JP2008045154A - High-hardness hot-rolled steel plate having excellent weldability, workability and penetration resistance to high-speed collision against high hardness missile, and manufacturing method therefor - Google Patents

High-hardness hot-rolled steel plate having excellent weldability, workability and penetration resistance to high-speed collision against high hardness missile, and manufacturing method therefor Download PDF

Info

Publication number
JP2008045154A
JP2008045154A JP2006219708A JP2006219708A JP2008045154A JP 2008045154 A JP2008045154 A JP 2008045154A JP 2006219708 A JP2006219708 A JP 2006219708A JP 2006219708 A JP2006219708 A JP 2006219708A JP 2008045154 A JP2008045154 A JP 2008045154A
Authority
JP
Japan
Prior art keywords
less
hardness
hot
workability
weldability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006219708A
Other languages
Japanese (ja)
Other versions
JP4374361B2 (en
Inventor
Tatsuya Kumagai
達也 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006219708A priority Critical patent/JP4374361B2/en
Publication of JP2008045154A publication Critical patent/JP2008045154A/en
Application granted granted Critical
Publication of JP4374361B2 publication Critical patent/JP4374361B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot-rolled steel plate having penetration resistance to a high-speed collision against a high-hardness missile, weldability and workability. <P>SOLUTION: The steel plate has a chemical composition comprising 0.22 or more but less than 0.30% C, 0.15 to 0.50% Si, 0.10 or more but less than 0.60% Mn, 0.005% or less P, 0.0020% or less S, 2.5 to 4.5% Ni, 0.20 or more but less than 1.00% Mo, 0.005 to 0.030% Nb, 0.01 to 0.10% Al, 0.006% or less N, optionally one or two elements selected from among 0.10 to 0.80% Cr, 0.01 to 0.20% V, 0.003 to 0.030% Ti and 0.0005 to 0.0030% B, and remaining Fe and unavoidable impurities, while satisfying a PCE value of 0.60% or less. The hot-rolled steel plate has such a composition, has a microstructure that includes a martensitic structure in an amount of 95% or higher by fraction which contains crystal grains of former austenite with an average grain size of 6 μm or less, and has a Brinell hardness of 470 to 560. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、構造部材に用いられる溶接性、加工性および高硬度飛翔体に対する耐高速衝突貫通性能に優れた高硬度熱延鋼板およびその製造方法に関する。   The present invention relates to a high-hardness hot-rolled steel sheet excellent in weldability, workability, and high-speed collision penetration resistance to a high-hardness flying object used for a structural member, and a method for manufacturing the same.

鋼板に高速の飛翔体が衝突する場合、一般に鋼板の硬度が高いほど飛翔体は貫通しにくくなる。そのため高硬度の鋼板は、音速を超える高速で飛翔する弾丸などから人命や機材を防御する、いわゆる装甲用の板材として用いられる場合がある。装甲板の用途はさまざまであるが、車両などの構造用部材に用いられる場合には耐貫通性能だけでなく良好な溶接性が要求され、さらに適用される部材によっては曲げなどの加工性が良好であることも同時に要求される。   When a high-speed flying object collides with a steel plate, generally, the higher the hardness of the steel plate, the more difficult the flying object penetrates. Therefore, a hard steel plate is sometimes used as a so-called armor plate that protects human life and equipment from bullets flying at high speeds exceeding the speed of sound. The use of armor plates varies, but when used for structural members such as vehicles, not only penetration resistance but also good weldability is required, and depending on the applied member, workability such as bending is good It is required at the same time.

衝突する飛翔体、すなわち弾丸には鉛がコアである低硬度のものと、高硬度鋼やタングステンなどがコアである高硬度のものに大別される。後者の高硬度飛翔体の貫通力は、低硬度飛翔体に比べて格段に大きくなるので、防御に用いる鋼材の厚さも相当厚くならざるを得ない。しかし車両の動力性能には制約があるため、車両の構造部材とする防護鋼板の重量は極力小さくする必要があり、できるだけ薄い板厚で必要な耐貫通性能を得ることが望ましい。   Projectiles that collide, that is, bullets, are roughly classified into those having low hardness whose core is lead, and those having high hardness whose core is high-hardness steel or tungsten. Since the penetrating force of the latter high-hardness flying object is remarkably larger than that of the low-hardness flying object, the thickness of the steel used for defense must be considerably increased. However, since the power performance of the vehicle is limited, it is necessary to reduce the weight of the protective steel plate as a structural member of the vehicle as much as possible, and it is desirable to obtain the necessary penetration resistance performance with the smallest possible thickness.

溶接にあたって、特殊な溶材や溶接方法が必要とされたり、高温の予熱が必要とされたりする場合、適用する部材の範囲や溶接補修が制限される。したがって、例えば一般的な溶材を用いた通常のCO溶接が予熱なしで可能であることが望ましい。 When welding, a special molten material or a welding method is required, or high temperature preheating is required, the range of members to be applied and welding repair are limited. Therefore, for example, it is desirable that normal CO 2 welding using a general molten material is possible without preheating.

曲げ加工が困難である場合にも使用部位が限定される。したがって、例えば5t(板厚の5倍の曲げ半径)での180度曲げで欠陥がなく曲げられるような加工性を有することが望ましい。   The use site is also limited when bending is difficult. Therefore, it is desirable to have a workability such that, for example, bending can be performed without defects by bending 180 degrees at 5 t (bending radius 5 times the plate thickness).

さらに経済性を考慮するならば、製造負荷の大きい鍛造鋼などではなく、製造負荷の比較的小さい熱延鋼板であることが望ましい。   Further, considering economic efficiency, it is desirable to use a hot-rolled steel sheet having a relatively small production load rather than a forged steel having a large production load.

本発明者は、高い耐高速衝突貫通性能を有する鋼材に関して、先に特許文献1、特許文献2にて開示した。同文献に記載の発明は、低硬度飛翔体(鉛弾)が900m/sを超えるような高速で衝突する際の耐貫通性能を想定している。溶接性については特許文献2では予熱を前提とした溶接性については考慮しているものの、予熱なしでの溶接性までは考慮していない。また、曲げ加工性については特許文献1、特許文献2とも考慮していない。   The present inventor previously disclosed in Patent Document 1 and Patent Document 2 regarding a steel material having a high resistance to high-speed collision penetration. The invention described in this document assumes penetration resistance when a low-hardness flying object (lead bullet) collides at a high speed exceeding 900 m / s. As for weldability, Patent Document 2 considers weldability on the premise of preheating, but does not consider weldability without preheating. Further, regarding the bending workability, neither Patent Document 1 nor Patent Document 2 is considered.

こうしたことから、高硬度飛翔体に対する耐高速衝突貫通性能と、溶接性、加工性を有し、経済的に製造できる熱延鋼板はこれまで知られていない。   For these reasons, a hot-rolled steel sheet that has high-speed impact penetration resistance to high-hardness flying objects, weldability, and workability and can be manufactured economically has not been known so far.

特開平11−264050号公報JP 11-264050 A 特開2005−264275号公報JP 2005-264275 A

そこで、本発明は、高硬度飛翔体に対する耐高速衝突貫通性能と、溶接性、加工性を有し、経済的に製造できる熱延鋼板を提供することを目的とするものである。   Accordingly, an object of the present invention is to provide a hot-rolled steel sheet that has high-speed impact penetration resistance to a high-hardness flying object, weldability, and workability and can be manufactured economically.

本発明者は、先に特許文献2に記載の発明で、低硬度飛翔体に対する耐高速衝突貫通性能を向上させるための知見を得た。しかしながら、飛翔体が高硬度になると貫通現象が大きく異なることから、新たに高硬度飛翔体を鋼板に衝突させる実験を重ね、その際に飛翔体の貫通、非貫通を左右する鋼板に関する様々な要因を解析した。   The inventor of the present invention previously obtained the knowledge for improving the high-speed collision penetration performance with respect to the low-hardness flying object in the invention described in Patent Document 2. However, since the penetrating phenomenon is greatly different when the flying object becomes high in hardness, various new factors that affect the penetration and non-penetration of the flying object at the time of repeated experiments with a high-hardness flying object colliding with the steel sheet Was analyzed.

その結果第一に、鋼板の高硬度飛翔体に対する耐高速衝突貫通性能には、最適な硬さの範囲が存在することを知見した。高硬度飛翔体に対しても耐貫通性能を向上させるためにはある程度高い硬度が必要でありマルテンサイト組織が有利であるが、高硬度ほど変形能が低下する傾向があり、また高硬度になると裏面の割れや剥離などが生じやすい傾向もあり、硬さと耐貫通性能との関係はリニアではない。   As a result, firstly, it was found that there is an optimum hardness range for the high-speed collision penetration resistance of steel plates to high-hardness flying objects. To improve penetration resistance even for high-hardness flying objects, a certain degree of hardness is required and a martensite structure is advantageous. However, the higher the hardness, the lower the deformability and the higher the hardness. There is a tendency that the back surface is easily cracked or peeled off, and the relationship between hardness and penetration resistance is not linear.

図1に、板厚18mm×縦300mm×横300mmの鋼板(C:0.18〜0.37%、Si:0.18〜0.25%、Mn:0.35〜0.51%、P:0.002〜0.004%、S:0.0004〜0.0008%、Ni:3.1〜3.7%、Cr:0〜0.5%、Mo:0.30〜0.56%、Nb:0.013〜0.017%、Al:0.06〜0.07%、N:0.003〜0.005%でいずれも質量%、旧オーステナイトの平均粒径が6μm以下かつマルテンサイト組織の分率95%以上)のブリネル硬さと非貫通限界速度V50との関係を示す。ここでのV50とは、貫通と非貫通がほぼ50%となる飛翔体の速度を意味し、具体的には直径約13mm、重量約25gで先端が円錐状のHv700(焼入れ炭素鋼)の飛翔体を用いて試験体手前2mの距離で撃速を測定し、撃速を変化させて鋼板と垂直に衝突させ、鋼板裏面に設置した厚さ0.5mmのアルミ板に飛翔体または鋼板の破片による損傷が全く生じない場合に非貫通と判定し、15m/sの速度幅内に非貫通と貫通がそれぞれ1発ずつ得られるまで射撃を行い、その2つの撃速の平均値として求めたものである。   FIG. 1 shows a steel plate having a thickness of 18 mm × length of 300 mm × width of 300 mm (C: 0.18 to 0.37%, Si: 0.18 to 0.25%, Mn: 0.35 to 0.51%, P : 0.002 to 0.004%, S: 0.0004 to 0.0008%, Ni: 3.1 to 3.7%, Cr: 0 to 0.5%, Mo: 0.30 to 0.56 %, Nb: 0.013 to 0.017%, Al: 0.06 to 0.07%, N: 0.003 to 0.005%, all in mass%, and the average particle size of prior austenite is 6 μm or less, and The relationship between the Brinell hardness of the martensite structure fraction of 95% or more and the non-penetration limit speed V50 is shown. Here, V50 means the speed of the flying body where penetration and non-penetration are about 50%. Specifically, flying of Hv700 (hardened carbon steel) having a diameter of about 13 mm, a weight of about 25 g, and a conical tip. Measure the shooting speed at a distance of 2m before the test body using the body, change the shooting speed to collide with the steel plate perpendicularly, and damage to the 0.5mm-thick aluminum plate installed on the back of the steel plate due to flying objects or fragments of the steel plate Is determined to be non-penetrating when no non-penetration occurs, and shooting is performed until one non-penetrating and one penetrating are obtained within a speed range of 15 m / s, and the average value of the two shooting speeds is obtained.

図1に示すように、ブリネル硬さが470以上、560以下の範囲において高い耐貫通性能が得られている。鋼板のブリネル硬さが470より低いときには、V50を超える撃速では高硬度飛翔体自体が貫通する。一方、鋼板のブリネル硬さが560より高いときには、高硬度飛翔体自体は貫通しなくても、裏面に割れが生じたり、裏面の一部が剥離したりして破片が飛散するために貫通と判定されることがあり、そのため結果としてV50が低くなる。したがって、本発明ではブリネル硬さ(HB)を470〜560とした。   As shown in FIG. 1, high penetration resistance is obtained when the Brinell hardness is in the range of 470 or more and 560 or less. When the Brinell hardness of the steel sheet is lower than 470, the high-hardness flying object itself penetrates at an impact speed exceeding V50. On the other hand, when the Brinell hardness of the steel plate is higher than 560, even if the high-hardness flying object itself does not penetrate, cracks occur on the back surface, or a part of the back surface peels off, so that fragments are scattered, May be determined, resulting in a lower V50. Therefore, in the present invention, the Brinell hardness (HB) is set to 470 to 560.

第二に、本発明の重要な知見として、マルテンサイト組織の旧オーステナイト粒径を、従来の一般的なマルテンサイト鋼などに比べて大幅に微細化させることによって耐貫通性能を大きく向上させ得ることを見出した。   Secondly, as an important finding of the present invention, the penetration resistance performance can be greatly improved by making the prior austenite grain size of the martensite structure significantly smaller than conventional martensitic steels. I found.

図2に、板厚18mm×縦300mm×横300mmで、ブリネル硬さ約400の供試鋼(C:0.18%、Si:0.22%、Mn:0.41%、P:0.004%、S:0.0005%、Ni:3.3%、Mo:0.33%、Nb:0.017%、Al:0.07%、N:0.004%でいずれも質量%、HB:398〜411)と、ブリネル硬さ約500の供試鋼(C:0.24%、Si:0.25%、Mn:0.51%、P:0.003%、S:0.0006%、Ni:3.4%、Mo:0.35%、Nb:0.015%、Al:0.07%、N:0.004%でいずれも質量%、HB492〜508)それぞれの、旧オーステナイト粒径と非貫通限界速度V50との関係を示す。ここでのV50も上記と同じ方法で測定したもので、貫通と非貫通がほぼ50%となる飛翔体の速度である。   FIG. 2 shows a test steel having a plate thickness of 18 mm × length of 300 mm × width of 300 mm and a Brinell hardness of about 400 (C: 0.18%, Si: 0.22%, Mn: 0.41%, P: 0.00). 004%, S: 0.0005%, Ni: 3.3%, Mo: 0.33%, Nb: 0.017%, Al: 0.07%, N: 0.004%, all by mass, HB: 398 to 411) and a test steel having a Brinell hardness of about 500 (C: 0.24%, Si: 0.25%, Mn: 0.51%, P: 0.003%, S: 0.00). 0006%, Ni: 3.4%, Mo: 0.35%, Nb: 0.015%, Al: 0.07%, N: 0.004%, all in mass%, HB492-508) The relationship between prior austenite grain size and non-penetration limit speed V50 is shown. V50 here is also measured by the same method as described above, and is the velocity of the flying object at which penetration and non-penetration are approximately 50%.

図2から、マルテンサイト組織の旧オーステナイト粒径が6μm以下となるところで顕著に高硬度飛翔体に対する耐貫通性能が向上することがわかる。特にブリネル硬さ約500でかつ旧オーステナイト粒径が6μm以下の場合に非常に優れた耐貫通性能を示している。   From FIG. 2, it can be seen that the penetration resistance to the high-hardness flying object is remarkably improved when the prior austenite grain size of the martensite structure is 6 μm or less. In particular, when the Brinell hardness is about 500 and the prior austenite grain size is 6 μm or less, very excellent penetration resistance is shown.

飛翔体の撃速が大きくなると、鋼板裏面側の突出が大きくなり、ある限界突出量で割れや剥離が生じて破片が飛散し、貫通と判定される。同じ硬さの鋼板について高硬度飛翔体衝突時の挙動を比較すると、粒径が6μm以下になると、同じ程度の撃速で同じ程度の裏面側の突出量であっても粒径が6μm超のものに比べて割れが生じにくくなり、その結果V50が高くなる傾向が認められる。このことから、旧オーステナイト粒径細粒化により、高速変形に対する鋼板の変形能が向上しているのではないかと考えている。尚、旧オーステナイト粒径の下限は特に規定しないが、1μm未満は工業的に実現が難しいため1μm以上が好ましい。   When the flying speed of the flying object increases, the protrusion on the rear surface side of the steel sheet increases, and cracks and delamination occur at a certain limit protrusion amount. Comparing the behavior of steel plates of the same hardness at the time of collision with a high-hardness flying object, when the particle size is 6 μm or less, the particle size is more than 6 μm even if the protruding amount on the back side is the same at the same impact speed. As compared with, cracks are less likely to occur, and as a result, a tendency to increase V50 is recognized. From this, it is considered that the deformability of the steel sheet against high-speed deformation is improved by the refinement of the prior austenite grain size. The lower limit of the prior austenite grain size is not particularly specified, but if it is less than 1 μm, it is difficult to realize industrially, and 1 μm or more is preferable.

上記のように、マルテンサイト組織の旧オーステナイト粒径を6μm以下に細粒化させることで高硬度飛翔体に対する耐貫通性能を大きく向上できるという知見を得たことから、引き続き発明者は、このような微細組織を安定的に得るための熱延鋼板製造プロセスについて検討を重ねた。   As described above, since the inventors obtained the knowledge that the penetration resistance performance against high-hardness flying objects can be greatly improved by refining the prior austenite grain size of the martensite structure to 6 μm or less, The hot-rolled steel sheet manufacturing process to obtain a stable microstructure was repeated.

その結果第一に、加熱時のオーステナイト粒径には加熱前組織の影響が大きく、オーステナイト微細化に最適な加熱前組織は、粗大なM−A(マルテンサイトとオーステナイトの混成組織)や残留オーステナイトが少ない微細なベイナイト組織であることを知見した。微細なベイナイト組織とする目的は、焼入れ再加熱時に変態核生成サイトを増加させることである。粗大M−Aや残留オーステナイトは前組織との方位関係を残していて方位が揃っているので、再加熱時にそれらを核として生成するオーステナイトは周囲のオーステナイトと合体しやすく、特に加熱温度がAc3に近いときに結晶粒の一部が異常に粗大化するために平均粒径が大きくなることがある。粗大なM−Aや残留オーステナイトの生成を抑制する目的は、このような混粒組織となることを回避し、微細均一な加熱オーステナイトを得ることにある。   As a result, firstly, the austenite grain size during heating is greatly influenced by the structure before heating, and the optimum structure before heating for the refinement of austenite is coarse MA (mixed structure of martensite and austenite) or retained austenite. It has been found that there are few fine bainite structures. The purpose of making a fine bainite structure is to increase the number of transformation nucleation sites during quenching and reheating. Coarse MA and residual austenite remain in the orientation relationship with the previous structure, and the orientation is uniform. Therefore, austenite produced with these as nuclei during reheating tends to coalesce with the surrounding austenite, and in particular, the heating temperature becomes Ac3. When near, the average grain size may increase because some of the crystal grains become abnormally coarse. The purpose of suppressing the formation of coarse MA and residual austenite is to avoid such a mixed grain structure and to obtain fine and uniform heated austenite.

具体的には、Nbを適量添加した鋼を840℃以下790℃以上で累積圧下率40%以上を確保する制御圧延を行ない、さらに熱間圧延終了後直ちに3℃/s以上の冷却速度で550℃以下300℃以上の温度まで加速冷却を行う。Nbにより再結晶を抑制しながら制御圧延することにより加工組織を微細化し、さらに速やかに加速冷却を行うことによって圧延後の再結晶進行を抑制して、微細なベイナイト組織を得る。冷却停止温度を550℃以下300℃以上とすることにより、粗大なM−A、および残留オーステナイトの生成を抑制する。   Specifically, the steel to which an appropriate amount of Nb is added is subjected to controlled rolling to ensure a cumulative reduction ratio of 40% or more at 840 ° C. or lower and 790 ° C. or higher, and immediately after completion of hot rolling, at a cooling rate of 3 ° C./s or higher. Accelerated cooling is performed to a temperature not higher than 300 ° C. and not lower than 300 ° C. The controlled structure is refined by controlling rolling while suppressing recrystallization with Nb, and further accelerated cooling is performed to suppress the progress of recrystallization after rolling to obtain a fine bainite structure. By setting the cooling stop temperature to 550 ° C. or lower and 300 ° C. or higher, generation of coarse MA and residual austenite is suppressed.

第二に、焼入れ加熱時のオーステナイト粒径と焼入れ加熱温度には高い相関関係があり、焼入れ加熱温度が低いほど、加熱時のオーステナイト組織は微細になることを知見した。加熱温度の下限はAc3変態点であるので、合金化学成分などの調整により鋼材のAc3変態点を低くすることにより、焼入加熱温度をより低く設定でき、より一層加熱オーステナイト組織を微細化することができる。   Secondly, it has been found that there is a high correlation between the austenite grain size during quenching heating and the quenching heating temperature, and the lower the quenching heating temperature, the finer the austenite structure during heating. Since the lower limit of the heating temperature is the Ac3 transformation point, the quenching heating temperature can be set lower by reducing the Ac3 transformation point of the steel material by adjusting the chemical composition of the alloy, and the heating austenite structure can be further refined. Can do.

Ac3変態点を大きく低下させるためには、オーステナイトフォーマーを多く添加する方法がある。Ni、Mnはいずれも強力なオーステナイトフォーマーであるが、Niは靭性を向上させるので被弾時の割れを抑制する効果があるのに対し、Mnは多量に添加すると靭性を低下させるので、Ac3変態点を調整するために添加する合金としてはNiを優先する。   In order to greatly reduce the Ac3 transformation point, there is a method of adding a large amount of austenite former. Both Ni and Mn are strong austenite formers, but Ni improves the toughness and therefore has the effect of suppressing cracking upon impact, whereas Mn decreases the toughness when added in large amounts, so the Ac3 transformation Ni is given priority as an alloy to be added to adjust the point.

上述した適切な制御圧延と加速冷却を行った鋼板を再加熱焼入れしたときの、Ac3変態点と焼入れ加熱温度、旧オーステナイト粒径の関係を図3に示す。板厚20mmの種々の供試鋼板(C:0.23〜0.28%、Si:0.17〜0.25%、Mn:0.37〜0.49%、P:0.002%、S:0.0005〜0.0008%、Ni:1.5〜4.1%、Cr:0〜0.5%、Mo:0.24〜0.41%、Nb:0.011〜0.017%、N:0.003〜0.005%でいずれも質量%)を、すべての供試鋼板において840℃以下790℃以上で累積圧下率40%以上を確保する制御圧延を行ない、さらに熱間圧延終了後直ちに3℃/s以上の冷却速度で550℃以下300℃以上の温度まで冷却した。さらにこれらの鋼板につき焼入加熱温度Tqを様々に変化させて焼入れを行い、焼入れ後の鋼板の旧オーステナイト粒径を測定した。図3に示すように、焼入れ加熱温度TqがAc3温度+40℃超では、再結晶が進んでしまうため6μm以下の微細な旧オーステナイト粒は得られていない。またTqがAc3変態点+10℃未満では混粒となってかえって平均旧オーステナイト粒径が大きくなる場合があるため、安定的には6μm以下の微細な旧オーステナイト粒は得られない。また、焼入加熱温度が高温の場合には再結晶が進みやすく、TqがAc3変態点+10℃〜+40℃の範囲内であっても810℃を超えると、やはり6μm以下の微細な旧オーステナイト粒が得られないことがある。鋼材のAc3変態温度が800℃を超える場合には、TqをAc3変態点+10℃かつ810℃以下とすることができないので、鋼材のAc3変態温度を少なくと800℃以下とすることが必須となる。   FIG. 3 shows the relationship between the Ac3 transformation point, the quenching heating temperature, and the prior austenite grain size when the steel sheet subjected to the above-described appropriate controlled rolling and accelerated cooling is reheated and quenched. Various test steel plates having a thickness of 20 mm (C: 0.23 to 0.28%, Si: 0.17 to 0.25%, Mn: 0.37 to 0.49%, P: 0.002%, S: 0.0005 to 0.0008%, Ni: 1.5 to 4.1%, Cr: 0 to 0.5%, Mo: 0.24 to 0.41%, Nb: 0.011 to 0.001. 017%, N: 0.003 to 0.005%, and mass%) is controlled rolling to ensure a cumulative reduction of 40% or more at 840 ° C. or lower and 790 ° C. or higher for all the test steel plates, and further heat Immediately after the end of rolling, the steel sheet was cooled to a temperature of 550 ° C. or lower and 300 ° C. or higher at a cooling rate of 3 ° C./s or higher. Further, these steel plates were quenched by varying the quenching heating temperature Tq, and the prior austenite grain size of the steel plates after quenching was measured. As shown in FIG. 3, when the quenching heating temperature Tq is higher than the Ac3 temperature + 40 ° C., recrystallization proceeds and fine austenite grains of 6 μm or less are not obtained. Further, when Tq is less than Ac3 transformation point + 10 ° C., the average prior austenite grain size may be increased instead of being mixed, and therefore, stable prior austenite grains of 6 μm or less cannot be obtained. Further, when the quenching heating temperature is high, recrystallization is likely to proceed. Even if Tq is in the range of Ac3 transformation point + 10 ° C. to + 40 ° C. and exceeds 810 ° C., fine old austenite grains of 6 μm or less are used. May not be obtained. When the Ac3 transformation temperature of the steel material exceeds 800 ° C., Tq cannot be set to Ac3 transformation point + 10 ° C. and 810 ° C. or less, so it is essential that the Ac3 transformation temperature of the steel material is at least 800 ° C. or less. .

したがって、6μm以下の微細な旧オーステナイト粒を安定的に得るためには、Ni添加などによりAc3変態点を少なくとも790℃以下に低くするとともに、焼入加熱温度をAc3変態点+10℃〜+40℃で、かつ810℃以下にすることが必要な条件である。   Therefore, in order to stably obtain fine prior austenite grains of 6 μm or less, the Ac3 transformation point is lowered to at least 790 ° C. or less by adding Ni or the like, and the quenching heating temperature is set to Ac3 transformation point + 10 ° C. to + 40 ° C. And, it is a necessary condition that the temperature be 810 ° C. or lower.

低硬度飛翔体に対する耐高速衝突貫通性能向上については、特許文献2に記載されるように、断熱的なせん断力によって鋼板が栓状に打ち抜かれるプラッギング現象を回避することが非常に重要であった。高硬度飛翔体では貫通力が大きいことから防御に用いる鋼材の厚さが比較的厚いので全厚が栓状に打ち抜かれるいわゆるプラッギング現象はあまり見られない。しかしながら比較的撃速が高い場合に裏面の一部が剥離して飛散する現象があり、冶金的な解析の結果、これにはやはり断熱的なせん断力が作用していることがわかった。   As described in Patent Document 2, it is very important to avoid the plugging phenomenon in which the steel sheet is punched into a plug shape by adiabatic shearing force, as described in Patent Document 2, for improving the high-speed impact penetration performance for a low-hardness flying object. . Since the penetrating force of a high-hardness flying object is large, the steel material used for defense is relatively thick, so the so-called plugging phenomenon in which the entire thickness is punched out is not seen so much. However, when the hitting speed is relatively high, there is a phenomenon in which a part of the back surface is peeled off and scattered, and as a result of metallurgical analysis, it was found that adiabatic shearing force is still acting.

この裏面剥離現象を回避するためには、プラッギング現象の回避と同様に、(a)マルテンサイト組織の高密度の転位を固着して高温になったときの抵抗力を高めるMoおよびNbの添加、(b)旧オーステナイト粒径の微細化、(c)Ac3変態点の高温化が有効である。本発明においては旧オーステナイト細粒化のためAc3変態温度を低くすることが必須であるので(c)の対策はとれないが、Ac3変態点を低温化しても著しい細粒化ができれば(b)の効果が大きく、耐貫通性能には有利である。ただし過剰なAc3温度低温化は断熱せん断による裏面剥離が生じやすくなり、かえって耐貫通性を低下させることがあるので、Ni添加量などには配慮が必要である。   In order to avoid this backside peeling phenomenon, as in the case of avoiding the plugging phenomenon, (a) addition of Mo and Nb for fixing the high-density dislocations in the martensite structure and increasing the resistance when the temperature rises, (B) Refining the prior austenite grain size and (c) increasing the temperature of the Ac3 transformation point are effective. In the present invention, it is essential to lower the Ac3 transformation temperature for refinement of prior austenite, so the measure of (c) cannot be taken. However, if the finer grain size can be obtained even if the Ac3 transformation point is lowered (b) This is advantageous for the penetration resistance performance. However, excessive reduction in the temperature of Ac3 tends to cause backside peeling due to adiabatic shearing, which may lower the penetration resistance.

本発明鋼は結晶粒径が微細であることから、高硬度であるにもかかわらず溶接性は比較的良好である。溶接性については、合金元素を抑制すること、具体的にはPCE=C+Si/30+Mn/12+Ni/50+Cr/15+Mo/6+V/8+25P+30S+15Bで示されるPCEを0.60以下にすれば、予熱なしで割れなく溶接が可能であることを確認した。図4にPCEと溶接性の関係を調査した結果を示す。板厚20mmの供試鋼板(C:0.22〜0.29%、Si:0.17〜0.27%、Mn:0.30〜0.51%、P:0.001〜0.005%、S:0.0005〜0.0018%、Ni:2.7〜4.4%、Cr:0〜0.6%、Mo:0.24〜0.79%、Nb:0.009〜0.018%、Ti:0〜0.017%、B:0〜0.0052%、N:0.003〜0.005%でいずれも質量%、旧オーステナイトの平均粒径が6μm以下、マルテンサイト組織の分率が95%以上、かつブリネル硬さ470以上560以下)を用いて、JIS Z 3154に従った溶接われ試験(CO2溶接にて入熱2.0kJ/mm、溶材YM−28(1.2mmφ)、雰囲気温度20℃、湿度60%、予熱なし)を行い、割れが生じない場合を合格とした。図4から、PCEが0.60%以下であれば予熱なしで割れなく溶接が可能であることがわかる。   Since the steel of the present invention has a fine crystal grain size, it has relatively good weldability despite its high hardness. As for weldability, it is possible to suppress the alloying elements, specifically, PCE = C + Si / 30 + Mn / 12 + Ni / 50 + Cr / 15 + Mo / 6 + V / 8 + 25P + 30S + 15B, if the PCE is reduced to 0.60 or less, it is possible to weld without cracking without preheating. Confirmed that it was possible. FIG. 4 shows the results of investigating the relationship between PCE and weldability. Test steel plate having a thickness of 20 mm (C: 0.22 to 0.29%, Si: 0.17 to 0.27%, Mn: 0.30 to 0.51%, P: 0.001 to 0.005 %, S: 0.0005 to 0.0018%, Ni: 2.7 to 4.4%, Cr: 0 to 0.6%, Mo: 0.24 to 0.79%, Nb: 0.009 to 0.018%, Ti: 0 to 0.017%, B: 0 to 0.0052%, N: 0.003 to 0.005%, all in mass%, the average grain size of prior austenite is 6 μm or less, martense Using a site structure fraction of 95% or more and Brinell hardness of 470 or more and 560 or less, a welding test according to JIS Z 3154 (heat input 2.0 kJ / mm in CO2 welding, molten metal YM-28 ( 1.2mmφ), atmosphere temperature 20 ° C, humidity 60%, no preheating) It was used as a pass. FIG. 4 shows that if PCE is 0.60% or less, welding without cracking is possible without preheating.

鋼板のミクロ組織はできるだけフルマルテンサイトに近い組織が望ましい。組織のマルテンサイト分率が低下して残留オーステナイト分率などが高くなると硬さが低下するので、マルテンサイトの組織分率が95%以上であることが望ましい。   The microstructure of the steel sheet is preferably as close to full martensite as possible. Since the hardness decreases when the martensite fraction of the structure decreases and the retained austenite fraction increases, the martensite structure fraction is desirably 95% or more.

本発明は、これらの知見に基づいてなされたものであり、その要旨とするところは下記のとおりである。   This invention is made | formed based on these knowledge, The place made into the summary is as follows.

(1) 質量%で、C:0.22%以上、0.30%未満、Si:0.15%以上、0.50%以下、Mn:0.10%以上、0.60%未満、P:0.005%以下、S:0.0020%以下、Ni:2.5%以上、4.5%以下、Mo:0.20%以上、1.00%未満、Nb:0.005%以上、0.030%以下、Al:0.01%以上、0.10%以下、N:0.006%以下を含み、その他Feおよび不可避的不純物からなる化学成分を有し、かつ下記式で示されるPCE値が0.60%以下である鋼において、旧オーステナイトの平均粒径が6μm以下であるマルテンサイト組織の分率が95%以上のミクロ組織からなり、ブリネル硬さが470以上560以下であることを特徴とする、溶接性、加工性および高硬度飛翔体に対する耐高速衝突貫通性能に優れる高硬度熱延鋼板。
PCE=[C]+[Si]/30+[Mn]/12+[Ni]/50+[Cr]/15+[Mo]/6+[V]/8+25[P]+30[S]+15[B] ここで、[C]、[Si]、[Mn]、[Ni]、[Cr]、[Mo]、[V]、[P]、[S]、[B]はそれぞれ、C、Si、Mn、Ni、Cr、Mo、V、P、S、Bの質量%である。
(1) By mass%, C: 0.22% or more, less than 0.30%, Si: 0.15% or more, 0.50% or less, Mn: 0.10% or more, less than 0.60%, P : 0.005% or less, S: 0.0020% or less, Ni: 2.5% or more, 4.5% or less, Mo: 0.20% or more, less than 1.00%, Nb: 0.005% or more 0.030% or less, Al: 0.01% or more, 0.10% or less, N: 0.006% or less, other chemical components composed of Fe and inevitable impurities, and represented by the following formula Steel having a PCE value of 0.60% or less, consisting of a microstructure of 95% or more of martensite structure whose average grain size of prior austenite is 6 μm or less, and Brinell hardness of 470 or more and 560 or less For weldable, workable and high-hardness flying objects characterized by High-hardness hot-rolled steel sheet with excellent high-speed impact penetration performance.
PCE = [C] + [Si] / 30 + [Mn] / 12 + [Ni] / 50 + [Cr] / 15 + [Mo] / 6 + [V] / 8 + 25 [P] +30 [S] +15 [B] where [C], [Si], [Mn], [Ni], [Cr], [Mo], [V], [P], [S], and [B] are C, Si, Mn, Ni, It is the mass% of Cr, Mo, V, P, S, B.

(2) 質量%で、さらに、Cr:0.10%以上、0.80%以下、V:0.01%以上、0.20%以下、Ti:0.003%以上、0.030%以下、B:0.0005%以上、0.0030%以下のうちの1種または2種以上を含有することを特徴とする、前記(1)項に記載の溶接性、加工性および耐高速衝突貫通性能に優れる高硬度熱延鋼板。   (2) By mass%, Cr: 0.10% or more, 0.80% or less, V: 0.01% or more, 0.20% or less, Ti: 0.003% or more, 0.030% or less B: One or more of 0.0005% or more and 0.0030% or less are contained, weldability, workability and high-speed impact penetration resistance as described in the above item (1) High-hardness hot-rolled steel sheet with excellent performance.

(3) 前記(1)または(2)項に記載の化学成分を有する鋼片または鋳片を1100℃以上に加熱し、840℃以下790℃以上で累積圧下率40%以上を確保する熱間圧延を行なって厚鋼板とし、熱間圧延後直ちに3℃/s以上の冷却速度で550℃以下300℃以上の温度まで加速冷却を行う。さらにこれをAc3変態点+10℃〜Ac3変態点+40℃でかつ、810℃以下の温度に再加熱した後に、5℃/s以上の冷却速度で100℃以下まで冷却する熱処理を行なうことを特徴とする、溶接性、加工性および高硬度飛翔体に対する耐高速衝突貫通性能に優れる高硬度熱延鋼板の製造方法。   (3) A hot slab in which the steel slab or slab having the chemical composition described in the above (1) or (2) is heated to 1100 ° C. or higher and a cumulative rolling reduction of 40% or higher is ensured at 840 ° C. or lower and 790 ° C. Rolling is performed to obtain a thick steel plate, and accelerated cooling is performed immediately after hot rolling to a temperature of 550 ° C. or lower and 300 ° C. or higher at a cooling rate of 3 ° C./s or higher. Furthermore, after reheating this to a temperature of Ac3 transformation point + 10 ° C. to Ac3 transformation point + 40 ° C. and 810 ° C. or less, a heat treatment is performed to cool to 100 ° C. or less at a cooling rate of 5 ° C./s or more. A method for producing a high-hardness hot-rolled steel sheet having excellent weldability, workability, and high-speed collision penetration resistance to a high-hardness flying object.

本発明によれば、比較的低い合金量でありながら、溶接性、加工性および高硬度飛翔体に対する耐高速衝突貫通性能に優れる高硬度熱延鋼板が得られる。また本発明の製造方法によれば前記熱延鋼板を転炉溶製、熱間圧延により経済的に製造することができる。   According to the present invention, it is possible to obtain a high-hardness hot-rolled steel sheet that is excellent in weldability, workability, and high-speed impact penetration resistance to a high-hardness flying object while having a relatively low alloy amount. Moreover, according to the manufacturing method of this invention, the said hot-rolled steel plate can be economically manufactured by converter melting and hot rolling.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

まず、本発明の鋼成分の限定理由を述べる。
Cは、マルテンサイトの硬さを決定する重要な元素である。本発明における所期の耐貫通性能を得るのに必要なブリネル硬さ470以上560以下とするために、Cの範囲を0.22%以上0.30%未満とする。
First, the reasons for limiting the steel components of the present invention will be described.
C is an important element that determines the hardness of martensite. In order to obtain the Brinell hardness of 470 or more and 560 or less necessary for obtaining the desired penetration resistance in the present invention, the range of C is made 0.22% or more and less than 0.30%.

Siは、脱酸元素として添加されるが、Siが極端に低いと断熱せん断による裏面剥離が生じやすく耐貫通性能を低下させる傾向がある。このためSi添加量の下限を0.15%とする。また、過剰な添加は鋼のAc3温度を高くするため、焼入加熱温度を低くできないので、オーステナイトの細粒化の妨げになる。このためSi添加量の上限を0.50%とする。   Si is added as a deoxidizing element. However, if Si is extremely low, backside peeling due to adiabatic shear tends to occur, and the penetration resistance tends to be reduced. For this reason, the lower limit of the Si addition amount is set to 0.15%. Further, excessive addition raises the Ac3 temperature of the steel, so the quenching heating temperature cannot be lowered, which hinders austenite refinement. For this reason, the upper limit of Si addition amount is set to 0.50%.

Mnは、MnSを形成することによってSの粒界偏析による靭性低下を抑制する。この目的のためには0.10%以上の添加が必要である。MnはオーステナイトフォーマーでありAc3変態点を下げるのに有効であるが、多量添加によって靭性を低下させるので、Ac3変態点を下げるために添加する合金としてはNiを優先する。Niが一定量添加される前提では、0.60%以上のMnは過剰にAc3変態温度を下げて断熱せん断による裏面剥離を生じさせ、かえって耐貫通性能を低下させることがある。したがって、Mn含有量は0.10%以上0.60%未満とする。   Mn suppresses toughness reduction due to segregation of S grain boundaries by forming MnS. For this purpose, an addition of 0.10% or more is necessary. Mn is an austenite former and is effective for lowering the Ac3 transformation point, but because toughness is lowered by addition of a large amount, Ni is given priority as an alloy to be added to lower the Ac3 transformation point. On the premise that a certain amount of Ni is added, 0.60% or more of Mn excessively lowers the Ac3 transformation temperature to cause backside peeling due to adiabatic shearing, which may lower the penetration resistance. Therefore, the Mn content is 0.10% or more and less than 0.60%.

Pは、不可避的不純物として、溶接性および曲げ加工性を低下させる有害な元素である。したがって、上限を0.005%とするとともに、他元素の添加量に応じてPCEが0.60を超えないように規制する。   P is an inevitable impurity and is a harmful element that deteriorates weldability and bending workability. Therefore, the upper limit is set to 0.005%, and the PCE is regulated so as not to exceed 0.60 according to the amount of other elements added.

Sは、溶接性および曲げ加工性を低下させ、被弾時に鋼板裏面に割れを生じやすくして耐貫通性能も低下させる非常に有害な元素である。特に、本発明における所期の曲げ加工性と耐貫通性能を得るために0.0020%以下に規制する。   S is a very harmful element that deteriorates weldability and bending workability, easily causes cracks on the back surface of the steel sheet when it is hit, and lowers penetration resistance. Particularly, in order to obtain the desired bending workability and penetration resistance in the present invention, the content is restricted to 0.0020% or less.

Niは、オーステナイトフォーマーとしてAc3変態点を下げて焼入れ温度を低温化できるようにし、旧オーステナイトを微細化するために本発明において重要な元素である。また靭性を高めるので被弾時の割れを回避するのにも有効である。特にAc3変態点を800℃以下とするために2.5%以上の添加が必要である。ただし、Ac3変態温度の過度の低下は同時に断熱せん断による裏面剥離を生じやすくするため、かえって耐貫通性能を低下させることがあるので、添加上限を4.5%とする。したがって、Ni添加量は2.7%以上、4.5%以下とする。   Ni is an important element in the present invention in order to lower the Ac3 transformation point and lower the quenching temperature as an austenite former and to refine the prior austenite. In addition, it increases the toughness, and is effective in avoiding cracks during impact. In particular, addition of 2.5% or more is necessary to make the Ac3 transformation point 800 ° C. or less. However, an excessive decrease in the Ac3 transformation temperature tends to cause backside peeling due to adiabatic shearing at the same time, so that the penetration resistance may be lowered. Therefore, the upper limit of addition is set to 4.5%. Therefore, the amount of Ni added is 2.7% to 4.5%.

Moは、マルテンサイト組織中に固溶状態で存在すると高密度の転位を固着して高温になったときの抵抗力を高めることから、断熱せん断力により生じる裏面剥離現象を抑制し、耐貫通性能を向上させるために有効な元素である。しかし、多く添加した場合に溶接性を低下させることがある。耐貫通性能と溶接性とを両立させるため、Moの添加量は0.20%以上、1.00%未満とする。   Mo, when present in a solid solution state in the martensite structure, fixes high-density dislocations and increases resistance when the temperature rises. It is an effective element for improving. However, when a large amount is added, weldability may be reduced. In order to achieve both penetration resistance and weldability, the addition amount of Mo is 0.20% or more and less than 1.00%.

Nbは、熱延中にNb(CN)として微細に析出してオーステナイトの再結晶を抑制し、かつ焼入加熱時の結晶粒成長も抑制するので、マルテンサイト組織の旧オーステナイト粒径を細粒化するために非常に重要な元素である。この目的のためにNb添加量は、0.005%以上必要である。ただし過剰に添加すると微細なNb(CN)が得られず、十分な細粒化効果が得られない。Nbは、Moと同様に固溶状態で存在すると耐貫通性能を高める効果があるが、本発明においては旧オーステナイト粒の細粒化を重要視して、添加量の上限を0.030%とする。   Nb precipitates finely as Nb (CN) during hot rolling, suppresses recrystallization of austenite, and also suppresses crystal grain growth during quenching heating, so the old austenite grain size of the martensite structure is reduced to a fine grain. It is a very important element to make it. For this purpose, the amount of Nb added must be 0.005% or more. However, if added excessively, fine Nb (CN) cannot be obtained, and a sufficient fine graining effect cannot be obtained. Nb has the effect of improving penetration resistance when it exists in a solid solution state as in Mo, but in the present invention, importance is attached to the refinement of prior austenite grains, and the upper limit of the addition amount is 0.030%. To do.

Alは、脱酸元素または介在物形態制御元素として0.01%以上添加する。また、Bを添加する場合に、焼入性向上に必要なフリーBを確保するためにNを固定する目的で0.05%以上添加する場合がある。いずれの場合も過剰な添加は靭性を低下させる場合があるので上限は0.10%とする。   Al is added in an amount of 0.01% or more as a deoxidizing element or an inclusion form controlling element. When B is added, 0.05% or more may be added for the purpose of fixing N in order to secure free B necessary for improving hardenability. In either case, excessive addition may reduce toughness, so the upper limit is made 0.10%.

Nは、過剰に含有されると靱性を低下させる有害な元素であるので、その量は少ないほうが良い。望ましくは、0.006%以下とする。   N is a harmful element that lowers toughness when contained in excess, so the amount is preferably as small as possible. Desirably, it is 0.006% or less.

以上は本発明における鋼の基本化学成分であるが、さらに本発明では上記化学成分の他に、Cr、V、Ti、Bのうち一種または二種以上添加することができる。   The above are the basic chemical components of steel in the present invention. In addition, in the present invention, one or more of Cr, V, Ti, and B can be added in addition to the above chemical components.

Crは、焼入性を向上させるので、特に鋼板厚の厚い場合に、板厚中心まで十分なマルテンサイト組織分率を得るために添加する。0.10%未満ではそれらの効果は小さく、逆に0.80%を超えると、Ac3変態点が高くなり、焼入れ温度が制約されるので、Crの含有量は0.10〜0.80%とすることが望ましい。   Since Cr improves hardenability, it is added in order to obtain a sufficient martensite structure fraction to the center of the plate thickness, particularly when the steel plate is thick. If it is less than 0.10%, those effects are small. Conversely, if it exceeds 0.80%, the Ac3 transformation point becomes high and the quenching temperature is restricted, so the Cr content is 0.10 to 0.80%. Is desirable.

Vは、焼入性向上に有効である。0.01%未満ではそれらの効果は小さく、逆に0.20%を超えると粗大析出物を形成するために靱性に有害である。したがって、Vの含有量は0.01%以上、0.20%以下とすることが望ましい。   V is effective for improving hardenability. If the content is less than 0.01%, these effects are small. Conversely, if the content exceeds 0.20%, coarse precipitates are formed, which is harmful to toughness. Therefore, the V content is desirably 0.01% or more and 0.20% or less.

Tiは、Bを添加する場合に、NをTiNとして固定することでBNを形成させないようにして、焼入性向上に必要なフリーBを確保するために0.003%以上添加するが、過剰な添加は靭性を阻害するので、添加上限は0.030%とする。   Ti is added in an amount of 0.003% or more in order to secure free B necessary for improving the hardenability so as not to form BN by fixing N as TiN when adding B. Since such addition inhibits toughness, the upper limit of addition is 0.030%.

Bは、焼入性を高めるので、特に鋼板厚の厚い場合にマルテンサイト組織を得やすくするために添加する。その効果を発揮するには0.0005%以上必要であるが、0.0030%を超えて添加すると溶接性や靭性を低下させることがあるので、Bの含有量は0.0005%以上、0.0030%以下とする。   B increases the hardenability, so it is added to make it easier to obtain a martensite structure, particularly when the steel sheet is thick. In order to exert the effect, 0.0005% or more is necessary, but if added over 0.0030%, weldability and toughness may be lowered, so the B content is 0.0005% or more, 0 0030% or less.

溶接性については上述のように、合金元素を抑制すること、具体的にはPCE=C+Si/30+Mn/12+Ni/50+Cr/15+Mo/6+V/8+25P+30S+15Bで示されるPCEを0.60以下にすれば、予熱なしで割れなく溶接が可能である。   As described above, with regard to weldability, if alloying elements are suppressed, specifically, PCE = C + Si / 30 + Mn / 12 + Ni / 50 + Cr / 15 + Mo / 6 + V / 8 + 25P + 30S + 15B is reduced to 0.60 or less, there is no preheating. It is possible to weld without cracking.

前記のように、本発明は鋼成分に加え、ミクロ組織を極力フルマルテンサイト組織とすることで高い耐貫通性能が得られるものである。ミクロ組織は、主としてマルテンサイト、またはマルテンサイトと残留オーステナイトの混合組織であり、マルテンサイトの組織分率が95%以上であることを特徴とする。残留オーステナイトは、マルテンサイト組織と形態的には類似しており、ミクロ組織の観察から残留オーステナイトとマルテンサイトを判別することは容易ではない。マルテンサイトと残留オーステナイトの組織分率は、X線分析によりフェライトの積分強度とオーステナイトの積分強度の比から定量的に求めることができる。尚、マルテンサイトの組織分率の上限は特に規定せず、マルテンサイト以外の組織が測定不可能な場合まで含まれる。   As described above, according to the present invention, high penetration resistance can be obtained by making the microstructure as full martensite as much as possible in addition to the steel components. The microstructure is mainly martensite or a mixed structure of martensite and retained austenite, and the martensite has a structure fraction of 95% or more. The retained austenite is morphologically similar to the martensite structure, and it is not easy to distinguish retained austenite and martensite from observation of the microstructure. The structural fraction of martensite and retained austenite can be quantitatively determined from the ratio of the integrated strength of ferrite and the integrated strength of austenite by X-ray analysis. In addition, the upper limit of the structure fraction of martensite is not particularly defined, and includes the case where structures other than martensite cannot be measured.

次に製造方法について述べる。   Next, a manufacturing method will be described.

まず、上記の鋼成分の鋼片または鋳片を加熱して熱間圧延を行なう。   First, a steel slab or slab of the above steel components is heated and hot rolled.

加熱温度は、Nbを固溶させるために1100℃以上とする。   The heating temperature is 1100 ° C. or higher in order to dissolve Nb.

熱間圧延は、840℃以下、790℃以上の温度域で累積圧下率40%以上を確保する。これは、Nb(CN)を析出させ、十分な制御圧延効果を得るためである。制御圧延が840℃超であったり、840℃以下、790℃以上の温度域での累積圧下率が40%未満では十分な加工組織が得られず微細なベイナイトが得られないために、結果として再加熱時に6μm以下のオーステナイトが得られないことがある。また、790未満の温度で圧延を行うと、鋼板の集合組織が強くなって被弾時に剥離しやすくなる場合がある。   Hot rolling ensures a cumulative reduction of 40% or more in a temperature range of 840 ° C. or lower and 790 ° C. or higher. This is for precipitating Nb (CN) and obtaining a sufficient controlled rolling effect. If the controlled rolling is over 840 ° C. or the cumulative rolling reduction in the temperature range of 840 ° C. or lower and 790 ° C. or higher is less than 40%, a sufficient processed structure cannot be obtained and a fine bainite cannot be obtained. Austenite of 6 μm or less may not be obtained during reheating. In addition, when rolling is performed at a temperature lower than 790, the texture of the steel sheet may become strong and may be easily peeled off during impact.

熱間圧延後、直ちに3℃/s以上の冷却速度で550℃以下300℃以上の温度まで加速冷却を行う。この目的は、加熱前組織の粗大M−Aや残留オーステナイトの生成を抑制することにある。熱間圧延後の冷却速度が3℃/s未満であったり、加速冷却の終了温度が550℃超であるとベイナイト変態が不十分になりM−Aが生成しやすい。また加速冷却の終了温度が300℃未満でも部分的にマルテンサイト変態になってやはりM−Aが生成しやすく、いずれの場合も結果として再加熱時に6μm以下のオーステナイトが得られなないことがある。   Immediately after hot rolling, accelerated cooling is performed to a temperature of 550 ° C. or lower and 300 ° C. or higher at a cooling rate of 3 ° C./s or higher. The purpose is to suppress the formation of coarse MA and residual austenite in the structure before heating. If the cooling rate after hot rolling is less than 3 ° C./s or the end temperature of accelerated cooling exceeds 550 ° C., the bainite transformation becomes insufficient and MA tends to be generated. Further, even when the end temperature of accelerated cooling is less than 300 ° C., it is partly martensitic and easily forms MA, and in either case, austenite of 6 μm or less may not be obtained at the time of reheating. .

熱間圧延後の鋼板をAc3変態点+10℃〜Ac3変態点+40℃でかつ、810℃以下の温度に再加熱する。これにより、上述のように平均粒径が6μm以下の再加熱オーステナイトを得ることができる。さらにこれを5℃/s以上の冷却速度で100℃以下まで冷却することにより、マルテンサイト組織の分率を95%以上とし、470以上560以下のブリネル硬さとすることができる。冷却速度が5℃/s未満、あるいは加速冷却の終了温度が100度超では、マルテンサイト組織の分率が95%以上とならず、結果として470以上560以下のブリネル硬さが得られない場合がある。焼戻し熱処理は特に必要ないが、300℃以下の温度で熱処理しても鋼板の諸特性は本発明を逸脱しない。   The steel sheet after hot rolling is reheated to a temperature of Ac3 transformation point + 10 ° C. to Ac3 transformation point + 40 ° C. and 810 ° C. or less. Thereby, as described above, reheated austenite having an average particle size of 6 μm or less can be obtained. Furthermore, by cooling this to 100 ° C. or less at a cooling rate of 5 ° C./s or more, the fraction of the martensite structure can be 95% or more, and the Brinell hardness can be 470 or more and 560 or less. When the cooling rate is less than 5 ° C./s or the end temperature of accelerated cooling exceeds 100 degrees, the fraction of martensite structure does not become 95% or more, and as a result, a Brinell hardness of 470 or more and 560 or less cannot be obtained. There is. Tempering heat treatment is not particularly required, but the properties of the steel sheet do not depart from the present invention even if heat treatment is performed at a temperature of 300 ° C. or lower.

このような製造方法で得られる鋼は組織が微細であるので、高硬度でありながら優れた曲げ加工性を示す。また、本発明の鋼成分、不純物量は転炉溶製で製造可能であり、熱延で製造できるため製造コストが比較的安価であり、経済性にも優れる。   Since the steel obtained by such a manufacturing method has a fine structure, it exhibits excellent bending workability while having high hardness. Moreover, the steel component and impurity amount of the present invention can be produced by melting in a converter and can be produced by hot rolling, so that the production cost is relatively low and the economy is excellent.

装甲用途としては、車体、船体、あるいは建造物の部材としての用途などが考えられ、それぞれの用途に応じて、厚板または薄板として用いてもよい。全厚にわたって本発明の硬さ、旧オーステナイト粒径を具備し得るのは、水冷により板厚中心まで8℃/sの焼入れ冷却速度が得られる板厚50mm程度までであるが、それ以上の板厚の鋼板としても耐貫通性能は高く、装甲用途に適用化能である。   As an armor application, an application as a member of a car body, a hull, or a building can be considered, and it may be used as a thick plate or a thin plate according to each application. It is possible to have the hardness of the present invention and the prior austenite grain size over the entire thickness up to a plate thickness of about 50 mm at which a quenching cooling rate of 8 ° C./s can be obtained to the center of the plate thickness by water cooling, but more than that plate Even a thick steel plate has high penetration resistance and can be applied to armor applications.

鋼材単体で用いてもよいし、あるいは複数枚を積層して用いてもよい。さらに表面か裏面または両面に防弾繊維やアルミ、チタン等他の材料や別の鋼板を貼り合わせる形状としてもよい。   A single steel material may be used, or a plurality of steel materials may be laminated. Furthermore, it is good also as a shape which bonds another material and another steel plate, such as a bulletproof fiber, aluminum, and titanium, to the surface, a back surface, or both surfaces.

表1に示す化学成分を有するA〜ABの鋼を溶製して得られた鋼片を、1200℃に加熱後、表2に示す1〜31の本発明例と比較例のそれぞれの製造条件で、板厚20mmの鋼板を製造した。   The steel slab obtained by melting steels A to AB having the chemical components shown in Table 1 was heated to 1200 ° C., and then each of the production conditions of Examples 1 to 31 and Comparative Examples shown in Table 2 Thus, a steel plate having a thickness of 20 mm was manufactured.

これらの鋼板について、高硬度飛翔体の高速衝突に対する耐貫通性能を調査した。具体的には、直径約13mm、重量約25gで先端が円錐状のHv700(焼入れ炭素鋼)の飛翔体を用いて試験体手前2mの距離で撃速を測定し、撃速約750m/s(739m/s〜758m/s)で鋼板と垂直に衝突させ、鋼板裏面に設置した厚さ0.5mmのアルミ板に飛翔体の貫通または鋼板の破片による損傷が全く生じない場合に耐弾と判定した。1枚の鋼板面にそれぞれの着弾位置を10cm以上離して2発射撃して2発とも非貫通となった場合を合格、1発でもアルミ板が損傷したものを不合格とした。試験鋼板の板厚はすべて20mmとした。   These steel plates were examined for penetration resistance against high-speed collisions of high-hardness flying objects. Specifically, using a flying body of Hv700 (hardened carbon steel) having a diameter of about 13 mm and a weight of about 25 g, the tip is measured at a distance of 2 m before the test body, and the shooting speed is about 750 m / s (739 m / s). s to 758 m / s), and it was judged to be bulletproof when no damage was caused to the 0.5 mm thick aluminum plate placed on the back side of the steel plate due to penetration of flying objects or fragments of the steel plate. The case where two impacts were made by separating each landing position 10 cm or more on one steel sheet surface and two shots were not passed was accepted, and the case where the aluminum plate was damaged even by one shot was rejected. The thickness of all the test steel plates was 20 mm.

溶接性の評価は、前記JIS Z 3154に準拠した内容で実施した。   Evaluation of weldability was carried out according to the content according to JIS Z 3154.

曲げ加工性は、JIS Z2248に規定の方法で、試験片JIS1号により板厚の5倍(5t)でのC方向 180度曲げを行い、曲試験後にわん曲部の外側の裂けきずその他の欠陥が生じない場合に合格とした。   Bending workability is the method specified in JIS Z2248, bending 180 degrees in the C direction at 5 times the plate thickness (5t) according to the test piece JIS1 and after the bending test, cracks and other defects on the outside of the bent portion If it does not occur, it was accepted.

靱性は−40℃におけるシャルピー衝撃試験の1cmあたりの吸収エネルギー値の3本の平均値で評価した。試験片は板厚中心部から圧延方向に直角に採取し、5mm幅サブサイズのJIS Z 2201 4号シャルピー試験片とした。靭性が低い場合、加工などの問題が生じることがあるほか、被弾時に割れが発生しやすくなり耐高速衝突貫通性能が低下する場合がある。マルテンサイトおよび残留オーステナイト体積率Vγ(%)は、理学電機製微小焦点X線応力測定装置PSPC−M/SF型を用い、Cr−Kαターゲット、管電圧30kV、管電流20mAの条件で、X線によりフェライト(211)面とオーステナイト(220)面の積分強度比を求め、(1)式により算出した。 Toughness was evaluated by the average value of the three absorbed energy values per cm 2 in the Charpy impact test at −40 ° C. The test piece was sampled from the center of the plate thickness at right angles to the rolling direction, and used as a JIS Z 2201 No. 4 Charpy test piece having a width of 5 mm. If the toughness is low, problems such as processing may occur, and cracking is likely to occur during impact, which may reduce the high-speed impact penetration performance. Martensite and residual austenite volume fraction Vγ (%) were measured using X-rays under the conditions of a Cr-Kα target, a tube voltage of 30 kV, and a tube current of 20 mA, using a microfocus X-ray stress measurement device PSPC-M / SF manufactured by Rigaku Corporation. Thus, the integral intensity ratio between the ferrite (211) surface and the austenite (220) surface was obtained and calculated by the equation (1).

Vγ(%)={1/〔(K×2Ia/Ir)+1〕}×100 ・ ・ ・ (1)
ここで、Ia:フェライトの積分強度、
Ir:オーステナイトの積分強度、
K :補正係数(=0.30)
旧オーステナイト粒径は、JIS G0551に規定の鋼結晶粒度顕微鏡試験方法に準拠して平均結晶粒径を測定した。
Vγ (%) = {1 / [(K × 2Ia / Ir) +1]} × 100 (1)
Where Ia: integral strength of ferrite,
Ir: integrated intensity of austenite,
K: Correction coefficient (= 0.30)
For the prior austenite grain size, the average grain size was measured in accordance with the steel grain size microscope test method specified in JIS G0551.

なお、表中で下線を付した数値は、本発明外の化学成分、温度条件および特性が不十分なものを示す。   In addition, the numerical value which underlined in the table | surface shows the thing with insufficient chemical components, temperature conditions, and characteristics outside this invention.

表2の本発明例1〜9においては、すべて前記の耐貫通性能試験、溶接割れ試験、曲げ加工試験に合格している。これに対し、本発明により限定された化学成分範囲を逸脱した比較例10〜29においては、製造法は本発明法であるにもかかわらず、耐貫通性能、溶接性、曲げ加工性のうちひとつ以上で不合格となっている。また化学成分は本発明鋼範囲内であっても本発明の製造法を逸脱した比較例30〜37もやはり耐貫通性能、溶接性、曲げ加工性のうちひとつ以上で不合格となっている。   In Invention Examples 1 to 9 in Table 2, all passed the above penetration resistance test, weld crack test, and bending test. On the other hand, in Comparative Examples 10 to 29 that deviate from the chemical component range limited by the present invention, although the manufacturing method is the method of the present invention, it is one of penetration resistance, weldability, and bending workability. It is rejected by the above. Further, even if the chemical composition is within the range of the steel of the present invention, Comparative Examples 30 to 37 deviating from the production method of the present invention also fail in one or more of penetration resistance, weldability and bending workability.

Figure 2008045154
Figure 2008045154

Figure 2008045154
Figure 2008045154

ブリネル硬さと非貫通限界速度V50との関係を示す図である。It is a figure which shows the relationship between Brinell hardness and non-penetration limit speed V50. ブリネル硬さ400および500の鋼板の、旧オーステナイト粒径と非貫通限界速度V50との関係を示す図である。It is a figure which shows the relationship between the prior austenite grain size and the non-penetration limit speed V50 of the steel plates of Brinell hardness 400 and 500. Ac3変態点と焼入れ加熱温度、旧オーステナイト粒径の関係を示す図である。It is a figure which shows the relationship between an Ac3 transformation point, quenching heating temperature, and a prior-austenite particle size. PCE値とJIS Z3154溶接割れ試験における割れ発生有無との関係を示す図である。It is a figure which shows the relationship between PCE value and the crack presence or absence in a JIS Z3154 weld crack test.

Claims (3)

質量%で、
C:0.22%以上、0.30%未満、
Si:0.15%以上、0.50%以下、
Mn:0.10%以上、0.60%未満、
P:0.005%以下、
S:0.0020%以下、
Ni:2.5%以上、4.5%以下、
Mo:0.20%以上、1.00%未満、
Nb:0.005%以上、0.030%以下、
Al:0.01%以上、0.10%以下、
N:0.006%以下
を含み、その他Feおよび不可避的不純物からなる化学成分を有し、かつ下記式で示されるPCE値が0.60%以下である鋼において、旧オーステナイトの平均粒径が6μm以下であるマルテンサイト組織の分率が95%以上のミクロ組織からなり、ブリネル硬さが470以上560以下であることを特徴とする、溶接性、加工性および高硬度飛翔体に対する耐高速衝突貫通性能に優れる高硬度熱延鋼板。
PCE=[C]+[Si]/30+[Mn]/12+[Ni]/50+[Cr]/15+[Mo]/6+[V]/8+25[P]+30[S]+15[B]
ここで、[C]、[Si]、[Mn]、[Ni]、[Cr]、[Mo]、[V]、[P]、[S]、[B]はそれぞれ、C、Si、Mn、Ni、Cr、Mo、V、P、S、Bの質量%である。
% By mass
C: 0.22% or more, less than 0.30%,
Si: 0.15% or more, 0.50% or less,
Mn: 0.10% or more, less than 0.60%,
P: 0.005% or less,
S: 0.0020% or less,
Ni: 2.5% or more, 4.5% or less,
Mo: 0.20% or more, less than 1.00%,
Nb: 0.005% or more, 0.030% or less,
Al: 0.01% or more, 0.10% or less,
N: In steel containing 0.006% or less, other chemical components composed of Fe and inevitable impurities, and having a PCE value of 0.60% or less represented by the following formula, the average grain size of prior austenite is High-speed collision resistance against weldability, workability and high-hardness flying bodies, characterized by comprising a microstructure with a martensite structure fraction of 6% or less and a microstructure of 95% or more and a Brinell hardness of 470 or more and 560 or less. High-hardness hot-rolled steel sheet with excellent penetration performance.
PCE = [C] + [Si] / 30 + [Mn] / 12 + [Ni] / 50 + [Cr] / 15 + [Mo] / 6 + [V] / 8 + 25 [P] +30 [S] +15 [B]
Here, [C], [Si], [Mn], [Ni], [Cr], [Mo], [V], [P], [S], and [B] are C, Si, and Mn, respectively. , Ni, Cr, Mo, V, P, S, B mass%.
質量%で、さらに、
Cr:0.10%以上、0.80%以下、
V:0.01%以上、0.20%以下、
Ti:0.003%以上、0.030%以下、
B:0.0005%以上、0.0030%以下
のうちの1種または2種以上を含有することを特徴とする、請求項1に記載の溶接性、加工性および耐高速衝突貫通性能に優れる高硬度熱延鋼板。
In mass%,
Cr: 0.10% or more, 0.80% or less,
V: 0.01% or more, 0.20% or less,
Ti: 0.003% or more, 0.030% or less,
B: It contains 1 type or 2 types or more of 0.0005% or more and 0.0030% or less, It is excellent in the weldability, workability, and high-speed impact penetration performance of Claim 1 characterized by the above-mentioned. High hardness hot rolled steel sheet.
請求項1または請求項2に記載の化学成分を有する鋼片または鋳片を1100℃以上に加熱し、840℃以下790℃以上で累積圧下率40%以上を確保する熱間圧延を行なって厚鋼板とし、熱間圧延後直ちに3℃/s以上の冷却速度で550℃以下300℃以上の温度まで加速冷却を行う。さらにこれをAc3変態点+10℃〜Ac3変態点+40℃でかつ、810℃以下の温度に再加熱した後に、5℃/s以上の冷却速度で100℃以下まで冷却する熱処理を行なうことを特徴とする、溶接性、加工性および高硬度飛翔体に対する耐高速衝突貫通性能に優れる高硬度熱延鋼板の製造方法。   A steel slab or slab having the chemical composition according to claim 1 or 2 is heated to 1100 ° C or higher, and hot rolled to ensure a cumulative reduction ratio of 40% or higher at 840 ° C or lower and 790 ° C or higher. A steel plate is used, and accelerated cooling is performed immediately after hot rolling to a temperature of 550 ° C. or lower and 300 ° C. or higher at a cooling rate of 3 ° C./s or higher. Furthermore, after reheating this to a temperature of Ac3 transformation point + 10 ° C. to Ac3 transformation point + 40 ° C. and 810 ° C. or less, a heat treatment is performed to cool to 100 ° C. or less at a cooling rate of 5 ° C./s or more. A method for producing a high-hardness hot-rolled steel sheet having excellent weldability, workability, and high-speed collision penetration resistance to a high-hardness flying object.
JP2006219708A 2006-08-11 2006-08-11 High-hardness hot-rolled steel sheet excellent in weldability and workability, and excellent in high-speed impact penetration performance against high-hardness flying objects and method for producing the same Expired - Fee Related JP4374361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006219708A JP4374361B2 (en) 2006-08-11 2006-08-11 High-hardness hot-rolled steel sheet excellent in weldability and workability, and excellent in high-speed impact penetration performance against high-hardness flying objects and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006219708A JP4374361B2 (en) 2006-08-11 2006-08-11 High-hardness hot-rolled steel sheet excellent in weldability and workability, and excellent in high-speed impact penetration performance against high-hardness flying objects and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008045154A true JP2008045154A (en) 2008-02-28
JP4374361B2 JP4374361B2 (en) 2009-12-02

Family

ID=39179182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006219708A Expired - Fee Related JP4374361B2 (en) 2006-08-11 2006-08-11 High-hardness hot-rolled steel sheet excellent in weldability and workability, and excellent in high-speed impact penetration performance against high-hardness flying objects and method for producing the same

Country Status (1)

Country Link
JP (1) JP4374361B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130095347A1 (en) * 2010-06-14 2013-04-18 Kaoru Kawasaki Hot-stamped steel, method of producing of steel sheet for hot stamping, and method of producing hot-stamped steel
JP2014019904A (en) * 2012-07-18 2014-02-03 Nippon Steel & Sumitomo Metal Hardened steel material, method for producing the same and, steel material for hardening
JP2017538583A (en) * 2014-10-16 2017-12-28 エス・エム・エス・グループ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Apparatus and method for the production of rough plates
WO2020195009A1 (en) * 2019-03-25 2020-10-01 日本製鉄株式会社 Hot-stamp-molded article

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130095347A1 (en) * 2010-06-14 2013-04-18 Kaoru Kawasaki Hot-stamped steel, method of producing of steel sheet for hot stamping, and method of producing hot-stamped steel
JP2014019904A (en) * 2012-07-18 2014-02-03 Nippon Steel & Sumitomo Metal Hardened steel material, method for producing the same and, steel material for hardening
JP2017538583A (en) * 2014-10-16 2017-12-28 エス・エム・エス・グループ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Apparatus and method for the production of rough plates
WO2020195009A1 (en) * 2019-03-25 2020-10-01 日本製鉄株式会社 Hot-stamp-molded article
JPWO2020195009A1 (en) * 2019-03-25 2021-11-04 日本製鉄株式会社 Hot stamp molding

Also Published As

Publication number Publication date
JP4374361B2 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
JP6132017B2 (en) Hot-rolled steel sheet and manufacturing method thereof
US10023929B2 (en) Hot-rolled steel sheet
EP2907886B1 (en) High-strength hot-rolled steel sheet having maximum tensile strength of 980 mpa or more, and having excellent and baking hardenability and low-temperature toughness
JP6149368B2 (en) Manufacturing method of high-tensile steel plate with excellent delayed fracture resistance
JP4484070B2 (en) High-tensile hot-rolled steel sheet and manufacturing method thereof
JP7045459B2 (en) High-strength steel materials for polar environments with excellent fracture resistance at low temperatures and their manufacturing methods
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
JP2022510216A (en) Steel material with excellent toughness of weld heat affected zone and its manufacturing method
JP6056235B2 (en) Method for producing high-tensile steel sheet with excellent weldability and delayed fracture resistance and tensile strength of 950 MPa or more
JP5906154B2 (en) High strength steel plate with excellent delayed fracture resistance and method for producing the same
JP4374361B2 (en) High-hardness hot-rolled steel sheet excellent in weldability and workability, and excellent in high-speed impact penetration performance against high-hardness flying objects and method for producing the same
JP6056236B2 (en) Method for producing high-tensile steel sheet having excellent weldability and delayed fracture resistance and tensile strength of 780 MPa or more
JP5432565B2 (en) Thick steel plate with excellent brittle crack propagation stopping properties and fatigue crack growth inhibition properties
KR101791324B1 (en) High-strength steel material having excellent fatigue properties, and method for producing same
JP6277679B2 (en) High-tensile steel plate with excellent gas cut cracking resistance and high heat input weld toughness
JP6051735B2 (en) Method for producing high-tensile steel sheet with excellent weldability and delayed fracture resistance
JP2005015859A (en) High-strength steel sheet having excellent weldability, method for manufacturing the same, and welded steel structure
JP6028759B2 (en) High tensile steel plate with high Young&#39;s modulus in the rolling direction on the surface of the steel plate and method for producing the same
JPWO2021054345A1 (en) Thick steel plate and its manufacturing method
JP5151510B2 (en) Manufacturing method of high strength steel with excellent low temperature toughness and crack propagation stop properties
JP4374350B2 (en) High-hardness hot-rolled steel sheet excellent in weldability, workability, and high-speed impact penetration performance and method for producing the same
JP2007277697A (en) High tensile strength thick steel plate having excellent fatigue crack propagation resistance and brittle crack propagation arrest property and its production method
JP4267491B2 (en) High-strength steel excellent in high-speed impact penetration resistance and weldability and manufacturing method thereof
JP3886881B2 (en) High Mn austenitic steel sheet with excellent anti-elasticity
CN114402089B (en) Thick steel plate and method for producing thick steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4374361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees