization water discharge device
JP7092961B1 (en) * 2021-07-06 2022-06-28 株式会社エナジックインターナショナル Control method of electrolyzed water generator and electrolyzed water generator

Also Published As

Publication number Publication date
JP4730258B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
JP4730258B2 (en) Electrolyzed water generator and sink equipped with the same
JP2010156117A (en) Hand finger washing device
JP3122342U (en) Alkaline water generator
JP2008006347A (en) Electrolytic water generator and sink equipped with this
JP2006239534A (en) Apparatus for generating electrolytic water and sink equipped with the same
JPWO2006008877A1 (en) Electrolytic water generation/dilution supply device and electrolyzed water generation/dilution supply method
JP5016285B2 (en) Electrolyzed water generator and sink
JP4462157B2 (en) Electrolyzed water generating device and sink equipped with the same
KR20070078823A (en) Apparatus for producing electrolyzed water
JP2008080298A (en) Electrolytic water generator and sink
JP4936423B2 (en) Electrolyzed water generating device and sink equipped with the same
JP2006247554A (en) Electrolytic water generator and sink equipped with it
JP4556711B2 (en) Electrolyzed water generating device and sink equipped with the same
JP3646541B2 (en) Hypochlorous acid concentration control method in electrolyzed water supply device
JP2010274229A (en) Water conditioner
JP2007090178A (en) Electrolytic water generator and sink equipped with the same
KR20070075624A (en) Electrolytic water generation apparatus
JP2006194655A (en) Carbonic acid concentration detection device, electrolytic water generation device equipped therewith, sink equipped therewith, and carbonic acid concentration detection method
JP2008006346A (en) Electrolytic water generator and sink equipped with the same
JP2001219169A (en) Electrolytic apparatus
JP3843518B2 (en) Built-in alkaline water conditioner
JP4050044B2 (en) Mineral water generator
JP5290799B2 (en) Water conditioner
JP2001149939A (en) Sterilized water feeder
JPH091150A (en) Potable water supplying device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees