JP2008045809A - Refrigerating cycle - Google Patents

Refrigerating cycle Download PDF

Info

Publication number
JP2008045809A
JP2008045809A JP2006221526A JP2006221526A JP2008045809A JP 2008045809 A JP2008045809 A JP 2008045809A JP 2006221526 A JP2006221526 A JP 2006221526A JP 2006221526 A JP2006221526 A JP 2006221526A JP 2008045809 A JP2008045809 A JP 2008045809A
Authority
JP
Japan
Prior art keywords
refrigerant
carbon dioxide
refrigeration cycle
zeolite
desiccant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006221526A
Other languages
Japanese (ja)
Inventor
Koji Inagaki
孝治 稲垣
Shinji Kakehashi
伸治 梯
Shuichi Mizuno
秀一 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006221526A priority Critical patent/JP2008045809A/en
Publication of JP2008045809A publication Critical patent/JP2008045809A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the amount of desiccant used and to contribute to compactness and on-vehicle mountability of a refrigerating cycle taking carbon dioxide as a refrigerant by solving the problem of an increase in infiltration amount of water in the refrigerating cycle with carbon dioxide as the refrigerant. <P>SOLUTION: In this refrigerating cycle taking carbon dioxide as a refrigerant, aluminosilicate-base zeolite is used as a desiccant of carbon dioxide refrigerant. The aluminosilicate-base zeolite has a pore diameter of 0.3 nm or more, and some or the whole of cations in counter ions have a smaller ion radius than potassium ion and have oxidation number equal to or more than bivalence. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、冷凍サイクルに関し、さらに詳しくは二酸化炭素を冷媒とする冷凍サイクルに関する。   The present invention relates to a refrigeration cycle, and more particularly to a refrigeration cycle using carbon dioxide as a refrigerant.

従来、冷凍サイクル中の冷媒乾燥剤として、シリカゲル、アルミナゲル、ゼオライト等が用いられている。ゼオライトは、水分子をゼオライトの持つ細孔中に充填させて吸着することにより乾燥能力を発揮するので、ゼオライト単位量あたりの細孔の容積が大きいほど多くの水を吸着でき、乾燥剤としての能力が高いといえる。しかしながら、現在一般的に用いられている含フッ素化合物系冷媒は、ゼオライトの細孔径が冷媒分子より大きい場合、水分子だけでなく冷媒分子もゼオライト中に取り込まれて、その分解反応が起きてしまう可能性が指摘されている。   Conventionally, silica gel, alumina gel, zeolite, and the like are used as the refrigerant desiccant in the refrigeration cycle. Zeolite exerts its drying ability by packing water molecules into the pores of the zeolite and adsorbing them. Therefore, the larger the pore volume per unit amount of zeolite, the more water can be adsorbed, It can be said that ability is high. However, in the fluorine-containing refrigerants currently used in general, when the pore diameter of the zeolite is larger than the refrigerant molecules, not only water molecules but also refrigerant molecules are taken into the zeolite and the decomposition reaction occurs. The possibility has been pointed out.

アルミノケイ酸塩系ゼオライトは、通常、対イオンにおけるカチオンとしてナトリウムイオン、カリウムイオンもしくはそれらの両方のイオン、のようなアルカリ金属イオンを含有しており、その細孔径はこれらのカチオンの含有比によって変化する。すなわち、よりイオン半径の大きいカリウムカチオンを多く含有する場合には、カチオンの細孔中、の占有体積が大きくなり、細孔径、細孔容積ともにより小さくなる。このため、含フッ素化合物系冷媒を用いた冷凍サイクルにはこれらのアルカリ金属イオンのナトリウム/カリウム含有比を調整して水分子のみを細孔中に取り込むような細孔径を持つゼオライトが用いられてきた。   Aluminosilicate-based zeolites usually contain alkali metal ions such as sodium ions, potassium ions, or both as cations in the counter ion, and the pore size varies depending on the content ratio of these cations. To do. That is, when a large amount of potassium cations having a larger ionic radius is contained, the occupied volume of the cations in the pores is increased, and both the pore diameter and the pore volume are reduced. For this reason, zeolite having a pore size that adjusts the sodium / potassium content ratio of these alkali metal ions and incorporates only water molecules into the pores has been used in refrigeration cycles using fluorine-containing refrigerants. It was.

一方、最近、冷媒の脱フロン化の一手法として二酸化炭素を冷媒とする冷凍サイクルが注目されているが、この冷凍サイクルの場合、ゼオライトを乾燥剤として用い、冷媒がゼオライト中に取り込まれても冷媒分子自体はサイクル中に用いられる周辺材料へ影響を与えるような化合物には変化しない。また、二酸化炭素を冷媒とする冷凍サイクルでは、冷媒単位量あたりに溶解可能な水はフロン系冷媒よりも二酸化炭素の方が小さいため、サイクル中に侵入して冷媒に溶解せずに遊離する水の量が多くなる可能性が指摘されており、従来の乾燥剤を用いた場合、サイクルの大型化は避けられず、特に車載用空調装置に用いることは困難である。そのため、冷凍サイクルのコンパクト化を目指した乾燥剤の水吸着能力の更なる向上が求められている。   On the other hand, recently, a refrigeration cycle using carbon dioxide as a refrigerant has attracted attention as a method for de-fluorinating a refrigerant. In this refrigeration cycle, zeolite is used as a desiccant, and the refrigerant is incorporated into the zeolite. The refrigerant molecules themselves do not change into compounds that affect the surrounding materials used during the cycle. Also, in the refrigeration cycle using carbon dioxide as the refrigerant, water that can be dissolved per unit amount of refrigerant is smaller than that of chlorofluorocarbon refrigerant, so water that enters the cycle and does not dissolve in the refrigerant is released. In the case of using a conventional desiccant, it is unavoidable to increase the size of the cycle, and it is particularly difficult to use it for an in-vehicle air conditioner. Therefore, further improvement of the water adsorption capacity of the desiccant aimed at downsizing the refrigeration cycle is required.

そして、二酸化炭素を冷媒として用いた冷凍サイクルにアルミノケイ酸塩系ゼオライトを乾燥剤として用いることも知られている(特許文献1および2)。しかしながら、これらは乾燥剤として、それぞれ細孔径0.33nm以下の合成ゼオライト、細孔径0.3nmのナトリウムA型ゼオライトを開示するにすぎず、上記のような水の侵入量の増大に関する課題を十分に解決しうるものではない。   It is also known to use an aluminosilicate zeolite as a desiccant in a refrigeration cycle using carbon dioxide as a refrigerant (Patent Documents 1 and 2). However, these only disclose a synthetic zeolite having a pore diameter of 0.33 nm or less and a sodium A-type zeolite having a pore diameter of 0.3 nm as desiccants, respectively. It cannot be solved.

特開2005−315133号公報JP 2005-315133 A 特開2001−255043号公報JP 2001-255043 A

本発明は、二酸化炭素を冷媒として用いた冷凍サイクルにおける水の浸入量の増大における、上記の課題を解決することを目的とする。   An object of this invention is to solve said subject in the increase in the infiltration amount of the water in the refrigerating cycle using a carbon dioxide as a refrigerant | coolant.

上記の課題を解決するために本発明は以下の発明を提供する。
(1)細孔径が0.3nm以上であり;かつ対イオンにおけるカチオンの一部もしくは全部が、カリウムイオンよりも小さいイオン半径を有し、二価以上の酸化数を有する金属イオンである、アルミノケイ酸塩系ゼオライトを二酸化炭素冷媒の乾燥剤として用いることを特徴とする二酸化炭素を冷媒とする冷凍サイクル;
(2)カリウムイオンよりも小さいイオン半径を有する金属イオンがアルカリ土類金属イオンである(1)記載の二酸化炭素を冷媒とする冷凍サイクル;
(3)アルカリ土類金属イオンがマグネシウムイオンもしくはカルシウムイオンである(2)記載の二酸化炭素を冷媒とする冷凍サイクル;
(4)アルミノケイ酸塩系ゼオライトがLTA型もしくはフォージャサイト型構造を有する(1)〜(3)のいずれか記載の二酸化炭素を冷媒とする冷凍サイクル;
(5)(1)〜(4)のいずれか記載の冷凍サイクルを用いてなる空調装置;
(6)(1)〜(4)のいずれか記載の冷凍サイクルを用いてなる車載用空調装置;ならびに
(7)(1)〜(4)のいずれか記載の冷凍サイクルを用いてなる給湯器、
である。
In order to solve the above problems, the present invention provides the following inventions.
(1) An aluminosilicate having a pore diameter of 0.3 nm or more; and a part or all of cations in the counter ion are metal ions having an ionic radius smaller than that of potassium ions and having an oxidation number of 2 or more. A refrigeration cycle using carbon dioxide as a refrigerant, characterized by using an acid-based zeolite as a desiccant for the carbon dioxide refrigerant;
(2) A refrigeration cycle using carbon dioxide as a refrigerant according to (1), wherein the metal ion having an ionic radius smaller than potassium ion is an alkaline earth metal ion;
(3) A refrigeration cycle using carbon dioxide as a refrigerant according to (2), wherein the alkaline earth metal ion is magnesium ion or calcium ion;
(4) A refrigeration cycle using carbon dioxide as a refrigerant according to any one of (1) to (3), wherein the aluminosilicate zeolite has an LTA type or faujasite type structure;
(5) An air conditioner using the refrigeration cycle according to any one of (1) to (4);
(6) A vehicle-mounted air conditioner using the refrigeration cycle according to any one of (1) to (4); and (7) a water heater using the refrigeration cycle according to any one of (1) to (4) ,
It is.

本発明によれば、単位量あたりの水の吸着量が向上したゼオライトを乾燥剤として用い、二酸化炭素を冷媒として用いた冷凍サイクルにおける水の浸入量の増大における課題を解決しうる。したがって、乾燥剤の使用量を削減し得るとともに二酸化炭素を冷媒とする冷凍サイクルのコンパクト化、さらには車載化に貢献し得る。   ADVANTAGE OF THE INVENTION According to this invention, the subject in the increase in the amount of water permeation in the refrigerating cycle using the zeolite which the adsorption amount of the water per unit quantity improved as a desiccant and using a carbon dioxide as a refrigerant | coolant can be solved. Therefore, the amount of desiccant used can be reduced, and the refrigeration cycle using carbon dioxide as a refrigerant can be made compact, and further contributed to in-vehicle use.

本発明の冷凍サイクルにおいては、細孔径が0.3nm(3Å)以上であり;かつ対イオンにおけるカチオンの一部もしくは全部が、カリウムイオン(0.133nm)よりも小さいイオン半径を有し、二価以上の酸化数を有する金属イオンである、アルミノケイ酸塩系ゼオライトが二酸化炭素冷媒の乾燥剤として用いられる。このカリウムイオンよりも小さいイオン半径を有する金属イオンの酸化数は、好適には二価もしくは三価から選ばれる。このような二価以上の酸化数を有する金属イオンとしては、マグネシウム,カルシウム、ストロンチウム,バリウム,スカンジウム,イットリウム,ランタン,セリウム,ネオジム,チタン,ジルコニウム,ハフニウム,バナジウム,ニオブ,タンタル,クロム,モリブデン,タングステン,マンガン,鉄,コバルト,ニッケル,パラジウム,イリジウム,白金,銅,亜鉛,ホウ素,ガリウム,インジウム,ゲルマニウムのそれぞれのイオン1種以上が挙げられる。好ましくは、アルカリ土類金属イオンであり、特に好ましくはマグネシウムイオンもしくはカルシウムイオンである。   In the refrigeration cycle of the present invention, the pore diameter is 0.3 nm (3 cm) or more; and some or all of the cations in the counter ion have an ionic radius smaller than that of potassium ion (0.133 nm), An aluminosilicate zeolite, which is a metal ion having an oxidation number equal to or higher than the valence, is used as a desiccant for the carbon dioxide refrigerant. The oxidation number of the metal ion having an ionic radius smaller than that of the potassium ion is preferably selected from divalent or trivalent. Examples of such metal ions having a bivalent or higher oxidation number include magnesium, calcium, strontium, barium, scandium, yttrium, lanthanum, cerium, neodymium, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, One or more ions of each of tungsten, manganese, iron, cobalt, nickel, palladium, iridium, platinum, copper, zinc, boron, gallium, indium, and germanium can be used. Alkaline earth metal ions are preferable, and magnesium ions or calcium ions are particularly preferable.

本発明におけるアルミノケイ酸塩系ゼオライトは、上記の特性を有するものであれば特に制限されないが、通常LTA型もしくはフォージャサイト型構造を有するものが好適に使用されうる。   The aluminosilicate-based zeolite in the present invention is not particularly limited as long as it has the above-mentioned characteristics, but those having an LTA type or faujasite type structure can be suitably used.

本発明に係るアルミノケイ酸塩系ゼオライトは、単位量あたりの水の吸着量が向上し、二酸化炭素冷媒の乾燥剤として冷凍サイクル内への水分の遊離を防止することができ、装置の寿命を向上させ、優れた性能を発揮しうる。本発明においては、上記のような二価以上の酸化数を有する金属イオンを用いることにより、存在するカチオン数をアルカリ金属イオンの場合よりも1/2以下とすることができ、それゆえにカチオンの占有体積を減少させ、細孔容積を向上させうる。さらに、上記のようにイオン半径を小さくすることにより、カチオン1個の占める占有体積も減ずることができる。   The aluminosilicate zeolite according to the present invention improves the amount of water adsorbed per unit amount, can prevent the release of moisture into the refrigeration cycle as a drying agent for carbon dioxide refrigerant, and improves the life of the device And can exhibit excellent performance. In the present invention, by using a metal ion having a bivalent or higher oxidation number as described above, the number of cations present can be reduced to 1/2 or less than that of an alkali metal ion. The occupied volume can be reduced and the pore volume can be improved. Furthermore, by reducing the ionic radius as described above, the occupied volume occupied by one cation can be reduced.

このようなアルミノケイ酸塩系ゼオライトは、置換法もしくは合成法により製造されうるが、容易さの点から置換法が好適に用いられる。たとえば、対イオンにおけるカチオンがナトリウムもしくはカリウムであるアルミノケイ酸塩を常法により水熱合成した後に、ナトリウムもしくはカリウムの少なくとも一部を上記の所定の金属イオンとイオン交換(すなわち金属イオンで置換)する方法が好適である。   Such an aluminosilicate-based zeolite can be produced by a substitution method or a synthesis method, but the substitution method is preferably used from the viewpoint of ease. For example, after hydrothermal synthesis of an aluminosilicate in which the cation in the counter ion is sodium or potassium by a conventional method, at least a part of sodium or potassium is ion-exchanged (that is, replaced with the metal ion) described above. The method is preferred.

ここで、対イオンにおけるカチオンがナトリウムもしくはカリウムであるアルミノケイ酸塩は、市販品を用いることができる。上記置換は、たとえば所定の金属を含む化合物の水溶液中で通常30〜90℃程度で混合、攪拌してイオン交換することにより行うことができる。上記化合物としては塩化物、水酸化物、硝酸塩、酢酸塩、炭酸塩等が挙げられ、水溶液を調製して用いられる。   Here, a commercial item can be used for the aluminosilicate whose cation in a counter ion is sodium or potassium. The above substitution can be performed by, for example, mixing and stirring in an aqueous solution of a compound containing a predetermined metal at about 30 to 90 ° C. and ion exchange. Examples of the compound include chlorides, hydroxides, nitrates, acetates, carbonates and the like, and an aqueous solution is prepared and used.

このような本発明のアルミノケイ酸塩系ゼオライトは圧縮機、凝縮器、減圧装置および蒸発器等を備える従来の冷凍サイクルにおいて、二酸化炭素冷媒の乾燥剤として用いられる。乾燥剤としての収納方法自体は常法によることができ、たとえば本発明の乾燥剤充填した容器を二酸化炭素冷媒の流路に配管により接続し得る。   Such an aluminosilicate zeolite of the present invention is used as a desiccant for carbon dioxide refrigerant in a conventional refrigeration cycle including a compressor, a condenser, a decompression device, an evaporator, and the like. The storage method itself as a desiccant can be a conventional method. For example, the container filled with the desiccant of the present invention can be connected to the flow path of the carbon dioxide refrigerant by piping.

本発明に係る冷凍サイクルは、空調装置、特に車載用空調装置、もしくは給湯器、
等に好適に用いられ得る。
The refrigeration cycle according to the present invention includes an air conditioner, particularly an in-vehicle air conditioner, or a water heater,
Etc. can be suitably used.

以下、実施例により本発明をさらに詳細に説明する。
実施例1
市販のNa-A型ゼオライト(細孔径0.4nm)5.0gを0.1モル/LのMgCl水溶液50mLに添加し、80℃で5時間攪拌の攪拌を5回繰り返して、最大Naの89%がMg2+に置換されたゼオライト(細孔径>0.4nm)を得た。得られたゼオライトのMg置換率(%)と二酸化炭素冷媒の乾燥剤として用いた場合の飽和吸着量(g水/gゼオライト)との関係は次のとおりであった。
Hereinafter, the present invention will be described in more detail with reference to examples.
Example 1
5.0 g of commercially available Na-A-type zeolite (pore diameter 0.4 nm) was added to 50 mL of 0.1 mol / L MgCl 2 aqueous solution, and stirring at 80 ° C. for 5 hours was repeated 5 times to obtain maximum Na + Of which zeolite was substituted with Mg 2+ (pore size> 0.4 nm). The relationship between the Mg substitution rate (%) of the obtained zeolite and the saturated adsorption amount (g water / g zeolite) when used as a desiccant for the carbon dioxide refrigerant was as follows.

1 Mg置換率0(Na100%)のとき、飽和吸着量0.22
2 Mg置換率38(Mg38/Na62%)のとき、飽和吸着量0.25
3 Mg置換率53(Mg53/Na47%)のとき、飽和吸着量0.27
4 Mg置換率68(Mg68/Na32%)のとき、飽和吸着量0.27
5 Mg置換率89(Mg89/Na11%)のとき、飽和吸着量0.30
実施例2
塩化カルシウム水溶液を用いて、実施例1と同様にしてCa置換ゼオライトを得た。飽和吸着量もCa置換率の増加に伴ない増加した。
1 When the Mg substitution rate is 0 (Na100%), the saturated adsorption amount is 0.22.
2 When the Mg substitution rate is 38 (Mg38 / Na62%), the saturated adsorption amount is 0.25.
3 When the Mg substitution rate is 53 (Mg53 / Na47%), the saturated adsorption amount is 0.27.
4 When the Mg substitution rate is 68 (Mg68 / Na32%), the saturated adsorption amount is 0.27.
5 When the Mg substitution rate is 89 (Mg89 / Na11%), the saturated adsorption amount is 0.30.
Example 2
Using an aqueous calcium chloride solution, a Ca-substituted zeolite was obtained in the same manner as in Example 1. The amount of saturated adsorption also increased with increasing Ca substitution rate.

本発明によれば、単位量あたりの水の吸着量が向上したゼオライトを乾燥剤として用い、二酸化炭素を冷媒として用いた冷凍サイクルにおける水の浸入量の増大における課題を解決しうる。したがって、乾燥剤の使用量を削減し得るとともに二酸化炭素を冷媒とする冷凍サイクルのコンパクト化、さらには車載化に貢献し得る。   ADVANTAGE OF THE INVENTION According to this invention, the subject in the increase in the amount of water permeation in the refrigerating cycle using the zeolite which the adsorption amount of the water per unit quantity improved as a desiccant and using a carbon dioxide as a refrigerant | coolant can be solved. Therefore, the amount of desiccant used can be reduced, and the refrigeration cycle using carbon dioxide as a refrigerant can be made compact, and further contributed to in-vehicle use.

Claims (7)

細孔径が0.3nm以上であり;かつ対イオンにおけるカチオンの一部もしくは全部が、カリウムイオンよりも小さいイオン半径を有し、二価以上の酸化数を有する金属イオンである、アルミノケイ酸塩系ゼオライトを二酸化炭素冷媒の乾燥剤として用いることを特徴とする二酸化炭素を冷媒とする冷凍サイクル。   An aluminosilicate system having a pore size of 0.3 nm or more; and a part or all of cations in the counter ion are metal ions having an ionic radius smaller than that of potassium ions and having an oxidation number of 2 or more. A refrigeration cycle using carbon dioxide as a refrigerant, wherein zeolite is used as a desiccant for the carbon dioxide refrigerant. 金属イオンがアルカリ土類金属イオンである請求項1記載の二酸化炭素を冷媒とする冷凍サイクル。   The refrigeration cycle using carbon dioxide as a refrigerant according to claim 1, wherein the metal ions are alkaline earth metal ions. アルカリ土類金属イオンがマグネシウムイオンもしくはカルシウムイオンである請求項2記載の二酸化炭素を冷媒とする冷凍サイクル。   The refrigeration cycle using carbon dioxide as a refrigerant according to claim 2, wherein the alkaline earth metal ions are magnesium ions or calcium ions. アルミノケイ酸塩系ゼオライトがLTA型もしくはフォージャサイト型構造を有する請求項1〜3のいずれか記載の二酸化炭素を冷媒とする冷凍サイクル。   The refrigeration cycle using carbon dioxide as a refrigerant according to any one of claims 1 to 3, wherein the aluminosilicate zeolite has an LTA type or faujasite type structure. 請求項1〜4のいずれか記載の冷凍サイクルを用いてなる空調装置。   An air conditioner using the refrigeration cycle according to claim 1. 請求項1〜4のいずれか記載の冷凍サイクルを用いてなる車載用空調装置。   An in-vehicle air conditioner using the refrigeration cycle according to claim 1. 請求項1〜4のいずれか記載の冷凍サイクルを用いてなる給湯器。   A water heater using the refrigeration cycle according to claim 1.
JP2006221526A 2006-08-15 2006-08-15 Refrigerating cycle Withdrawn JP2008045809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006221526A JP2008045809A (en) 2006-08-15 2006-08-15 Refrigerating cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006221526A JP2008045809A (en) 2006-08-15 2006-08-15 Refrigerating cycle

Publications (1)

Publication Number Publication Date
JP2008045809A true JP2008045809A (en) 2008-02-28

Family

ID=39179712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006221526A Withdrawn JP2008045809A (en) 2006-08-15 2006-08-15 Refrigerating cycle

Country Status (1)

Country Link
JP (1) JP2008045809A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011154907A1 (en) * 2010-06-09 2011-12-15 Basf Se Multiple-stage indicating desiccant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011154907A1 (en) * 2010-06-09 2011-12-15 Basf Se Multiple-stage indicating desiccant

Similar Documents

Publication Publication Date Title
Kalmutzki et al. Metal–organic frameworks for water harvesting from air
Garzón‐Tovar et al. Composite salt in porous metal‐organic frameworks for adsorption heat transformation
Aristov New family of solid sorbents for adsorptive cooling: Material scientist approach
CN100435931C (en) Compound metal oxide de-fluorine sorbent
CA2740612A1 (en) System using unutilized heat for cooling and /or power generation
ES2232400T3 (en) ZEOLITAS X EXCHANGED SPECIFICALLY WITH LITHIUM, ITS PREPARATION PROCEDURE AND ITS USE WITH NITROGEN ADSORBENTS IN THE SEPARATION OF AIR GASES.
JP4958293B2 (en) Adsorbent for bromate ion
KR20140113169A (en) Carbon dioxide gas adsorbent and production methods thereof, carbondioxide capture module comprising the same, and methods for separating carbondioxide using the same
JP2014040959A (en) Adsorption type heat pump system and cold generating method
JP2008045809A (en) Refrigerating cycle
JP6895108B2 (en) Moisture adsorbent
US1961890A (en) Refrigeration process
CN102679616A (en) Double-stage adsorption refrigerating recycling system
CN106492742A (en) A kind of novel dehumidifying agent and preparation method thereof
JP2008267680A (en) Refrigerating circuit
JP2011255331A (en) High performance water vapor adsorbent having alminosilicate compound material as base material
ES2926825T3 (en) Stabilization of 1-chloro-3,3,3-trifluoropropene
JP3735399B2 (en) Refrigeration cycle
JPH07294066A (en) Refrigeration system
RU2294796C2 (en) Methanol vapor sorbent and a method to produce cold by means of adsorption-cooling apparatus
Aristov Selective water sorbents, a new family of materials for adsorption cooling/heating: State of the art
US20190331368A1 (en) Heat storage material, method for production of heat storage material, and chemical heat pump
JP2001215068A (en) Adsorption type refrigerator
EP3561022A1 (en) Heat-storage material
JP7064179B2 (en) Moisture adsorbent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081020

A761 Written withdrawal of application

Effective date: 20091222

Free format text: JAPANESE INTERMEDIATE CODE: A761