JP2008046046A - Fbg sensor system - Google Patents

Fbg sensor system Download PDF

Info

Publication number
JP2008046046A
JP2008046046A JP2006223401A JP2006223401A JP2008046046A JP 2008046046 A JP2008046046 A JP 2008046046A JP 2006223401 A JP2006223401 A JP 2006223401A JP 2006223401 A JP2006223401 A JP 2006223401A JP 2008046046 A JP2008046046 A JP 2008046046A
Authority
JP
Japan
Prior art keywords
wavelength
light
fbg
light source
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006223401A
Other languages
Japanese (ja)
Other versions
JP4399444B2 (en
Inventor
Takanori Saito
崇記 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2006223401A priority Critical patent/JP4399444B2/en
Publication of JP2008046046A publication Critical patent/JP2008046046A/en
Application granted granted Critical
Publication of JP4399444B2 publication Critical patent/JP4399444B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an FBG (Fiber Bragg Grating) sensor system capable of accurately measuring the reflected wavelength of FBG, even when measurement is accelerated, using a wavelength variable light source which can be wavelength swept at a high speed, by correcting a wavelength shift in the measurement of the reflected wavelength of the FBG caused due to the lengths of fibers and the sweep cycle (sweep rate) of the wavelength variable light source. <P>SOLUTION: The reflected wavelengths of the FBG 13a-13c are measured as temporary reflected wavelengths λ<SB>T</SB>from an electrical signal b, output from a light receiver 14 and an electrical signal c with the information on the oscillation wavelength of the wavelength variable light source 10. A wavelength correction value λ<SB>C</SB>, which has previously been stored in a memory 16c, for correcting the wavelength shift in the measurement of the reflected wavelengths of the FBG 13a-13c, due to the wavelengths of the fibers 12a-12c and the sweep rate of the wavelength variable light source 10, is read based on the measured temporary reflected wavelengths. The temporary reflected wavelength λ<SB>T</SB>is corrected by the read wavelength correction value λ<SB>C</SB>and the reflected wavelength λ<SB>F</SB>of the FBG 13a-13c is determined. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ファイバを介して遠隔地の測定対象に設けられたFBG(ファイバブラッググレーティング)に高速波長掃引の可能な波長可変光源と受光器とを組み合わせて、測定対象の歪測定や温度測定等を行うFBGセンサシステムに関し、特にファイバの長さと波長可変光源の掃引周期(掃引速度)とに起因して発生する反射波長の測定時の波長ずれ(FBGの反射スペクトルの波長掃引方向へのシフト)を補正したFBGセンサシステムに関する。   The present invention combines a tunable light source capable of high-speed wavelength sweep and a light receiver with an FBG (fiber Bragg grating) provided on a remote measurement object via a fiber to measure strain or temperature of the measurement object. In particular, the wavelength shift at the time of measurement of the reflected wavelength caused by the length of the fiber and the sweep period (sweep speed) of the wavelength tunable light source (shift of the reflection spectrum of the FBG in the wavelength sweep direction) It is related with the FBG sensor system which correct | amended.

FBGは、ファイバの所定長さ範囲のコア部の屈折率を一定間隔で周期的に変化させたもので、このFBGの一端側に光を入射すると、その入射光のうち特定波長(ブラッグ波長という)の光だけが反射されて、他の波長の光は透過する。このブラッグ波長は、屈折率が一定間隔で周期的に変化している部分が受ける軸方向の歪み(圧縮、伸長)に応じて変化する。したがって、このFBGの一端側に光を入射して反射してくる光の波長(反射波長)あるいは透過してくる光の波長を測定することで、FBGに加わった歪みを測定することができる。   The FBG is obtained by periodically changing the refractive index of the core portion within a predetermined length range of the fiber at regular intervals. When light is incident on one end side of the FBG, a specific wavelength (referred to as a Bragg wavelength) is included in the incident light. ) Is reflected, and light of other wavelengths is transmitted. This Bragg wavelength changes according to axial distortion (compression, expansion) received by a portion whose refractive index periodically changes at regular intervals. Therefore, the strain applied to the FBG can be measured by measuring the wavelength of light that is incident upon and reflected from one end of the FBG (reflection wavelength) or the wavelength of light that is transmitted.

従来、このようなFBGの性質を利用して測定対象の歪測定や温度測定等を行うFBGセンサシステムとして、FBGの反射波長の測定を、波長可変光源と受光器を組み合わせて行うものがあった(例えば特許文献1参照)。すなわち、波長可変光源はFBGへ入射する光(測定光)の波長を変えて出射し、受光器はそのFBGへ出射された光に対するFBGからの反射光の光強度を検出する。この場合、表示器を想定し、横軸に測定光の波長(波長可変光源の発振波長)、縦軸に受光器で検出した反射光の光強度をプロットしてFBGからの反射光のスペクトルを描いている。したがって、FBGの反射波長は、受光器がFBGからの反射光のスペクトル(反射スペクトル)のピーク値を検出した時の、波長可変光源からFBGへ出射している測定光の波長と同一であるとして測定される。   Conventionally, as an FBG sensor system that performs strain measurement, temperature measurement, and the like using such properties of the FBG, there is one that measures the reflected wavelength of the FBG by combining a wavelength variable light source and a light receiver. (For example, see Patent Document 1). That is, the wavelength tunable light source emits light having changed wavelength (measurement light) incident on the FBG, and the light receiver detects the light intensity of the reflected light from the FBG with respect to the light emitted to the FBG. In this case, assuming a display, the wavelength of the measurement light (oscillation wavelength of the variable wavelength light source) is plotted on the horizontal axis, and the light intensity of the reflected light detected by the light receiver is plotted on the vertical axis, and the spectrum of the reflected light from the FBG is plotted. I'm drawing. Accordingly, the reflection wavelength of the FBG is assumed to be the same as the wavelength of the measurement light emitted from the wavelength tunable light source to the FBG when the light detector detects the peak value of the spectrum (reflection spectrum) of the reflected light from the FBG. Measured.

特開2005−62138号公報JP 2005-62138 A

このような従来のFBGセンサシステムにおけるFBGの反射波長の測定は、波長可変光源−FBG間のファイバ長Lによる測定光と反射光の遅れ時間τ、すなわち波長可変光源から出射された測定光がFBGで反射されて反射光として受光器に入射されるまでの時間τが、波長可変光源の波長可変時間(掃引速度)に対して十分小さく無視できることを前提としている。なお、遅れ時間τは、nをファイバの屈折率、Cを光速とすると、(1)式で表される。   In such a conventional FBG sensor system, the reflection wavelength of the FBG is measured by measuring the delay time τ between the measurement light and the reflected light due to the fiber length L between the wavelength variable light source and the FBG, that is, the measurement light emitted from the wavelength variable light source is FBG. It is assumed that the time τ from the time when the light is reflected and the time when the light is incident on the light receiver as the reflected light is sufficiently small and negligible with respect to the wavelength variable time (sweep speed) of the wavelength variable light source. The delay time τ is expressed by the equation (1) where n is the refractive index of the fiber and C is the speed of light.

τ=2nL/C (1)       τ = 2nL / C (1)

ここで、遅れ時間τと波長可変光源の掃引速度との関係を具体的に説明する。波長可変光源の掃引がほぼ線形な場合において、発振波長λは、Kを掃引速度に比例した定数、tを時間とすると、(2)式で表される。   Here, the relationship between the delay time τ and the sweep speed of the wavelength tunable light source will be specifically described. In the case where the sweep of the wavelength tunable light source is almost linear, the oscillation wavelength λ is expressed by the following equation (2), where K is a constant proportional to the sweep speed and t is time.

λ=λ+K・t (2) λ = λ 0 + K · t (2)

(2)式において、t=0のときに、FBGの反射波長に対応する波長λが波長可変光源で発振されてFBGに出射され、τ=2nL/C時間後に、その反射光がFBGから受光器に入射されたとすると、FBGの反射波長は見かけ上、仮の反射波長λとして(3)式のように表される。 In the equation (2), when t = 0, the wavelength λ F corresponding to the reflected wavelength of the FBG is oscillated by the wavelength variable light source and emitted to the FBG, and after τ = 2 nL / C time, the reflected light is emitted from the FBG. Assuming that the light is incident on the light receiver, the reflection wavelength of the FBG is apparently expressed as the provisional reflection wavelength λ T as shown in the equation (3).

λ=λ+K・2nL/C (3) λ T = λ F + K · 2 nL / C (3)

したがって、(3)式から分かるように、Kが非常に小さい(掃引速度が非常に遅い)とき、またファイバ長Lが非常に短いときは、(4)式のように見なすことができる。 Therefore, as can be seen from the equation (3), when K is very small (the sweep speed is very slow) and the fiber length L is very short, it can be regarded as the equation (4).

λ=λ (4) λ T = λ F (4)

波長可変光源として、回折格子、ミラー等をモータ駆動して半導体レーザの発振波長を可変(掃引)するような外部共振型の波長可変光源を用いる場合には、掃引速度が遅いために、上記のような方法でFBGの反射波長を測定しても問題はなかった。しかしながら、FBGセンサシステムにおける測定の高速化のために、波長可変光源の掃引速度を出来るだけ速くするような場合には、上記(3)式で示したように、遅れ時間τ=2nL/Cの影響を受けて反射スペクトルの波長がずれる。すなわち、反射スペクトルが波長掃引方向へシフトする。この結果、FBGの本来の反射波長λが見かけ上、波長ずれを含んだ仮の反射波長λとして測定されてしまうという問題を生じる。 When using an external resonance type wavelength tunable light source that variably (sweeps) the oscillation wavelength of a semiconductor laser by driving a diffraction grating, mirror, or the like as a wavelength tunable light source, the sweep speed is low. There was no problem even if the reflection wavelength of FBG was measured by such a method. However, in order to increase the sweep speed of the wavelength tunable light source as much as possible in order to increase the measurement speed in the FBG sensor system, the delay time τ = 2 nL / C as shown in the above equation (3). The wavelength of the reflection spectrum is shifted due to the influence. That is, the reflection spectrum shifts in the wavelength sweep direction. As a result, there arises a problem that the original reflection wavelength λ F of the FBG is apparently measured as a provisional reflection wavelength λ T including a wavelength shift.

具体例に示すと、例えば、K=10nm/s(1520〜1570nmを0.5msで掃引するような場合)、L=10km、n=1.5、C=3×10km/sの場合には、上記(3)式のK・2nL/Cは10nmとなり、本来のFBGの反射波長λに対して見かけ上10nmの波長ずれを生じる。すなわち、FBGの反射波長の測定を、図6(b)に示すように、波長可変光源が短波から長波へ掃引している期間に行うような場合には、長波側へ10nmずれる。一方、波長可変光源が長波から短波へ掃引している期間に測定を行うような場合には、逆に、短波側へ10nmずれる。 Specifically, for example, K = 10 5 nm / s (when 1520 to 1570 nm is swept in 0.5 ms), L = 10 km, n = 1.5, C = 3 × 10 5 km / s. In this case, K · 2nL / C in the above equation (3) is 10 nm, and an apparent wavelength shift of 10 nm occurs with respect to the reflection wavelength λ F of the original FBG. That is, as shown in FIG. 6B, when the FBG reflection wavelength is measured during a period in which the wavelength variable light source is swept from the short wave to the long wave, the FBG is shifted to the long wave side by 10 nm. On the other hand, in the case where measurement is performed during a period in which the wavelength variable light source is swept from a long wave to a short wave, the wavelength shifts to the short wave side by 10 nm.

本発明は、FBGの反射波長を仮の反射波長λとして測定するとともに、測定したこの仮の反射波長λを、予め求めて記憶保持されている、ファイバの長さと波長可変光源の掃引周期(掃引速度)とに起因して発生する反射波長の測定時の波長ずれを補正するための波長補正値λで補正することによって、これらの課題を解決し、高速波長掃引の可能な波長可変光源を用いて測定の高速化を行った場合でもFBGの反射波長を正確に測定できるFBGセンサシステムを提供することを目的としている。 The present invention is to measure the reflected wavelength of the FBG as reflection wavelength lambda T provisional reflection wavelength lambda T of the measured the temporary, are previously determined store data length and the wavelength tunable light source of the fiber sweep cycle By correcting with the wavelength correction value λ C for correcting the wavelength shift at the time of measurement of the reflected wavelength generated due to the (sweep speed), these problems can be solved, and the wavelength variable capable of high-speed wavelength sweep. An object of the present invention is to provide an FBG sensor system that can accurately measure the reflected wavelength of the FBG even when the measurement speed is increased using a light source.

上記課題を解決するために、本発明の請求項1のFBGセンサシステムでは、ファイバ(12a〜12c)を介して測定対象に設けられたFBG(13a〜13c)に所定の波長範囲の光を測定光として入射し、該測定光の反射光又は透過光から当該FBGの反射波長を測定するFBGセンサシステムにおいて、前記所定の波長範囲の光を含んで所定の掃引周期で波長掃引された光を発振し、該光を前記測定光として前記FBGに入射させる波長可変光源(10)と、前記FBGに入射された前記測定光の該FBGからの反射光又は透過光を受けて第1の電気信号に変換する第1の受光器(14)と、該第1の受光器から出力される前記第1の電気信号と前記波長可変光源の発振波長から前記FBGの反射波長を仮の反射波長λとして測定し、測定した該仮の反射波長λに基づいて、予めメモリ(16c)に記憶されている、前記ファイバの長さと前記波長可変光源の前記所定の掃引周期とに起因して発生する前記FBGの反射波長の測定時の波長ずれを補正するための波長補正値λを読み出し、読み出した該波長補正値λで前記仮の反射波長λを補正して波長ずれを含まない当該FBGの反射波長λを求める処理手段(20)とを備えた。 In order to solve the above problems, in the FBG sensor system according to claim 1 of the present invention, light in a predetermined wavelength range is measured on the FBG (13a to 13c) provided in the measurement object via the fiber (12a to 12c). In the FBG sensor system that enters as light and measures the reflected wavelength of the FBG from the reflected or transmitted light of the measurement light, the light that has been swept in a predetermined sweep cycle including the light in the predetermined wavelength range is oscillated. Then, a wavelength variable light source (10) that makes the light incident on the FBG as the measurement light and a reflected or transmitted light from the FBG of the measurement light incident on the FBG are received as a first electric signal. The reflection wavelength of the FBG is set as a temporary reflection wavelength λ T from the first light receiver (14) to be converted, the first electric signal output from the first light receiver, and the oscillation wavelength of the wavelength tunable light source. Measurement , Based on the reflected wavelength lambda T of the measured tentative, advance in the memory stored in (16c), of the FBG generated due to said predetermined sweep period of the length of the fiber and the wavelength tunable light source reflection of the FBG which reads the wavelength correction value lambda C for correcting the wavelength shift of the measurement of the reflection wavelength, read in said wavelength correction value lambda C by correcting the reflection wavelength lambda T of the temporary contains no wavelength shift And processing means (20) for determining the wavelength λ F.

また、本発明の請求項2のFBGセンサシステムでは、上述した請求項1のFBGセンサシステムにおいて、前記処理手段は、前記第1の受光器から出力される前記第1の電気信号の中から前記FBGの反射波長に対応するピーク値を検出するとともに、検出した該ピーク値に対応した光が前記第1の受光器に入射された時の前記波長可変光源の発振波長を求め、求めた該発振波長を前記FBGの前記仮の反射波長λとするようにした。 Further, in the FBG sensor system according to claim 2 of the present invention, in the FBG sensor system according to claim 1 described above, the processing means includes the first electric signal output from the first light receiver. The peak value corresponding to the reflected wavelength of the FBG is detected, and the oscillation wavelength of the wavelength tunable light source when light corresponding to the detected peak value is incident on the first light receiver is obtained, and the obtained oscillation The wavelength was set to the provisional reflection wavelength λ T of the FBG.

また、本発明の請求項3のFBGセンサシステムでは、上述した請求項1又は2のFBGセンサシステムにおいて、前記波長可変光源は、一方のレーザ光出射端面がARコートされている半導体レーザ(1)と、該半導体レーザのARコートされている端面から出射された光をコリメートするコリメートレンズ(2)と、該コリメートレンズから出射されたコリメート光を受けて波長に応じた角度で回折させる回折格子(3)と、反射体(35)と反射体駆動手段(50)とを含んで構成され、前記回折格子から入射される前記コリメート光に対する回折光が、前記反射体の反射面で該回折格子へ反射されて、再び該回折格子で回折され、それによって得られた回折光が前記コリメートレンズを介して前記半導体レーザに入射されるとき、該半導体レーザに入射される回折光が所望の波長の光となるようにするとともに、該所望の波長が前記所定の波長範囲を含んで往復掃引されるように前記反射体の反射面の角度を前記反射体駆動手段により前記所定の掃引周期で繰り返し変化させるMEMSスキャナ(60)とを備えた。   In the FBG sensor system according to claim 3 of the present invention, in the FBG sensor system according to claim 1 or 2, the wavelength tunable light source is a semiconductor laser (1) in which one laser light emitting end face is AR-coated. A collimating lens (2) for collimating the light emitted from the AR-coated end face of the semiconductor laser, and a diffraction grating for receiving the collimated light emitted from the collimating lens and diffracting it at an angle corresponding to the wavelength. 3), a reflector (35) and a reflector driving means (50), and diffracted light with respect to the collimated light incident from the diffraction grating is reflected on the reflection surface of the reflector to the diffraction grating. When it is reflected and diffracted again by the diffraction grating, and the diffracted light obtained thereby is incident on the semiconductor laser through the collimator lens, The angle of the reflecting surface of the reflector is set so that the diffracted light incident on the conductor laser becomes light having a desired wavelength and the desired wavelength is swept back and forth including the predetermined wavelength range. And a MEMS scanner (60) that is repeatedly changed at the predetermined sweep cycle by a reflector driving means.

また、本発明の請求項4のFBGセンサシステムでは、上述した請求項3のFBGセンサシステムにおいて、前記MEMSスキャナの反射体は、固定基板(36、37)と、該固定基板の縁部から所定幅で所定長さ延設され、その長さ方向に沿って捩じれ変形可能な軸部(38、39)と、該軸部の先端に自身の縁部で連結されて形成され、一面側に前記回折格子からの回折光を反射させるための前記反射面が設けられた反射板(40)とを有しており、かつ、前記MEMSスキャナの反射体駆動手段は、前記反射体の軸部と反射板とからなる部分の固有振動数に対応した周波数の駆動信号によって前記反射板に力を与えて、該反射板を前記固有振動数又はそれに近い振動数の前記所定の掃引周期で往復回転させるように構成した。   Further, in the FBG sensor system according to claim 4 of the present invention, in the FBG sensor system according to claim 3 described above, the reflector of the MEMS scanner has a fixed substrate (36, 37) and predetermined edges from the fixed substrate. A shaft portion (38, 39) that is extended by a predetermined length in width and can be twisted and deformed along the length direction, and is connected to the tip of the shaft portion by its own edge portion, A reflector (40) provided with the reflecting surface for reflecting the diffracted light from the diffraction grating, and the reflector driving means of the MEMS scanner includes a shaft portion of the reflector and a reflector. A force is applied to the reflecting plate by a drive signal having a frequency corresponding to the natural frequency of the portion composed of the plate, and the reflecting plate is reciprocally rotated at the predetermined sweep cycle at the natural frequency or a frequency close thereto. Configured.

また、本発明の請求項5のFBGセンサシステムでは、上述した請求項3又は4のFBGセンサシステムにおいて、前記波長可変光源は、さらに、前記回折格子の0次光が出射される光路上に設けられて所定の波長の光を透過させる光共振器(4)と、該光共振器から出射される透過光を受けて第2の電気信号に変換する第2の受光器(5)とを備え、該第2の受光器から出力される前記第2の電気信号から当該波長可変光源の発振波長を求めることを可能にした。   In the FBG sensor system according to claim 5 of the present invention, in the FBG sensor system according to claim 3 or 4, the wavelength tunable light source is further provided on an optical path through which the zero-order light of the diffraction grating is emitted. And an optical resonator (4) that transmits light of a predetermined wavelength, and a second light receiver (5) that receives the transmitted light emitted from the optical resonator and converts it into a second electrical signal. The oscillation wavelength of the wavelength tunable light source can be obtained from the second electric signal output from the second light receiver.

また、本発明の請求項6のFBGセンサシステムでは、上述した請求項3又は4のFBGセンサシステムにおいて、前記波長可変光源は、前記回折格子の0次光を出力光とした。   In the FBG sensor system according to claim 6 of the present invention, in the FBG sensor system according to claim 3 or 4 described above, the wavelength variable light source uses the 0th-order light of the diffraction grating as output light.

また、本発明の請求項7のFBGセンサシステムでは、上述した請求項6のFBGセンサシステムにおいて、前記波長可変光源は、さらに、前記回折格子の0次光が出射される光路上に設けられ、該0次光を2つに分岐して一方の0次光を前記出力光として出射する光分岐手段(6)と、該光分岐手段から出射される他方の0次光を受けて所定の波長の光を透過させる光共振器(4)と、該光共振器から出射される透過光を受けて第2の電気信号に変換する第2の受光器(5)とを備え、該第2の受光器から出力される前記第2の電気信号から当該波長可変光源の発振波長を求めることを可能にした。   In the FBG sensor system according to claim 7 of the present invention, in the FBG sensor system according to claim 6 described above, the wavelength tunable light source is further provided on an optical path from which the 0th-order light of the diffraction grating is emitted, A light branching means (6) for branching the zero-order light into two and emitting one zero-order light as the output light; and receiving the other zero-order light emitted from the light branching means and receiving a predetermined wavelength And an optical resonator (4) that transmits the light of the second and a second light receiver (5) that receives the transmitted light emitted from the optical resonator and converts it into a second electrical signal, The oscillation wavelength of the wavelength tunable light source can be obtained from the second electric signal output from the light receiver.

また、本発明の請求項8のFBGセンサシステムでは、上述した請求項5又は7のFBGセンサシステムにおいて、前記処理手段は、前記第1の受光器からの前記第1の電気信号及び前記第2の受光器からの前記第2の電気信号を受けてそれぞれディジタル値に変換するA/D変換器(15)と、該A/D変換器から出力される前記第1の電気信号のディジタル値を順次所定のアドレスに記憶する第1のメモリ(16a)と、前記A/D変換器から出力される前記第2の電気信号のディジタル値を順次所定のアドレスに記憶する第2のメモリ(16b)と、前記第1のメモリの前記所定のアドレスに記憶されているディジタル値を読み出して、前記FBGの反射波長に対応するピーク値を検出するピーク値検出手段(17)と、前記第2のメモリの前記所定のアドレスに記憶されている前記波長可変光源の発振波長を求めるためのディジタル値を読み出して、前記光共振器の前記所定の波長が記憶されているアドレスを検出し、検出した該アドレスと前記ピーク値検出手段から出力される前記ピーク値が記憶されているアドレスとに基づいて、当該ピーク値に対応した光が前記第1の受光器に入射された時の当該波長可変光源の発振波長を求め、求めた該発振波長を前記FBGの前記仮の反射波長λとするピーク値波長算出手段(18)と、前記FBGの反射波長の測定時の波長ずれを補正するための前記波長補正値λを記憶保持する第3のメモリ(16c)と、前記ピーク値波長算出手段から出力される前記仮の反射波長λに基づいて、前記第3のメモリから前記波長補正値λを読み出すとともに、読み出した該波長補正値λで前記仮の反射波長λを補正して前記FBGの反射波長λを求める反射波長算出手段(19)とを備えた。 In the FBG sensor system according to claim 8 of the present invention, in the FBG sensor system according to claim 5 or 7, the processing means includes the first electrical signal from the first light receiver and the second signal. An A / D converter (15) that receives the second electric signal from the photoreceiver and converts it into a digital value, and a digital value of the first electric signal output from the A / D converter. A first memory (16a) for sequentially storing at a predetermined address, and a second memory (16b) for sequentially storing the digital value of the second electric signal output from the A / D converter at a predetermined address A peak value detecting means (17) for reading a digital value stored at the predetermined address of the first memory and detecting a peak value corresponding to the reflection wavelength of the FBG; and the second mem- ory. The digital value for obtaining the oscillation wavelength of the wavelength tunable light source stored at the predetermined address of the optical resonator is read, the address where the predetermined wavelength of the optical resonator is stored is detected, and the detected Based on the address and the address where the peak value output from the peak value detecting means is stored, the wavelength tunable light source when the light corresponding to the peak value is incident on the first light receiver. A peak value wavelength calculating means (18) for obtaining an oscillation wavelength, setting the obtained oscillation wavelength as the provisional reflection wavelength λ T of the FBG, and the wavelength correction for correcting the wavelength shift at the time of measuring the reflection wavelength of the FBG. a third memory for storing and holding the wavelength correction value lambda C (16c), on the basis of the reflection wavelength lambda T of the temporary output from the peak value wavelength calculating unit, the wavelength correction from said third memory It reads the lambda C, and a read-out wavelength correction at value lambda C by correcting the reflection wavelength lambda T of the temporary seek reflection wavelength lambda F of the FBG reflection wavelength calculating means (19).

本発明の請求項1、2及び8のFBGセンサシステムでは、第1の受光器から出力される第1の電気信号と波長可変光源の発振波長からFBGの反射波長を仮の反射波長λとして測定し、測定したこの仮の反射波長λに基づいて、予めメモリに記憶されている、ファイバの長さと波長可変光源の所定の掃引周期とに起因して発生するFBGの反射波長の測定時の波長ずれを補正するための波長補正値λを読み出し、読み出したこの波長補正値λで上記仮の反射波長λを補正してFBGの反射波長λを求めるようにしたので、高速波長掃引の可能な波長可変光源を用いて測定の高速化を行った場合でもFBGの反射波長を正確に測定できる。 In the FBG sensor system according to the first, second, and eighth aspects of the present invention, the reflection wavelength of the FBG is set as the provisional reflection wavelength λ T from the first electric signal output from the first light receiver and the oscillation wavelength of the wavelength variable light source. Based on the measured provisional reflection wavelength λ T , the measurement of the reflection wavelength of the FBG caused by the length of the fiber and the predetermined sweep period of the wavelength variable light source stored in advance in the memory The wavelength correction value λ C for correcting the wavelength shift of the FBG is read out, and the provisional reflection wavelength λ T is corrected by the read wavelength correction value λ C to obtain the reflection wavelength λ F of the FBG. Even when the measurement speed is increased using a wavelength variable light source capable of wavelength sweeping, the reflected wavelength of the FBG can be measured accurately.

本発明の請求項3及び4のFBGセンサシステムでは、波長可変光源の往復掃引をMEMSスキャナで行うようにしたので、高速波長掃引ができ、測定の高速化が可能となる。   In the FBG sensor system according to claims 3 and 4 of the present invention, the reciprocal sweep of the wavelength tunable light source is performed by the MEMS scanner, so that the high-speed wavelength sweep can be performed and the measurement speed can be increased.

本発明の請求項5及び7のFBGセンサシステムでは、波長可変光源における回折格子の0次光の所定の波長の光を第2の電気信号に変換するようにしたので、この第2の電気信号から波長可変光源の発振波長を求めることができる。   In the FBG sensor system according to claims 5 and 7 of the present invention, the light of a predetermined wavelength of the zero-order light of the diffraction grating in the wavelength tunable light source is converted into the second electric signal. Thus, the oscillation wavelength of the wavelength tunable light source can be obtained.

本発明の請求項6のFBGセンサシステムでは、波長可変光源における回折格子の0次光を出力光としたので、半導体レーザの内部共振モードの影響によって生じる出力光の強度変動を小さくできる。具体的には、半導体レーザのARコートされていない端面から出射された光を出力光とする場合の強度変動(約1dB)の約1/10にできる。   In the FBG sensor system according to the sixth aspect of the present invention, since the 0th order light of the diffraction grating in the wavelength tunable light source is used as the output light, the intensity fluctuation of the output light caused by the influence of the internal resonance mode of the semiconductor laser can be reduced. Specifically, it can be about 1/10 of the intensity fluctuation (about 1 dB) when the light emitted from the end surface of the semiconductor laser not coated with AR is used as the output light.

本発明の実施形態のFBGセンサシステムの構成を図1及び図2に示す。まず、高速波長掃引の可能な波長可変光源10は、図2に示すように、半導体レーザ(LD)1のARコートされている端面から出射された光をコリメートレンズ2によってコリメート光に変換して回折格子3へ入射し、その入射光に対して回折格子3が出射する回折光をMEMSスキャナ60に入射する。MEMSスキャナ60は、反射体35と反射体駆動手段50で構成され、回折格子3から入射されるコリメート光に対する回折光が、反射体35の反射面で回折格子3へ反射されて、再び回折格子3で回折され、それによって得られた回折光がコリメートレンズ2を介してLD1に入射されるとき、LD1に入射される回折光が所望の波長の光となるようにするとともに、この所望の波長が所定の波長範囲を含んで往復掃引されるように反射体35の反射面の角度を反射体駆動手段50により所定の掃引周期で繰り返し変化(往復回転)させている。このような構成によって、波長掃引された光が発振されて、LD1のARコートされていない端面から出力されて出力光(測定光a)となる。   The configuration of the FBG sensor system according to the embodiment of the present invention is shown in FIGS. First, as shown in FIG. 2, the wavelength tunable light source 10 capable of high-speed wavelength sweep converts the light emitted from the AR-coated end surface of the semiconductor laser (LD) 1 into collimated light by the collimating lens 2. The diffracted light that enters the diffraction grating 3 and is emitted from the diffraction grating 3 with respect to the incident light enters the MEMS scanner 60. The MEMS scanner 60 includes a reflector 35 and reflector drive means 50, and the diffracted light with respect to the collimated light incident from the diffraction grating 3 is reflected by the reflection surface of the reflector 35 to the diffraction grating 3, and again the diffraction grating. When the diffracted light diffracted by the light beam 3 is incident on the LD 1 via the collimator lens 2, the diffracted light incident on the LD 1 becomes light having a desired wavelength, and the desired wavelength. Is reciprocally changed (reciprocatingly rotated) at a predetermined sweep cycle by the reflector driving means 50 so that the reciprocating sweep is performed including a predetermined wavelength range. With such a configuration, the wavelength-swept light is oscillated and output from the end surface of the LD 1 which is not AR-coated, and becomes output light (measurement light a).

なお、図2においては、LD1のARコートされている端面から出射された光をコリメートレンズ2によってコリメート光に変換して回折格子3へ入射するようにしたが、LD1とコリメートレンズ2との間に集光レンズとファイバを設け、LD1のARコートされている端面から出射された光を集光レンズで集光してファイバに入射し、ファイバを通った光をコリメートレンズ2によってコリメート光に変換して回折格子3へ入射するようにしてもよい。   In FIG. 2, the light emitted from the end surface of the LD 1 that is AR-coated is converted into collimated light by the collimating lens 2 so as to be incident on the diffraction grating 3, but between the LD 1 and the collimating lens 2. A condensing lens and a fiber are provided in the lens, and the light emitted from the end surface of the LD 1 that is AR-coated is condensed by the condensing lens and incident on the fiber. The light passing through the fiber is converted into collimated light by the collimating lens 2. Then, the light may enter the diffraction grating 3.

MEMSスキャナ60を構成する反射体35及び反射体駆動手段50については後で詳述する。なお、MEMS(Micro Electro Mechanical Systems)スキャナとは、マイクロ電気機械式構造体(電気信号の制御を受けて機械的に動作する構造体)によって形成されたスキャナを意味している。   The reflector 35 and the reflector driving means 50 constituting the MEMS scanner 60 will be described in detail later. Note that a MEMS (Micro Electro Mechanical Systems) scanner means a scanner formed by a micro electro mechanical structure (a structure that operates mechanically under the control of an electrical signal).

ここで、MEMSスキャナ60による波長掃引について説明する。図5に示す駆動信号Da、Db(詳細は後述する)を印加してMEMSスキャナ60を所定の掃引周期で往復掃引する(上述の反射体35を往復回転させる)と、図6(a)に示すように、MEMSスキャナ60の往復回転角度はほぼ正弦波的に変化し、その結果、掃引される波長も正弦波状に変化する。したがって、測定光aの所定の波長範囲(測定波長範囲)が、図6(b)に示すように、その正弦波状に変化する波形の直線に近い部分に来るように、MEMSスキャナ60の往復掃引の波長範囲(往復回転角度の範囲)が設定される。つまり、駆動信号Da、Dbの振幅の調整により設定される。具体例としては、例えば、測定波長範囲を1520〜1570nmとした場合、MEMSスキャナ60の往復掃引の波長範囲(掃引波長範囲)は、この測定波長範囲に対して十分に広い約1470〜1620nmに設定される。なお、上述の駆動信号Da、Dbのいずれか一方はトリガ信号Trとして処理手段20へ出力される。   Here, wavelength sweeping by the MEMS scanner 60 will be described. When the drive signals Da and Db (details will be described later) shown in FIG. 5 are applied to sweep the MEMS scanner 60 back and forth at a predetermined sweep period (the above-described reflector 35 is rotated back and forth), FIG. As shown, the reciprocating rotation angle of the MEMS scanner 60 changes substantially sinusoidally, and as a result, the swept wavelength also changes sinusoidally. Accordingly, as shown in FIG. 6B, the reciprocal sweep of the MEMS scanner 60 is performed so that the predetermined wavelength range (measurement wavelength range) of the measurement light a is close to the straight line of the waveform that changes in a sine wave shape. Is set (range of reciprocating rotation angle). That is, it is set by adjusting the amplitude of the drive signals Da and Db. As a specific example, for example, when the measurement wavelength range is 1520 to 1570 nm, the reciprocal sweep wavelength range (sweep wavelength range) of the MEMS scanner 60 is set to about 1470 to 1620 nm that is sufficiently wide with respect to this measurement wavelength range. Is done. One of the drive signals Da and Db is output to the processing means 20 as a trigger signal Tr.

また、図2において、回折格子3の0次光は、エタロン等の光共振器4に入射されて所定の波長の光のみが透過される。そして、その透過光は受光器(PD)5で第2の電気信号cに変換されて図1に示す処理手段20へ出力される。すなわち、出力光(測定光a)の波長掃引に対応して所定の波長間隔、例えば周波数で15GHz間隔の透過光を発生し、受光器5で第2の電気信号cに変換される。この透過光の波長(周波数)は既知である。したがって、その透過光を光電変換して得られた第2の電気信号cを用いて、波長可変光源10の発振波長(波長掃引された測定光aの波長)を求めることができる。   In FIG. 2, the zero-order light of the diffraction grating 3 is incident on an optical resonator 4 such as an etalon, and only light of a predetermined wavelength is transmitted. Then, the transmitted light is converted into a second electrical signal c by the light receiver (PD) 5 and output to the processing means 20 shown in FIG. That is, transmitted light having a predetermined wavelength interval, for example, a frequency of 15 GHz corresponding to the wavelength sweep of the output light (measurement light a) is generated and converted into the second electric signal c by the light receiver 5. The wavelength (frequency) of this transmitted light is known. Therefore, the oscillation wavelength of the wavelength tunable light source 10 (the wavelength of the measurement light a swept) can be obtained using the second electric signal c obtained by photoelectrically converting the transmitted light.

なお、波長可変光源10は、図2に示したような、LD1のARコートされていない端面から出射された光を出力光とするものに限定されるわけではなく、回折格子3の0次光を出力光とするものであってもよい。その場合には、図3に示すように、回折格子3からの0次光を光カプラ等の光分岐手段6で分岐して、一方を出力光とし、他方を光共振器4に入射する。このように0次光を出力光とすると、LD1の内部共振モードの影響によって生じる出力光の強度変動を、LD1のARコートされていない端面から出射された光を出力光とする場合に比べて小さくできる。具体的には、LD1を出力光とする場合の強度変動(約1dB)の約1/10に小さくできる。また、LD1のARコートされていない端面にHRコート(HR:High-Reflection)を施すことによって、0次光を出力光とする場合の出力光の光強度を増加させることができる。   The tunable light source 10 is not limited to the light output from the end surface of the LD 1 that is not AR-coated as shown in FIG. May be output light. In that case, as shown in FIG. 3, the 0th-order light from the diffraction grating 3 is branched by an optical branching means 6 such as an optical coupler, and one is output and the other is incident on the optical resonator 4. When the 0th-order light is output light in this way, the intensity fluctuation of the output light caused by the influence of the internal resonance mode of the LD1 is compared with the case where the light emitted from the end surface of the LD1 that is not AR-coated is output light. Can be small. Specifically, it can be reduced to about 1/10 of the intensity fluctuation (about 1 dB) when LD1 is used as the output light. Further, by applying HR coating (HR: High-Reflection) to the end surface of the LD 1 which is not AR-coated, the light intensity of the output light when the 0th-order light is output light can be increased.

次に、図1において、光サーキュレータ11は、波長可変光源10からの測定光aを、ファイバ12a〜12cを介して直列に接続された反射波長の異なる複数のFBG13a〜13cに入射するとともに、各FBG13a〜13cからそれぞれの反射波長で反射されて戻ってきたその測定光aの反射光を受けて受光器(PD)14に出射する。受光器14は、その反射光を第1の電気信号bに変換して処理手段20に出力する。   Next, in FIG. 1, the optical circulator 11 makes the measurement light a from the wavelength tunable light source 10 incident on a plurality of FBGs 13a to 13c having different reflection wavelengths connected in series via the fibers 12a to 12c, and The reflected light of the measurement light “a” reflected and returned from each of the FBGs 13 a to 13 c is received and emitted to the light receiver (PD) 14. The light receiver 14 converts the reflected light into a first electric signal b and outputs it to the processing means 20.

処理手段20は、受光器14からの第1の電気信号b及び波長可変光源10からの第2の電気信号cに基づいて、ファイバ12a〜12cのファイバ長に起因して発生する波長ずれのない状態での各FBG13a〜13cの反射波長の算出を行うもので、A/D変換器15、メモリ16a〜16c、ピーク値検出手段17、ピーク値波長算出手段18及び反射波長算出手段19によって構成されている。   Based on the first electric signal b from the light receiver 14 and the second electric signal c from the wavelength tunable light source 10, the processing means 20 has no wavelength shift caused by the fiber length of the fibers 12a to 12c. The reflection wavelength of each of the FBGs 13a to 13c in the state is calculated, and is configured by the A / D converter 15, the memories 16a to 16c, the peak value detection means 17, the peak value wavelength calculation means 18, and the reflection wavelength calculation means 19. ing.

すなわち、A/D変換器15は、例えば2chのA/D変換器であり、波長可変光源10から入力される上述のトリガ信号Trを起点にして、周波数確度の高い内部クロック(例えば10MHz)によって第1の電気信号b及び第2の電気信号cを同じタイミングで順次ディジタル値に変換する。   That is, the A / D converter 15 is, for example, a 2ch A / D converter, and starts from the above-described trigger signal Tr input from the wavelength tunable light source 10, and uses an internal clock (for example, 10 MHz) with high frequency accuracy. The first electric signal b and the second electric signal c are sequentially converted into digital values at the same timing.

メモリ16a、16bは、それぞれ、制御部(図示しない)からの指示に基づいて、A/D変換器15からそれぞれ順次出力される第1の電気信号bのディジタル値及び第2の電気信号cのディジタル値の内から少なくとも、図6(b)に示す、上述の測定波長範囲及び上述したファイバ長と掃引速度(掃引周期)とに起因して発生する波長ずれ(以下適宜単に、波長ずれという)分に含まれるディジタル値を順次所定のアドレスに記憶する。具体例を示すと、例えば、第1の電気信号bのディジタル値及び第2の電気信号cのディジタル値は、共にそれぞれのメモリ16a、16bのアドレス0〜4000に記憶される。   The memories 16a and 16b respectively receive the digital value of the first electric signal b and the second electric signal c that are sequentially output from the A / D converter 15 based on an instruction from a control unit (not shown). Among the digital values, at least the wavelength shift generated due to the above-described measurement wavelength range and the above-described fiber length and sweep speed (sweep cycle) shown in FIG. 6B (hereinafter simply referred to as wavelength shift as appropriate). The digital value included in the minute is sequentially stored at a predetermined address. As a specific example, for example, the digital value of the first electric signal b and the digital value of the second electric signal c are both stored in addresses 0 to 4000 of the memories 16a and 16b.

なお、上記では、メモリ16a、16bへの記憶を制御部(図示しない)からの指示で行うようにしたが、トリガ信号Trの位相が上記測定波長範囲及び波長ずれ分との関係において適切であれば、A/D変換器15からそれぞれ出力される第1の電気信号bのディジタル値及び第2の電気信号cのディジタル値をそのまま記憶するようにしてもよい。   In the above description, storage in the memories 16a and 16b is performed in accordance with an instruction from a control unit (not shown). However, if the phase of the trigger signal Tr is appropriate in relation to the measurement wavelength range and the wavelength deviation, For example, the digital value of the first electric signal b and the digital value of the second electric signal c output from the A / D converter 15 may be stored as they are.

ピーク値検出手段17は、第1の読み出信号M1によって第1のメモリ16aの所定のアドレス(例えば上述の0〜4000)に記憶されているディジタル値を読み出して、各FBG13a〜13cの反射波長に対応する3つのピーク値を検出する。そして、検出した3つのピーク値が記憶されているそれぞれのアドレスの情報をピーク値波長算出手段18に出力する。   The peak value detection means 17 reads the digital value stored in a predetermined address (for example, 0 to 4000 described above) of the first memory 16a by the first read signal M1, and reflects the reflected wavelengths of the FBGs 13a to 13c. Three peak values corresponding to are detected. Then, the information of each address storing the detected three peak values is output to the peak value wavelength calculating means 18.

ピーク値波長算出手段18は、第2の読み出信号M2によって第2のメモリ16bの所定のアドレス(例えば上述の0〜4000)に記憶されている波長可変光源10の発振波長(測定光aの波長)を求めるためのディジタル値を読み出して、光共振器4(図2参照)の所定の波長(既知波長)が記憶されているアドレスを検出する。例えば、上述の15GHz間隔で発生された既知波長(周波数)の透過光のピーク値が記憶されているそれぞれのアドレスを検出する。   The peak value wavelength calculation means 18 uses the second read signal M2 to store the oscillation wavelength (measurement light a of the measurement light a) of the wavelength variable light source 10 stored at a predetermined address (for example, 0 to 4000 described above) in the second memory 16b. A digital value for obtaining (wavelength) is read out, and an address where a predetermined wavelength (known wavelength) of the optical resonator 4 (see FIG. 2) is stored is detected. For example, each address where the peak value of the transmitted light of the known wavelength (frequency) generated at the 15 GHz interval is stored is detected.

そして、ピーク値検出手段17から出力される、各FBG13a〜13cの反射波長に対応する3つのピーク値がそれぞれ記憶されているアドレスと、上記の既知波長が記憶されているそれぞれのアドレスとを対比して、3つのピーク値のそれぞれに対応した光が第1の受光器14に入射された時の波長可変光源10の発振波長を求め、求めた3つの発振波長のそれぞれについて、それらを仮の反射波長λとする。 Then, the addresses where the three peak values corresponding to the reflection wavelengths of the FBGs 13a to 13c, which are output from the peak value detection means 17, are stored, and the respective addresses where the known wavelengths are stored are compared. Then, the oscillation wavelength of the wavelength tunable light source 10 when light corresponding to each of the three peak values is incident on the first light receiver 14 is obtained, and for each of the obtained three oscillation wavelengths, these are temporarily calculated. a reflection wavelength λ T.

メモリ16cは、上記仮の反射波長λと、上述したファイバ長と掃引速度とに起因して発生する波長ずれを補正するための波長補正値λとの関係を、各FBG13a〜13cに対して予め求めて記憶保持している。波長補正値λは、上述の(3)式に示した波長ずれに相当するK・2nL/Cであり、OTDR(光パルス試験器)で予め測定した各FBG13a〜13cまでのそれぞれの遅れ時間τ(=2nL/C)と、掃引速度に比例した定数K(波長可変光源10の図6(b)に示すような波長掃引特性から算出できる)との乗算によって求めることができる。あるいは、FBGセンサシステムの敷設時の設計値としての各ファイバ12a〜12cのファイバ長L及び屈折率nを用いても求めることができる。 The memory 16c indicates the relationship between the temporary reflection wavelength λ T and the wavelength correction value λ C for correcting the wavelength shift caused by the fiber length and the sweep speed described above for each of the FBGs 13a to 13c. Is obtained and stored in advance. The wavelength correction value λ C is K · 2nL / C corresponding to the wavelength shift shown in the above equation (3), and the respective delay times from the FBGs 13a to 13c measured in advance with an OTDR (optical pulse tester). It can be obtained by multiplying τ (= 2 nL / C) by a constant K proportional to the sweep speed (which can be calculated from the wavelength sweep characteristic as shown in FIG. 6B of the wavelength tunable light source 10). Or it can obtain | require also using the fiber length L and refractive index n of each fiber 12a-12c as a design value at the time of installation of an FBG sensor system.

なお、各FBG13a〜13cのそれぞれの仮の反射波長λの変化許容範囲は、測定値、ファイバ長、環境条件変化等を考慮して、互いに重複しないように決められており、測定した仮の反射波長λに基づいて各FBG13a〜13cが特定でき、それによって各FBG13a〜13cに対するそれぞれの波長補正値λが第3のメモリ16cから読み出せるようになっている。 Note that the allowable change range of the provisional reflection wavelength λ T of each of the FBGs 13a to 13c is determined so as not to overlap each other in consideration of the measurement value, the fiber length, the environmental condition change, and the like. Each of the FBGs 13a to 13c can be specified based on the reflection wavelength [lambda] T , whereby the respective wavelength correction values [lambda] C for the respective FBGs 13a to 13c can be read from the third memory 16c.

反射波長算出手段19は、ピーク値波長算出手段18から出力される仮の反射波長λに基づいて、第3のメモリ16cから各FBG13a〜13cに対する波長補正値λを読み出すとともに、上述の(3)式(再掲)から導かれる(5)式に基づいて、読み出した波長補正値λで仮の反射波長λを補正して各FBG13a〜13cの反射波長λを求める。 The reflection wavelength calculation unit 19 reads out the wavelength correction value λ C for each of the FBGs 13 a to 13 c from the third memory 16 c based on the temporary reflection wavelength λ T output from the peak value wavelength calculation unit 18, and 3) Based on the equation (5) derived from the equation (repost), the provisional reflection wavelength λ T is corrected with the read wavelength correction value λ C to obtain the reflection wavelength λ F of each of the FBGs 13a to 13c.

λ=λ+K・2nL/C (3)
λ=λ−K・2nL/C=λ−λ (5)
λ T = λ F + K · 2 nL / C (3)
λ F = λ T −K · 2 nL / C = λ T −λ C (5)

ここで、上記(5)式に示した反射波長λ、仮の反射波長λ及び波長補正値λの関係を図7に示す。各FBG13a〜13cの反射波長λが、それぞれ図7(a)に示す反射スペクトルのような波長であるとする。各FBG13a〜13cの反射波長λを測定するときには、各ファイバ12a〜12cのファイバ長Lによる遅れ時間τの影響を受けて、それらの反射波長λが見かけ上、図7(b)に示すように波長の長い方へずれて仮の反射波長λとなる。したがって、図7(b)に示す各FBG13a〜13cに対する波長補正値λを仮の反射波長λからそれぞれ減算することによって反射波長λを求めることができる。なお、各ファイバ12a〜12cのファイバ長Lは同一であるので、各FBG13a〜13cの反射波長λの波長ずれは、FBG13aの波長ずれを基準にして、FBG13bの波長ずれはその2倍、FBG13cの波長ずれはその3倍となる。 Here, FIG. 7 shows the relationship among the reflection wavelength λ F , the provisional reflection wavelength λ T and the wavelength correction value λ C shown in the above equation (5). It is assumed that the reflection wavelength λ F of each of the FBGs 13a to 13c has a wavelength like the reflection spectrum shown in FIG. When the reflection wavelength λ F of each of the FBGs 13a to 13c is measured, the reflection wavelength λ F is apparently shown in FIG. 7B due to the influence of the delay time τ due to the fiber length L of each of the fibers 12a to 12c. In this way, the wavelength is shifted toward the longer wavelength and becomes the provisional reflection wavelength λ T. Accordingly, the reflection wavelength λ F can be obtained by subtracting the wavelength correction value λ C for each of the FBGs 13 a to 13 c shown in FIG. 7B from the provisional reflection wavelength λ T. Since the fiber length L of each of the fibers 12a to 12c is the same, the wavelength shift of the reflection wavelength λ F of each of the FBGs 13a to 13c is twice that of the FBG 13b with respect to the wavelength shift of the FBG 13a. The wavelength shift is three times that.

なお、上記反射波長算出手段19では、波長可変光源10が短波から長波へ掃引している期間(図6(b)参照)に、FBGの反射波長の測定を行うような場合についての波長ずれの補正方法を(5)式で示したが、発振波長λが(6)式で表されるような、長波から短波へ掃引している期間に測定を行うような場合については、波長ずれの補正方法は(7)式で表される。この場合、反射波長λ、仮の反射波長λ及び波長補正値λの関係は図8のようになる。 In the reflected wavelength calculation means 19, the wavelength shift in the case where the reflected wavelength of the FBG is measured during the period in which the wavelength tunable light source 10 is swept from the short wave to the long wave (see FIG. 6B). The correction method is shown by the equation (5). However, in the case where the measurement is performed during the period in which the oscillation wavelength λ is swept from the long wave to the short wave as shown by the equation (6), the correction of the wavelength shift is performed. The method is expressed by equation (7). In this case, the relationship between the reflection wavelength λ F , the provisional reflection wavelength λ T and the wavelength correction value λ C is as shown in FIG.

λ=λ−K・t (6)
λ=λ+K・2nL/C=λ+λ (7)
λ = λ 0 −K · t (6)
λ F = λ T + K · 2 nL / C = λ T + λ C (7)

また、上記反射波長算出手段19では、波長可変光源10の測定波長範囲(図6(b)参照)付近の掃引特性が、一般式λ=A+A・xで表される一次関数で近似できる場合についての波長ずれの補正方法を(5)式で示したが、一般式λ=A+A・x+A・x+・・・で表される多次関数で近似する場合も同様に上述の方法を適用して、反射波長λを求めることができることは言うまでもない。 Further, in the reflection wavelength calculating means 19, the sweep characteristic in the vicinity of the measurement wavelength range (see FIG. 6B) of the wavelength tunable light source 10 is approximated by a linear function represented by the general formula λ = A 0 + A 1 · x. Although the correction method of the wavelength shift in the case where it is possible is shown by the equation (5), the same applies to the case of approximation by a multi-order function represented by the general formula λ = A 0 + A 1 · x + A 2 · x 2 +. It goes without saying that the reflection wavelength λ F can be obtained by applying the above-described method.

次に、図2に示した波長可変光源10の一部を構成するMEMSスキャナ60の反射体35及び反射体駆動手段50について詳述する。反射体35は、図4に示すように、横長矩形で互いに平行に配置された一対の固定基板36、37と、この一対の固定基板36、37の長辺側縁部の中央からこの固定基板36、37と直交する方向に所定幅、所定長さで延設され、その長さ方向に沿って捩じれ変形可能な一対の軸部38、39と、横長矩形で一方の長辺側縁部の中央部で軸部38の先端に連結され、他方の長辺側縁部の中央部で軸部39の先端に連結された反射板40とを有している。この反射板40は、捩じれ変形可能な軸部38、39に中心部が支持されているので、この軸部38、39を結ぶ線を中心軸として固定基板36、37に対して回転することができる。また、軸部38、39と反射板40とからなる部分の固有振動数fは、反射板40自体の形状や質量及び軸部38、39のバネ定数によって決まる。 Next, the reflector 35 and the reflector driving means 50 of the MEMS scanner 60 constituting a part of the wavelength tunable light source 10 shown in FIG. 2 will be described in detail. As shown in FIG. 4, the reflector 35 includes a pair of fixed substrates 36 and 37 arranged in parallel with each other in a horizontally long rectangle, and the fixed substrate from the center of the long side edge of the pair of fixed substrates 36 and 37. A pair of shaft portions 38 and 39 that extend in a direction perpendicular to 36 and 37 with a predetermined width and length and can be twisted and deformed along the length direction, and one of the long side edges of the horizontally long rectangle. The reflector 40 is connected to the tip of the shaft portion 38 at the center and connected to the tip of the shaft 39 at the center of the other long side edge. Since the central portion of the reflector 40 is supported by the shaft portions 38 and 39 that can be torsionally deformed, the reflector 40 can rotate with respect to the fixed substrates 36 and 37 with the line connecting the shaft portions 38 and 39 as the central axis. it can. Further, the natural frequency f 0 of the portion composed of the shaft portions 38 and 39 and the reflecting plate 40 is determined by the shape and mass of the reflecting plate 40 itself and the spring constant of the shaft portions 38 and 39.

また、反射板40の一面側には、光を反射するための反射面41が形成されている。この反射面41は、反射板40自体を鏡面仕上げして形成したり、反射率の高い膜(図示しない)を蒸着あるいは接着して形成したりしたものであってもよい。なお、この反射体35は、薄い半導体基板からエッチング処理等により一体的に切り出されたもので、金属膜の蒸着加工により高導電性を有している。   A reflective surface 41 for reflecting light is formed on one surface side of the reflective plate 40. The reflecting surface 41 may be formed by mirror-finishing the reflecting plate 40 itself, or may be formed by depositing or bonding a highly reflective film (not shown). The reflector 35 is integrally cut out from a thin semiconductor substrate by etching or the like, and has high conductivity by metal film vapor deposition.

支持基板45は絶縁性を有する材料からなり、その一面側の上部と下部には、前方へ突出する支持台45a、45bが形成されており、反射体35の固定基板36、37は、この上下の支持台45a、45bに接した状態で固定されている。また、支持基板45の一面側中央部の両端には、反射体35の反射板40の両端にそれぞれ対向する電極板46、47がパターン形成されている。この電極板46、47は、後述する駆動信号発生器55とともに反射体駆動手段50(図2参照)を構成するものであり、反射板40の両端部に静電力を交互にかつ周期的に印加して、反射板40を、軸部38、39を結ぶ線を中心に往復回転運動させる。なお、反射板40の回転軸は回折格子3(図2参照)の回折溝と平行となるように設定されている。このように構成された反射体35は、回折格子3からの回折光を反射板40の反射面41で受けて、その反射光を回折格子3へ入射させて、再度回折させる。   The support substrate 45 is made of an insulating material, and support bases 45a and 45b projecting forward are formed on the upper and lower portions on one side, and the fixed substrates 36 and 37 of the reflector 35 are formed on the upper and lower sides. Are fixed in contact with the support bases 45a and 45b. In addition, electrode plates 46 and 47 that are opposed to both ends of the reflection plate 40 of the reflector 35 are formed in patterns at both ends of the central portion on the one surface side of the support substrate 45. The electrode plates 46 and 47 constitute a reflector driving means 50 (see FIG. 2) together with a drive signal generator 55 which will be described later, and an electrostatic force is alternately and periodically applied to both ends of the reflector plate 40. Then, the reflecting plate 40 is reciprocally rotated around the line connecting the shaft portions 38 and 39. The rotation axis of the reflecting plate 40 is set to be parallel to the diffraction grooves of the diffraction grating 3 (see FIG. 2). The reflector 35 configured as described above receives the diffracted light from the diffraction grating 3 by the reflection surface 41 of the reflection plate 40, makes the reflected light incident on the diffraction grating 3, and diffracts it again.

一方、反射体駆動手段50(図2参照)の一部を構成する駆動信号発生器55は、例えば図5(a)、(b)に示すように、反射体35の電位を基準として電極板46、47に対して、固有振動数fに対応した周波数(あるいは固有振動数fの近傍の振動数に対応した周波数)を有し、位相が180°ずれた駆動信号Da、Dbを印加して、電極板46と反射板40の一端側との間及び電極板47と反射板40の他端側との間に、交互にかつ周期的に静電力(引力)を与え、反射板40を固有振動数fあるいはその近傍の振動数で所定角度範囲を往復回転させる。また、この駆動信号発生器55は、2つの駆動信号Da、Dbのいずれか一方を受光器14からの第1の電気信号b及び波長可変光源10からの第2の電気信号cをA/D変換するためのトリガ信号TrとしてA/D変換器15(図1参照)に出力する。なお、図5では、2つの駆動信号Da、Dbがデューティ比50%の矩形波の場合を示しているが、両信号のデューティ比は50%以下であってもよく、また、波形も矩形波に限らず、正弦波、三角波等であってもよい。 On the other hand, the drive signal generator 55 constituting a part of the reflector driving means 50 (see FIG. 2) is an electrode plate based on the potential of the reflector 35 as shown in FIGS. 5 (a) and 5 (b). applied to 46 and 47, has a frequency corresponding to the natural frequency f 0 (or a frequency corresponding to the frequency in the vicinity of the natural frequency f 0), the drive signal Da whose phases are shifted from each other by 180 °, the Db Then, an electrostatic force (attraction) is alternately and periodically applied between the electrode plate 46 and one end side of the reflection plate 40 and between the electrode plate 47 and the other end side of the reflection plate 40. Is rotated reciprocally within a predetermined angular range at the natural frequency f 0 or a frequency in the vicinity thereof. Further, the drive signal generator 55 converts one of the two drive signals Da and Db into the first electric signal b from the light receiver 14 and the second electric signal c from the wavelength variable light source 10 as A / D. A trigger signal Tr for conversion is output to the A / D converter 15 (see FIG. 1). FIG. 5 shows the case where the two drive signals Da and Db are rectangular waves with a duty ratio of 50%, but the duty ratio of both signals may be 50% or less, and the waveform is also a rectangular wave. It is not limited to sine waves, triangular waves, and the like.

このような反射体35及び反射体駆動手段50によって構成されたMEMSスキャナ60(図2参照)では、反射体35を、一対の固定基板36、37と、その縁部から所定幅で所定長さ延設され、その長さ方向に沿って捩じれ変形可能な軸部38、39と、軸部38、39の先端に自身の縁部で連結され、軸部38、39に対して対称な形状に形成され、一面側に反射面41が形成された反射板40とによって構成するとともに、反射体35の軸部38、39と反射板40とからなる部分の固有振動数fに対応した周波数の駆動信号によって反射板40に力を与えて、反射板40を固有振動数f又はその近傍の振動数で往復回転させている。 In the MEMS scanner 60 (see FIG. 2) configured by the reflector 35 and the reflector driving unit 50, the reflector 35 is provided with a predetermined width and a predetermined length from the pair of fixed substrates 36 and 37 and the edge thereof. The shaft portions 38 and 39 that are extended and twisted along the length of the shaft portions 38 and 39 are connected to the tips of the shaft portions 38 and 39 at their edges, and are symmetrical with respect to the shaft portions 38 and 39. The reflection plate 40 is formed with a reflection surface 41 formed on one side, and has a frequency corresponding to the natural frequency f 0 of the portion formed by the shaft portions 38 and 39 of the reflector 35 and the reflection plate 40. It empowers reflector 40 by a drive signal, thereby reciprocally rotating the reflective plate 40 at the natural frequency f 0 or frequencies in the vicinity thereof.

このため、僅かな電気エネルギーで反射板40を高速に往復回転させることができ、しかも、その回転中心が反射板40の内部(この場合、中央部)にあるので、反射板40の反射面41への入射光の反射角の変化量を大きくすることができる。なお、軸部38、39のバネ定数は、軸部38、39の長さ、幅、厚み、材質によって決まり、このバネ定数と、反射板40の形状、厚み、材質等で固有振動数fが決定され、これらのパラメータを選ぶことにより、固有振動数fを数100Hz〜数10kHzの範囲内で設定することができる。 For this reason, the reflector 40 can be reciprocally rotated at a high speed with a small amount of electrical energy, and the center of rotation is inside the reflector 40 (in this case, the central portion). The amount of change in the reflection angle of the incident light on can be increased. The spring constants of the shaft portions 38 and 39 are determined by the length, width, thickness, and material of the shaft portions 38 and 39, and the natural frequency f 0 depends on the spring constant and the shape, thickness, material, and the like of the reflector 40. By selecting these parameters, the natural frequency f 0 can be set within a range of several hundreds of Hz to several tens of kHz.

したがって、本発明のFBGセンサシステムの波長可変光源10(図2参照)は、上記のような反射体35及び反射体駆動手段50を用いてMEMSスキャナ60を構成するようにしたので、掃引速度の高速化(最大数10kHz)ができる。   Therefore, the wavelength tunable light source 10 (see FIG. 2) of the FBG sensor system of the present invention is configured with the MEMS scanner 60 using the reflector 35 and the reflector driving means 50 as described above. The speed can be increased (maximum several 10 kHz).

なお、上述の図4の説明では、反射体35を導電性の高い材料で構成していたが、反射体35を導電性の低い材料で構成する場合には、反射板40の反射面41と反対面の両側(全面でもよい)に電極板46、47と対向する電極板をそれぞれ設け、更に固定基板36、37の背面側にも電極板を設け、それらの電極板の間をパターン等によって接続する。そして、支持基板45の支持台45a、45bの表面に、固定基板36、37の背面側の電極板と接触する電極板をパターン形成して、その少なくとも一方を基準電位ラインとして上述した駆動信号発生器55に接続すればよい。   In the description of FIG. 4 described above, the reflector 35 is made of a material with high conductivity. However, when the reflector 35 is made of a material with low conductivity, the reflecting surface 41 of the reflector 40 Electrode plates facing the electrode plates 46 and 47 are provided on both sides (or the entire surface) of the opposite surface, and electrode plates are also provided on the back side of the fixed substrates 36 and 37, and the electrode plates are connected by a pattern or the like. . Then, the electrode plate that contacts the electrode plates on the back side of the fixed substrates 36 and 37 is formed on the surface of the support bases 45a and 45b of the support substrate 45, and at least one of them is used as a reference potential line to generate the drive signal described above. What is necessary is just to connect to the device 55.

また、固定基板36、37の一端側同士の間あるいは両端の間を連結して、固定基板をコの字枠あるいは矩形枠状に形成してもよい。また、反射板40の形状も任意であり、上述の横長矩形の他に、円形、楕円形、長円形、菱形、正方形、多角形等であってもよい。また、高速往復回転時の空気抵抗を減らすために、反射板40の内側に大きな穴あるいは多数の小さな穴を設けてもよい。   Further, the fixed substrates may be formed in a U-shaped frame or a rectangular frame shape by connecting one end side or both ends of the fixed substrates 36 and 37. Moreover, the shape of the reflecting plate 40 is also arbitrary, and may be a circle, an ellipse, an oval, a rhombus, a square, a polygon, or the like in addition to the above-described horizontally long rectangle. Further, in order to reduce air resistance during high-speed reciprocating rotation, a large hole or a large number of small holes may be provided inside the reflector plate 40.

また、上述の図4の説明では、反射体35の反射板40の両端にそれぞれ対向する2つの電極板46、47を設けていたが、一方側の電極板(例えば電極板46)だけによって静電力を印加してもよい。また、駆動方式についても、上述の静電力の他に、電磁力によって反射板40を往復回転させてもよい。この場合、例えば、上述の電極板46、47の代わりにコイルを用い、反射板40の両端部に磁性体あるいはコイルを設け、コイル間あるいはコイルと磁性体との間に発生する磁界による吸引力及び反発力によって、反射板40を往復回転させる。   In the description of FIG. 4 described above, the two electrode plates 46 and 47 facing each other at both ends of the reflection plate 40 of the reflector 35 are provided. However, only one electrode plate (for example, the electrode plate 46) is used for static electricity. Electric power may be applied. Moreover, also about a drive system, you may rotate the reflecting plate 40 reciprocatingly with an electromagnetic force other than the above-mentioned electrostatic force. In this case, for example, a coil is used in place of the electrode plates 46 and 47 described above, a magnetic material or a coil is provided at both ends of the reflection plate 40, and an attractive force due to a magnetic field generated between the coils or between the coil and the magnetic material. And the reflecting plate 40 is reciprocated by the repulsive force.

また、上述の静電力や電磁力を反射板40に直接与える方法の他に、超音波振動子等によって上述の固有振動数f又はその近傍の振動を反射体35全体に加えて、その振動を反射板40に伝達させて往復回転させることも可能である。この場合、振動子を支持基板45の背面側や支持台45a、45bの部分に設けることで、その振動を反射板40に効率的に伝達することができる。 In addition to the method for providing an electrostatic force or an electromagnetic force described above directly on the reflecting plate 40, the vibration of the natural frequency f 0 or near the above as well as the entire reflector 35 by the ultrasonic oscillator or the like, the vibration It is also possible to transmit the light to the reflecting plate 40 for reciprocal rotation. In this case, the vibration can be efficiently transmitted to the reflection plate 40 by providing the vibrator on the back side of the support substrate 45 and the support bases 45a and 45b.

なお、図1に示したFBGセンサシステムに用いられる高速波長掃引の可能な波長可変光源10としては、図2及び図3に示したMEMSスキャナを用いて波長掃引させるものに限定されるわけではなく、例えば、MEMSスキャナの代わりにガルバノメーターとこのガルバノメーターに固定されたミラーとを用いて波長掃引させるようなものであってもよい(例えば、「Extended-Cavity Semiconductor Wavelength-Swept Laser for Biomedical Imaging」S.H.Yun, C.Boudoux, M.C.Pierce, J.F.de Boer, G.J.Tearney, and B.E.Bouma, IEEE Photonic Technology Letters VOL.16, NO.1, JANUARY 2004参照)。あるいは、MEMSスキャナの代わりにポリゴンミラーを用いて波長掃引させるようなものであってもよい。   The wavelength tunable light source 10 capable of high-speed wavelength sweep used in the FBG sensor system shown in FIG. 1 is not limited to the wavelength swept using the MEMS scanner shown in FIGS. For example, a wavelength sweep may be performed using a galvanometer and a mirror fixed to the galvanometer instead of the MEMS scanner (for example, “Extended-Cavity Semiconductor Wavelength-Swept Laser for Biomedical Imaging”). (See SHYun, C. Boudoux, MCPierce, JFde Boer, GJTearney, and BEBouma, IEEE Photonic Technology Letters VOL. 16, NO.1, JANUARY 2004). Alternatively, the wavelength may be swept using a polygon mirror instead of the MEMS scanner.

また、図1に示したFBGセンサシステムでは、各FBG13a〜13cからの反射光を受光器14に入射するようにしたが、各FBG13a〜13cからの透過光を受光器14に入射するようにしてもよい。   In the FBG sensor system shown in FIG. 1, the reflected light from each of the FBGs 13 a to 13 c is incident on the light receiver 14, but the transmitted light from each of the FBGs 13 a to 13 c is incident on the light receiver 14. Also good.

本発明の実施形態の構成を示す図The figure which shows the structure of embodiment of this invention 波長可変光源の構成を示す図Diagram showing the configuration of a wavelength tunable light source 波長可変光源の別の構成を示す図The figure which shows another structure of a wavelength variable light source MEMSスキャナを説明するための分解斜視図Exploded perspective view for explaining a MEMS scanner 駆動信号を説明するための図Diagram for explaining drive signals MEMSスキャナによる波長掃引について説明するための図The figure for demonstrating the wavelength sweep by a MEMS scanner 反射波長の波長ずれの補正方法を説明するための図The figure for demonstrating the correction method of the wavelength shift of a reflected wavelength 反射波長の波長ずれの補正方法を説明するための図The figure for demonstrating the correction method of the wavelength shift of a reflected wavelength

符号の説明Explanation of symbols

1・・・半導体レーザ(LD)、2・・・コリメートレンズ、3・・・回折格子、4・・・光共振器、5,14・・・受光器(PD)、6・・・光分岐手段、10・・・波長可変光源、11・・・光サーキュレータ、12a〜12c・・・ファイバ、13a〜13c・・・FBG、15・・・A/D変換器、16a〜16c・・・メモリ、17・・・ピーク値検出手段、18・・・ピーク値波長算出手段、19・・・反射波長算出手段、20・・・処理手段、35・・・反射体、36,37・・・固定基板、38,39・・・軸部、40・・・反射板、41・・・反射面、45・・・支持基板、45a,45b・・・支持台、46,47・・・電極板、50・・・反射体駆動手段、55・・・駆動信号発生器、60・・・MEMSスキャナ。 DESCRIPTION OF SYMBOLS 1 ... Semiconductor laser (LD), 2 ... Collimating lens, 3 ... Diffraction grating, 4 ... Optical resonator, 5, 14 ... Light receiver (PD), 6 ... Optical branching Means: 10 ... variable wavelength light source, 11 ... optical circulator, 12a-12c ... fiber, 13a-13c ... FBG, 15 ... A / D converter, 16a-16c ... memory , 17... Peak value detection means, 18... Peak value wavelength calculation means, 19... Reflection wavelength calculation means, 20... Processing means, 35. Substrate, 38, 39 ... shaft, 40 ... reflector, 41 ... reflector, 45 ... support substrate, 45a, 45b ... support, 46, 47 ... electrode plate, 50 ... reflector driving means, 55 ... drive signal generator, 60 ... MEMS scanner.

Claims (8)

ファイバ(12a〜12c)を介して測定対象に設けられたFBG(13a〜13c)に所定の波長範囲の光を測定光として入射し、該測定光の反射光又は透過光から当該FBGの反射波長を測定するFBGセンサシステムにおいて、
前記所定の波長範囲の光を含んで所定の掃引周期で波長掃引された光を発振し、該光を前記測定光として前記FBGに入射させる波長可変光源(10)と、
前記FBGに入射された前記測定光の該FBGからの反射光又は透過光を受けて第1の電気信号に変換する第1の受光器(14)と、
該第1の受光器から出力される前記第1の電気信号と前記波長可変光源の発振波長から前記FBGの反射波長を仮の反射波長λとして測定し、測定した該仮の反射波長λに基づいて、予めメモリ(16c)に記憶されている、前記ファイバの長さと前記波長可変光源の前記所定の掃引周期とに起因して発生する前記FBGの反射波長の測定時の波長ずれを補正するための波長補正値λを読み出し、読み出した該波長補正値λで前記仮の反射波長λを補正して波長ずれを含まない当該FBGの反射波長λを求める処理手段(20)とを備えたことを特徴とするFBGセンサシステム。
Light in a predetermined wavelength range is incident as measurement light on the FBG (13a to 13c) provided in the measurement target via the fibers (12a to 12c), and the reflected wavelength of the FBG from the reflected light or transmitted light of the measurement light In the FBG sensor system for measuring
A wavelength tunable light source (10) that oscillates light that has been swept in a predetermined sweep period including light in the predetermined wavelength range, and that makes the light incident on the FBG as the measurement light;
A first light receiver (14) that receives reflected light or transmitted light from the FBG of the measurement light incident on the FBG and converts it into a first electrical signal;
The reflected wavelength of the FBG is measured as a temporary reflected wavelength λ T from the first electric signal output from the first light receiver and the oscillation wavelength of the wavelength variable light source, and the measured temporary reflected wavelength λ T The wavelength shift at the time of measuring the reflected wavelength of the FBG caused by the length of the fiber and the predetermined sweep period of the wavelength tunable light source, which is stored in advance in the memory (16c), is corrected based on reading the wavelength correction value lambda C for, read in said wavelength correction value lambda C by correcting the reflection wavelength lambda T of the temporary seek reflection wavelength lambda F of the FBG containing no wavelength shift processing means (20) An FBG sensor system comprising:
前記処理手段は、前記第1の受光器から出力される前記第1の電気信号の中から前記FBGの反射波長に対応するピーク値を検出するとともに、検出した該ピーク値に対応した光が前記第1の受光器に入射された時の前記波長可変光源の発振波長を求め、求めた該発振波長を前記FBGの前記仮の反射波長λとすることを特徴とする請求項1に記載のFBGセンサシステム。 The processing means detects a peak value corresponding to the reflected wavelength of the FBG from the first electric signal output from the first light receiver, and light corresponding to the detected peak value is The oscillation wavelength of the wavelength tunable light source when incident on the first light receiver is obtained, and the obtained oscillation wavelength is used as the provisional reflection wavelength λ T of the FBG. FBG sensor system. 前記波長可変光源は、
一方のレーザ光出射端面がARコートされている半導体レーザ(1)と、
該半導体レーザのARコートされている端面から出射された光をコリメートするコリメートレンズ(2)と、
該コリメートレンズから出射されたコリメート光を受けて波長に応じた角度で回折させる回折格子(3)と、
反射体(35)と反射体駆動手段(50)とを含んで構成され、前記回折格子から入射される前記コリメート光に対する回折光が、前記反射体の反射面で該回折格子へ反射されて、再び該回折格子で回折され、それによって得られた回折光が前記コリメートレンズを介して前記半導体レーザに入射されるとき、該半導体レーザに入射される回折光が所望の波長の光となるようにするとともに、該所望の波長が前記所定の波長範囲を含んで往復掃引されるように前記反射体の反射面の角度を前記反射体駆動手段により前記所定の掃引周期で繰り返し変化させるMEMSスキャナ(60)とを備えたことを特徴とする請求項1又は2に記載のFBGセンサシステム。
The wavelength tunable light source is
A semiconductor laser (1) in which one laser light emitting end face is AR coated;
A collimating lens (2) for collimating light emitted from the AR-coated end face of the semiconductor laser;
A diffraction grating (3) that receives collimated light emitted from the collimating lens and diffracts the collimated light at an angle corresponding to the wavelength;
A diffracted light for the collimated light incident from the diffraction grating is reflected to the diffraction grating by the reflection surface of the reflector, and includes a reflector (35) and a reflector driving means (50). When diffracted light is again diffracted by the diffraction grating and incident on the semiconductor laser through the collimating lens, the diffracted light incident on the semiconductor laser becomes light of a desired wavelength. In addition, the MEMS scanner (60) that repeatedly changes the angle of the reflecting surface of the reflector by the reflector driving means at the predetermined sweep period so that the desired wavelength is reciprocally swept including the predetermined wavelength range. The FBG sensor system according to claim 1 or 2, further comprising:
前記MEMSスキャナの反射体は、
固定基板(36、37)と、
該固定基板の縁部から所定幅で所定長さ延設され、その長さ方向に沿って捩じれ変形可能な軸部(38、39)と、
該軸部の先端に自身の縁部で連結されて形成され、一面側に前記回折格子からの回折光を反射させるための前記反射面が設けられた反射板(40)とを有しており、かつ、
前記MEMSスキャナの反射体駆動手段は、
前記反射体の軸部と反射板とからなる部分の固有振動数に対応した周波数の駆動信号によって前記反射板に力を与えて、該反射板を前記固有振動数又はそれに近い振動数の前記所定の掃引周期で往復回転させるように構成されていることを特徴とする請求項3に記載のFBGセンサシステム。
The reflector of the MEMS scanner is:
A fixed substrate (36, 37);
Shaft portions (38, 39) that extend from the edge of the fixed substrate with a predetermined width and have a predetermined length and can be twisted and deformed along the length direction;
A reflection plate (40) formed by being connected to the tip of the shaft portion at its edge and provided with the reflection surface for reflecting the diffracted light from the diffraction grating on one surface side; ,And,
The reflector driving means of the MEMS scanner includes:
A force is applied to the reflecting plate by a driving signal having a frequency corresponding to the natural frequency of the portion composed of the shaft portion and the reflecting plate of the reflector, and the reflecting plate is given the predetermined frequency at or near the natural frequency. The FBG sensor system according to claim 3, wherein the FBG sensor system is configured to reciprocate at a sweep cycle of 5.
前記波長可変光源は、さらに、
前記回折格子の0次光が出射される光路上に設けられて所定の波長の光を透過させる光共振器(4)と、
該光共振器から出射される透過光を受けて第2の電気信号に変換する第2の受光器(5)とを備え、該第2の受光器から出力される前記第2の電気信号から当該波長可変光源の発振波長を求めることを可能にしたことを特徴とする請求項3又は4に記載のFBGセンサシステム。
The wavelength tunable light source further includes:
An optical resonator (4) provided on an optical path from which the zero-order light of the diffraction grating is emitted and transmitting light of a predetermined wavelength;
A second light receiver (5) that receives the transmitted light emitted from the optical resonator and converts it into a second electric signal, and from the second electric signal output from the second light receiver. 5. The FBG sensor system according to claim 3, wherein an oscillation wavelength of the wavelength tunable light source can be obtained.
前記波長可変光源は、
前記回折格子の0次光を出力光とすることを特徴とする請求項3又は4に記載のFBGセンサシステム。
The wavelength tunable light source is
5. The FBG sensor system according to claim 3, wherein the 0th-order light of the diffraction grating is output light.
前記波長可変光源は、さらに、
前記回折格子の0次光が出射される光路上に設けられ、該0次光を2つに分岐して一方の0次光を前記出力光として出射する光分岐手段(6)と、
該光分岐手段から出射される他方の0次光を受けて所定の波長の光を透過させる光共振器(4)と、
該光共振器から出射される透過光を受けて第2の電気信号に変換する第2の受光器(5)とを備え、該第2の受光器から出力される前記第2の電気信号から当該波長可変光源の発振波長を求めることを可能にしたことを特徴とする請求項6に記載のFBGセンサシステム。
The wavelength tunable light source further includes:
A light branching means (6) provided on an optical path from which the zero-order light of the diffraction grating is emitted, branching the zero-order light into two and emitting one zero-order light as the output light;
An optical resonator (4) for receiving the other zero-order light emitted from the light branching means and transmitting light of a predetermined wavelength;
A second light receiver (5) that receives the transmitted light emitted from the optical resonator and converts the transmitted light into a second electric signal, and from the second electric signal output from the second light receiver. 7. The FBG sensor system according to claim 6, wherein the oscillation wavelength of the wavelength tunable light source can be obtained.
前記処理手段は、
前記第1の受光器からの前記第1の電気信号及び前記第2の受光器からの前記第2の電気信号を受けてそれぞれディジタル値に変換するA/D変換器(15)と、
該A/D変換器から出力される前記第1の電気信号のディジタル値を順次所定のアドレスに記憶する第1のメモリ(16a)と、
前記A/D変換器から出力される前記第2の電気信号のディジタル値を順次所定のアドレスに記憶する第2のメモリ(16b)と、
前記第1のメモリの前記所定のアドレスに記憶されているディジタル値を読み出して、前記FBGの反射波長に対応するピーク値を検出するピーク値検出手段(17)と、
前記第2のメモリの前記所定のアドレスに記憶されている前記波長可変光源の発振波長を求めるためのディジタル値を読み出して、前記光共振器の前記所定の波長が記憶されているアドレスを検出し、検出した該アドレスと前記ピーク値検出手段から出力される前記ピーク値が記憶されているアドレスとに基づいて、当該ピーク値に対応した光が前記第1の受光器に入射された時の当該波長可変光源の発振波長を求め、求めた該発振波長を前記FBGの前記仮の反射波長λとするピーク値波長算出手段(18)と、
前記FBGの反射波長の測定時の波長ずれを補正するための前記波長補正値λを記憶保持する第3のメモリ(16c)と、
前記ピーク値波長算出手段から出力される前記仮の反射波長λに基づいて、前記第3のメモリから前記波長補正値λを読み出すとともに、読み出した該波長補正値λで前記仮の反射波長λを補正して前記FBGの反射波長λを求める反射波長算出手段(19)とを備えたことを特徴とする請求項5又は7に記載のFBGセンサシステム。
The processing means includes
An A / D converter (15) that receives the first electric signal from the first light receiver and the second electric signal from the second light receiver and converts them into digital values, respectively;
A first memory (16a) for sequentially storing a digital value of the first electric signal output from the A / D converter at a predetermined address;
A second memory (16b) for sequentially storing the digital value of the second electric signal output from the A / D converter at a predetermined address;
A peak value detecting means (17) for reading a digital value stored in the predetermined address of the first memory and detecting a peak value corresponding to the reflection wavelength of the FBG;
A digital value for obtaining the oscillation wavelength of the wavelength tunable light source stored at the predetermined address of the second memory is read, and an address where the predetermined wavelength of the optical resonator is stored is detected. Based on the detected address and the address at which the peak value output from the peak value detecting means is stored, the light corresponding to the peak value is incident on the first light receiver. A peak value wavelength calculating means (18) for obtaining an oscillation wavelength of the wavelength tunable light source and setting the obtained oscillation wavelength as the provisional reflection wavelength λ T of the FBG;
A third memory (16c) for storing and holding the wavelength correction value λ C for correcting a wavelength shift at the time of measuring the reflected wavelength of the FBG;
Based on the provisional reflection wavelength λ T output from the peak value wavelength calculation means, the wavelength correction value λ C is read from the third memory, and the provisional reflection is performed with the read wavelength correction value λ C. The FBG sensor system according to claim 5 or 7, further comprising a reflection wavelength calculation means (19) for correcting the wavelength λ T to obtain the reflection wavelength λ F of the FBG.
JP2006223401A 2006-08-18 2006-08-18 FBG sensor system Expired - Fee Related JP4399444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006223401A JP4399444B2 (en) 2006-08-18 2006-08-18 FBG sensor system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006223401A JP4399444B2 (en) 2006-08-18 2006-08-18 FBG sensor system

Publications (2)

Publication Number Publication Date
JP2008046046A true JP2008046046A (en) 2008-02-28
JP4399444B2 JP4399444B2 (en) 2010-01-13

Family

ID=39179921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006223401A Expired - Fee Related JP4399444B2 (en) 2006-08-18 2006-08-18 FBG sensor system

Country Status (1)

Country Link
JP (1) JP4399444B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110249973A1 (en) * 2010-04-12 2011-10-13 University of Maribor Opto-electronic signal processing methods, systems, and apparatus for optical sensor interrogation
JP2013130467A (en) * 2011-12-21 2013-07-04 Anritsu Corp Fbg sensor system
CN109506684A (en) * 2018-12-05 2019-03-22 山东微感光电子有限公司 The wavelength modification method and system of quick laser scanning device demodulation FBG sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110249973A1 (en) * 2010-04-12 2011-10-13 University of Maribor Opto-electronic signal processing methods, systems, and apparatus for optical sensor interrogation
US8477296B2 (en) * 2010-04-12 2013-07-02 University of Maribor Opto-electronic signal processing methods, systems, and apparatus for optical sensor interrogation
JP2013130467A (en) * 2011-12-21 2013-07-04 Anritsu Corp Fbg sensor system
CN109506684A (en) * 2018-12-05 2019-03-22 山东微感光电子有限公司 The wavelength modification method and system of quick laser scanning device demodulation FBG sensor
CN109506684B (en) * 2018-12-05 2020-11-17 山东微感光电子有限公司 Wavelength correction method and system for fast scanning laser demodulation FBG sensor

Also Published As

Publication number Publication date
JP4399444B2 (en) 2010-01-13

Similar Documents

Publication Publication Date Title
JP4557907B2 (en) Wavelength calibration apparatus and method for MEMS wavelength swept light source
JP5308502B2 (en) FBG sensor system
JP4557730B2 (en) Optical spectrum analyzer
JP2006049785A (en) Wavelength variable light source, and distortion measurement equipment using the same
JP5308198B2 (en) Optical pulse generator and optical measuring instrument using the same
JPWO2017081808A1 (en) Measuring method and apparatus
JP4399444B2 (en) FBG sensor system
JP4435137B2 (en) Fast wavelength swept light source
JP4787789B2 (en) FBG sensor system
JP4068102B2 (en) FBG strain sensor system
JP2006145270A (en) Mems optical spectrum analyzer and its wavelength calibration method
JP5380644B2 (en) Physical quantity measurement system
JP6943675B2 (en) External resonance type laser module, analyzer, external resonance type laser module drive method, program
JP5103412B2 (en) Wavelength swept light source
JP2006266771A (en) Gas sensor
JP2008249735A (en) Gas sensor
US7406218B2 (en) FBG sensor system
JP5171241B2 (en) Physical quantity measurement system
JP6082222B2 (en) Wavelength swept light source
JP4486951B2 (en) FBG sensor system
Ohba et al. Accuracy improvement of terminal voltage self‐coupled laser distance sensor
RU2752133C1 (en) Multichannel fiber-optic system for detecting and measuring parameters of acoustic emission signals
EP4293384A1 (en) High-speed time-of-interference light detection and ranging apparatus
JP2008277683A (en) Wavelength scanning laser light source
US20240061093A1 (en) Angle measuring device and angle measuring method for scanning device of laser radar

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees