JP2008045820A - Method of manufacturing plate-like heat pipe - Google Patents

Method of manufacturing plate-like heat pipe Download PDF

Info

Publication number
JP2008045820A
JP2008045820A JP2006222174A JP2006222174A JP2008045820A JP 2008045820 A JP2008045820 A JP 2008045820A JP 2006222174 A JP2006222174 A JP 2006222174A JP 2006222174 A JP2006222174 A JP 2006222174A JP 2008045820 A JP2008045820 A JP 2008045820A
Authority
JP
Japan
Prior art keywords
flat plate
ultrasonic welding
heat pipe
manufacturing
capillary structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006222174A
Other languages
Japanese (ja)
Inventor
Hsiu-Wei Yang
修維 楊
Pei-Pei Chen
佩佩 陳
Wen-Hwa Yu
文華 余
Jau-Shiang Jeng
兆翔 鄭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kiko Kagi Kofun Yugenkoshi
Original Assignee
Kiko Kagi Kofun Yugenkoshi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kiko Kagi Kofun Yugenkoshi filed Critical Kiko Kagi Kofun Yugenkoshi
Priority to JP2006222174A priority Critical patent/JP2008045820A/en
Publication of JP2008045820A publication Critical patent/JP2008045820A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a plate-like heat pipe, having good thermal conductivity and sealing ability, to which ultrasonic welding is applied. <P>SOLUTION: A capillary structure 12 made of copper having good thermal conductivity is bent to hold a support 13 made of material having good thermal conductivity, which is formed of a more coarse network structure than the capillary structure, and they are joined and integrated by ultrasonic welding, and further joined to upper and lower flat plates made of metal having good thermal conductivity by ultrasonic welding. The upper and lower flat plates are joined to seal the capillary structure and integrated. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、「平板式ヒートパイプの製造方法」に関し、特に超音波溶接を応用した平板式ヒートパイプの製造方法に関する。   The present invention relates to a “method for manufacturing a flat plate heat pipe”, and more particularly to a method for manufacturing a flat plate heat pipe to which ultrasonic welding is applied.

CPU等の集積回路デバイスの集積密度は絶え間なく向上し、その発熱度も増大し、効果的な冷却ができない場合、デバイスの処理性能に影響する。 The integration density of an integrated circuit device such as a CPU is continually improved, its heat generation is increased, and if effective cooling is not possible, the processing performance of the device is affected.

携帯式電子機器が日増しに軽薄短小の方向に発展する中、直面する冷却の問題は更に重要になり、従来の冷却装置では十分な冷却効果が得られずに徐々にボトルネックとなりつつある。 As portable electronic devices are becoming more and more light and short, the problem of cooling that is confronted becomes more important, and the conventional cooling device is gradually becoming a bottleneck without obtaining a sufficient cooling effect.

従って、平板式ヒートパイプの出現は、時宜を得た携帯式電子機器の良好な冷却装置となっている。 Thus, the advent of flat plate heat pipes has become a good cooling device for timely portable electronic devices.

平板式ヒートパイプの動作原理は、大部分が従来のヒートパイプと同じであり、異なる箇所は従来のヒートパイプは外形が制限され、熱量を一次元方向のみに伝達できることに対し、平板式ヒートパイプは、二次元方式で熱量を伝達するように設計でき、又、平板式ヒートパイプは更に薄く製造でき、外形も従来のヒートパイプのように制限されることなく、従って対象とする冷却デバイスへの適用に弾力性および応用性を大きく向上することができる。 The principle of operation of a flat plate heat pipe is mostly the same as that of a conventional heat pipe. Unlike the conventional heat pipe, the outer shape of the conventional heat pipe is limited and heat can be transferred only in one dimension. Can be designed to transfer heat in a two-dimensional manner, and flat plate heat pipes can be made even thinner, and the outer shape is not limited as in conventional heat pipes, and therefore can be applied to the target cooling device. The elasticity and applicability can be greatly improved.

図1および図2は、従来の平板式ヒートパイプを示す図であり、覆蓋面積が比較的大きい2つの平板11の間を利用して2つの毛細構造体12を挟み、2つの毛細構造体12の間には支持体13を挟んで配置する。   FIG. 1 and FIG. 2 are views showing a conventional flat plate heat pipe. Two capillary structures 12 are sandwiched between two flat plates 11 having a relatively large cover area by sandwiching them. The support 13 is interposed between the two.

上記構成部材は、一般に高温環境で熱膨張により各部材が変形して隙間が生じ易く、このため冷却効果の低下を引き起こすが、熱処理により上記各構成部材の間に拡散接合を形成して結合することにより各構成部材の間に隙間が生じることを防止し、良好な熱伝導効果を保持することができる。   In general, the above components are easily deformed due to thermal expansion in a high temperature environment, and gaps are likely to be formed. This causes a decrease in cooling effect. Thus, it is possible to prevent a gap from being formed between the constituent members and to maintain a good heat conduction effect.

但し、拡散接合を実行する場合、各構成部材に対して位置決めを行い、各構成部材間の相対位置を調整したうえで治具を利用して各構成部材を固定する必要があり、治具により各構成部材に大きな圧力を加えて各構成部材間に緊密な接触を形成する。最後に8時間から9時間の長時間の熱処理を通して各部材の間に接合を形成する。 However, when performing diffusion bonding, it is necessary to position each component member, adjust the relative position between the component members, and fix each component member using a jig. A large pressure is applied to each component to form intimate contact between the components. Finally, a bond is formed between the members through a long heat treatment of 8 to 9 hours.

位置決めの正確性は、平板式ヒートパイプの冷却性能に影響する。多層構造を採用した毛細構造体の平板式ヒートパイプにおいて、位置決めの問題は明らかに更に重要である。   The accuracy of positioning affects the cooling performance of the flat plate heat pipe. The positioning problem is clearly more important in a flat plate heat pipe with a multilayer structure.

例えば、平板式ヒートパイプの構造において、金属銅網を利用して毛細構造体とし、熱源と接触する箇所(例えばCPUと接触する箇所)に比較的細かい網目の金属銅網を採用して作動液体が熱に触れて気化する速度を向上し、残りの箇所は比較的粗い網目の金属銅網を採用して作動液体の流動性を向上し、平板式ヒートパイプ全体の冷却効果を向上する。この時、製造工程において、比較的細かい網目の金属銅網の位置決めが正確であるか否かは、平板式ヒートパイプの冷却効果に影響する。   For example, in the structure of a flat plate heat pipe, use a metal copper mesh to form a capillary structure, and use a relatively fine mesh metal copper mesh at the point of contact with the heat source (for example, the point of contact with the CPU). The rate of vaporization upon contact with heat is improved, and the remaining part adopts a relatively coarse metallic copper mesh to improve the fluidity of the working liquid and improve the cooling effect of the entire flat plate heat pipe. At this time, in the manufacturing process, whether or not the positioning of the metal copper net having a relatively fine mesh is accurate affects the cooling effect of the flat plate heat pipe.

この他、圧力を施す治具の平面度の影響を受け易く、治具の平面度が適切でない場合、治具により各構成部材の間を圧力接合する接合密度が悪くなり易く、拡散接合を実行した後の接合強度と緊密度が不十分になり、接合箇所の構成部材は熱により変形し隙間が生じ、熱抵抗が増加し冷却効果が低下する。
特開2004−324906号公報 特開2003−24779号公報
In addition, it is easily affected by the flatness of the jig to which pressure is applied, and when the flatness of the jig is not appropriate, the bonding density of pressure bonding between the components by the jig is likely to deteriorate, and diffusion bonding is performed. Then, the bonding strength and the tightness become insufficient, and the constituent members at the bonding locations are deformed by heat to form gaps, increasing the thermal resistance and reducing the cooling effect.
JP 2004-324906 A Japanese Patent Laid-Open No. 2003-24779

本発明は、簡単に各構成部材を位置決めして各構成部材間の接合強度および緊密度を向上すると共に、製造工程の時間を低減した、超音波溶接を応用した平板式ヒートパイプの製造方法を提供することを目的とする。 The present invention provides a method for manufacturing a flat plate heat pipe using ultrasonic welding, in which each component is easily positioned to improve the bonding strength and tightness between the components, and the manufacturing process time is reduced. The purpose is to provide.

本発明の超音波溶接を応用した平板式ヒートパイプの製造方法は、
(A)毛細構造体表面の少なくとも1つの部分を超音波により上平板および前記上平板と形状が対応した下平板のうちいずれか1つ上に溶接し、前記上平板および前記下平板が相互に畳み合うと共に前記毛細構造体は前記平板間に配置する。
(B)前記平板を接合し、前記毛細構造体を前記平板内に密封する。
を含むものである。
The manufacturing method of the flat plate heat pipe to which the ultrasonic welding of the present invention is applied,
(A) At least one portion of the surface of the capillary structure is welded onto one of the upper flat plate and the lower flat plate corresponding in shape to the upper flat plate by ultrasonic waves, and the upper flat plate and the lower flat plate are mutually connected The capillary structures are arranged between the flat plates while being folded.
(B) The flat plates are joined, and the capillary structure is sealed in the flat plate.
Is included.

超音波溶接を応用し毛細構造体を上平板または下平板のいずれか1つに接合し、毛細構造体と平板との間に良好な接合強度と緊密度を具有させ、効果的に熱抵抗を低下させ冷却効果を向上するとともに、接合工程の所要時間を大幅に短縮することができる。 Ultrasonic welding is applied to join the capillary structure to one of the upper or lower flat plate, and it has good bonding strength and tightness between the capillary structure and the flat plate, effectively reducing thermal resistance. The cooling effect can be improved by lowering, and the time required for the joining process can be greatly shortened.

本発明が提供する超音波溶接を応用した平板式ヒートパイプの製造は、平板式ヒートパイプの構成部材(毛細構造体、支持体、および平板等)間を容易に位置決めするだけではなく、前記構成部材間の接合強度および緊密度を向上し、熱抵抗を効果的に下げ冷却効果を向上すると共に、接合工程にかかる時間を短縮することができる。 The manufacture of a flat plate heat pipe using ultrasonic welding provided by the present invention not only easily positions the components (capillary structure, support, flat plate, etc.) of the flat plate heat pipe, but also has the above-described configuration. It is possible to improve the bonding strength and tightness between the members, effectively reduce the thermal resistance, improve the cooling effect, and shorten the time required for the bonding process.

この他、本発明の超音波溶接を応用した平板式ヒートパイプの製造方法は、更に超音波溶接により毛細構造体を前記平板の間であるとともに前記毛細構造体と相互に接触する支持体上に接合し、毛細構造体と支持体との間に良好な接合強度と密度を具有させ、熱抵抗を効果的に下げ冷却効果を向上すると共に、接合工程にかかる時間を短縮することができる。   In addition, the method for manufacturing a flat plate-type heat pipe to which the ultrasonic welding of the present invention is applied further includes the step of ultrasonic welding the capillary structure between the flat plates on the support that is in mutual contact with the capillary structure. It is possible to bond the capillaries and the support with good bonding strength and density, effectively reduce the thermal resistance, improve the cooling effect, and shorten the time required for the bonding process.

本発明の超音波溶接を応用した平板式ヒートパイプの製造方法は、更に前記平板周縁に沿って超音波溶接を実施することを含み、前記平板周縁を密封することにより、前記平板との間に良好な接合強度と密度を具有させ、熱抵抗を効果的に下げ冷却効果を向上すると共に、接合工程にかかる時間を短縮することができる。 The manufacturing method of the flat plate-type heat pipe to which the ultrasonic welding of the present invention is applied further includes performing ultrasonic welding along the peripheral edge of the flat plate. It has good bonding strength and density, effectively reduces the thermal resistance, improves the cooling effect, and shortens the time required for the bonding process.

本発明の超音波溶接を応用した平板式ヒートパイプの製造方法は、更に超音波溶接を応用し少なくとも2つの子毛細構造体を接合し毛細構造体を生成させることを含むものである。 The manufacturing method of the flat plate-type heat pipe to which the ultrasonic welding of the present invention is applied further includes applying ultrasonic welding to join at least two child capillary structures to generate a capillary structure.

本発明の特徴、構造および達成する効果を更に明確にする為、図を用いて本発明の実施例を詳細に説明する。 In order to further clarify the features, structure and effects achieved, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の超音波溶接を応用した平板式ヒートパイプの製造方法の好適な実施形態は、以下の工程を含むものである:
先ず、図3を参照すると、工程21において、毛細構造体31を支持体32上に位置決めする。その位置決めの方式はそれぞれ図4および図5に示すものである。
図4が示すものは、片状の毛細構造体31を折り曲げて片状の支持体32を挟み、毛細構造体31および支持体32の上下表面に均一に接触させ、この構造により毛細構造体31の上部311における熱量を側部312を経由して下部313へ分散して伝達し、効率的に冷却効果を向上する。
A preferred embodiment of a method for producing a flat plate heat pipe to which the ultrasonic welding of the present invention is applied includes the following steps:
First, referring to FIG. 3, in step 21, the capillary structure 31 is positioned on the support 32. The positioning method is shown in FIGS. 4 and 5, respectively.
FIG. 4 shows that the piece-like capillary structure 31 is bent to sandwich the piece-like support body 32 and uniformly contact the upper and lower surfaces of the capillary structure 31 and the support body 32. The amount of heat in the upper part 311 is distributed and transmitted to the lower part 313 via the side part 312 to efficiently improve the cooling effect.

毛細構造体31の作用は熱量を吸収することに用いられ、前記熱量を毛細構造体31の上部に付着する作動液体に伝達し、前記作動液体に熱量を吸収させて昇華させて気体へと変化させる。本実施形態中、毛細構造体31は熱伝導性の良好な金属銅線が編込まれてなる金属銅網を典型例とする。 The action of the capillary structure 31 is used to absorb the amount of heat, and the amount of heat is transmitted to the working liquid adhering to the upper part of the capillary structure 31, and the working liquid absorbs the amount of heat and sublimates to change into a gas. Let In the present embodiment, the capillary structure 31 is typically a metal copper net formed by braiding a metal copper wire with good thermal conductivity.

この他、図5に示すように、更に複数の子毛細構造体311を結合し多層構造の毛細構造体31を構成することができる。2種類の異なる網目の金属銅網を応用してそれぞれ子毛細構造体314,315とし、前記子毛細構造体314,315を結合して毛細構造体31とし、全体の冷却効果を向上させる。その内、比較的網目の細かい金属銅網を用いて熱を受ける箇所(例えば、CPUと接触する箇所)に設置することで、その上に付着する作動液体の気化速度を向上することができ、その他の箇所は比較的網目の粗い金属銅網を用い作動流体の良好な流動性を維持させ、冷却効果を向上する。 In addition, as shown in FIG. 5, a plurality of child capillary structures 311 can be combined to form a multilayer structure 31. Two types of metallic copper nets of different meshes are applied to form the sub-capillary structures 314 and 315, respectively, and the sub-capillary structures 314 and 315 are combined to form the capillary structure 31 to improve the overall cooling effect. Among them, by installing at a location that receives heat using a metal mesh with a relatively fine mesh (for example, a location in contact with the CPU), the vaporization rate of the working liquid adhering to it can be improved, Other locations use a metal mesh with a relatively coarse mesh to maintain good fluidity of the working fluid and improve the cooling effect.

支持体32の作用は、相互に貫通する隙間321を提供することであり、作動液体を隙間321内で自由に流動させることができる。本実実施形態中、支持体32は比較的粗い金属銅線を編みこんでなる金属銅網を代表とし、その網目の大きさは毛細構造体31の金属銅網の網目の大きさより大きいものである。 The action of the support 32 is to provide a gap 321 that penetrates the working body 32, and the working liquid can freely flow in the gap 321. In the present embodiment, the support 32 is represented by a metal copper mesh formed by braiding a relatively rough metal copper wire, and the mesh size is larger than the mesh size of the metal copper mesh of the capillary structure 31. is there.

図6が示すように、毛細構造体31を支持体32の両側に沿って折り畳んで支持体32を覆い包み、毛細構造体31の上部311に位置する熱量を左右両側部312に介してそれぞれ下部に分散して伝達させることができ、効率的に冷却効果を向上する。   As shown in FIG. 6, the capillary structure 31 is folded along both sides of the support body 32 so as to cover the support body 32, and the amount of heat located in the upper part 311 of the capillary structure body 31 is lowered through the left and right side parts 312. The cooling effect can be improved efficiently.

毛細構造体31および支持体32の位置決め方式は、上記図4および図6の形式に限らず、毛細構造体31は多層形式として支持体32を覆わせることもできる。毛細構造体31および支持体32の数量は1片に限らず、多数であることもでき、その形状も限定しない。毛細構造体31は支持体32の表面の少なくとも1部分のみ接触することも可能である。 The positioning method of the capillary structure 31 and the support body 32 is not limited to the format shown in FIGS. 4 and 6, and the capillary structure body 31 can also cover the support body 32 as a multilayer format. The number of the capillary structures 31 and the support bodies 32 is not limited to one piece, but can be many, and the shapes thereof are not limited. The capillary structure 31 can contact only at least a part of the surface of the support 32.

続いて、図3が示すように、工程22は、毛細構造体31および支持体32を超音波溶接により接合する。図7および図8が示すようにそれぞれ超音波点溶接および超音波ローラー溶接を利用し、毛細構造体31および支持体32を接合する。   Then, as FIG. 3 shows, the process 22 joins the capillary structure 31 and the support body 32 by ultrasonic welding. As shown in FIGS. 7 and 8, the capillary structure 31 and the support 32 are joined using ultrasonic spot welding and ultrasonic roller welding, respectively.

更に、同様に、超音波点溶接およびローラー溶接を応用して前記2種類の異なる網目の子毛細構造体314,315を接合し毛細構造体を形成することができる。   Further, similarly, by applying ultrasonic spot welding and roller welding, it is possible to join the child capillary structures 314 and 315 of the two different meshes to form a capillary structure.

図7が示す点溶接方式は、溶接ヘッド41の下方に上ブラシ42を形成し、前記上ブラシ42および載置台43に設置される下ブラシ44を対応させる。操作時、まず毛細構造体31および支持体32を位置決めして上下ブラシ42,44の間に配置し、上ブラシ42を下方に加圧し、毛細構造体31および支持体32を上下ブラシ42,44の間に緊密に挟ませる。溶接ヘッド41が上ブラシ42を連動することにより、超音波周波数により実質上水平方向に微小震動し、毛細構造体31および支持体32が相互に接触する表面に摩擦作用を受けさせ局部溶接を生じさせて接合を形成する。   In the spot welding method shown in FIG. 7, an upper brush 42 is formed below the welding head 41, and the upper brush 42 and the lower brush 44 installed on the mounting table 43 correspond to each other. In operation, the capillary structure 31 and the support 32 are first positioned and placed between the upper and lower brushes 42 and 44, the upper brush 42 is pressed downward, and the capillary structure 31 and the support 32 are moved to the upper and lower brushes 42 and 44. Hold tightly between. When the welding head 41 interlocks with the upper brush 42, the ultrasonic vibration causes a slight horizontal vibration in the horizontal direction, and the capillary structure 31 and the support 32 receive a frictional action on the surfaces that contact each other, thereby causing local welding. To form a bond.

図8が示すローラー溶接方式は、その原理は点溶接とほぼ同一であり、回転可能な上ローラー45が連動するリング状上ブラシ46を形成し、上ブラシ46は回転可能な下ローラー47上のリング状下ブラシ48に対応する。操作時、まず毛細構造体31および支持体32を位置決めして上下ブラシ46,48の間に配置し、上ブラシ46を下方に加圧し、毛細構造体31および支持体32を上下ブラシ46,48の間に緊密に挟ませる。上ローラー45が上ブラシ42を連動して超音波周波数により実質上水平方向に微小震動し、毛細構造体31および支持体32が相互に接触する表面に摩擦作用を受けさせ、局部溶接を発生させて接合を形成する。更に、反対方向に回転する上下ローラー45,47により、毛細構造体31および支持体32を連動して横方向に移動させ、毛細構造体31および支持体32を連続的に接合させる目的を達成する。   The principle of the roller welding method shown in FIG. 8 is almost the same as that of spot welding, and forms a ring-shaped upper brush 46 in which a rotatable upper roller 45 is interlocked. The upper brush 46 is on a rotatable lower roller 47. Corresponds to the ring-shaped lower brush 48. During operation, the capillary structure 31 and the support body 32 are first positioned and placed between the upper and lower brushes 46, 48, the upper brush 46 is pressed downward, and the capillary structure 31 and the support body 32 are moved to the upper and lower brushes 46, 48. Hold tightly between. The upper roller 45 interlocks with the upper brush 42 and vibrates in a substantially horizontal direction due to the ultrasonic frequency, causes the surface where the capillary structure 31 and the support 32 contact each other to receive a frictional action, and causes local welding. To form a bond. Further, the capillary structure 31 and the support body 32 are moved in the lateral direction in conjunction with the upper and lower rollers 45 and 47 rotating in the opposite directions, and the purpose of continuously joining the capillary structure body 31 and the support body 32 is achieved. .

超音波を利用し点溶接またはローラー溶接のどちらを実行しても、毛細構造体31および支持体32の相互に接触する表面を摩擦し、摩擦により局部溶解が発生する前に、先ずその表面上に形成される酸化物が摩擦により除去され、その表面に元の材質が露出される。従って、酸化物が除去されることにより、局部溶解が形成する接合の接合強度および緊密度は従来の拡散接合に比較して良好であり、更に熱伝導抵抗が低下し冷却効率が向上する。また、超音波溶接が要する時間はわずかに30分間であり、拡散接合が要する8,9時間よりもはるかに少ない時間である。 Whether spot welding or roller welding is performed using ultrasonic waves, the surfaces of the capillary structure 31 and the support 32 that come into contact with each other are rubbed, and before the local dissolution occurs due to the friction, first, The oxide formed in this step is removed by friction, and the original material is exposed on the surface. Therefore, by removing the oxide, the joint strength and tightness of the joint formed by local melting are better than those of the conventional diffusion joint, and the heat conduction resistance is further lowered and the cooling efficiency is improved. Also, the time required for ultrasonic welding is only 30 minutes, much less than the 8.9 hours required for diffusion bonding.

この他、超音波溶接を利用して予め毛細構造体31および支持体32を接合することは、更に洗浄の効果を有する。   In addition, joining the capillary structure 31 and the support 32 in advance using ultrasonic welding has a further cleaning effect.

一般に平板式ヒートパイプの製造工程中、汚染物がヒートパイプ内を塞ぎ処理性能に影響することを防止する必要があり、従って毛細構造体31および支持体32に対して洗浄を行うが、従来の拡散接合を応用した製造工程においては、毛細構造体31および支持体32をそれぞれ洗浄した後、位置決めを行い、位置決めの捜査過程中、容易に汚染物が付着し、二次汚染引き起こすのである。   In general, during the manufacturing process of the flat plate heat pipe, it is necessary to prevent contaminants from blocking the heat pipe and affecting the processing performance. Therefore, the capillary structure 31 and the support body 32 are washed. In the manufacturing process using diffusion bonding, after the capillary structure 31 and the support 32 are cleaned, positioning is performed, and during the positioning investigation process, contaminants easily adhere and cause secondary contamination.

本発明は超音波溶接を利用し拡散接合に取って代わり、洗浄する前に、予め毛細構造体31および支持体32を接合して、効果的に二次汚染の問題が発生することを防止する。   The present invention replaces diffusion bonding using ultrasonic welding, and joins the capillary structure 31 and the support 32 in advance before cleaning to effectively prevent the problem of secondary contamination. .

上記のように、超音波溶接法(点溶接またはローラー溶接)を応用して毛細構造体31を製造および毛細構造体31を支持体32に接合する。以下は、同様に超音波溶接法を応用し、更に平板式ヒートパイプのその他の構成要素を接合させる。   As described above, the capillary structure 31 is manufactured by applying the ultrasonic welding method (spot welding or roller welding), and the capillary structure 31 is joined to the support 32. In the following, the ultrasonic welding method is similarly applied, and other components of the flat plate heat pipe are further joined.

図3および図9が示すように、工程23において、接合後の毛細構造体31および支持体32を、超音波溶接により下平板34上に接合する。毛細構造体31は既に支持体32に接合されているため、直接に下平板34を位置決めして接合を実行することができ、従来の毛細構造体、支持体および下平板の三者をそれぞれ調整する面倒を回避する。   As shown in FIGS. 3 and 9, in step 23, the joined capillary structure 31 and support 32 are joined on the lower flat plate 34 by ultrasonic welding. Since the capillary structure 31 is already joined to the support 32, the lower plate 34 can be directly positioned and joined, and the conventional capillary structure, support and lower plate can be adjusted respectively. Avoid the hassle of doing.

図3および図10が示すように、工程24において、下平板34に対応した形状の上平板33を下平板34上に対応させて位置決めし、超音波点溶接を利用し熱源に対応する箇所(例えば、CPUとの接触箇所)に図10に示すような少なくとも1つの凹部35を形成し、上平板33と毛細構造体31、支持体32および下平板34とを結合し、上記構成要素の相互の間で位置がずれることを防止し、各構成要素間の接合密度を強化し、熱源付近の構成要素が変形して隙間が発生することを効果的に防止し、熱伝導抵抗が増加し冷却効果が低下することを防止する。 As shown in FIGS. 3 and 10, in step 24, the upper plate 33 having a shape corresponding to the lower plate 34 is positioned on the lower plate 34 and positioned corresponding to the heat source using ultrasonic spot welding ( For example, at least one concave portion 35 as shown in FIG. 10 is formed at a contact point with the CPU, and the upper flat plate 33 and the capillary structure 31, the support 32 and the lower flat plate 34 are coupled to each other. Between the components, strengthening the bonding density between the components, effectively preventing the components near the heat source from deforming and generating gaps, increasing the heat conduction resistance and cooling Prevents the effect from decreasing.

図3および図11が示すように、工程25において、超音波ローラー溶接法を利用し、上下平板33,34周縁に沿ってローラー溶接を実行し、上平板33と下平板34を接合し、毛細構造体31および支持体32をその中に密封する。   As shown in FIG. 3 and FIG. 11, in step 25, roller welding is performed along the peripheral edges of the upper and lower flat plates 33, 34 using an ultrasonic roller welding method, and the upper flat plate 33 and the lower flat plate 34 are joined to each other. The structure 31 and the support 32 are sealed therein.

または、気相成長法を利用して上平板33、または下平板34、または上下平板33,34両者の周縁に金属材質の接合層を形成し、上下平板33,34を密封する。上下平板33,34は、銅、アルミニウム等の金属材質により生成することができ、接合層の金属材質は、錫、銀、銅および上記の組み合わせのいずれかを選択することができる。また、前記金属材質は、錫、鉛および上記の組み合わせのいずれかであることもできる。更に、前記金属材質は、錫、ビスマスおよび上記の組み合わせのいずれかであることもできる。   Alternatively, a metal bonding layer is formed on the periphery of the upper flat plate 33, the lower flat plate 34, or the upper and lower flat plates 33, 34 using vapor phase growth, and the upper and lower flat plates 33, 34 are sealed. The upper and lower flat plates 33 and 34 can be made of a metal material such as copper or aluminum, and the metal material of the bonding layer can be selected from tin, silver, copper, and any combination thereof. The metal material may be tin, lead, or any combination of the above. Furthermore, the metal material may be tin, bismuth, or any combination of the above.

上記のように、超音波溶接法を応用することにより、毛細構造体31、支持体32おおよび上下平板33,34を接合し、接合強度および緊密度を効果的に向上させ、間接的に冷却効果を向上する。更に、接合工程に要する時間を大幅に短縮し、本発明の目的を確実に達成する。   As described above, by applying the ultrasonic welding method, the capillary structure 31, the support 32 and the upper and lower flat plates 33 and 34 are joined, the joint strength and the tightness are effectively improved, and the cooling is indirectly performed. Improve the effect. Furthermore, the time required for the joining process is greatly shortened, and the object of the present invention is reliably achieved.

本発明では好ましい実施例を前述の通り開示したが、これらは決して本発明に限定するものではなく、当該技術を熟知する者なら誰でも、本発明の精神と領域を脱しない範囲内で各種の変動や潤色を加えることができ、従って本発明の保護範囲は、特許請求の範囲で指定した内容を基準とする。 In the present invention, preferred embodiments have been disclosed as described above. However, the present invention is not limited to the present invention, and any person who is familiar with the technology can use various methods within the spirit and scope of the present invention. Variations and moist colors can be added, so the protection scope of the present invention is based on what is specified in the claims.

公知の平板式ヒートパイプの立体分解図である。It is a three-dimensional exploded view of a known flat plate heat pipe. 公知の平板式ヒートパイプの局部断面図である。It is local sectional drawing of a well-known flat plate type heat pipe. 本発明の超音波溶接を応用した平板式ヒートパイプの制作方法の好適な実施例のフロー図である。It is a flowchart of the suitable Example of the production method of the flat plate type heat pipe which applied the ultrasonic welding of this invention. 本実施例の局部断面図であり、毛細構造体@@It is local sectional drawing of a present Example, and a capillary structure @@ 本実施例の前記毛細構造体の局部断面図であり、複数の子毛細構造体の局部が前記毛細構造体を構成する説明図である。It is local sectional drawing of the said capillary structure of a present Example, and is explanatory drawing which the local part of several child capillary structure comprises the said capillary structure. 本実施例の局部断面図であり、リング状の毛細構造体を支持体に被せる説明図である。It is local sectional drawing of a present Example, and is explanatory drawing which covers a support body in a ring-shaped capillary structure. 本実施例の局部断面図であり、超音波を利用し毛細構造体を支持体上に溶接する説明図である。It is local sectional drawing of a present Example, and is explanatory drawing which welds a capillary structure on a support body using an ultrasonic wave. 本実施例の局部断面図であり、超音波を利用し毛細構造体を支持体上に溶接する説明図である。It is local sectional drawing of a present Example, and is explanatory drawing which welds a capillary structure on a support body using an ultrasonic wave. 本実施例の局部断面図であり、超音波を利用し毛細構造体と支持体を下平板上に溶接する説明図である。It is local sectional drawing of a present Example, and is explanatory drawing which welds a capillary structure and a support body on a lower flat plate using an ultrasonic wave. 本実施例の局部断面図であり、超音波を利用し上平板と下平板との間に支持の役割をなす凹部を形成する説明図である。It is local sectional drawing of a present Example, It is explanatory drawing which forms the recessed part which plays the role of a support between an upper flat plate and a lower flat plate using an ultrasonic wave. 本実施例の局部断面図であり、超音波を利用し上、下平板の周縁を接合する説明図である。It is local sectional drawing of a present Example, and is explanatory drawing which joins the periphery of an upper and lower flat plate using an ultrasonic wave.

符号の説明Explanation of symbols

21〜25 ステップ
31 毛細構造体
311 上部
312 側部
313 下部
314 子毛細構造体
32 支持体
321 隙間
33 上平板
34 下平板
35 凹部
41 溶接ヘッド
42 上ブラシ
43 載置台
44 下ブラシ
45 上ローラー
46 上ブラシ
47 下ローラー
48 下ブラシ
21 毛細構造体を支持体上に位置決めする
22 毛細構造体を超音波により支持体上に溶接する
23 毛細構造体を超音波により下平板上に溶接する
24 上平板を下平板に位置決めする
25 上下平板周縁に密封接合を形成する
21 to 25 Step 31 Capillary structure 311 Upper part 312 Side part 313 Lower part 314 Child capillary structure 32 Support body 321 Gap 33 Upper flat plate 34 Lower flat plate 35 Recess 41 Welding head 42 Upper brush 43 Mounting table 44 Lower brush 45 Upper roller 46 Upper Brush 47 Lower roller 48 Lower brush 21 Position the capillary structure on the support 22 Weld the capillary structure onto the support with ultrasonic waves 23 Weld the capillary structure onto the lower plate with ultrasonic waves 24 Positioning on the lower plate 25 Forming a sealed joint on the upper and lower plate edges

Claims (21)

以下の工程;
(A)毛細構造体表面の一面を上平板および前記上平板と形状が対応した下平板のうちいずれか1つの上に超音波接合し、該毛細構造体を間に配置収容して前記上平板および前記下平板を相互に重ね、
(B)前記平板を相互に超音波接合し、前記毛細構造体を前記平板の囲む空間内に密封する、
からなることを特徴とする超音波溶接を応用した平板式ヒートパイプの製造方法。
The following steps:
(A) One surface of the capillary structure is ultrasonically bonded to any one of the upper flat plate and the lower flat plate corresponding in shape to the upper flat plate, and the capillary structure is disposed and accommodated between the upper flat plate and the upper flat plate. And the lower flat plates are stacked on top of each other,
(B) The flat plates are ultrasonically bonded to each other, and the capillary structure is sealed in a space surrounded by the flat plates.
The manufacturing method of the flat plate type heat pipe which applied ultrasonic welding characterized by comprising.
前記工程(A)において、前記超音波溶接は超音波点溶接である請求項1記載の超音波溶接を応用した平板式ヒートパイプの製造方法。 The method for manufacturing a flat plate-type heat pipe according to claim 1, wherein in the step (A), the ultrasonic welding is ultrasonic spot welding. 前記工程(A)において、更に前記毛細構造体に対して支持体を配置し、前記平板の間に相互に接触させて配置することを特徴とする請求項1記載の超音波溶接を応用した平板式ヒートパイプの製造方法。 2. The flat plate to which ultrasonic welding is applied according to claim 1, wherein in the step (A), a support is further arranged with respect to the capillary structure, and is arranged in contact with each other between the flat plates. Type heat pipe manufacturing method. 前記工程(A)において、前記毛細構造体は片状体であるとともに、折り畳んで前記支持体を挟むものである請求項2記載の超音波溶接を応用した平板式ヒートパイプの製造方法。 3. The method for producing a flat plate heat pipe using ultrasonic welding according to claim 2, wherein, in the step (A), the capillary structure is a piece-like body and is folded to sandwich the support. 前記工程(A)において、前記毛細構造体は支持体の両側に沿って折り畳み前記支持体を覆うものである請求項2記載の超音波溶接を応用した平板式ヒートパイプの製造方法。 The method of manufacturing a flat plate heat pipe using ultrasonic welding according to claim 2, wherein in the step (A), the capillary structure is folded along both sides of the support to cover the support. 前記工程(A)において、更に前記毛細構造体の少なくとも1つの部分を前記支持体に接合することを含むものである請求項3,4,5記載の超音波溶接を応用した平板式ヒートパイプの製造方法。 6. The method of manufacturing a flat plate heat pipe using ultrasonic welding according to claim 3, 4 or 5, further comprising joining at least one portion of the capillary structure to the support in the step (A). . 前記工程(A)において、超音波溶接により前記毛細構造体の少なくとも1つの部分を前記支持体に接合することを含むものである請求項6記載の超音波溶接を応用した平板式ヒートパイプの製造方法。 The method of manufacturing a flat plate-type heat pipe using ultrasonic welding according to claim 6, wherein the step (A) includes joining at least one portion of the capillary structure to the support by ultrasonic welding. 前記工程(A)において、前記超音波溶接は超音波点溶接、超音波ローラー溶接または上記の組み合わせのいずれかである請求項7記載の超音波溶接を応用した平板式ヒートパイプの製造方法。 The method for manufacturing a flat plate heat pipe using ultrasonic welding according to claim 7, wherein in the step (A), the ultrasonic welding is one of ultrasonic spot welding, ultrasonic roller welding, and a combination thereof. 前記工程(B)において、前記平板周縁に沿い超音波溶接を実行して前記平板周縁を密封接合させるものである請求項1記載の超音波溶接を応用した平板式ヒートパイプの製造方法。 The manufacturing method of the flat plate type heat pipe which applied ultrasonic welding of Claim 1 which performs ultrasonic welding along the said flat plate periphery in the said process (B), and seal-joins the said flat plate periphery. 前記工程(B)において、前記平板周縁に沿い超音波ローラー溶接を実行して前記平板周縁を密封接合させるものである請求項1記載の超音波溶接を応用した平板式ヒートパイプの製造方法。 The manufacturing method of the flat plate type heat pipe which applied the ultrasonic welding of Claim 1 which performs ultrasonic roller welding along the said flat plate periphery in the said process (B), and seal-joins the said flat plate periphery. 前記工程(B)において、先ず気相成長法により前記平板の周縁に金属接合層を形成して、前記平板に密封接合を形成させるものである請求項1記載の超音波溶接を応用した平板式ヒートパイプの製造方法。 2. The flat plate type applying ultrasonic welding according to claim 1, wherein in the step (B), a metal bonding layer is first formed on a peripheral edge of the flat plate by a vapor phase growth method to form a hermetic bond on the flat plate. Heat pipe manufacturing method. 前記支持体は、金属線を編み込んでなる金属網である請求項2記載の超音波溶接を応用した平板式ヒートパイプの製造方法。 3. The method of manufacturing a flat plate heat pipe using ultrasonic welding according to claim 2, wherein the support is a metal net formed by braiding metal wires. 前記金属線は、銅線である請求項12記載の超音波溶接を応用した平板式ヒートパイプの製造方法。 The method of manufacturing a flat plate heat pipe using ultrasonic welding according to claim 12, wherein the metal wire is a copper wire. 前記毛細構造体は、金属線を編み込んでなる金属網であり、前記毛細構造体の編み込む密度は前記支持体の編み込む密度より大きいものである請求項12記載の超音波溶接を応用した平板式ヒートパイプの製造方法。 13. The flat plate heat applying ultrasonic welding according to claim 12, wherein the capillary structure is a metal net formed by braiding metal wires, and the density of the capillary structure is higher than the density of braiding of the support. Pipe manufacturing method. 前記金属線は、銅線である請求項14記載の超音波溶接を応用した平板式ヒートパイプの製造方法。 The method of manufacturing a flat plate heat pipe using ultrasonic welding according to claim 14, wherein the metal wire is a copper wire. 前記平板は、金属材料からなることを特徴とする請求項1記載の超音波溶接を応用した平板式ヒートパイプの製造方法。 The method for manufacturing a flat plate-type heat pipe using ultrasonic welding according to claim 1, wherein the flat plate is made of a metal material. 前記平板の金属材料は、アルミニウムまたは銅のいずれかを選択したものである請求項16記載の超音波溶接を応用した平板式ヒートパイプの製造方法。 The method of manufacturing a flat plate heat pipe using ultrasonic welding according to claim 16, wherein the flat metal material is selected from aluminum and copper. 前記毛細構造体は、少なくとも2つの子毛細構造体を含むものである請求項1記載の超音波溶接を応用した平板式ヒートパイプの製造方法。 The method of manufacturing a flat plate heat pipe using ultrasonic welding according to claim 1, wherein the capillary structure includes at least two child capillary structures. 前記子毛細構造体は、金属線を編み込んでなる金属網である請求項18記載の超音波溶接を応用した平板式ヒートパイプの製造方法。 The method of manufacturing a flat plate heat pipe using ultrasonic welding according to claim 18, wherein the sub-capillary structure is a metal net formed by braiding metal wires. 前記金属線は、銅線である請求項19記載の超音波溶接を応用した平板式ヒートパイプの製造方法。 The method of manufacturing a flat plate heat pipe using ultrasonic welding according to claim 19, wherein the metal wire is a copper wire. 前記子毛細構造体は、超音波溶接を利用して接合されるものである請求項21記載の超音波溶接を応用した平板式ヒートパイプの製造方法。 The method of manufacturing a flat plate heat pipe using ultrasonic welding according to claim 21, wherein the sub-capillary structure is joined using ultrasonic welding.
JP2006222174A 2006-08-17 2006-08-17 Method of manufacturing plate-like heat pipe Pending JP2008045820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006222174A JP2008045820A (en) 2006-08-17 2006-08-17 Method of manufacturing plate-like heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006222174A JP2008045820A (en) 2006-08-17 2006-08-17 Method of manufacturing plate-like heat pipe

Publications (1)

Publication Number Publication Date
JP2008045820A true JP2008045820A (en) 2008-02-28

Family

ID=39179724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006222174A Pending JP2008045820A (en) 2006-08-17 2006-08-17 Method of manufacturing plate-like heat pipe

Country Status (1)

Country Link
JP (1) JP2008045820A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101907416A (en) * 2010-07-22 2010-12-08 中绿能源科技江阴有限公司 Heat radiating plate and manufacture method thereof
CN102042779A (en) * 2009-10-15 2011-05-04 索尼公司 Heat transport device, method of manufacturing a heat transport device, and electronic apparatus
TWI407071B (en) * 2011-01-18 2013-09-01 Asia Vital Components Co Ltd Thin heat pipe structure and manufacturing method thereof
JP2015512020A (en) * 2012-01-19 2015-04-23 アクメクールズ テック. リミテッドAcmecools Tech. Ltd. Method for manufacturing a soaking device without an injection pipe and a soaking device manufactured by this manufacturing method
WO2018199217A1 (en) * 2017-04-28 2018-11-01 株式会社村田製作所 Vapor chamber
WO2018199219A1 (en) * 2017-04-28 2018-11-01 株式会社村田製作所 Vapor chamber
CN110678042A (en) * 2019-09-30 2020-01-10 华南理工大学 Hot-pressing type flexible phase change soaking zone/board based on polymer film and manufacturing method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102042779A (en) * 2009-10-15 2011-05-04 索尼公司 Heat transport device, method of manufacturing a heat transport device, and electronic apparatus
CN101907416A (en) * 2010-07-22 2010-12-08 中绿能源科技江阴有限公司 Heat radiating plate and manufacture method thereof
TWI407071B (en) * 2011-01-18 2013-09-01 Asia Vital Components Co Ltd Thin heat pipe structure and manufacturing method thereof
JP2015512020A (en) * 2012-01-19 2015-04-23 アクメクールズ テック. リミテッドAcmecools Tech. Ltd. Method for manufacturing a soaking device without an injection pipe and a soaking device manufactured by this manufacturing method
WO2018199217A1 (en) * 2017-04-28 2018-11-01 株式会社村田製作所 Vapor chamber
WO2018199219A1 (en) * 2017-04-28 2018-11-01 株式会社村田製作所 Vapor chamber
WO2018198365A1 (en) * 2017-04-28 2018-11-01 株式会社村田製作所 Vapor chamber
WO2018198375A1 (en) * 2017-04-28 2018-11-01 株式会社村田製作所 Vapor chamber
US11277940B2 (en) 2017-04-28 2022-03-15 Murata Manufacturing Co., Ltd. Vapor chamber
CN110678042A (en) * 2019-09-30 2020-01-10 华南理工大学 Hot-pressing type flexible phase change soaking zone/board based on polymer film and manufacturing method thereof

Similar Documents

Publication Publication Date Title
TWI294325B (en)
JP2008045820A (en) Method of manufacturing plate-like heat pipe
JP5788069B1 (en) Flat type heat pipe
JP4940743B2 (en) Semiconductor device
JP2006140435A (en) Bendable heat spreader with wire mesh-based microstructure and method of manufacturing same
US20100108297A1 (en) Heat Pipe and Making Method Thereof
JP2007110001A (en) Semiconductor device
TWI815076B (en) steam room
JP4965242B2 (en) Manufacturing method of aluminum heat sink
KR20060107296A (en) Method for case&#39;s bonding of flat plate heat spreader based on brazing and apparatus manufactured using the same
JP2003080378A (en) Method for manufacturing planar heat pipe and method for mounting this tube
JP2006058000A (en) Bonded silicon component and its manufacturing method
US20130092353A1 (en) Vapor chamber structure and method of manufacturing same
JP4645276B2 (en) Semiconductor device
WO2013107026A1 (en) Manufacturing method of temperature equalization device without liquid injection tube and temperature equalization device manufactured by the method
US20200023422A1 (en) Heat dissipation component manufacturing method
CN100488694C (en) Method for manufacturing plate type heat pipe with ultrasonic welding
TWI567358B (en) A method for producing a homogenizing device without a syringe and a method of making the same
JP2000277557A (en) Semiconductor device
JP2006140401A (en) Semiconductor integrated circuit device
JP2003254685A (en) Plate type heat pipe and manufacturing method thereof
JP2017011249A (en) Metal cover of package for electronic component
TWI337248B (en)
KR101099052B1 (en) Cooling plate and method for manufacturing thereof
JP4526681B2 (en) Sealing method for electronic component package