JP4068102B2 - FBG strain sensor system - Google Patents

FBG strain sensor system Download PDF

Info

Publication number
JP4068102B2
JP4068102B2 JP2005120031A JP2005120031A JP4068102B2 JP 4068102 B2 JP4068102 B2 JP 4068102B2 JP 2005120031 A JP2005120031 A JP 2005120031A JP 2005120031 A JP2005120031 A JP 2005120031A JP 4068102 B2 JP4068102 B2 JP 4068102B2
Authority
JP
Japan
Prior art keywords
wavelength
fbg
light
light source
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005120031A
Other languages
Japanese (ja)
Other versions
JP2006300609A (en
Inventor
崇記 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2005120031A priority Critical patent/JP4068102B2/en
Publication of JP2006300609A publication Critical patent/JP2006300609A/en
Application granted granted Critical
Publication of JP4068102B2 publication Critical patent/JP4068102B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、FBG(ファイバブラッググレーティング)に波長可変光源と受光器を組み合わせて遠隔地にある測定対象の歪測定や温度測定等を行うFBG歪センサシステムに関し、特に波長可変光源を往復掃引させ、その掃引方向の違いによって生じる波長ずれの差を検出することによって、例えFBGまでのファイバ長(光路長)が不明な場合であっても測定対象の歪み測定を高速かつ正確に行えるとともに、FBGまでの光路長の測定をも可能にしたFBG歪センサシステムに関する。   The present invention relates to an FBG strain sensor system for performing strain measurement, temperature measurement, etc. of a measurement object in a remote place by combining a wavelength variable light source and a light receiver with an FBG (fiber Bragg grating), and in particular, reciprocating a wavelength variable light source, By detecting the difference in wavelength shift caused by the difference in the sweep direction, even if the fiber length (optical path length) to the FBG is unknown, the distortion of the measurement object can be measured at high speed and accurately. The present invention relates to an FBG strain sensor system that can also measure the optical path length of the FBG.

FBGは、ファイバの所定長さ範囲のコア部の屈折率を一定間隔で周期的に変化させたもので、このFBGの一端側に光を入射すると、その入射光のうち特定波長(ブラッグ波長という)の光だけが反射されて、他の波長の光は透過する。このブラッグ波長は、屈折率が一定間隔で周期的に変化している部分が受ける軸方向の歪み(圧縮、伸長)に応じて変化する。したがって、このFBGの一端側に光を入射して反射してくる光の波長(反射波長)あるいは透過してくる光の波長を測定することで、FBGに加わった歪みを測定することができる。   The FBG is obtained by periodically changing the refractive index of the core portion within a predetermined length range of the fiber at regular intervals. When light is incident on one end side of the FBG, a specific wavelength (referred to as a Bragg wavelength) is included in the incident light. ) Is reflected, and light of other wavelengths is transmitted. This Bragg wavelength changes according to axial distortion (compression, expansion) received by a portion whose refractive index periodically changes at regular intervals. Therefore, the strain applied to the FBG can be measured by measuring the wavelength of light that is incident upon and reflected from one end of the FBG (reflection wavelength) or the wavelength of light that is transmitted.

従来、このようなFBGの性質を利用して測定対象の歪測定や温度測定等を行うFBG歪センサシステムとして、FBGの反射波長の測定を、波長可変光源と受光器を組み合わせて行うものがあった。(例えば、特許文献1参照)すなわち、波長可変光源はFBGへ入射する光(測定光)の波長を変えて出射し、受光器はそのFBGへ出射された光に対するFBGからの反射光の光強度を検出する。この場合、表示器を想定し、横軸に測定光の波長(波長可変光源の発振波長)、縦軸に受光器で検出した反射光の光強度をプロットしてFBGからの反射光のスペクトルを描いている。したがって、FBGの反射波長は、受光器がFBGからの反射光のスペクトル(反射スペクトル)のピーク値を検出した時の、波長可変光源からFBGへ出射している測定光の波長と同一であるとして測定される。   Conventionally, as an FBG strain sensor system for measuring strain or temperature of an object to be measured using such properties of FBG, there is one that measures the reflected wavelength of FBG by combining a wavelength variable light source and a light receiver. It was. (For example, refer to Patent Document 1) That is, the wavelength variable light source emits light having a different wavelength (measurement light) incident on the FBG, and the light receiver reflects the light intensity of the reflected light from the FBG with respect to the light emitted to the FBG. Is detected. In this case, assuming a display, the wavelength of the measurement light (oscillation wavelength of the variable wavelength light source) is plotted on the horizontal axis, and the light intensity of the reflected light detected by the light receiver is plotted on the vertical axis, and the spectrum of the reflected light from the FBG is plotted. I'm drawing. Accordingly, the reflection wavelength of the FBG is assumed to be the same as the wavelength of the measurement light emitted from the wavelength tunable light source to the FBG when the light detector detects the peak value of the spectrum (reflection spectrum) of the reflected light from the FBG. Measured.

特開2005−62138号公報JP 2005-62138 A 「Extended-Cavity Semiconductor Wavelength-Swept Laser for Biomedical Imaging」S.H.Yun, C.Boudoux, M.C.Pierce, J.F.de Boer, G.J.Tearney, and B.E.Bouma, IEEE Photonic Technology Letters VOL.16, NO.1, JANUARY 2004`` Extended-Cavity Semiconductor Wavelength-Swept Laser for Biomedical Imaging '' S.H.Yun, C.Boudoux, M.C.Pierce, J.F.de Boer, G.J.Tearney, and B.E.Bouma, IEEE Photonic Technology Letters VOL.16, NO.1, JANUARY 2004

このような従来のFBG歪センサシステムにおけるFBGの反射波長の測定は、波長可変光源−FBG間のファイバ長Lによる測定光と反射光の遅れ時間τ、すなわち波長可変光源から出射された測定光がFBGで反射されて反射光として受光器に入射されるまでの時間τが、波長可変光源の波長可変時間(掃引速度)に対して十分小さく無視できることを前提としている。なお、遅れ時間τは、nをファイバの屈折率、Cを光速とすると、(1)式で表される。
τ=2nL/C (1)
The measurement of the reflection wavelength of the FBG in such a conventional FBG strain sensor system is performed by measuring the delay time τ between the measurement light and the reflected light due to the fiber length L between the wavelength variable light source and the FBG, that is, the measurement light emitted from the wavelength variable light source. It is premised that the time τ from being reflected by the FBG and being incident on the light receiver as reflected light is sufficiently small and negligible with respect to the wavelength variable time (sweep speed) of the wavelength variable light source. The delay time τ is expressed by the equation (1) where n is the refractive index of the fiber and C is the speed of light.
τ = 2nL / C (1)

ここで、遅れ時間τと波長可変光源の掃引速度との関係を具体的に説明する。波長可変光源の掃引がほぼ線形な場合において、発振波長λは、Kを掃引速度に比例した定数、tを時間とすると、(2)式で表される。
λ=λ0+K・t (2)
(2)式において、t=0のときに、FBGの反射波長に対応する波長λFが波長可変光源で発振されてFBGに出射され、τ=2nL/C時間後に、その反射光がFBGから受光器に入射されたとすると、FBGの反射波長は見かけ上、仮の反射波長λTとして(3)式のように表される。
λT=λF+K・2nL/C (3)
したがって、(3)式から分かるように、Kが非常に小さい(掃引速度が非常に遅い)とき、またファイバ長Lが非常に短いときは、(4)式のように見なすことができる。
λT=λF (4)
Here, the relationship between the delay time τ and the sweep speed of the wavelength tunable light source will be specifically described. In the case where the sweep of the wavelength tunable light source is almost linear, the oscillation wavelength λ is expressed by the following equation (2), where K is a constant proportional to the sweep speed and t is time.
λ = λ 0 + K · t (2)
In the equation (2), when t = 0, a wavelength λ F corresponding to the reflected wavelength of the FBG is oscillated by the wavelength variable light source and emitted to the FBG, and after τ = 2 nL / C time, the reflected light is emitted from the FBG. Assuming that the light is incident on the light receiver, the reflected wavelength of the FBG is apparently expressed as the provisional reflected wavelength λ T as shown in the equation (3).
λ T = λ F + K · 2 nL / C (3)
Therefore, as can be seen from the equation (3), when K is very small (the sweep speed is very slow) and the fiber length L is very short, it can be regarded as the equation (4).
λ T = λ F (4)

波長可変光源として、回折格子、ミラー等をモータ駆動して半導体レーザの発振波長を可変(掃引)するような外部共振型の波長可変光源を用いる場合には、掃引速度が遅いために、上記のような方法でFBGの反射波長を測定しても問題はなかった。しかしながら、歪み測定を高速化するために、波長可変光源の掃引速度を出来るだけ速くするような場合には、上記(3)式で示したように、遅れ時間τ=2nL/Cの影響を受けて反射スペクトルがずれる。この結果、FBGの本来の反射波長λFが見かけ上、仮の反射波長λTとして測定され、次のような問題を生じる。 When using an external resonance type wavelength tunable light source that variably (sweeps) the oscillation wavelength of a semiconductor laser by driving a diffraction grating, mirror, or the like as a wavelength tunable light source, the sweep speed is low. There was no problem even if the reflection wavelength of FBG was measured by such a method. However, when the sweep speed of the wavelength tunable light source is made as fast as possible in order to speed up the distortion measurement, it is affected by the delay time τ = 2 nL / C as shown in the above equation (3). And the reflection spectrum shifts. As a result, the original reflection wavelength λ F of the FBG is apparently measured as the provisional reflection wavelength λ T , resulting in the following problems.

すなわち、FBG歪センサシステムにおいて、反射波長の異なる複数のFBGを直列に接続した場合、スペクトル中にはFBGの数だけFBGからの反射スペクトルが観測される。歪み測定では、どの反射スペクトルがどのFBGからの反射光なのかを識別する必要があるが、FBGまでのファイバ長Lが不明の場合には、その識別が困難となる。例えば、FBGの反射波長が1500nmから1570nmまで5nm間隔に15本のFBGが接続されているとする。その場合、1550nmに反射スペクトルが観測されたとしても、その反射スペクトルは、近くにある反射波長1550nmのFBGのものなのか、遠方にある反射波長1545nmのFBGの反射スペクトルがずれて(シフトして)観測されているものなのかを判別することができない。したがって、それぞれのFBGの反射波長(反射スペクトル)を正確に測定するためには、それぞれのFBGまでのファイバ長LをOTDR等で予め測定してそれによる遅れ時間τを補正し、かつ、FBGの反射波長の短いものが近くに、長いものが遠方になるように順番に並べることが必要となる。その結果、FBG歪センサシステムの構成が複雑になり、歪み測定の操作性が悪くなるという問題を生じる。   That is, in the FBG strain sensor system, when a plurality of FBGs having different reflection wavelengths are connected in series, a reflection spectrum from the FBG is observed in the spectrum by the number of FBGs. In the distortion measurement, it is necessary to identify which reflection spectrum is the reflected light from which FBG. However, when the fiber length L up to the FBG is unknown, the identification becomes difficult. For example, it is assumed that 15 FBGs are connected at an interval of 5 nm from an FBG reflection wavelength of 1500 nm to 1570 nm. In that case, even if a reflection spectrum is observed at 1550 nm, the reflection spectrum of the FBG with a reflection wavelength of 1550 nm in the vicinity or the reflection spectrum of an FBG with a reflection wavelength of 1545 nm in the distance is shifted (shifted). ) Cannot determine if it is being observed. Therefore, in order to accurately measure the reflection wavelength (reflection spectrum) of each FBG, the fiber length L up to each FBG is measured in advance with OTDR or the like to correct the delay time τ, and the FBG It is necessary to arrange in order so that the short reflection wavelength is near and the long reflection wavelength is far away. As a result, the configuration of the FBG strain sensor system is complicated, and the operability of strain measurement is deteriorated.

本発明は、波長可変光源を往復掃引させ、その掃引方向の違いによって生じる波長ずれの差を検出することによって、これらの課題を解決し、例えFBGまでの光路長が不明な場合であっても測定対象の歪み測定を高速かつ正確に行えるとともに、FBGまでの光路長の測定をも可能にしたFBG歪センサシステムを提供することを目的としている。   The present invention solves these problems by reciprocally sweeping a wavelength tunable light source and detecting the difference in wavelength shift caused by the difference in the sweep direction, even if the optical path length to the FBG is unknown. An object of the present invention is to provide an FBG strain sensor system capable of measuring a strain to be measured at high speed and accurately and also capable of measuring an optical path length up to the FBG.

上記課題を解決するために、本発明の請求項1のFBG歪センサシステムでは、歪みの測定対象に設けられたFBG(13a〜13c)と、所定の波長範囲の光を発振し、該光を測定光として前記FBGに入射させる波長可変光源(10)と、前記FBGに入射された前記測定光であって、該FBGによって反射された光又は該FBGを透過した光を受けて第1の電気信号に変換する第1の受光器(14)と、該第1の受光器から出力される前記第1の電気信号と前記波長可変光源の発振波長から前記FBGの反射波長を測定して当該FBGに加わった歪み量を求める処理手段(20)とを備えたFBG歪センサシステムにおいて、前記波長可変光源は、前記所定の波長範囲を含んで短波から長波へかつ長波から短波へ所定の掃引周期で光を発振し、該光を前記測定光として前記FBGに入射させ、前記処理手段は、前記波長可変光源が前記所定の波長範囲を含んで短波から長波へ掃引している期間に前記第1の受光器から出力される前記第1の電気信号と当該波長可変光源の発振波長から前記FBGの反射波長を第1の仮の反射波長λTUとして測定し、かつ、前記波長可変光源が前記所定の波長範囲を含んで長波から短波へ掃引している期間に前記第1の受光器から出力される前記第1の電気信号と当該波長可変光源の発振波長から前記FBGの反射波長を第2の仮の反射波長λTDとして測定し、さらに、測定した前記第1の仮の反射波長λTU及び前記第2の仮の反射波長λTDに基づいて、前記波長可変光源から前記FBGまで及び該FBGから前記第1の受光器までの光路長に起因して発生する、前記FBGの反射波長の測定時の波長ずれを含まない当該FBGの反射波長λFを求めるようにした。 In order to solve the above problems, in the FBG strain sensor system according to claim 1 of the present invention, the FBG (13a to 13c) provided in a strain measurement target and light in a predetermined wavelength range are oscillated, and the light is transmitted. A wavelength tunable light source (10) that is incident on the FBG as measurement light, and a first electric light that receives the light reflected by the FBG or transmitted through the FBG, which is the measurement light incident on the FBG. A reflected wavelength of the FBG is measured from a first light receiver (14) for converting the signal, the first electric signal output from the first light receiver and the oscillation wavelength of the wavelength tunable light source, and the FBG is measured. And a processing unit (20) for determining the amount of distortion applied to the wavelength tunable light source, wherein the wavelength tunable light source includes the predetermined wavelength range from a short wave to a long wave and from a long wave to a short wave at a predetermined sweep period. the light And the processing unit is configured to cause the wavelength tunable light source to sweep from a short wave to a long wave including the predetermined wavelength range. The reflected wavelength of the FBG is measured as the first temporary reflected wavelength λ TU from the first electrical signal output from the oscillation wavelength of the wavelength tunable light source, and the wavelength tunable light source is in the predetermined wavelength range. The reflected wavelength of the FBG is second provisionally reflected from the first electrical signal output from the first light receiver and the oscillation wavelength of the wavelength tunable light source during a period of sweeping from a long wave to a short wave. measured as the wavelength lambda TD, further measured on the basis of the first temporary reflection wavelength lambda TU and reflection wavelength lambda TD of the second temporary, said from the FBG to and the FBG from the variable wavelength light source first Due to the optical path length up to 1 receiver Thus, the reflection wavelength λ F of the FBG that does not include a wavelength shift at the time of measurement of the reflection wavelength of the FBG is calculated.

また、本発明の請求項2のFBG歪センサシステムでは、上述した請求項1のFBG歪センサシステムにおいて、前記処理手段が、さらに、前記FBGの前記第1の仮の反射波長λTU及び前記第2の仮の反射波長λTDに基づいて、前記波長可変光源から前記FBGまで及び該FBGから前記第1の受光器までの前記光路長を求めるようにした。 In the FBG strain sensor system according to claim 2 of the present invention, in the FBG strain sensor system according to claim 1 described above, the processing means further includes the first temporary reflection wavelength λ TU of the FBG and the first The optical path length from the wavelength tunable light source to the FBG and from the FBG to the first light receiver is obtained based on the provisional reflection wavelength λ TD of 2.

また、本発明の請求項3のFBG歪センサシステムでは、上述した請求項1のFBG歪センサシステムにおいて、前記処理手段は、前記波長可変光源が前記所定の波長範囲を含んで短波から長波へ掃引している期間に前記第1の受光器から出力される前記第1の電気信号の中から前記FBGの反射波長に対応するピーク値を検出するとともに、検出した該ピーク値に対応した光が前記第1の受光器に入射された時の当該波長可変光源の発振波長を求め、求めた該発振波長を前記FBGの第1の仮の反射波長λTUとし、かつ、前記波長可変光源が前記所定の波長範囲を含んで長波から短波へ掃引している期間に前記第1の受光器から出力される前記第1の電気信号の中から前記FBGの反射波長に対応するピーク値を検出するとともに、検出した該ピーク値に対応した光が前記第1の受光器に入射された時の当該波長可変光源の発振波長を求め、求めた該発振波長を前記FBGの第2の仮の反射波長λTDとし、さらに、前記FBGの前記第1の仮の反射波長λTU及び前記第2の仮の反射波長λTD並びに前記波長可変光源の発振波長の掃引特性に基づいて当該FBGの反射波長λFを求めるようにした。 Further, in the FBG strain sensor system according to claim 3 of the present invention, in the FBG strain sensor system according to claim 1, the processing means sweeps the wavelength tunable light source from a short wave to a long wave including the predetermined wavelength range. The peak value corresponding to the reflected wavelength of the FBG is detected from the first electric signal output from the first light receiver during the period when the light is detected, and the light corresponding to the detected peak value is The oscillation wavelength of the wavelength tunable light source when incident on the first light receiver is obtained, the obtained oscillation wavelength is set as the first provisional reflection wavelength λ TU of the FBG, and the wavelength tunable light source is the predetermined light source. And detecting a peak value corresponding to the reflected wavelength of the FBG from the first electric signal output from the first light receiver during a period of sweeping from a long wave to a short wave including the wavelength range of Detect Obtains the oscillation wavelength of the wavelength tunable light source when the light corresponding to the peak value is incident on the first light receiver, the oscillation wavelength determined by the reflection wavelength lambda TD of the second temporary the FBG, Further, the reflection wavelength λ F of the FBG is obtained based on the sweep characteristics of the first temporary reflection wavelength λ TU and the second temporary reflection wavelength λ TD of the FBG and the oscillation wavelength of the wavelength variable light source. I made it.

また、本発明の請求項4のFBG歪センサシステムでは、上述した請求項3のFBG歪センサシステムにおいて、前記処理手段が、さらに、前記FBGの前記第1の仮の反射波長λTU及び前記第2の仮の反射波長λTD並びに前記波長可変光源の発振波長の掃引特性に基づいて、前記波長可変光源から前記FBGまで及び該FBGから前記第1の受光器までの光路長を求めるようにした。 Further, in the FBG strain sensor system according to claim 4 of the present invention, in the FBG strain sensor system according to claim 3 described above, the processing means further includes the first provisional reflection wavelength λ TU of the FBG and the first The optical path length from the tunable light source to the FBG and from the FBG to the first light receiver is obtained based on the provisional reflection wavelength λ TD of 2 and the oscillation characteristics of the oscillation wavelength of the tunable light source. .

また、本発明の請求項5のFBG歪センサシステムでは、上述した請求項1〜4のいずれかのFBG歪センサシステムにおいて、前記波長可変光源は、一方のレーザ光出射端面がARコートされている半導体レーザ(1)と、該半導体レーザのARコートされている端面から出射された光をコリメートするコリメートレンズ(2)と、該コリメートレンズから出射されたコリメート光を受けて波長に応じた角度で回折させる回折格子(3)と、反射体(35)と反射体駆動手段(50)とを含んで構成され、前記回折格子から入射される前記コリメート光に対する回折光が、前記反射体の反射面で該回折格子へ反射されて、再び該回折格子で回折され、それによって得られた回折光が前記コリメートレンズを介して前記半導体レーザに入射されるとき、該半導体レーザに入射される回折光が所望の波長の光となるようにするとともに、該所望の波長が前記所定の波長範囲を含んで往復掃引されるように前記反射体の反射面の角度を前記反射体駆動手段により前記所定の周期で繰り返し変化させるMEMSスキャナ(60)とを備えた。   Further, in the FBG strain sensor system according to claim 5 of the present invention, in the FBG strain sensor system according to any one of claims 1 to 4 described above, one of the laser light emission end faces of the wavelength variable light source is AR-coated. A semiconductor laser (1), a collimating lens (2) for collimating light emitted from the end surface of the semiconductor laser that is AR-coated, and an angle corresponding to the wavelength received by the collimated light emitted from the collimating lens A diffraction grating (3) to be diffracted, a reflector (35), and a reflector driving means (50) are configured, and diffracted light with respect to the collimated light incident from the diffraction grating is reflected on the reflecting surface of the reflector. Is reflected by the diffraction grating and diffracted by the diffraction grating again, and the diffracted light obtained thereby is incident on the semiconductor laser through the collimator lens. The reflecting surface of the reflector so that the diffracted light incident on the semiconductor laser becomes light having a desired wavelength and the desired wavelength is swept back and forth including the predetermined wavelength range. And a MEMS scanner (60) that repeatedly changes the angle at the predetermined period by the reflector driving means.

また、本発明の請求項6のFBG歪センサシステムでは、上述した請求項5のFBG歪センサシステムにおいて、前記MEMSスキャナの反射体は、固定基板(36、37)と、該固定基板の縁部から所定幅で所定長さ延設され、その長さ方向に沿って捩じれ変形可能な軸部(38、39)と、該軸部の先端に自身の縁部で連結されて形成され、一面側に前記回折格子からの回折光を反射させるための前記反射面が設けられた反射板(40)とを有しており、かつ、前記MEMSスキャナの反射体駆動手段は、前記反射体の軸部と反射板とからなる部分の固有振動数に対応した周波数の駆動信号によって前記反射板に力を与えて、該反射板を前記固有振動数又はそれに近い振動数の前記所定の周期で往復回転させるように構成した。   Further, in the FBG strain sensor system according to claim 6 of the present invention, in the FBG strain sensor system according to claim 5 described above, the reflector of the MEMS scanner includes a fixed substrate (36, 37) and an edge portion of the fixed substrate. A shaft portion (38, 39) that is extended by a predetermined width with a predetermined width and that can be twisted and deformed along the length direction, and is connected to the tip of the shaft portion at its own edge, And a reflector (40) provided with the reflecting surface for reflecting the diffracted light from the diffraction grating, and the reflector driving means of the MEMS scanner is a shaft portion of the reflector. A force is applied to the reflecting plate by a driving signal having a frequency corresponding to the natural frequency of the portion consisting of the reflecting plate and the reflecting plate, and the reflecting plate is reciprocated at the predetermined period of the natural frequency or a frequency close thereto. It was configured as follows.

また、本発明の請求項7のFBG歪センサシステムでは、上述した請求項5又は6のFBG歪センサシステムにおいて、前記波長可変光源は、さらに、前記回折格子の0次光が出射される光路上に設けられて所定の波長の光を透過させる光共振器(4)と、該光共振器から出射される透過光を受けて第2の電気信号に変換する第2の受光器(5)とを備え、該第2の受光器から出力される前記第2の電気信号から当該波長可変光源の発振波長を求めることを可能にした。   In the FBG strain sensor system according to claim 7 of the present invention, in the FBG strain sensor system according to claim 5 or 6, the wavelength tunable light source further includes an optical path on which the zero-order light of the diffraction grating is emitted. An optical resonator (4) that transmits light of a predetermined wavelength, and a second light receiver (5) that receives the transmitted light emitted from the optical resonator and converts it into a second electrical signal; The oscillation wavelength of the wavelength tunable light source can be obtained from the second electric signal output from the second light receiver.

また、本発明の請求項8のFBG歪センサシステムでは、上述した請求項5又は6のFBG歪センサシステムにおいて、前記波長可変光源は、前記回折格子の0次光を出力光とした。   In the FBG strain sensor system according to claim 8 of the present invention, in the FBG strain sensor system according to claim 5 or 6 described above, the wavelength variable light source uses the 0th-order light of the diffraction grating as output light.

また、本発明の請求項9のFBG歪センサシステムでは、上述した請求項8のFBG歪センサシステムにおいて、前記波長可変光源は、さらに、前記回折格子の0次光が出射される光路上に設けられ、該0次光を2つに分岐して一方の0次光を前記出力光として出射する光分岐手段(6)と、該光分岐手段から出射される他方の0次光を受けて所定の波長の光を透過させる光共振器(4)と、該光共振器から出射される透過光を受けて第2の電気信号に変換する第2の受光器(5)とを備え、該第2の受光器から出力される前記第2の電気信号から当該波長可変光源の発振波長を求めることを可能にした。   Further, in the FBG strain sensor system according to claim 9 of the present invention, in the FBG strain sensor system according to claim 8, the wavelength tunable light source is further provided on an optical path from which the 0th-order light of the diffraction grating is emitted. A light branching means (6) for branching the zero-order light into two and emitting one of the zero-order lights as the output light, and receiving the other zero-order light emitted from the light branching means and receiving a predetermined An optical resonator (4) that transmits light having a wavelength of 2 and a second light receiver (5) that receives the transmitted light emitted from the optical resonator and converts it into a second electrical signal, The oscillation wavelength of the wavelength tunable light source can be obtained from the second electric signal output from the second light receiver.

また、本発明の請求項10のFBG歪センサシステムでは、上述した請求項7又は9のFBG歪センサシステムにおいて、前記処理手段は、前記第1の受光器からの前記第1の電気信号及び前記第2の受光器からの前記第2の電気信号を受けてそれぞれディジタル値に変換するA/D変換器(15)と、該A/D変換器から出力される前記第1の電気信号のディジタル値を順次所定のアドレスに記憶する第1のメモリ(16a)と、前記A/D変換器から出力される前記第2の電気信号のディジタル値を順次所定のアドレスに記憶する第2のメモリ(16b)と、前記第1のメモリの前記所定のアドレスに記憶されているディジタル値を読み出して、前記波長可変光源が前記所定の波長範囲を含んで短波から長波へ掃引している期間における前記FBGの反射波長に対応する第1のピーク値を検出し、かつ、前記波長可変光源が前記所定の波長範囲を含んで長波から短波へ掃引している期間における前記FBGの反射波長に対応する第2のピーク値を検出するピーク値検出手段(17)と、前記第2のメモリの前記所定のアドレスに記憶されている前記波長可変光源の発振波長を求めるためのディジタル値を読み出して、前記光共振器の前記所定の波長が記憶されているアドレスを検出し、検出した該アドレスと前記ピーク値検出手段から出力される、前記第1のピーク値及び前記第2のピーク値がそれぞれ記憶されているアドレスとに基づいて、当該第1のピーク値及び第2のピーク値にそれぞれ対応した光が前記第1の受光器に入射された時の当該波長可変光源の発振波長を求め、求めたそれぞれの該発振波長を前記FBGの第1の仮の反射波長λTU及び第2の仮の反射波長λTDとするピーク値波長算出手段(18)と、該ピーク値波長算出手段から出力される前記第1の仮の反射波長λTU及び前記第2の仮の反射波長λTDと前記波長可変光源の発振波長の掃引特性とに基づいて、前記FBGの反射波長λFを求めるとともに、前記波長可変光源から前記FBGまで及び該FBGから前記第1の受光器までの光路長を求める反射波長/光路長算出手段(19)とを備えた。 In the FBG strain sensor system according to claim 10 of the present invention, in the FBG strain sensor system according to claim 7 or 9, the processing means includes the first electric signal from the first light receiver and the first electrical signal. An A / D converter (15) that receives the second electric signal from the second light receiver and converts it into a digital value, and a digital of the first electric signal output from the A / D converter A first memory (16a) for sequentially storing values at predetermined addresses, and a second memory (for sequentially storing digital values of the second electric signals output from the A / D converter at predetermined addresses). 16b) and a digital value stored at the predetermined address of the first memory, and the wavelength variable light source sweeps from a short wave to a long wave including the predetermined wavelength range. The first peak value corresponding to the reflected wavelength of the FBG is detected, and the wavelength tunable light source corresponds to the reflected wavelength of the FBG during a period in which the wavelength tunable light source is swept from the long wave to the short wave including the predetermined wavelength range. A peak value detecting means (17) for detecting a second peak value, and reading out a digital value for obtaining an oscillation wavelength of the wavelength variable light source stored at the predetermined address of the second memory; The address where the predetermined wavelength of the optical resonator is stored is detected, and the detected first address and the second peak value output from the peak value detecting means are stored. The oscillation wavelength of the wavelength tunable light source when the light corresponding to the first peak value and the second peak value is incident on the first light receiver is obtained based on the received address. , And each of the oscillating first temporary reflection wavelength lambda TU and second temporary peak wavelength calculator that the reflection wavelength lambda TD of the wavelength the FBG obtained (18), from the peak value wavelength calculation means Based on the first provisional reflection wavelength λ TU and the second provisional reflection wavelength λ TD output and the sweep characteristic of the oscillation wavelength of the wavelength variable light source, the reflection wavelength λ F of the FBG is obtained. And a reflection wavelength / optical path length calculating means (19) for obtaining an optical path length from the wavelength variable light source to the FBG and from the FBG to the first light receiver.

本発明の請求項1〜4及び10のFBG歪センサシステムでは、波長可変光源が所定の波長範囲を含んで短波から長波へ掃引している期間に第1の受光器から出力される第1の電気信号と波長可変光源の発振波長からFBGの反射波長を第1の仮の反射波長λTUとして測定し、かつ、波長可変光源が所定の波長範囲を含んで長波から短波へ掃引している期間に第1の受光器から出力される第1の電気信号と波長可変光源の発振波長からFBGの反射波長を第2の仮の反射波長λTDとして測定し、さらに、これら2つの第1の仮の反射波長λTU及び第2の仮の反射波長λTDに基づいてFBGの反射波長λFを求めるようにしたので、例えFBGまでの光路長が不明な場合であってもFBGの反射波長を正確に測定でき、その結果、測定対象の歪み測定を正確に行える。また、上記2つの第1の仮の反射波長λTU及び第2の仮の反射波長λTDに基づいてFBGまでの光路長を測定することができる。 In the FBG strain sensor system according to claims 1 to 4 and 10 of the present invention, the first light output from the first light receiver during a period in which the wavelength tunable light source sweeps from a short wave to a long wave including a predetermined wavelength range. The period during which the reflected wavelength of the FBG is measured as the first provisional reflected wavelength λ TU from the oscillation wavelength of the electrical signal and the wavelength tunable light source, and the wavelength tunable light source is swept from a long wave to a short wave including a predetermined wavelength range The reflected wavelength of the FBG is measured as the second temporary reflected wavelength λ TD from the first electrical signal output from the first light receiver and the oscillation wavelength of the wavelength tunable light source, and the two first temporary signals are further measured. The reflection wavelength λ F of the FBG is obtained based on the reflection wavelength λ TU and the second provisional reflection wavelength λ TD , so even if the optical path length to the FBG is unknown, the reflection wavelength of the FBG is Accurate measurement, resulting in distortion measurement Can be performed accurately. Further, it is possible to measure the optical path length to the FBG based on the reflected wavelength lambda TD of the two first temporary reflection wavelength lambda TU and the second tentative.

本発明の請求項5及び6のFBG歪センサシステムでは、波長可変光源の往復掃引をMEMSスキャナで行うようにしたので、掃引速度を速くでき、歪み測定の高速化が可能となる。   In the FBG strain sensor system according to claims 5 and 6 of the present invention, since the reciprocal sweep of the wavelength variable light source is performed by the MEMS scanner, the sweep speed can be increased and the strain measurement can be performed at a higher speed.

本発明の請求項7及び9のFBG歪センサシステムでは、波長可変光源における回折格子の0次光の所定の波長の光を第2の電気信号に変換するようにしたので、この第2の電気信号から波長可変光源の発振波長を求めることができる。   In the FBG strain sensor system according to the seventh and ninth aspects of the present invention, the light of a predetermined wavelength of the zero-order light of the diffraction grating in the wavelength tunable light source is converted into the second electric signal. The oscillation wavelength of the wavelength tunable light source can be obtained from the signal.

本発明の請求項8のFBG歪センサシステムでは、波長可変光源における回折格子の0次光を出力光としたので、半導体レーザの内部共振モードの影響によって生じる出力光の強度変動を小さくできる。具体的には、半導体レーザのARコートされていない端面から出射された光を出力光とする場合の強度変動(約1dB)の約1/10にできる。   In the FBG strain sensor system according to the eighth aspect of the present invention, since the 0th-order light of the diffraction grating in the wavelength tunable light source is used as the output light, the intensity fluctuation of the output light caused by the influence of the internal resonance mode of the semiconductor laser can be reduced. Specifically, it can be about 1/10 of the intensity fluctuation (about 1 dB) when the light emitted from the end surface of the semiconductor laser not coated with AR is used as the output light.

本発明の実施形態のFBG歪センサシステムの構成を図1及び図2に示す。まず、波長可変光源10は、図2に示すように、半導体レーザ(LD)1のARコートされている端面から出射された光をコリメートレンズ2によってコリメート光に変換して回折格子3へ入射し、その入射光に対して回折格子3が出射する回折光をMEMSスキャナ60に入射する。MEMSスキャナ60は、反射体35と反射体駆動手段50で構成され、回折格子3から入射されるコリメート光に対する回折光が、反射体35の反射面で回折格子3へ反射されて、再び回折格子3で回折され、それによって得られた回折光がコリメートレンズ2を介してLD1に入射されるとき、LD1に入射される回折光が所望の波長の光となるようにするとともに、この所望の波長が所定の波長範囲を含んで往復掃引されるように反射体35の反射面の角度を反射体駆動手段50により所定の周期で繰り返し変化(往復回転)させている。このような構成によって、波長掃引された光が発振されて、LD1のARコートされていない端面から出力されて出力光(測定光a)となる。   The configuration of the FBG strain sensor system according to the embodiment of the present invention is shown in FIGS. First, as shown in FIG. 2, the wavelength tunable light source 10 converts the light emitted from the AR-coated end face of the semiconductor laser (LD) 1 into collimated light by the collimator lens 2 and enters the diffraction grating 3. The diffracted light emitted from the diffraction grating 3 is incident on the MEMS scanner 60 with respect to the incident light. The MEMS scanner 60 includes a reflector 35 and reflector drive means 50, and the diffracted light with respect to the collimated light incident from the diffraction grating 3 is reflected by the reflection surface of the reflector 35 to the diffraction grating 3, and again the diffraction grating. When the diffracted light diffracted by the light beam 3 is incident on the LD 1 via the collimator lens 2, the diffracted light incident on the LD 1 becomes light having a desired wavelength, and the desired wavelength. Is reciprocally changed (reciprocatingly rotated) at a predetermined period by the reflector driving means 50 so that the reciprocating sweep is performed including a predetermined wavelength range. With such a configuration, the wavelength-swept light is oscillated and output from the end surface of the LD 1 which is not AR-coated, and becomes output light (measurement light a).

なお、図2においては、LD1のARコートされている端面から出射された光をコリメートレンズ2によってコリメート光に変換して回折格子3へ入射するようにしたが、LD1とコリメートレンズ2との間に集光レンズとファイバを設け、LD1のARコートされている端面から出射された光を集光レンズで集光してファイバに入射し、ファイバを通った光をコリメートレンズ2によってコリメート光に変換して回折格子3へ入射するようにしてもよい。   In FIG. 2, the light emitted from the end surface of the LD 1 that is AR-coated is converted into collimated light by the collimating lens 2 so as to be incident on the diffraction grating 3, but between the LD 1 and the collimating lens 2. A condensing lens and a fiber are provided in the lens, and the light emitted from the end surface of the LD 1 that is AR-coated is condensed by the condensing lens and incident on the fiber. The light passing through the fiber is converted into collimated light by the collimating lens 2. Then, the light may enter the diffraction grating 3.

MEMSスキャナ60を構成する反射体35及び反射体駆動手段50については後で詳述する。なお、MEMS(Micro Electro Mechanical Systems)スキャナとは、マイクロ電気機械式構造体(電気信号の制御を受けて機械的に動作する構造体)によって形成されたスキャナを意味している。   The reflector 35 and the reflector driving means 50 constituting the MEMS scanner 60 will be described in detail later. Note that a MEMS (Micro Electro Mechanical Systems) scanner means a scanner formed by a micro electro mechanical structure (a structure that operates mechanically under the control of an electrical signal).

ここで、MEMSスキャナ60による波長掃引について説明する。図5に示す駆動信号Da、Db(詳細は後述する)を印加してMEMSスキャナ60を所定の掃引周期で往復掃引する(上述の反射体35を往復回転させる)と、図6(a)に示すように、MEMSスキャナ60の往復回転角度はほぼ正弦波的に変化し、その結果、掃引される波長も正弦波状に変化する。したがって、測定光aの所定の波長範囲(測定波長範囲)が、図6(b)に示すように、その正弦波状に変化する波形の直線に近い部分に来るように、MEMSスキャナ60の往復掃引の波長範囲(往復回転角度の範囲)が設定される。つまり、駆動信号Da、Dbの振幅の調整により設定される。具体例としては、例えば、測定波長範囲を1520〜1570nmとした場合、MEMSスキャナ60の往復掃引の波長範囲(掃引波長範囲)は、この測定波長範囲に対して十分に広い約1470〜1620nmに設定される。なお、上述の駆動信号Da、Dbのいずれか一方はトリガ信号Trとして処理手段20へ出力される。   Here, wavelength sweeping by the MEMS scanner 60 will be described. When the drive signals Da and Db (details will be described later) shown in FIG. 5 are applied to sweep the MEMS scanner 60 back and forth at a predetermined sweep period (the above-described reflector 35 is rotated back and forth), FIG. As shown, the reciprocating rotation angle of the MEMS scanner 60 changes substantially sinusoidally, and as a result, the swept wavelength also changes sinusoidally. Accordingly, as shown in FIG. 6B, the reciprocal sweep of the MEMS scanner 60 is performed so that the predetermined wavelength range (measurement wavelength range) of the measurement light a is close to the straight line of the waveform that changes in a sine wave shape. Is set (range of reciprocating rotation angle). That is, it is set by adjusting the amplitude of the drive signals Da and Db. As a specific example, for example, when the measurement wavelength range is 1520 to 1570 nm, the reciprocal sweep wavelength range (sweep wavelength range) of the MEMS scanner 60 is set to about 1470 to 1620 nm that is sufficiently wide with respect to this measurement wavelength range. Is done. One of the drive signals Da and Db is output to the processing means 20 as a trigger signal Tr.

また、図2において、回折格子3の0次光は、エタロン等の光共振器4に入射されて所定の波長の光のみが透過される。そして、その透過光は受光器(PD)5で第2の電気信号cに変換されて図1に示す処理手段20へ出力される。すなわち、出力光(測定光a)の波長掃引に対応して所定の波長間隔、例えば周波数で15GHz間隔の透過光を発生し、受光器5で第2の電気信号cに変換される。この透過光の波長(周波数)は既知である。したがって、その透過光を光電変換して得られた第2の電気信号cを用いて、波長可変光源10の発振波長(波長掃引された測定光aの波長)を求めることができる。   In FIG. 2, the zero-order light of the diffraction grating 3 is incident on an optical resonator 4 such as an etalon, and only light of a predetermined wavelength is transmitted. Then, the transmitted light is converted into a second electrical signal c by the light receiver (PD) 5 and output to the processing means 20 shown in FIG. That is, transmitted light having a predetermined wavelength interval, for example, a frequency of 15 GHz corresponding to the wavelength sweep of the output light (measurement light a) is generated and converted into the second electric signal c by the light receiver 5. The wavelength (frequency) of this transmitted light is known. Therefore, the oscillation wavelength of the wavelength tunable light source 10 (the wavelength of the measurement light a swept) can be obtained using the second electric signal c obtained by photoelectrically converting the transmitted light.

なお、波長可変光源10は、図2に示したような、LD1のARコートされていない端面から出射された光を出力光とするものに限定されるわけではなく、回折格子3の0次光を出力光とするものであってもよい。その場合には、図3に示すように、回折格子3からの0次光を光カプラ等の光分岐手段6で分岐して、一方を出力光とし、他方を光共振器4に入射する。このように0次光を出力光とすると、LD1の内部共振モードの影響によって生じる出力光の強度変動を、LD1のARコートされていない端面から出射された光を出力光とする場合に比べて小さくできる。具体的には、LD1を出力光とする場合の強度変動(約1dBの)を約1/10に小さくできる。また、LD1のARコートされていない端面にHRコート(HR:High-Reflection)を施すことによって、0次光を出力光とする場合の出力光の光強度を増加させることができる。   The tunable light source 10 is not limited to the light output from the end surface of the LD 1 that is not AR-coated as shown in FIG. May be output light. In that case, as shown in FIG. 3, the 0th-order light from the diffraction grating 3 is branched by an optical branching means 6 such as an optical coupler, and one is output and the other is incident on the optical resonator 4. When the 0th-order light is output light in this way, the intensity fluctuation of the output light caused by the influence of the internal resonance mode of the LD1 is compared with the case where the light emitted from the end surface of the LD1 that is not AR-coated is output light. Can be small. Specifically, the intensity fluctuation (about 1 dB) when LD1 is used as output light can be reduced to about 1/10. Further, by applying HR coating (HR: High-Reflection) to the end surface of the LD 1 which is not AR-coated, the light intensity of the output light when the 0th-order light is output light can be increased.

また、往復掃引可能な波長可変光源としては、上記図2及び図3に示したMEMSスキャナを用いて往復掃引させるものに限定されるわけではなく、例えば、MEMSスキャナの代わりにガルバノメーターとこのガルバノメーターに固定されたミラーとを用いて往復掃引させるようなものであってもよい。(例えば、非特許文献1参照)   Further, the wavelength variable light source capable of reciprocating sweep is not limited to the one that reciprocates and sweeps using the MEMS scanner shown in FIGS. 2 and 3, for example, instead of the MEMS scanner, a galvanometer and the galvanometer A reciprocating sweep may be performed using a mirror fixed to the meter. (For example, see Non-Patent Document 1)

次に、図1において、光サーキュレータ11は、波長可変光源10からの測定光aを、ファイバ12a〜12cを介して直列に接続された反射波長の異なる複数のFBG13a〜13cに入射するとともに、各FBG13a〜13cからそれぞれの反射波長で反射されて戻ってきたその測定光aの反射光を受けて受光器(PD)14に出射する。受光器14は、その反射光を第1の電気信号bに変換して処理手段20に出力する。   Next, in FIG. 1, the optical circulator 11 makes the measurement light a from the wavelength tunable light source 10 incident on a plurality of FBGs 13a to 13c having different reflection wavelengths connected in series via the fibers 12a to 12c, and The reflected light of the measurement light “a” reflected and returned from each of the FBGs 13 a to 13 c is received and emitted to the light receiver (PD) 14. The light receiver 14 converts the reflected light into a first electric signal b and outputs it to the processing means 20.

処理手段20は、受光器14からの第1の電気信号b及び波長可変光源10からの第2の電気信号cに基づいて、上述した光路長(主にファイバ12a〜12cの長さで決まる)に起因して発生する波長ずれのない状態での各FBG13a〜13cの反射波長の算出(測定対象の歪み測定)及びその光路長の算出を行うもので、A/D変換器15、メモリ16a、16b、ピーク値検出手段17、ピーク値波長算出手段18及び反射波長/光路長算出手段19によって構成されている。   The processing means 20 is based on the first electrical signal b from the light receiver 14 and the second electrical signal c from the wavelength tunable light source 10, and the optical path length described above (mainly determined by the length of the fibers 12a to 12c). The reflection wavelength of each of the FBGs 13a to 13c is calculated (measurement of the measurement target distortion) and the optical path length thereof is calculated in a state where there is no wavelength shift caused by the A / D converter 15, the memory 16a, 16 b, a peak value detection unit 17, a peak value wavelength calculation unit 18, and a reflection wavelength / optical path length calculation unit 19.

すなわち、A/D変換器15は、例えば2chのA/D変換器であり、波長可変光源10から入力される上述のトリガ信号Trを起点にして、周波数確度の高い内部クロック(例えば10MHz)によって第1の電気信号b及び第2の電気信号cを同じタイミングで順次ディジタル値に変換する。   That is, the A / D converter 15 is, for example, a 2ch A / D converter, and starts from the above-described trigger signal Tr input from the wavelength tunable light source 10, and uses an internal clock (for example, 10 MHz) with high frequency accuracy. The first electric signal b and the second electric signal c are sequentially converted into digital values at the same timing.

メモリ16a、16bは、それぞれ、制御部(図示しない)からの指示に基づいて、A/D変換器15からそれぞれ順次出力される第1の電気信号bのディジタル値及び第2の電気信号cのディジタル値の内から少なくとも、上述の測定波長範囲と光路長に起因して発生する波長ずれ(以下単に波長ずれという)分、すなわち図6(b)に示す、短波から長波へ掃引している(以下アップ掃引という)ときの測定波長範囲と波長ずれ分及び長波から短波へ掃引している(以下ダウン掃引という)ときの測定波長範囲と波長ずれ分、に含まれるディジタル値を順次所定のアドレスに記憶する。具体例を示すと、例えば、第1の電気信号bのディジタル値及び第2の電気信号cのディジタル値は、アップ掃引のときは、共にそれぞれのメモリ16a、16bのアドレス0〜4000に記憶され、またダウン掃引のときは、共にそれぞれのメモリ16a、16bのアドレス5000〜9000に記憶される。   The memories 16a and 16b respectively receive the digital value of the first electric signal b and the second electric signal c that are sequentially output from the A / D converter 15 based on an instruction from a control unit (not shown). Among the digital values, at least a wavelength shift (hereinafter simply referred to as a wavelength shift) generated due to the above-described measurement wavelength range and optical path length, that is, sweeping from a short wave to a long wave as shown in FIG. The measurement wavelength range and the wavelength shift when it is swept up (hereinafter referred to as “up sweep”), and the digital values contained in the measurement wavelength range and the wavelength shift when swept from the long wave to the short wave (hereinafter referred to as “down sweep”) are sequentially assigned to predetermined addresses. Remember. As a specific example, for example, the digital value of the first electric signal b and the digital value of the second electric signal c are both stored in the addresses 0 to 4000 of the memories 16a and 16b during the up sweep. In the case of the down sweep, both are stored in addresses 5000 to 9000 of the memories 16a and 16b.

なお、上記では、メモリ16a、16bへの記憶を制御部(図示しない)からの指示で行うようにしたが、トリガ信号Trの位相が上記測定波長範囲及び波長ずれとの関係において適切であれば、A/D変換器15からそれぞれ出力される第1の電気信号bのディジタル値及び第2の電気信号cのディジタル値をそのまま記憶するようにしてもよい。   In the above, storage in the memories 16a and 16b is performed by an instruction from the control unit (not shown). However, if the phase of the trigger signal Tr is appropriate in relation to the measurement wavelength range and the wavelength shift, The digital value of the first electric signal b and the digital value of the second electric signal c respectively output from the A / D converter 15 may be stored as they are.

ピーク値検出手段17は、第1の読み出信号M1によって第1のメモリ16aの所定のアドレス(例えば上述のアップ掃引の0〜4000、ダウン掃引の5000〜9000)に記憶されているディジタル値を読み出して、各FBG13a〜13cの反射波長に対応する3つの、アップ掃引の場合における第1のピーク値、及びダウン掃引の場合における第2のピーク値を検出する。そして、検出した3つの第1のピーク値が記憶されているそれぞれのアドレス、及び3つの第2のピーク値が記憶されているそれぞれのアドレスの情報をピーク値波長算出手段18に出力する。   The peak value detection means 17 uses the first read signal M1 to obtain a digital value stored in a predetermined address of the first memory 16a (for example, 0 to 4000 for the above-mentioned up sweep and 5000 to 9000 for the down sweep). Reading is performed to detect three first peak values in the case of up sweep and second peak value in the case of down sweep corresponding to the reflection wavelengths of the FBGs 13a to 13c. Then, the information on the respective addresses where the three detected first peak values and the addresses where the three second peak values are stored is outputted to the peak value wavelength calculating means 18.

ピーク値波長算出手段18は、第2の読み出信号M2によって第2のメモリ16bの所定のアドレス(例えば上述のアップ掃引の0〜4000、ダウン掃引の5000〜9000)に記憶されている波長可変光源10の発振波長(測定光aの波長)を求めるためのディジタル値を読み出して、光共振器4(図2参照)の所定の波長(既知波長)が記憶されているアドレスを検出する。例えば、上述の15GHz間隔で発生された既知波長(周波数)の透過光のピーク値が記憶されているそれぞれのアドレスを検出する。   The peak value wavelength calculating means 18 uses the second read signal M2 to change the wavelength stored in a predetermined address of the second memory 16b (for example, 0 to 4000 for the above-mentioned up sweep and 5000 to 9000 for the down sweep). A digital value for obtaining the oscillation wavelength of the light source 10 (the wavelength of the measurement light a) is read, and an address at which a predetermined wavelength (known wavelength) of the optical resonator 4 (see FIG. 2) is stored is detected. For example, each address where the peak value of the transmitted light of the known wavelength (frequency) generated at the 15 GHz interval is stored is detected.

そして、ピーク値検出手段17から出力される、各FBG13a〜13cの反射波長に対応する3つの第1のピーク値がそれぞれ記憶されているアドレスと、上記の既知波長が記憶されているそれぞれのアドレスとを対比して、3つの第1のピーク値のそれぞれに対応した光が第1の受光器14に入射された時の波長可変光源10の発振波長を求め、求めた3つの発振波長のそれぞれについて、それらを第1の仮の反射波長λTUとする。また同様に、ピーク値検出手段17から出力される、各FBG13a〜13cの反射波長に対応する3つの第2のピーク値がそれぞれ記憶されているアドレスと、上記の既知波長が記憶されているそれぞれのアドレスとを対比して、3つの第2のピーク値のそれぞれに対応した光が第1の受光器14に入射された時の波長可変光源10の発振波長を求め、求めた3つの発振波長のそれぞれについて、それらを第2の仮の反射波長λTDとする。 Then, the addresses at which the three first peak values corresponding to the reflection wavelengths of the FBGs 13a to 13c, which are output from the peak value detection means 17, are stored, and the addresses at which the above known wavelengths are stored. , The oscillation wavelength of the wavelength tunable light source 10 when light corresponding to each of the three first peak values is incident on the first light receiver 14 is obtained, and each of the obtained three oscillation wavelengths is obtained. For the first provisional reflection wavelength λ TU . Similarly, the addresses at which the three second peak values corresponding to the reflection wavelengths of the FBGs 13a to 13c, which are output from the peak value detection means 17, are stored, respectively, and the above known wavelengths are stored. The oscillation wavelength of the wavelength tunable light source 10 when light corresponding to each of the three second peak values is incident on the first light receiver 14 is obtained, and the obtained three oscillation wavelengths are compared. For each of the second provisional reflection wavelength λ TD .

反射波長/光路長算出手段19は、ピーク値波長算出手段18から出力される第1の仮の反射波長λTU及び第2の仮の反射波長λTDと波長可変光源10の発振波長の掃引特性とに基づいて、各FBG13a〜13cの反射波長λFを求めるとともに、波長可変光源10から各FBG13a〜13cまで及び各FBG13a〜13cから第1の受光器14までの光路長を求める。 The reflection wavelength / optical path length calculation unit 19 sweeps the first temporary reflection wavelength λ TU and the second temporary reflection wavelength λ TD output from the peak value wavelength calculation unit 18 and the oscillation wavelength of the wavelength variable light source 10. Based on the above, the reflection wavelength λ F of each of the FBGs 13a to 13c is obtained, and the optical path length from the wavelength variable light source 10 to each of the FBGs 13a to 13c and from each of the FBGs 13a to 13c to the first light receiver 14 is obtained.

まず、光路長に起因して発生する波長ずれのない状態での各FBG13a〜13cの反射波長をどのように求めるかの基本概念を説明する。各FBG13a〜13cの反射波長λFが、それぞれ図7(a)に示す反射スペクトルのような波長であるとする。各FBG13a〜13cの反射波長λFを測定するときには、光路長による遅れ時間τの影響を受けて、アップ掃引のときはそれらの反射波長λFが見かけ上、図7(b)に示すように波長の長い方へずれて第1の仮の反射波長λTUとなり、またダウン掃引のときは逆に図7(c)に示すように波長の短い方へずれて第2の仮の反射波長λTDとなる。したがって、第1の仮の反射波長λTUと第2の仮の反射波長λTDが分かれば、それらの真ん中にある反射波長λFを求めることができる。なお、図7(b)、(c)において、アップ掃引とダウン掃引の発振波長の掃引特性(掃引時間に対する発振波長)の絶対値は同じであり、また各FBG13a〜13cまでの光路長はFBG13aまでを基準にしてFBG13bまではその2倍、FBG13cまではその3倍であるとしている。 First, the basic concept of how to obtain the reflection wavelength of each of the FBGs 13a to 13c in a state where there is no wavelength shift caused by the optical path length will be described. It is assumed that the reflection wavelength λ F of each of the FBGs 13a to 13c is a wavelength like the reflection spectrum shown in FIG. When measuring the reflection wavelength λ F of each of the FBGs 13a to 13c, it is affected by the delay time τ due to the optical path length, and the reflection wavelength λ F is apparently shown in FIG. The first temporary reflection wavelength λ TU is shifted to the longer wavelength, and the second temporary reflection wavelength λ is shifted to the shorter wavelength as shown in FIG. It becomes TD . Therefore, if the first temporary reflection wavelength λ TU and the second temporary reflection wavelength λ TD are known, the reflection wavelength λ F in the middle of them can be obtained. 7B and 7C, the absolute values of the sweep characteristics (oscillation wavelengths with respect to the sweep time) of the oscillation wavelengths of the up sweep and the down sweep are the same, and the optical path lengths from the FBGs 13a to 13c are the FBG 13a. Up to FBG 13b is doubled, and up to FBG 13c is tripled.

次に、上記の基本概念に基づいて、第1の仮の反射波長λTU及び第2の仮の反射波長λTDと波長可変光源10の発振波長の掃引特性から各FBG13a〜13cの反射波長λFを求める方法を説明する。図8に示す測定波長範囲付近の掃引特性が、一般式λ=A0+A1・xで表される一次関数で近似できるとすると、アップ掃引のときの発振波長λは、Kを掃引速度に比例した定数、tを時間とすると、(5)式(上述の(2)式と同一)で表され、またダウン掃引のときの発振波長λは、Jを掃引速度に比例した定数、tを時間、αを掃引周期に関するパラメータとすると、(6)式で表される。
λ=λ0+K・t (5)
λ=λ0−J・(t−α) (6)
Next, based on the basic concept described above, the reflection wavelength λ of each of the FBGs 13a to 13c is determined from the sweep characteristics of the first temporary reflection wavelength λ TU, the second temporary reflection wavelength λ TD, and the oscillation wavelength of the wavelength tunable light source 10. A method for obtaining F will be described. Assuming that the sweep characteristic in the vicinity of the measurement wavelength range shown in FIG. 8 can be approximated by a linear function represented by the general formula λ = A 0 + A 1 · x, the oscillation wavelength λ at the time of the up sweep is obtained by using K as the sweep speed. When the proportional constant, t is time, it is expressed by the equation (5) (same as the above equation (2)), and the oscillation wavelength λ at the time of the down sweep is expressed as follows: J is a constant proportional to the sweep speed, and t is When time and α are parameters related to the sweep period, the following expression (6) is given.
λ = λ 0 + K · t (5)
λ = λ 0 −J · (t−α) (6)

アップ掃引のときの各FBG13a〜13cの反射波長λFと第1の仮の反射波長λTUとの関係は上記(5)式により(7)式のように表され、またダウン掃引のときの各FBG13a〜13cの反射波長λFと第2の仮の反射波長λTDとの関係は上記(6)式により(8)式のように表される。なお、(7)、(8)式においては、波長可変光源10から各FBG13a〜13cまで及び各FBG13a〜13cから第1の受光器14までの光路長によるそれぞれの遅れ時間τは、主にファイバ12a〜12cの長さによる遅れ時間であるため、上述の(1)式と同一としている。
λTU=λF+K・2nL/C (7)
λTD=λF−J・2nL/C (8)
The relationship between the reflection wavelength λ F of each of the FBGs 13a to 13c during the up sweep and the first provisional reflection wavelength λ TU is expressed by the above equation (5) as shown in equation (7). The relationship between the reflection wavelength λ F of each of the FBGs 13a to 13c and the second provisional reflection wavelength λ TD is expressed by the above equation (6) as in equation (8). In the equations (7) and (8), each delay time τ depending on the optical path length from the wavelength variable light source 10 to each of the FBGs 13a to 13c and from each of the FBGs 13a to 13c to the first light receiver 14 is mainly a fiber. Since it is a delay time due to the length of 12a to 12c, it is the same as the above-mentioned formula (1).
λ TU = λ F + K · 2nL / C (7)
λ TD = λ F −J · 2nL / C (8)

そして、各FBG13a〜13cの反射波長λFと、波長可変光源10から各FBG13a〜13cまで及び各FBG13a〜13cから第1の受光器14までの光路長(2nL)は、上記(7)、(8)式から(9)、(10)式に示すように求めることができる。
λF=(J・λTU+K・λTD)/(K+J) (9)
2nL=(λTU−λTD)・C/(K+J) (10)
この結果、上記(9)、(10)式から分かるように、各FBG13a〜13cまでの光路長が不明で、しかも各FBG13a〜13cの本来の反射波長が不明な場合であっても、各FBG13a〜13cの反射波長λFを求めることができる。また、光路長も求めることができる。さらに、屈折率nが既知であればファイバ長Lも求めることができる。
The reflection wavelength λ F of each of the FBGs 13a to 13c and the optical path length (2nL) from the variable wavelength light source 10 to each of the FBGs 13a to 13c and from each of the FBGs 13a to 13c to the first light receiver 14 are (7), ( It can be obtained from equations (8) to (9) and (10).
λ F = (J · λ TU + K · λ TD ) / (K + J) (9)
2nL = (λ TU −λ TD ) · C / (K + J) (10)
As a result, as can be seen from the above formulas (9) and (10), even when the optical path length to each of the FBGs 13a to 13c is unknown and the original reflection wavelength of each of the FBGs 13a to 13c is unknown, each FBG 13a The reflection wavelength λ F of ˜13c can be obtained. Also, the optical path length can be obtained. Furthermore, if the refractive index n is known, the fiber length L can also be obtained.

ここで、上述の方法でファイバ長Lを測定する場合の測定可能な最長ファイバ長Lmaxについて説明する。すなわち、図7(b)、(c)及び図8から分かる通り、波長ずれが大きくなれば、λTUはアップ掃引の期間には観測できなくなり、ダウン掃引の期間で観測されてしまい測定不能となる。測定波長範囲の長波側の限界であるλmaxが、アップ掃引の期間から外れずに観測されるには、ファイバ長Lによる遅れ時間τは(11)式を満足しなければならない。したがって、最長ファイバ長Lmaxは(12)式で表される。なお、(11)、(12)式において、nはファイバの屈折率、Cは光速、Kは掃引速度に比例した定数、αは掃引周期に関するパラメータである。
τ < α/2−(λmax−λ0)/K (11)
2nLmax/C < α/2−(λmax−λ0)/K (12)
具体例を示すと、例えば、n=1.5、C=3×105km/s、α=1ms、λmax=1570nm、λ0=1545nm、K=105nm/sの場合には、Lmax<25kmとなる。
Here, the maximum measurable fiber length L max when the fiber length L is measured by the above-described method will be described. That is, as can be seen from FIGS. 7B, 7C, and 8, if the wavelength shift increases, the λ TU cannot be observed during the up sweep period, and is not observed during the down sweep period. Become. In order to observe λ max , which is the limit on the long wave side of the measurement wavelength range, without departing from the period of the up sweep, the delay time τ due to the fiber length L must satisfy the equation (11). Therefore, the longest fiber length L max is expressed by equation (12). In equations (11) and (12), n is the refractive index of the fiber, C is the speed of light, K is a constant proportional to the sweep speed, and α is a parameter related to the sweep period.
τ <α / 2− (λ max −λ 0 ) / K (11)
2 nL max / C <α / 2− (λ max −λ 0 ) / K (12)
Specifically, for example, when n = 1.5, C = 3 × 10 5 km / s, α = 1 ms, λ max = 1570 nm, λ 0 = 1545 nm, and K = 10 5 nm / s, L max <25 km.

なお、上記反射波長/光路長算出手段19では、波長可変光源10の測定波長付近の掃引特性が、一般式λ=A0+A1・xで表される一次関数で近似できる場合について説明したが、一般式λ=A0+A1・x+A2・x2+・・・で表される多次関数で近似する場合も同様に上述の方法を適用して、反射波長λF及び光路長(2nL)を求めることができることは言うまでもない。また、図1では、各FBG13a〜13cからの反射光を受光器14に入射するようにしたが、各FBG13a〜13cからの透過光を受光器14に入射するようにしてもよい。 In the reflection wavelength / optical path length calculation means 19, the sweep characteristic near the measurement wavelength of the wavelength tunable light source 10 has been described as being approximated by a linear function represented by the general formula λ = A 0 + A 1 · x. In the case of approximation by a multi-order function represented by the general formula λ = A 0 + A 1 · x + A 2 · x 2 +..., The reflection wavelength λ F and the optical path length (2 nL) are similarly applied. ) Needless to say, In FIG. 1, the reflected light from each of the FBGs 13 a to 13 c is incident on the light receiver 14, but the transmitted light from each of the FBGs 13 a to 13 c may be incident on the light receiver 14.

次に、図2に示した波長可変光源10の一部を構成するMEMSスキャナ60の反射体35及び反射体駆動手段50について詳述する。反射体35は、図4に示すように、横長矩形で互いに平行に配置された一対の固定基板36、37と、この一対の固定基板36、37の長辺側縁部の中央からこの固定基板36、37と直交する方向に所定幅、所定長さで延設され、その長さ方向に沿って捩じれ変形可能な一対の軸部38、39と、横長矩形で一方の長辺側縁部の中央部で軸部38の先端に連結され、他方の長辺側縁部の中央部で軸部39の先端に連結された反射板40とを有している。この反射板40は、捩じれ変形可能な軸部38、39に中心部が支持されているので、この軸部38、39を結ぶ線を中心軸として固定基板36、37に対して回転することができる。また、軸部38、39と反射板40とからなる部分の固有振動数f0は、反射板40自体の形状や質量及び軸部38、39のバネ定数によって決まる。 Next, the reflector 35 and the reflector driving means 50 of the MEMS scanner 60 constituting a part of the wavelength tunable light source 10 shown in FIG. 2 will be described in detail. As shown in FIG. 4, the reflector 35 includes a pair of fixed substrates 36 and 37 arranged in parallel with each other in a horizontally long rectangle, and the fixed substrate from the center of the long side edge of the pair of fixed substrates 36 and 37. A pair of shaft portions 38 and 39 that extend in a direction perpendicular to 36 and 37 with a predetermined width and length and can be twisted and deformed along the length direction, and one of the long side edges of the horizontally long rectangle. The reflector 40 is connected to the tip of the shaft portion 38 at the center and connected to the tip of the shaft 39 at the center of the other long side edge. Since the central portion of the reflector 40 is supported by the shaft portions 38 and 39 that can be torsionally deformed, the reflector 40 can rotate with respect to the fixed substrates 36 and 37 with the line connecting the shaft portions 38 and 39 as the central axis. it can. Further, the natural frequency f 0 of the portion composed of the shaft portions 38 and 39 and the reflecting plate 40 is determined by the shape and mass of the reflecting plate 40 itself and the spring constant of the shaft portions 38 and 39.

また、反射板40の一面側には、光を反射するための反射面41が形成されている。この反射面41は、反射板40自体を鏡面仕上げして形成したり、反射率の高い膜(図示しない)を蒸着あるいは接着して形成したりしたものであってもよい。なお、この反射体35は、薄い半導体基板からエッチング処理等により一体的に切り出されたもので、金属膜の蒸着加工により高導電性を有している。   A reflective surface 41 for reflecting light is formed on one surface side of the reflective plate 40. The reflecting surface 41 may be formed by mirror-finishing the reflecting plate 40 itself, or may be formed by depositing or bonding a highly reflective film (not shown). The reflector 35 is integrally cut out from a thin semiconductor substrate by etching or the like, and has high conductivity by metal film vapor deposition.

支持基板45は絶縁性を有する材料からなり、その一面側の上部と下部には、前方へ突出する支持台45a、45bが形成されており、反射体35の固定基板36、37は、この上下の支持台45a、45bに接した状態で固定されている。また、支持基板45の一面側中央部の両端には、反射体35の反射板40の両端にそれぞれ対向する電極板46、47がパターン形成されている。この電極板46、47は、後述する駆動信号発生器55とともに反射体駆動手段50(図2参照)を構成するものであり、反射板40の両端部に静電力を交互にかつ周期的に印加して、反射板40を、軸部38、39を結ぶ線を中心に往復回転運動させる。なお、反射板40の回転軸は回折格子1の回折溝と平行となるように設定されている。このように構成された反射体35は、回折格子3からの回折光を反射板40の反射面41で受けて、その反射光を回折格子3へ入射させて、再度回折させる。   The support substrate 45 is made of an insulating material, and support bases 45a and 45b projecting forward are formed on the upper and lower portions on one side, and the fixed substrates 36 and 37 of the reflector 35 are formed on the upper and lower sides. Are fixed in contact with the support bases 45a and 45b. In addition, electrode plates 46 and 47 that are opposed to both ends of the reflection plate 40 of the reflector 35 are formed in patterns at both ends of the central portion on the one surface side of the support substrate 45. The electrode plates 46 and 47 constitute a reflector driving means 50 (see FIG. 2) together with a drive signal generator 55 which will be described later, and an electrostatic force is alternately and periodically applied to both ends of the reflector plate 40. Then, the reflecting plate 40 is reciprocally rotated around the line connecting the shaft portions 38 and 39. The rotation axis of the reflecting plate 40 is set to be parallel to the diffraction groove of the diffraction grating 1. The reflector 35 configured as described above receives the diffracted light from the diffraction grating 3 by the reflection surface 41 of the reflection plate 40, makes the reflected light incident on the diffraction grating 3, and diffracts it again.

一方、反射体駆動手段50(図2参照)の一部を構成する駆動信号発生器55は、例えば図5(a)、(b)に示すように、反射体35の電位を基準として電極板46、47に対して、固有振動数f0に対応した周波数(あるいは固有振動数f0の近傍の振動数に対応した周波数)を有し、位相が180°ずれた駆動信号Da、Dbを印加して、電極板46と反射板40の一端側との間及び電極板47と反射板40の他端側との間に、交互にかつ周期的に静電力(引力)を与え、反射板40を固有振動数f0あるいはその近傍の振動数で所定角度範囲を往復回転させる。また、この駆動信号発生器55は、2つの駆動信号Da、Dbのいずれか一方を受光素子14からの第1の電気信号b及び波長可変光源10からの第2の電気信号cをA/D変換するためのトリガ信号TrとしてA/D変換器15(図1参照)に出力する。なお、図5では、2つの駆動信号Da、Dbがデューティ比50%の矩形波の場合を示しているが、両信号のデューティ比は50%以下であってもよく、また、波形も矩形波に限らず、正弦波、三角波等であってもよい。 On the other hand, the drive signal generator 55 constituting a part of the reflector driving means 50 (see FIG. 2) is an electrode plate based on the potential of the reflector 35 as shown in FIGS. 5 (a) and 5 (b), for example. applied to 46 and 47, has a frequency corresponding to the natural frequency f 0 (or a frequency corresponding to the frequency in the vicinity of the natural frequency f 0), the drive signal Da whose phases are shifted from each other by 180 °, the Db Then, an electrostatic force (attraction) is alternately and periodically applied between the electrode plate 46 and one end side of the reflection plate 40 and between the electrode plate 47 and the other end side of the reflection plate 40. Is rotated back and forth within a predetermined angular range at the natural frequency f 0 or a frequency in the vicinity thereof. The drive signal generator 55 converts one of the two drive signals Da and Db into the first electric signal b from the light receiving element 14 and the second electric signal c from the wavelength variable light source 10 as A / D. A trigger signal Tr for conversion is output to the A / D converter 15 (see FIG. 1). FIG. 5 shows the case where the two drive signals Da and Db are rectangular waves with a duty ratio of 50%, but the duty ratio of both signals may be 50% or less, and the waveform is also a rectangular wave. It is not limited to sine waves, triangular waves, and the like.

このような反射体35及び反射体駆動手段50によって構成されたMEMSスキャナ60では、反射体35を、一対の固定基板36、37と、その縁部から所定幅で所定長さ延設され、その長さ方向に沿って捩じれ変形可能な軸部38、39と、軸部38、39の先端に自身の縁部で連結され、軸部38、39に対して対称な形状に形成され、一面側に反射面41が形成された反射板40とによって構成するとともに、反射体35の軸部38、39と反射板40とからなる部分の固有振動数f0に対応した周波数の駆動信号によって反射板40に力を与えて、反射板40を固有振動数f0又はその近傍の振動数で往復回転させている。 In the MEMS scanner 60 configured by the reflector 35 and the reflector driving means 50, the reflector 35 is extended from the pair of fixed substrates 36 and 37 and the edge thereof with a predetermined width and a predetermined length. The shaft portions 38, 39 that can be twisted and deformed along the length direction, and are connected to the ends of the shaft portions 38, 39 at their edges, are formed in a symmetrical shape with respect to the shaft portions 38, 39, and are on one side. And a reflecting plate 40 having a frequency corresponding to the natural frequency f 0 of the portion composed of the shaft portions 38 and 39 of the reflector 35 and the reflecting plate 40. A force is applied to 40 to rotate the reflector 40 back and forth at the natural frequency f 0 or a frequency in the vicinity thereof.

このため、僅かな電気エネルギーで反射板40を高速に往復回転させることができ、しかも、その回転中心が反射板40の内部(この場合、中央部)にあるので、反射板40の反射面41への入射光の反射角の変化量を大きくすることができる。なお、軸部38、39のバネ定数は、軸部38、39の長さ、幅、厚み、材質によって決まり、このバネ定数と、反射板40の形状、厚み、材質等で固有振動数f0が決定され、これらのパラメータを選ぶことにより、固有振動数f0を数100Hz〜数10kHzの範囲内で設定することができる。 For this reason, the reflector 40 can be reciprocally rotated at a high speed with a small amount of electrical energy, and the center of rotation is inside the reflector 40 (in this case, the central portion). The amount of change in the reflection angle of the incident light on can be increased. The spring constants of the shaft portions 38 and 39 are determined by the length, width, thickness, and material of the shaft portions 38 and 39, and the natural frequency f 0 depends on the spring constant and the shape, thickness, material, and the like of the reflector 40. By selecting these parameters, the natural frequency f 0 can be set within a range of several hundreds of Hz to several tens of kHz.

したがって、本発明のFBG歪センサシステムの波長可変光源10(図2参照)は、上記のような反射体35及び反射体駆動手段50を用いてMEMSスキャナ60を構成するようにしたので、掃引速度の高速化(最大数10kHz)ができる。   Therefore, since the wavelength tunable light source 10 (see FIG. 2) of the FBG strain sensor system of the present invention is configured with the MEMS scanner 60 using the reflector 35 and the reflector driving means 50 as described above, the sweep speed is set. (Up to several 10 kHz).

なお、上述の図4の説明では、反射体35を導電性の高い材料で構成していたが、反射体35を導電性の低い材料で構成する場合には、反射板40の反射面41と反対面の両側(全面でもよい)に電極板46、47と対向する電極板をそれぞれ設け、更に固定基板36、37の背面側にも電極板を設け、それらの電極板の間をパターン等によって接続する。そして、支持基板45の支持台45a、45bの表面に、固定基板36、37の背面側の電極板と接触する電極板をパターン形成して、その少なくとも一方を基準電位ラインとして上述した駆動信号発生器55に接続すればよい。   In the description of FIG. 4 described above, the reflector 35 is made of a material with high conductivity. However, when the reflector 35 is made of a material with low conductivity, the reflecting surface 41 of the reflector 40 Electrode plates facing the electrode plates 46 and 47 are provided on both sides (or the entire surface) of the opposite surface, and electrode plates are also provided on the back side of the fixed substrates 36 and 37, and the electrode plates are connected by a pattern or the like. . Then, the electrode plate that contacts the electrode plates on the back side of the fixed substrates 36 and 37 is formed on the surface of the support bases 45a and 45b of the support substrate 45, and at least one of them is used as a reference potential line to generate the drive signal described above. What is necessary is just to connect to the device 55.

また、固定基板36、37の一端側同士の間あるいは両端の間を連結して、固定基板をコの字枠あるいは矩形枠状に形成してもよい。また、反射板40の形状も任意であり、上述の横長矩形の他に、円形、楕円形、長円形、菱形、正方形、多角形等であってもよい。また、高速往復回転時の空気抵抗を減らすために、反射板40の内側に大きな穴あるいは多数の小さな穴を設けてもよい。   Further, the fixed substrates may be formed in a U-shaped frame or a rectangular frame shape by connecting one end side or both ends of the fixed substrates 36 and 37. Moreover, the shape of the reflecting plate 40 is also arbitrary, and may be a circle, an ellipse, an oval, a rhombus, a square, a polygon, or the like in addition to the above-described horizontally long rectangle. Further, in order to reduce air resistance during high-speed reciprocating rotation, a large hole or a large number of small holes may be provided inside the reflector plate 40.

また、上述の図4の説明では、反射体35の反射板40の両端にそれぞれ対向する2つの電極板46、47を設けていたが、一方側の電極板(例えば電極板46)だけによって静電力を印加してもよい。また、駆動方式についても、上述の静電力の他に、電磁力によって反射板40を往復回転させてもよい。この場合、例えば、上述の電極板46、47の代わりにコイルを用い、反射板40の両端部に磁性体あるいはコイルを設け、コイル間あるいはコイルと磁性体との間に発生する磁界による吸引力及び反発力によって、反射板40を往復回転させる。   In the description of FIG. 4 described above, the two electrode plates 46 and 47 facing each other at both ends of the reflection plate 40 of the reflector 35 are provided. However, only one electrode plate (for example, the electrode plate 46) is used for static electricity. Electric power may be applied. Moreover, also about a drive system, you may rotate the reflecting plate 40 reciprocatingly with an electromagnetic force other than the above-mentioned electrostatic force. In this case, for example, a coil is used in place of the electrode plates 46 and 47 described above, a magnetic material or a coil is provided at both ends of the reflection plate 40, and an attractive force due to a magnetic field generated between the coils or between the coil and the magnetic material. And the reflecting plate 40 is reciprocated by the repulsive force.

また、上述の静電力や電磁力を反射板40に直接与える方法の他に、超音波振動子等によって上述の固有振動数f0又はその近傍の振動を反射体35全体に加えて、その振動を反射板40に伝達させて往復回転させることも可能である。この場合、振動子を支持基板45の背面側や支持台45a、45bの部分に設けることで、その振動を反射板40に効率的に伝達することができる。 In addition to the above-described method of directly applying the electrostatic force or electromagnetic force to the reflector 40, the above-described natural frequency f 0 or a vibration in the vicinity thereof is applied to the entire reflector 35 by an ultrasonic vibrator or the like, and the vibration It is also possible to transmit the light to the reflecting plate 40 for reciprocal rotation. In this case, the vibration can be efficiently transmitted to the reflection plate 40 by providing the vibrator on the back side of the support substrate 45 and the support bases 45a and 45b.

本発明の実施形態の構成を示す図The figure which shows the structure of embodiment of this invention 波長可変光源の構成を示す図Diagram showing the configuration of a wavelength tunable light source 波長可変光源の別の構成を示す図The figure which shows another structure of a wavelength variable light source MEMSスキャナを説明するための分解斜視図Exploded perspective view for explaining a MEMS scanner 駆動信号を説明するための図Diagram for explaining drive signals MEMSスキャナによる波長掃引について説明するための図The figure for demonstrating the wavelength sweep by a MEMS scanner 反射波長の求め方の基本概念を説明するための図Diagram for explaining the basic concept of how to obtain the reflection wavelength 波長可変光源の発振波長の掃引特性を説明するための図Diagram for explaining the oscillation wavelength sweep characteristics of a tunable light source

符号の説明Explanation of symbols

1・・・半導体レーザ(LD)、2・・・コリメートレンズ、3・・・回折格子、4・・・光共振器、5,14・・・受光器(PD)、6・・・光分岐手段、10・・・波長可変光源、11・・・光サーキュレータ、12a〜12c・・・ファイバ、13a〜13c・・・ファイバブラッググレーティング(FBG)、15・・・A/D変換器、16a,16b・・・メモリ、17・・・ピーク値検出手段、18・・・ピーク値波長算出手段、19・・・反射波長/光路長算出手段、20・・・処理手段、35・・・反射体、36,37・・・固定基板、38,39・・・軸部、40・・・反射板、41・・・反射面、45・・・支持基板、45a,45b・・・支持台、46,47・・・電極板、50・・・反射体駆動手段、55・・・駆動信号発生器、60・・・MEMSスキャナ。
DESCRIPTION OF SYMBOLS 1 ... Semiconductor laser (LD), 2 ... Collimating lens, 3 ... Diffraction grating, 4 ... Optical resonator, 5, 14 ... Light receiver (PD), 6 ... Optical branching Means: 10 ... wavelength variable light source, 11 ... optical circulator, 12a-12c ... fiber, 13a-13c ... fiber Bragg grating (FBG), 15 ... A / D converter, 16a, 16b ... Memory, 17 ... Peak value detection means, 18 ... Peak value wavelength calculation means, 19 ... Reflection wavelength / optical path length calculation means, 20 ... Processing means, 35 ... Reflector , 36, 37 ... fixed substrate, 38, 39 ... shaft portion, 40 ... reflector, 41 ... reflector, 45 ... support substrate, 45a, 45b ... support base, 46 47 ... Electrode plate, 50 ... Reflector driving means, 55 ... Drive Signal generator, 60 · · · MEMS scanner.

Claims (10)

歪みの測定対象に設けられたFBG(13a〜13c)と、
所定の波長範囲の光を発振し、該光を測定光として前記FBGに入射させる波長可変光源(10)と、
前記FBGに入射された前記測定光であって、該FBGによって反射された光又は該FBGを透過した光を受けて第1の電気信号に変換する第1の受光器(14)と、
該第1の受光器から出力される前記第1の電気信号と前記波長可変光源の発振波長から前記FBGの反射波長を測定して当該FBGに加わった歪み量を求める処理手段(20)とを備えたFBG歪センサシステムにおいて、
前記波長可変光源は、
前記所定の波長範囲を含んで短波から長波へかつ長波から短波へ所定の掃引周期で光を発振し、該光を前記測定光として前記FBGに入射させ、
前記処理手段は、
前記波長可変光源が前記所定の波長範囲を含んで短波から長波へ掃引している期間に前記第1の受光器から出力される前記第1の電気信号と当該波長可変光源の発振波長から前記FBGの反射波長を第1の仮の反射波長λTUとして測定し、かつ、前記波長可変光源が前記所定の波長範囲を含んで長波から短波へ掃引している期間に前記第1の受光器から出力される前記第1の電気信号と当該波長可変光源の発振波長から前記FBGの反射波長を第2の仮の反射波長λTDとして測定し、さらに、測定した前記第1の仮の反射波長λTU及び前記第2の仮の反射波長λTDに基づいて、前記波長可変光源から前記FBGまで及び該FBGから前記第1の受光器までの光路長に起因して発生する、前記FBGの反射波長の測定時の波長ずれを含まない当該FBGの反射波長λFを求めることを特徴とするFBG歪センサシステム。
FBGs (13a to 13c) provided for distortion measurement targets;
A wavelength tunable light source (10) that oscillates light in a predetermined wavelength range and makes the light incident on the FBG as measurement light;
A first light receiver (14) that receives the measurement light incident on the FBG and receives the light reflected by the FBG or the light transmitted through the FBG and converts the light into a first electrical signal;
Processing means (20) for measuring the reflection wavelength of the FBG from the first electric signal output from the first light receiver and the oscillation wavelength of the wavelength tunable light source and determining the amount of distortion applied to the FBG; In the provided FBG strain sensor system,
The wavelength tunable light source is
The light is oscillated from a short wave to a long wave and from a long wave to a short wave in a predetermined sweep period including the predetermined wavelength range, and the light is incident on the FBG as the measurement light,
The processing means includes
From the first electrical signal output from the first light receiver and the oscillation wavelength of the wavelength tunable light source during the period in which the wavelength tunable light source sweeps from a short wave to a long wave including the predetermined wavelength range, the FBG Is output as the first provisional reflection wavelength λ TU and output from the first light receiver during a period in which the wavelength tunable light source sweeps from the long wave to the short wave including the predetermined wavelength range. The reflected wavelength of the FBG is measured as the second temporary reflected wavelength λ TD from the first electrical signal and the oscillation wavelength of the wavelength tunable light source, and the measured first temporary reflected wavelength λ TU And the reflection wavelength of the FBG generated due to the optical path length from the wavelength tunable light source to the FBG and from the FBG to the first light receiver based on the second temporary reflection wavelength λ TD . This does not include wavelength shift during measurement BG FBG strain sensor system and obtains the reflection wavelength lambda F of.
前記処理手段が、さらに、
前記FBGの前記第1の仮の反射波長λTU及び前記第2の仮の反射波長λTDに基づいて、前記波長可変光源から前記FBGまで及び該FBGから前記第1の受光器までの前記光路長を求めることを特徴とする請求項1に記載のFBG歪センサシステム。
The processing means further comprises:
Based on the first temporary reflection wavelength λ TU and the second temporary reflection wavelength λ TD of the FBG, the optical path from the wavelength variable light source to the FBG and from the FBG to the first light receiver The FBG strain sensor system according to claim 1, wherein a length is obtained.
前記処理手段は、
前記波長可変光源が前記所定の波長範囲を含んで短波から長波へ掃引している期間に前記第1の受光器から出力される前記第1の電気信号の中から前記FBGの反射波長に対応するピーク値を検出するとともに、検出した該ピーク値に対応した光が前記第1の受光器に入射された時の当該波長可変光源の発振波長を求め、求めた該発振波長を前記FBGの第1の仮の反射波長λTUとし、かつ、前記波長可変光源が前記所定の波長範囲を含んで長波から短波へ掃引している期間に前記第1の受光器から出力される前記第1の電気信号の中から前記FBGの反射波長に対応するピーク値を検出するとともに、検出した該ピーク値に対応した光が前記第1の受光器に入射された時の当該波長可変光源の発振波長を求め、求めた該発振波長を前記FBGの第2の仮の反射波長λTDとし、さらに、前記FBGの前記第1の仮の反射波長λTU及び前記第2の仮の反射波長λTD並びに前記波長可変光源の発振波長の掃引特性に基づいて当該FBGの反射波長λFを求めることを特徴とする請求項1に記載のFBG歪センサシステム。
The processing means includes
Corresponding to the reflected wavelength of the FBG from the first electric signal output from the first light receiver during a period in which the wavelength tunable light source sweeps from a short wave to a long wave including the predetermined wavelength range. The peak value is detected, the oscillation wavelength of the wavelength tunable light source when the light corresponding to the detected peak value is incident on the first light receiver is obtained, and the obtained oscillation wavelength is calculated as the first wavelength of the FBG. a provisional reflection wavelength lambda TU, and the first electrical signal the wavelength tunable light source is output from the first photodetector in a period that is swept to short the long wave including the predetermined wavelength range A peak value corresponding to the reflected wavelength of the FBG is detected, and an oscillation wavelength of the wavelength tunable light source when light corresponding to the detected peak value is incident on the first light receiver, The determined oscillation wavelength is the FB Second and reflection wavelength lambda TD tentative, further sweep characteristic of the oscillation wavelength of the first temporary reflection wavelength lambda TU and the second temporary reflection wavelength lambda TD and the wavelength tunable light source of the FBG 2. The FBG strain sensor system according to claim 1, wherein a reflection wavelength λ F of the FBG is obtained based on the FBG strain sensor system.
前記処理手段が、さらに、
前記FBGの前記第1の仮の反射波長λTU及び前記第2の仮の反射波長λTD並びに前記波長可変光源の発振波長の掃引特性に基づいて、前記波長可変光源から前記FBGまで及び該FBGから前記第1の受光器までの光路長を求めることを特徴とする請求項3に記載のFBG歪センサシステム。
The processing means further comprises:
Based on the first provisional reflection wavelength λ TU and the second provisional reflection wavelength λ TD of the FBG and the sweep characteristics of the oscillation wavelength of the wavelength tunable light source, from the wavelength tunable light source to the FBG and the FBG The FBG strain sensor system according to claim 3, wherein an optical path length from the first to the first light receiver is obtained.
前記波長可変光源は、
一方のレーザ光出射端面がARコートされている半導体レーザ(1)と、
該半導体レーザのARコートされている端面から出射された光をコリメートするコリメートレンズ(2)と、
該コリメートレンズから出射されたコリメート光を受けて波長に応じた角度で回折させる回折格子(3)と、
反射体(35)と反射体駆動手段(50)とを含んで構成され、前記回折格子から入射される前記コリメート光に対する回折光が、前記反射体の反射面で該回折格子へ反射されて、再び該回折格子で回折され、それによって得られた回折光が前記コリメートレンズを介して前記半導体レーザに入射されるとき、該半導体レーザに入射される回折光が所望の波長の光となるようにするとともに、該所望の波長が前記所定の波長範囲を含んで往復掃引されるように前記反射体の反射面の角度を前記反射体駆動手段により前記所定の周期で繰り返し変化させるMEMSスキャナ(60)とを備えたことを特徴とする請求項1〜4のいずれかに記載のFBG歪センサシステム。
The wavelength tunable light source is
A semiconductor laser (1) in which one laser light emitting end face is AR coated;
A collimating lens (2) for collimating light emitted from the AR-coated end face of the semiconductor laser;
A diffraction grating (3) that receives collimated light emitted from the collimating lens and diffracts the collimated light at an angle corresponding to the wavelength;
A diffracted light for the collimated light incident from the diffraction grating is reflected to the diffraction grating by the reflection surface of the reflector, and includes a reflector (35) and a reflector driving means (50). When diffracted light is again diffracted by the diffraction grating and incident on the semiconductor laser through the collimating lens, the diffracted light incident on the semiconductor laser becomes light of a desired wavelength. And a MEMS scanner (60) for repeatedly changing the angle of the reflecting surface of the reflector at the predetermined period by the reflector driving means so that the desired wavelength is swept back and forth including the predetermined wavelength range. The FBG strain sensor system according to any one of claims 1 to 4, further comprising:
前記MEMSスキャナの反射体は、
固定基板(36、37)と、
該固定基板の縁部から所定幅で所定長さ延設され、その長さ方向に沿って捩じれ変形可能な軸部(38、39)と、
該軸部の先端に自身の縁部で連結されて形成され、一面側に前記回折格子からの回折光を反射させるための前記反射面が設けられた反射板(40)とを有しており、かつ、
前記MEMSスキャナの反射体駆動手段は、
前記反射体の軸部と反射板とからなる部分の固有振動数に対応した周波数の駆動信号によって前記反射板に力を与えて、該反射板を前記固有振動数又はそれに近い振動数の前記所定の周期で往復回転させるように構成されていることを特徴とする請求項5に記載のFBG歪センサシステム。
The reflector of the MEMS scanner is:
A fixed substrate (36, 37);
Shaft portions (38, 39) that extend from the edge of the fixed substrate with a predetermined width and have a predetermined length and can be twisted and deformed along the length direction;
A reflection plate (40) formed by being connected to the tip of the shaft portion at its edge and provided with the reflection surface for reflecting the diffracted light from the diffraction grating on one surface side; ,And,
The reflector driving means of the MEMS scanner includes:
A force is applied to the reflecting plate by a driving signal having a frequency corresponding to the natural frequency of the portion composed of the shaft portion and the reflecting plate of the reflector, and the reflecting plate is given the predetermined frequency at or near the natural frequency. The FBG strain sensor system according to claim 5, wherein the FBG strain sensor system is configured to be reciprocally rotated at a period of
前記波長可変光源は、さらに、
前記回折格子の0次光が出射される光路上に設けられて所定の波長の光を透過させる光共振器(4)と、
該光共振器から出射される透過光を受けて第2の電気信号に変換する第2の受光器(5)とを備え、該第2の受光器から出力される前記第2の電気信号から当該波長可変光源の発振波長を求めることを可能にしたことを特徴とする請求項5又は6に記載のFBG歪センサシステム。
The wavelength tunable light source further includes:
An optical resonator (4) provided on an optical path from which the zero-order light of the diffraction grating is emitted and transmitting light of a predetermined wavelength;
A second light receiver (5) that receives the transmitted light emitted from the optical resonator and converts it into a second electric signal, and from the second electric signal output from the second light receiver. 7. The FBG strain sensor system according to claim 5, wherein an oscillation wavelength of the wavelength tunable light source can be obtained.
前記波長可変光源は、
前記回折格子の0次光を出力光とすることを特徴とする請求項5又は6に記載のFBG歪センサシステム。
The wavelength tunable light source is
The FBG strain sensor system according to claim 5 or 6, wherein the 0th-order light of the diffraction grating is output light.
前記波長可変光源は、さらに、
前記回折格子の0次光が出射される光路上に設けられ、該0次光を2つに分岐して一方の0次光を前記出力光として出射する光分岐手段(6)と、
該光分岐手段から出射される他方の0次光を受けて所定の波長の光を透過させる光共振器(4)と、
該光共振器から出射される透過光を受けて第2の電気信号に変換する第2の受光器(5)とを備え、該第2の受光器から出力される前記第2の電気信号から当該波長可変光源の発振波長を求めることを可能にしたことを特徴とする請求項8に記載のFBG歪センサシステム。
The wavelength tunable light source further includes:
A light branching means (6) provided on an optical path from which the zero-order light of the diffraction grating is emitted, branching the zero-order light into two and emitting one zero-order light as the output light;
An optical resonator (4) for receiving the other zero-order light emitted from the light branching means and transmitting light of a predetermined wavelength;
A second light receiver (5) that receives the transmitted light emitted from the optical resonator and converts it into a second electric signal, and from the second electric signal output from the second light receiver. 9. The FBG strain sensor system according to claim 8, wherein an oscillation wavelength of the wavelength tunable light source can be obtained.
前記処理手段は、
前記第1の受光器からの前記第1の電気信号及び前記第2の受光器からの前記第2の電気信号を受けてそれぞれディジタル値に変換するA/D変換器(15)と、
該A/D変換器から出力される前記第1の電気信号のディジタル値を順次所定のアドレスに記憶する第1のメモリ(16a)と、
前記A/D変換器から出力される前記第2の電気信号のディジタル値を順次所定のアドレスに記憶する第2のメモリ(16b)と、
前記第1のメモリの前記所定のアドレスに記憶されているディジタル値を読み出して、前記波長可変光源が前記所定の波長範囲を含んで短波から長波へ掃引している期間における前記FBGの反射波長に対応する第1のピーク値を検出し、かつ、前記波長可変光源が前記所定の波長範囲を含んで長波から短波へ掃引している期間における前記FBGの反射波長に対応する第2のピーク値を検出するピーク値検出手段(17)と、
前記第2のメモリの前記所定のアドレスに記憶されている前記波長可変光源の発振波長を求めるためのディジタル値を読み出して、前記光共振器の前記所定の波長が記憶されているアドレスを検出し、検出した該アドレスと前記ピーク値検出手段から出力される、前記第1のピーク値及び前記第2のピーク値がそれぞれ記憶されているアドレスとに基づいて、当該第1のピーク値及び第2のピーク値にそれぞれ対応した光が前記第1の受光器に入射された時の当該波長可変光源の発振波長を求め、求めたそれぞれの該発振波長を前記FBGの第1の仮の反射波長λTU及び第2の仮の反射波長λTDとするピーク値波長算出手段(18)と、
該ピーク値波長算出手段から出力される前記第1の仮の反射波長λTU及び前記第2の仮の反射波長λTDと前記波長可変光源の発振波長の掃引特性とに基づいて、前記FBGの反射波長λFを求めるとともに、前記波長可変光源から前記FBGまで及び該FBGから前記第1の受光器までの光路長を求める反射波長/光路長算出手段(19)とを備えたことを特徴とする請求項7又は9に記載のFBG歪センサシステム。
The processing means includes
An A / D converter (15) that receives the first electric signal from the first light receiver and the second electric signal from the second light receiver and converts them into digital values, respectively;
A first memory (16a) for sequentially storing a digital value of the first electric signal output from the A / D converter at a predetermined address;
A second memory (16b) for sequentially storing the digital value of the second electric signal output from the A / D converter at a predetermined address;
The digital value stored at the predetermined address of the first memory is read, and the reflected wavelength of the FBG during the period in which the wavelength variable light source sweeps from the short wave to the long wave including the predetermined wavelength range is obtained. A corresponding first peak value is detected, and a second peak value corresponding to the reflected wavelength of the FBG in a period in which the wavelength tunable light source sweeps from a long wave to a short wave including the predetermined wavelength range is obtained. A peak value detecting means (17) for detecting;
A digital value for obtaining the oscillation wavelength of the wavelength tunable light source stored at the predetermined address of the second memory is read, and an address where the predetermined wavelength of the optical resonator is stored is detected. , Based on the detected address and the address output from the peak value detecting means and storing the first peak value and the second peak value, respectively. The oscillation wavelength of the wavelength tunable light source when light corresponding to each of the peak values is incident on the first light receiver is obtained, and each of the obtained oscillation wavelengths is determined as the first provisional reflection wavelength λ of the FBG. A peak value wavelength calculating means (18) for setting the TU and the second provisional reflection wavelength λ TD ;
Based on the first provisional reflection wavelength λ TU and the second provisional reflection wavelength λ TD output from the peak value wavelength calculation means and the sweep characteristic of the oscillation wavelength of the wavelength tunable light source, the FBG A reflection wavelength / optical path length calculating means (19) for obtaining a reflection wavelength λ F and obtaining an optical path length from the wavelength tunable light source to the FBG and from the FBG to the first light receiver; The FBG strain sensor system according to claim 7 or 9.
JP2005120031A 2005-04-18 2005-04-18 FBG strain sensor system Expired - Fee Related JP4068102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005120031A JP4068102B2 (en) 2005-04-18 2005-04-18 FBG strain sensor system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005120031A JP4068102B2 (en) 2005-04-18 2005-04-18 FBG strain sensor system

Publications (2)

Publication Number Publication Date
JP2006300609A JP2006300609A (en) 2006-11-02
JP4068102B2 true JP4068102B2 (en) 2008-03-26

Family

ID=37469089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005120031A Expired - Fee Related JP4068102B2 (en) 2005-04-18 2005-04-18 FBG strain sensor system

Country Status (1)

Country Link
JP (1) JP4068102B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4787789B2 (en) * 2006-06-09 2011-10-05 アンリツ株式会社 FBG sensor system
JP2015031595A (en) * 2013-08-02 2015-02-16 アンリツ株式会社 Physical quantity measurement system and physical quantity measurement method

Also Published As

Publication number Publication date
JP2006300609A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP5308502B2 (en) FBG sensor system
JP4557907B2 (en) Wavelength calibration apparatus and method for MEMS wavelength swept light source
US7355684B2 (en) Interferometric signal conditioner for measurement of the absolute length of gaps in a fiber optic Fabry-Perot interferometer
JP4557730B2 (en) Optical spectrum analyzer
JP5659293B2 (en) Phase shift interferometer
JP2006049785A (en) Wavelength variable light source, and distortion measurement equipment using the same
US20200081103A1 (en) Angular magnetic field sensor for a scanner
JP5308198B2 (en) Optical pulse generator and optical measuring instrument using the same
JP4399444B2 (en) FBG sensor system
JP4068102B2 (en) FBG strain sensor system
JP4435137B2 (en) Fast wavelength swept light source
JP5380644B2 (en) Physical quantity measurement system
JP4787789B2 (en) FBG sensor system
JP2006145270A (en) Mems optical spectrum analyzer and its wavelength calibration method
JP6943675B2 (en) External resonance type laser module, analyzer, external resonance type laser module drive method, program
JP2006266771A (en) Gas sensor
JP2008249735A (en) Gas sensor
JP5171241B2 (en) Physical quantity measurement system
JP2010062426A (en) Wavelength scanning type laser light source
JP6082222B2 (en) Wavelength swept light source
EP1865288A2 (en) FBG sensor system
JP4486951B2 (en) FBG sensor system
JP2017044565A (en) Distance measurement device and method
RU2752133C1 (en) Multichannel fiber-optic system for detecting and measuring parameters of acoustic emission signals
US20240061093A1 (en) Angle measuring device and angle measuring method for scanning device of laser radar

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees