JP2008039199A - Refrigerating device - Google Patents

Refrigerating device Download PDF

Info

Publication number
JP2008039199A
JP2008039199A JP2006209708A JP2006209708A JP2008039199A JP 2008039199 A JP2008039199 A JP 2008039199A JP 2006209708 A JP2006209708 A JP 2006209708A JP 2006209708 A JP2006209708 A JP 2006209708A JP 2008039199 A JP2008039199 A JP 2008039199A
Authority
JP
Japan
Prior art keywords
refrigerant
expander
silencer
expansion
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006209708A
Other languages
Japanese (ja)
Other versions
JP4904970B2 (en
Inventor
Satoshi Ishikawa
諭 石川
Kazuki Hori
和貴 堀
Eiji Kumakura
英二 熊倉
Katsumi Hokotani
克己 鉾谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2006209708A priority Critical patent/JP4904970B2/en
Priority to PCT/JP2007/064737 priority patent/WO2008015965A1/en
Priority to EP07791431.5A priority patent/EP2048457B1/en
Publication of JP2008039199A publication Critical patent/JP2008039199A/en
Application granted granted Critical
Publication of JP4904970B2 publication Critical patent/JP4904970B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Pipe Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce pressure pulsation of a refrigerant at an inflow side and an outflow side of an expander with a simple device structure. <P>SOLUTION: A refrigerant circuit 10 is provided with an expansion-type silencer 30 at the inflow side of the expander 22. In the refrigerant circuit 10, carbon dioxide is compressed to a critical pressure or more, and the refrigerant flows into an expansion passage 32 of the expansion type silencer 30. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、冷媒が循環して蒸気圧縮式の冷凍サイクルを行う冷凍装置に関し、特に冷媒回路を流れる冷媒の圧力脈動の低減対策に係るものである。   The present invention relates to a refrigeration apparatus that performs a vapor compression refrigeration cycle by circulating refrigerant, and particularly relates to measures for reducing pressure pulsation of refrigerant flowing in a refrigerant circuit.

従来より、蒸気圧縮式の冷凍サイクルを行う冷媒回路を備えた冷凍装置が知られている。   Conventionally, a refrigeration apparatus including a refrigerant circuit that performs a vapor compression refrigeration cycle is known.

例えば特許文献1には、冷媒として二酸化炭素を用いた冷凍装置が開示されている。この冷凍装置の冷媒回路には、圧縮機と放熱器と容積型の膨張機と蒸発器とが接続されている。圧縮機では、冷媒が臨界圧力以上となるまで圧縮される。圧縮機の吐出冷媒は、放熱器で放熱した後、膨張機で膨張される。その後、冷媒は蒸発器で蒸発した後、圧縮機に吸入されて再び圧縮される。例えばこの冷凍装置の暖房運転では、放熱器から放出された熱によって室内が暖房される。   For example, Patent Document 1 discloses a refrigeration apparatus using carbon dioxide as a refrigerant. A compressor, a radiator, a positive displacement expander, and an evaporator are connected to the refrigerant circuit of the refrigeration apparatus. In the compressor, the refrigerant is compressed until it reaches a critical pressure or higher. The refrigerant discharged from the compressor is radiated by the radiator and then expanded by the expander. Thereafter, the refrigerant evaporates in the evaporator, and then is sucked into the compressor and compressed again. For example, in the heating operation of the refrigeration apparatus, the room is heated by the heat released from the radiator.

ところで、上記膨張機の膨張機構では、ピストンの公転に伴い膨張室の容積が拡大されることで冷媒の膨張動作が行われる。ここで、膨張機の流入側あるいは流出側を流れる冷媒は、比較的高密度の冷媒となる。従って、膨張機の流入側や流出側では、膨張機の膨張動作に伴い冷媒の圧力が変動し、冷媒の圧力脈動が大きくなってしまうことがある。その結果、この冷媒の圧力脈動に起因して、騒音が発生したり、冷媒配管に接続される機器類の故障を招く虞があった。   By the way, in the expansion mechanism of the expander, the expansion operation of the refrigerant is performed by expanding the volume of the expansion chamber with the revolution of the piston. Here, the refrigerant flowing on the inflow side or the outflow side of the expander is a relatively high-density refrigerant. Therefore, on the inflow side or outflow side of the expander, the pressure of the refrigerant may fluctuate with the expansion operation of the expander, and the pressure pulsation of the refrigerant may increase. As a result, due to the pressure pulsation of the refrigerant, there is a possibility that noise may be generated or a device connected to the refrigerant pipe may be broken.

そこで、特許文献2の冷凍装置では、上述のような冷媒の圧力脈動を低減するために、膨張機の流入側に、脈動吸収用のアキュムレータを接続している。このアキュムレータは、密閉容器内に袋状の分離膜が収納されている。この分離膜内には、高圧の窒素ガスが封入されている。例えば膨張機の流入側を流れる冷媒の圧力が上昇すると、分離膜が収縮し、密閉容器内の有効容積が拡大する。その結果、冷媒の圧力が低下し、冷媒の圧力脈動が緩和・吸収される。
特開2000−234814号公報 特開2004−190938号公報
Therefore, in the refrigeration apparatus of Patent Document 2, a pulsation absorbing accumulator is connected to the inflow side of the expander in order to reduce the pressure pulsation of the refrigerant as described above. In this accumulator, a bag-like separation membrane is housed in a sealed container. This separation membrane is filled with high-pressure nitrogen gas. For example, when the pressure of the refrigerant flowing on the inflow side of the expander rises, the separation membrane contracts and the effective volume in the sealed container increases. As a result, the pressure of the refrigerant is reduced, and the pressure pulsation of the refrigerant is relaxed and absorbed.
JP 2000-234814 A JP 2004-190938 A

ところが、特許文献2に開示されているアキュムレータは、分離膜を要することから比較的装置構造が複雑なため、耐用年数も短く、コストも高くなるという問題がある。   However, since the accumulator disclosed in Patent Document 2 requires a separation membrane, the structure of the apparatus is relatively complicated, so that there is a problem that the service life is short and the cost is high.

本発明は、かかる点に鑑みてなされたものであり、その目的は、蒸気圧縮式の冷凍サイクルを行う冷凍装置において、比較的シンプルな装置構造により、膨張機の流入側や流出側の冷媒の圧力脈動を低減できるようにすることである。   The present invention has been made in view of the above points, and an object of the present invention is to use a relatively simple device structure in a refrigeration apparatus that performs a vapor compression refrigeration cycle, so that the refrigerant on the inflow side or the outflow side of the expander It is to be able to reduce pressure pulsation.

第1の発明は、圧縮機(20)及び容積型の膨張機(22)が接続されると共に冷媒が循環して冷凍サイクルを行う冷媒回路(10)を備えた冷凍装置を前提としている。そして、この冷凍装置は、上記膨張機(22)の流入側又は流出側に、膨張形の消音装置(30)と分岐管形の消音装置(40)と干渉形の消音装置(50)とのいずれか1つが設けられていることを特徴とするものである。   The first invention is premised on a refrigeration apparatus including a refrigerant circuit (10) in which a compressor (20) and a positive displacement expander (22) are connected and a refrigerant circulates to perform a refrigeration cycle. The refrigerating apparatus includes an expansion silencer (30), a branch pipe silencer (40), and an interference silencer (50) on the inflow side or the outflow side of the expander (22). Any one of them is provided.

第1の発明では、冷媒回路(10)に圧縮機(20)及び膨張機(22)が設けられる。冷媒回路(10)では、圧縮機(20)で冷媒が圧縮される一方、膨張機(22)で冷媒が膨張され、蒸気圧縮式冷凍サイクルが行われる。ここで、本発明では、膨張機(22)の流入側又は流出側に消音装置(30,40,50)が設けられる。この消音装置は、膨張形、分岐管形、干渉形の消音装置のいずれか1つで構成される。これらの消音装置(30,40,50)を冷媒が流れると、冷媒の圧力変動が緩和され、冷媒の圧力脈動が低減される。   In the first invention, the refrigerant circuit (10) is provided with the compressor (20) and the expander (22). In the refrigerant circuit (10), the refrigerant is compressed by the compressor (20), while the refrigerant is expanded by the expander (22), and a vapor compression refrigeration cycle is performed. Here, in the present invention, the silencer (30, 40, 50) is provided on the inflow side or the outflow side of the expander (22). This silencer is configured by any one of an expansion type, a branch pipe type, and an interference type silencer. When the refrigerant flows through these silencers (30, 40, 50), the pressure fluctuation of the refrigerant is alleviated and the pressure pulsation of the refrigerant is reduced.

第2の発明は、第1の発明の冷凍装置において、上記冷媒回路(10)では、冷媒として二酸化炭素が用いられ、上記圧縮機(20)が冷媒を臨界圧力以上まで圧縮する冷凍サイクルが行われ、上記消音装置(30,40,50)は、膨張機(22)の流入側に設けられていることを特徴とするものである。   According to a second invention, in the refrigeration apparatus of the first invention, in the refrigerant circuit (10), carbon dioxide is used as the refrigerant, and the compressor (20) performs a refrigeration cycle in which the refrigerant is compressed to a critical pressure or higher. The silencer (30, 40, 50) is provided on the inflow side of the expander (22).

第2の発明では、冷媒回路(10)に冷媒として二酸化炭素が充填される。そして、冷媒回路(10)では、圧縮機(20)で冷媒を臨界圧力以上とする冷凍サイクルが行われる。このように、二酸化炭素を臨界圧力以上とする冷凍サイクルを行うと、膨張機(22)の流入側や流出側を流れる冷媒の音速は比較的低速となる。一方、本発明に係る膨張形、又は分岐管形、又は干渉形の消音装置(30,40,50)は、対象となる冷媒の音速が小さければ小さい程、装置の小型化を図ることができる。従って、本発明では、消音装置(30,40,50)の小型化を図りながら、冷媒の圧力脈動を効果的に低減することができる。   In the second invention, the refrigerant circuit (10) is filled with carbon dioxide as the refrigerant. And in a refrigerant circuit (10), the refrigerating cycle which makes a refrigerant | coolant a critical pressure or more with a compressor (20) is performed. Thus, when a refrigeration cycle in which carbon dioxide is at or above the critical pressure is performed, the sound speed of the refrigerant flowing on the inflow side and the outflow side of the expander (22) becomes relatively low. On the other hand, in the expansion type, branch pipe type, or interference type silencer (30, 40, 50) according to the present invention, the smaller the sound speed of the target refrigerant, the smaller the size of the device. . Therefore, in the present invention, the pressure pulsation of the refrigerant can be effectively reduced while reducing the size of the silencer (30, 40, 50).

第3の発明は、第1又は第2の発明の冷凍装置において、上記冷媒回路(10)には、高圧冷媒を減圧して気液二相状態とする減圧手段(24)が設けられ、上記消音装置(30,40,50)は、上記減圧手段(24)の流出側と膨張機(22)の流入側との間に設けられていることを特徴とするものである。   According to a third invention, in the refrigeration apparatus of the first or second invention, the refrigerant circuit (10) is provided with a decompression means (24) for decompressing the high-pressure refrigerant to make a gas-liquid two-phase state, The silencer (30, 40, 50) is provided between the outflow side of the decompression means (24) and the inflow side of the expander (22).

第3の発明では、冷媒回路(10)に減圧手段(24)が設けられる。この減圧手段(24)を冷媒が通過すると、圧縮機(20)で圧縮された後の高圧冷媒が減圧されて気液二相状態となる。そして、消音装置(30,40,50)には、気液二相状態の冷媒が流入する。ここで、冷媒を気液二相状態とすると、例えばガス状態の冷媒と比較して、消音装置(30,40,50)を流れる冷媒の音速が更に小さくなる。このため、本発明では、消音装置(30,40,50)の小型化を図りながら、冷媒の圧力脈動を一層効果的に低減することができる。   In the third invention, the refrigerant circuit (10) is provided with the pressure reducing means (24). When the refrigerant passes through the decompression means (24), the high-pressure refrigerant after being compressed by the compressor (20) is decompressed to be in a gas-liquid two-phase state. Then, the gas-liquid two-phase refrigerant flows into the silencer (30, 40, 50). Here, when the refrigerant is in a gas-liquid two-phase state, for example, the sound speed of the refrigerant flowing through the silencer (30, 40, 50) is further reduced as compared with a refrigerant in a gas state. For this reason, in this invention, the pressure pulsation of a refrigerant | coolant can be reduced more effectively, aiming at size reduction of a silencer (30,40,50).

第4の発明は、第1又は第2の発明の冷凍装置において、上記膨張機(22)は、高圧冷媒を減圧して気液二相状態とするように構成され、上記消音装置(30,40,50)は、膨張機(22)の流出側に設けられていることを特徴とするものである。   According to a fourth aspect of the present invention, in the refrigeration apparatus of the first or second aspect, the expander (22) is configured to depressurize the high-pressure refrigerant into a gas-liquid two-phase state, and the silencer (30, 40, 50) is provided on the outflow side of the expander (22).

第4の発明では、膨張機(22)で減圧されて気液二相状態となった冷媒が、消音装置(30,40,50)に流入する。このため、本発明では、第3の発明と同様、消音装置(30,40,50)を流れる冷媒の音速が小さくなるので、消音装置(30,40,50)の小型化を図ることができる。   In 4th invention, the refrigerant | coolant which was pressure-reduced by the expander (22) and was in a gas-liquid two-phase state flows in into a silencer (30,40,50). For this reason, in this invention, since the sound speed of the refrigerant | coolant which flows through a silencer (30,40,50) becomes small like 3rd invention, size reduction of a silencer (30,40,50) can be achieved. .

第5の発明は、第1乃至第4のいずれか1つの発明の冷凍装置において、両端の開口部に冷媒配管が接続される共に該冷媒配管よりも大径の膨張通路(32)を有する上記膨張形の消音装置(30)が設けられ、上記膨張通路(32)における膨張機(22)側の開口部には、上記冷媒配管の内径よりも小径の開口(61)を有する仕切板(60)が設けられていることを特徴とするものである。   According to a fifth invention, in the refrigeration apparatus according to any one of the first to fourth inventions, the refrigerant pipe is connected to the openings at both ends, and the expansion passage (32) has a larger diameter than the refrigerant pipe. An expansion-type silencer (30) is provided, and a partition plate (60) having an opening (61) smaller in diameter than the inner diameter of the refrigerant pipe at the opening on the expander (22) side in the expansion passage (32). ) Is provided.

第5の発明では、膨張機(22)の流入側又は流出側に、膨張形の消音装置(30)が設けられる。ところで、このように膨張形の消音装置(30)を用いると、膨張機(22)と消音装置(30)の間を接続する冷媒配管では、膨張機(22)から発する圧力波が共鳴して騒音を招く虞がある。具体的には、膨張機(22)で冷媒の膨張動作が行われると、膨張機(22)から消音装置(30)へ向かって音の進行波が進展し、この圧力波が膨張通路(32)へ流入する。ここで、膨張通路(32)の流入側の開口部では、音の進行波が反射し易く、この反射波が消音装置(30)から膨張機(22)側へ進展し易い。このため、膨張機(22)と消音装置(30)の間の冷媒配管では、膨張機(22)からの音の進行波と、消音装置(30)からの反射波とが共鳴することにより、騒音が生じ易い。そこで、本発明では、膨張通路(32)における膨張機(22)側の開口部に仕切板(60)を設けるようにしている。この仕切板(60)は、冷媒配管よりも小径の開口を有しており、膨張通路(32)の開口部において、いわゆるオリフィスとして機能する。その結果、本発明では、膨張通路(32)から膨張機(22)側への反射波を上記仕切板(60)により無くすことができ、膨張機(22)と消音装置(30)との間の冷媒配管における共鳴を防止することができる。   In the fifth aspect of the invention, the expansion silencer (30) is provided on the inflow side or the outflow side of the expander (22). By the way, when the expansion silencer (30) is used in this way, the pressure wave generated from the expander (22) resonates in the refrigerant pipe connecting the expander (22) and the silencer (30). There is a risk of causing noise. Specifically, when the expansion operation of the refrigerant is performed in the expander (22), a traveling wave of sound progresses from the expander (22) to the silencer (30), and this pressure wave is generated in the expansion passage (32 ). Here, at the opening on the inflow side of the expansion passage (32), the traveling wave of the sound is easily reflected, and this reflected wave easily propagates from the silencer (30) to the expander (22) side. For this reason, in the refrigerant piping between the expander (22) and the silencer (30), the sound traveling wave from the expander (22) and the reflected wave from the silencer (30) resonate, Noise is likely to occur. Therefore, in the present invention, the partition plate (60) is provided in the opening of the expansion passage (32) on the expander (22) side. The partition plate (60) has an opening having a smaller diameter than the refrigerant pipe, and functions as a so-called orifice in the opening of the expansion passage (32). As a result, in the present invention, reflected waves from the expansion passageway (32) to the expander (22) side can be eliminated by the partition plate (60), and between the expander (22) and the silencer (30). Resonance in the refrigerant piping can be prevented.

第6の発明は、第1乃至第4のいずれか1つの発明の冷凍装置において、両端の開口部に冷媒配管が接続される共に該冷媒配管よりも大径の膨張通路(32)を有する上記膨張形の消音装置(30)が設けられ、上記膨張通路(32)は、螺旋状に形成されていることを特徴とするものである。   According to a sixth aspect of the present invention, in the refrigeration apparatus according to any one of the first to fourth aspects, the refrigerant pipe is connected to the openings at both ends, and the expansion passage (32) has a larger diameter than the refrigerant pipe. An expansion type silencer (30) is provided, and the expansion passage (32) is formed in a spiral shape.

第6の発明では、膨張形の消音装置(30)の膨張通路(32)が螺旋状に形成される。このため、本発明では、膨張通路(32)の長さを充分に確保しながら、この消音装置(30)の小型化が図られる。   In the sixth invention, the expansion passage (32) of the expansion silencer (30) is formed in a spiral shape. For this reason, in this invention, size reduction of this silencer (30) is achieved, ensuring sufficient length of the expansion path (32).

本発明では、膨張機(22)の流入側又は流出側に、膨張形又は分岐管形又は干渉形の消音装置(30,40,50)を設け、冷媒の圧力脈動を低減するようにしている。これらの消音装置(30,40,50)は、例えば特許文献2のアキュムレータと比較して装置構造がシンプルであるため、消音装置の低コスト化を図ることができる。また、このように消音装置をシンプルに構成すると、この消音装置(30,40,50)のメンテナンスも簡便となる。   In the present invention, an expansion type, branch pipe type or interference type silencer (30, 40, 50) is provided on the inflow side or the outflow side of the expander (22) to reduce the pressure pulsation of the refrigerant. . Since these silencers (30, 40, 50) have a simpler device structure than the accumulator disclosed in Patent Document 2, for example, the cost of the silencer can be reduced. In addition, when the silencer is simply configured as described above, maintenance of the silencer (30, 40, 50) is also simplified.

特に、第2の発明では、二酸化炭素を臨界圧力以上まで圧縮する冷媒回路(10)について、消音装置(30,40,50)を適用するようにしている。このように、冷媒を臨界圧力以上として冷凍サイクルを行うと、消音装置(30,40,50)を流れる冷媒の音速が比較的小さくなり、消音装置(30,40,50)をコンパクトに設計することができる。   In particular, in the second invention, the silencer (30, 40, 50) is applied to the refrigerant circuit (10) that compresses carbon dioxide to a critical pressure or higher. Thus, when the refrigeration cycle is performed with the refrigerant at a critical pressure or higher, the sound speed of the refrigerant flowing through the silencer (30, 40, 50) becomes relatively small, and the silencer (30, 40, 50) is designed to be compact. be able to.

更に、第3又は第4の発明では、気液二相状態とした冷媒を消音装置(30,40,50)に流入させるようにしている。このように冷媒を気液二相状態とすると、消音装置(30,40,50)を流れる冷媒の流速が更に遅くなるので、消音装置(30,40,50)を更にコンパクトに設計することができる。   Furthermore, in the third or fourth invention, the refrigerant in the gas-liquid two-phase state is caused to flow into the silencer (30, 40, 50). When the refrigerant is in a gas-liquid two-phase state in this way, the flow velocity of the refrigerant flowing through the silencer (30, 40, 50) is further slowed down, so the silencer (30, 40, 50) can be designed more compactly. it can.

また、第5の発明では、膨張形の消音装置(30)の膨張通路(32)における膨張機(22)側の開口部にオリフィスを構成する仕切板(60)を設けるようにしたので、この消音装置(30)と膨張機(22)との間の冷媒配管で共鳴が生じるのを防止することができる。その結果、この共鳴に起因する騒音の発生を抑制できる。   In the fifth aspect of the invention, the partition plate (60) constituting the orifice is provided at the opening on the expander (22) side in the expansion passage (32) of the expansion silencer (30). Resonance can be prevented from occurring in the refrigerant pipe between the silencer (30) and the expander (22). As a result, generation of noise due to this resonance can be suppressed.

更に、第6の発明では、膨張通路(32)を螺旋状に形成するようにしたので、膨張通路(32)の通路長さを充分確保しながら、この消音装置(30)を更にコンパクトに設計することができる。   Furthermore, in the sixth invention, since the expansion passage (32) is formed in a spiral shape, the silencer (30) is designed to be more compact while ensuring a sufficient length of the expansion passage (32). can do.

以下、本発明の実施形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

《発明の実施形態1》
本発明の実施形態1について説明する。
Embodiment 1 of the Invention
A first embodiment of the present invention will be described.

実施形態1の冷凍装置は、室内を空調する空気調和装置(1)を構成するものである。この冷凍装置(1)は、冷媒が循環して蒸気圧縮式の冷凍サイクルが行われる冷媒回路(10)を備えている。この冷媒回路(10)には、冷媒として二酸化炭素が充填されている。そして、冷媒回路(10)では、冷媒が臨界圧力以上まで圧縮される冷凍サイクルが行われる。   The refrigeration apparatus of Embodiment 1 constitutes an air conditioner (1) that air-conditions a room. The refrigeration apparatus (1) includes a refrigerant circuit (10) in which a refrigerant circulates to perform a vapor compression refrigeration cycle. This refrigerant circuit (10) is filled with carbon dioxide as a refrigerant. In the refrigerant circuit (10), a refrigeration cycle is performed in which the refrigerant is compressed to a critical pressure or higher.

冷媒回路(10)には、圧縮機(20)と放熱器(21)と膨張機(22)と蒸発器(23)とが冷媒配管(11,12,13,14)を介して互いに接続されている。具体的には、圧縮機(20)の吐出側には、吐出管(11)の一端が接続している。吐出管(11)の他端は、放熱器(21)の一端と接続している。放熱器(21)の他端には、流入管(12)の一端が接続している。流入管(12)の他端は、膨張機(22)の流入側と接続している。膨張機(22)の流出側には、流出管(13)の一端が接続している。流出管(13)の他端は、蒸発器(23)の一端が接続している。蒸発器(23)の他端には、吸入管(14)の一端が接続している。吸入管(14)の他端は、圧縮機(20)の吸入側と接続している。   A compressor (20), a radiator (21), an expander (22), and an evaporator (23) are connected to the refrigerant circuit (10) via refrigerant pipes (11, 12, 13, 14). ing. Specifically, one end of the discharge pipe (11) is connected to the discharge side of the compressor (20). The other end of the discharge pipe (11) is connected to one end of the radiator (21). One end of the inflow pipe (12) is connected to the other end of the radiator (21). The other end of the inflow pipe (12) is connected to the inflow side of the expander (22). One end of the outflow pipe (13) is connected to the outflow side of the expander (22). The other end of the outflow pipe (13) is connected to one end of the evaporator (23). One end of the suction pipe (14) is connected to the other end of the evaporator (23). The other end of the suction pipe (14) is connected to the suction side of the compressor (20).

上記圧縮機(20)は、容積型の圧縮機で構成されている。この圧縮機(20)には、ケーシング内にロータリー型の圧縮機構が収納されている。この圧縮機(20)の圧縮機構では、ガス冷媒が臨界圧力以上の冷媒となるまで圧縮される。上記放熱器(21)は、例えば室内空間に配置されており、フィンアンドチューブ式の熱交換器で構成されている。放熱器(21)では、高温高圧の冷媒から室内空気へ熱が放出される。上記膨張機(22)は、容積型の膨張機で構成されている。この膨張機(22)では、ケーシング内にロータリー型の膨張機構が収納されている。この膨張機(22)の膨張機構では、高圧冷媒が気液二相状態の冷媒となるまで減圧される。上記蒸発器(23)は、例えば室外空間に配置されており、フィンアンドチューブ式の熱交換器で構成されている。蒸発器(23)では、低圧液冷媒が室外空気から吸熱して蒸発する。   The compressor (20) is a positive displacement compressor. In the compressor (20), a rotary type compression mechanism is accommodated in a casing. In the compression mechanism of the compressor (20), the gas refrigerant is compressed until it becomes a refrigerant having a critical pressure or higher. The said heat radiator (21) is arrange | positioned, for example in indoor space, and is comprised with the fin and tube type heat exchanger. In the radiator (21), heat is released from the high-temperature and high-pressure refrigerant into the room air. The expander (22) is a positive displacement expander. In the expander (22), a rotary type expansion mechanism is accommodated in the casing. In the expansion mechanism of the expander (22), the pressure is reduced until the high-pressure refrigerant becomes a gas-liquid two-phase refrigerant. The evaporator (23) is disposed, for example, in an outdoor space, and is configured by a fin-and-tube heat exchanger. In the evaporator (23), the low-pressure liquid refrigerant absorbs heat from the outdoor air and evaporates.

本発明の特徴として、冷媒回路(10)には膨張形消音装置(30)が設けられている。この膨張形消音装置(30)は、膨張機(22)の流入側の流入管(12)に取り付けられている。図2に示すように、膨張形消音装置(30)は、中空円筒状のケーシング(31)を備え、ケーシング(31)内には、円柱状の膨張通路(32)が形成されている。膨張通路(32)には、その一端側の開口部に冷媒流入管(12a)が接続され、その他端側の開口部に冷媒流出管(12b)が接続されている。本実施形態1において、冷媒流入管(12a)及び冷媒流出管(12b)の内径は約10mmであり、ケーシング(31)の内径が約30mmである。つまり、ケーシング(31)の内径は、その両端に接続される冷媒配管(12a,12b)の内径の約3倍となっている。また、膨張通路(32)の通路長さlは、約70cmとなっている。なお、この膨張通路(32)の通路長さlは、膨張通路(32)を流れる冷媒の物性や運転条件から求められる冷媒の音速と、膨張機(22)の膨張機構の回転速度から求められる圧力脈動の周波数とに応じて設計されている。   As a feature of the present invention, the refrigerant circuit (10) is provided with an expansion silencer (30). The expansion silencer (30) is attached to the inflow pipe (12) on the inflow side of the expander (22). As shown in FIG. 2, the expansion silencer (30) includes a hollow cylindrical casing (31), and a cylindrical expansion passage (32) is formed in the casing (31). A refrigerant inflow pipe (12a) is connected to the opening on one end side of the expansion passage (32), and a refrigerant outflow pipe (12b) is connected to the opening on the other end side. In Embodiment 1, the refrigerant inflow pipe (12a) and the refrigerant outflow pipe (12b) have an inner diameter of about 10 mm, and the casing (31) has an inner diameter of about 30 mm. That is, the inner diameter of the casing (31) is about three times the inner diameter of the refrigerant pipe (12a, 12b) connected to both ends thereof. The passage length l of the expansion passage (32) is about 70 cm. The passage length l of the expansion passage (32) is obtained from the sound speed of the refrigerant obtained from the physical properties and operating conditions of the refrigerant flowing through the expansion passage (32) and the rotational speed of the expansion mechanism of the expander (22). It is designed according to the frequency of pressure pulsation.

また、膨張形消音装置(30)では、膨張通路(32)における膨張機(22)側の開口部に仕切板(60)が設けられている。この仕切板(60)は、冷媒流出管(12b)の内径よりも小径の円形の開口(61)を有しており、冷媒流出管(12b)内に嵌め込まれている。この仕切板(60)は、膨張機(22)の運転動作に伴い該膨張機(22)から発生する圧力波の共鳴を防止するオリフィスとして機能する。   In the expansion-type silencer (30), the partition plate (60) is provided in the opening on the expander (22) side in the expansion passage (32). The partition plate (60) has a circular opening (61) having a smaller diameter than the inner diameter of the refrigerant outflow pipe (12b), and is fitted into the refrigerant outflow pipe (12b). The partition plate (60) functions as an orifice that prevents resonance of pressure waves generated from the expander (22) during the operation of the expander (22).

−運転動作−
次に、本発明の実施形態1に係る空気調和装置(1)の基本的な運転動作について説明する。この空気調和装置(1)の運転時には、圧縮機(20)の圧縮機構と膨張機(22)の膨張機構とが駆動される。圧縮機(20)の圧縮機構では、ガス冷媒が臨界圧力以上となるまで圧縮される。圧縮機(20)で圧縮された冷媒は、吐出管(11)へ吐出される。吐出管(11)を流れる冷媒は、放熱器(21)を流れる。放熱器(21)では、冷媒から室内空気へ熱が放出される。その結果、室内の暖房が行われる。放熱器(21)で熱を放出した冷媒は、流入管(12)及び膨張形消音装置(30)を流れた後、膨張機(22)へ流入する。
-Driving action-
Next, a basic operation of the air conditioner (1) according to Embodiment 1 of the present invention will be described. During the operation of the air conditioner (1), the compression mechanism of the compressor (20) and the expansion mechanism of the expander (22) are driven. In the compression mechanism of the compressor (20), the gas refrigerant is compressed until the pressure becomes equal to or higher than the critical pressure. The refrigerant compressed by the compressor (20) is discharged to the discharge pipe (11). The refrigerant flowing through the discharge pipe (11) flows through the radiator (21). In the radiator (21), heat is released from the refrigerant to the room air. As a result, the room is heated. The refrigerant that has released heat from the radiator (21) flows through the inflow pipe (12) and the expansion silencer (30), and then flows into the expander (22).

膨張機(22)の膨張機構では、高圧冷媒が気液二相状態となるまで減圧される。膨張機(22)で減圧された冷媒は、流出管(13)へ流出する。流出管(13)を流れる冷媒は、蒸発器(23)を流れる。蒸発器(23)では、冷媒が室外空気から吸熱して蒸発する。蒸発器(23)で蒸発したガス冷媒は、吸入管(14)を流れ、圧縮機(20)に吸入される。圧縮機(20)の圧縮機構では、再び冷媒が臨界圧力以上となるまで圧縮される。   In the expansion mechanism of the expander (22), the high-pressure refrigerant is depressurized until it reaches a gas-liquid two-phase state. The refrigerant decompressed by the expander (22) flows out to the outflow pipe (13). The refrigerant flowing through the outflow pipe (13) flows through the evaporator (23). In the evaporator (23), the refrigerant absorbs heat from the outdoor air and evaporates. The gas refrigerant evaporated in the evaporator (23) flows through the suction pipe (14) and is sucked into the compressor (20). In the compression mechanism of the compressor (20), the refrigerant is compressed again until it reaches the critical pressure or higher.

−消音装置による圧力脈動防止作用−
ところで、上述した空気調和装置(1)の運転時には、膨張機(22)による冷媒の膨張動作に伴い、冷媒回路(10)を流れる冷媒の圧力が変動し、各冷媒配管(11,12,13,14)で冷媒の圧力脈動が生じることがある。特に、膨張機(22)の流入側の流入管(12)では、比較的密度が大きい冷媒が流れるため、冷媒の圧力脈動も大きくなり易い。そこで、実施形態1の空気調和装置(1)では、膨張形消音装置(30)によって膨張機(22)の流入側の冷媒の圧力脈動を小さくするようにしている。
-Pressure pulsation prevention action by silencer-
By the way, during the operation of the air conditioner (1) described above, the refrigerant pressure flowing through the refrigerant circuit (10) fluctuates with the expansion operation of the refrigerant by the expander (22), and each refrigerant pipe (11, 12, 13 14), pressure pulsation of the refrigerant may occur. In particular, since refrigerant having a relatively high density flows in the inflow pipe (12) on the inflow side of the expander (22), the pressure pulsation of the refrigerant tends to increase. Therefore, in the air conditioner (1) of Embodiment 1, the pressure pulsation of the refrigerant on the inflow side of the expander (22) is reduced by the expansion silencer (30).

具体的には、膨張形消音装置(30)には、放熱器(21)で放熱した後の高圧冷媒が流入する。膨張通路(32)では、冷媒の圧力変動の波が干渉されることで、この冷媒の圧力変動が緩和される。その結果、膨張機(22)の流入側における冷媒の圧力脈動が低減される。   Specifically, the high-pressure refrigerant after radiating heat from the radiator (21) flows into the expansion silencer (30). In the expansion passage (32), the pressure fluctuation of the refrigerant is mitigated by the interference of the wave of the pressure fluctuation of the refrigerant. As a result, the pressure pulsation of the refrigerant on the inflow side of the expander (22) is reduced.

また、膨張機(22)の膨張動作に伴い、膨張機(22)の流入側から膨張形消音装置(30)側に向かって音の進行波が生じる。ここで、仮に膨張通路(32)における膨張機(22)側の開口部に仕切板(60)を設けていない場合には、この進行波が膨張通路(32)の開口部で反射することにより、膨張通路(32)から膨張機(22)側へ向かって反射波が生じ易くなる。そして、上記進行波と反射波とが共鳴することで、冷媒流出管(12b)内で騒音が生じることがある。そこで、本実施形態では、膨張通路(32)における膨張機(22)側の開口部に仕切板(60)を設けるようにしている。この仕切板(60)により、膨張形消音装置(30)側から膨張機(22)への反射波が無くなり、冷媒流出管(12b)内における共鳴が抑制される。   Further, accompanying the expansion operation of the expander (22), a traveling wave of sound is generated from the inflow side of the expander (22) toward the expansion silencer (30) side. Here, if the partition plate (60) is not provided in the opening on the side of the expander (22) in the expansion passage (32), the traveling wave is reflected by the opening of the expansion passage (32). A reflected wave tends to be generated from the expansion passageway (32) toward the expander (22). Then, the traveling wave and the reflected wave resonate, and noise may occur in the refrigerant outflow pipe (12b). Therefore, in this embodiment, the partition plate (60) is provided at the opening on the expander (22) side in the expansion passage (32). The partition plate (60) eliminates a reflected wave from the expansion-type silencer (30) side to the expander (22), thereby suppressing resonance in the refrigerant outflow pipe (12b).

−実施形態1の効果−
上記実施形態1では、膨張機(22)の流入側に膨張形消音装置(30)を設けるようにしている。このため、消音装置をシンプルに構成しながら、膨張機(22)の流入側における冷媒の圧力脈動を効果的に低減することができる。即ち、本発明では、従来のアキュムレータと比較して、消音装置の低コスト化を図ることができる。また、このように消音装置をシンプルな構造とすることで、消音装置(30)のメンテナンスも容易となる。
-Effect of Embodiment 1-
In the first embodiment, the expansion silencer (30) is provided on the inflow side of the expander (22). For this reason, the pressure pulsation of the refrigerant on the inflow side of the expander (22) can be effectively reduced while simply configuring the silencer. That is, according to the present invention, the cost of the silencer can be reduced as compared with the conventional accumulator. In addition, since the silencer has a simple structure, maintenance of the silencer (30) is facilitated.

更に、上記実施形態では、冷媒回路(10)で二酸化炭素を臨界圧力以上まで圧縮するようにしている。このようにすると、膨張形消音装置(30)を流れる冷媒の流速が小さくなるので、その分だけ膨張通路(32)の通路長さlを短く設計することができる。その結果、この膨張形消音装置(30)の小型化を図ることができる。   Furthermore, in the above embodiment, the refrigerant circuit (10) compresses carbon dioxide to a critical pressure or higher. In this way, the flow rate of the refrigerant flowing through the expansion silencer (30) is reduced, and therefore the passage length l of the expansion passage (32) can be designed to be shortened accordingly. As a result, the expansion silencer (30) can be downsized.

また、上記実施形態では、膨張通路(32)における膨張機(22)側の開口部にオリフィスを構成する仕切板(60)を設けるようにしている。このため、膨張形消音装置(30)と膨張機(22)との間の冷媒配管(冷媒流出管(12b))で共鳴が生じてしまうことを防止でき、この共鳴に起因する騒音の発生も回避できる。   Moreover, in the said embodiment, the partition plate (60) which comprises an orifice is provided in the opening part by the side of the expander (22) in an expansion channel | path (32). Therefore, resonance can be prevented from occurring in the refrigerant pipe (refrigerant outflow pipe (12b)) between the expansion silencer (30) and the expander (22), and noise caused by this resonance can also be generated. Can be avoided.

《発明の実施形態2》
本発明の実施形態2に係る空気調和装置(1)では、図3及び図4に示すように、実施形態1と同様の膨張形消音装置(30)が膨張機(22)の流出側の流出管(13)(冷媒流入管(13a)と冷媒流出管(13b)の間)に設けられている。そして、この冷媒回路(10)では、臨界圧力以上の高圧冷媒が膨張機(22)で減圧されて気液二相状態となった後、この気液二相状態の冷媒が膨張形消音装置(30)に流入する。その結果、実施形態2では、膨張機(22)の流出側における冷媒の圧力脈動が低減される。
<< Embodiment 2 of the Invention >>
In the air conditioner (1) according to the second embodiment of the present invention, as shown in FIGS. 3 and 4, the expansion-type silencer (30) similar to the first embodiment has an outflow on the outflow side of the expander (22). It is provided in the pipe (13) (between the refrigerant inflow pipe (13a) and the refrigerant outflow pipe (13b)). And in this refrigerant circuit (10), after the high pressure refrigerant | coolant more than critical pressure is pressure-reduced with an expander (22), and it will be in a gas-liquid two-phase state, this refrigerant | coolant of this gas-liquid two-phase state is an expansion-type silencer ( 30). As a result, in Embodiment 2, the pressure pulsation of the refrigerant on the outflow side of the expander (22) is reduced.

また、このように冷媒を気液二相状態としてから膨張形消音装置(30)に流入させるようにすると、例えばガス冷媒と比較して、膨張通路(32)を流れる冷媒の音速を更に小さくすることができる。その結果、膨張通路(32)の通路長さlを一層短く設計することができ、膨張形消音装置(30)の小型化を図ることができる。   Further, when the refrigerant is made to be in a gas-liquid two-phase state and then flowed into the expansion silencer (30) in this way, for example, the sound velocity of the refrigerant flowing through the expansion passage (32) is further reduced compared to a gas refrigerant. be able to. As a result, the passage length l of the expansion passage (32) can be designed to be shorter, and the expansion silencer (30) can be downsized.

更に、実施形態2においても膨張通路(32)における膨張機(22)側(冷媒流入管(13a))の開口部に仕切板(60)を設けるようにしているので、この冷媒流入管(13a)において上述した共鳴が生じてしまうのを回避できる。   Further, in the second embodiment, the partition plate (60) is provided at the opening of the expansion passage (32) on the expander (22) side (refrigerant inflow pipe (13a)), so that the refrigerant inflow pipe (13a ) Can avoid the above-described resonance.

《発明の実施形態3》
本発明の実施形態3に係る空気調和装置(1)では、図5に示すように、放熱器(21)と膨張機(22)の間に膨張弁(24)が設けられている。この膨張弁(24)は、放熱器(21)で放熱した後の高圧冷媒を減圧して気液二相状態とする減圧手段を構成している。そして、実施形態3では、この減圧弁(24)の流出側と膨張機(22)の流入側との間に上記各実施形態と同様の膨張形消音装置(30)が設けられている。
<< Embodiment 3 of the Invention >>
In the air conditioner (1) according to Embodiment 3 of the present invention, as shown in FIG. 5, an expansion valve (24) is provided between the radiator (21) and the expander (22). The expansion valve (24) constitutes a decompression means that decompresses the high-pressure refrigerant that has radiated heat from the radiator (21) to bring it into a gas-liquid two-phase state. In the third embodiment, an expansion silencer (30) similar to each of the above embodiments is provided between the outflow side of the pressure reducing valve (24) and the inflow side of the expander (22).

この実施形態3においても、上記実施形態2と同様、膨張形消音装置(30)に気液二相状態の冷媒を流すようにしている。このため、膨張通路(32)を流れる冷媒の流速を小さくでき、膨張通路(32)を短く設計することができる。   Also in the third embodiment, as in the second embodiment, the refrigerant in the gas-liquid two-phase state is caused to flow through the expansion silencer (30). For this reason, the flow velocity of the refrigerant flowing through the expansion passage (32) can be reduced, and the expansion passage (32) can be designed to be short.

《その他の実施形態》
上記各実施形態については、以下のような構成としてもよい。
<< Other Embodiments >>
About each said embodiment, it is good also as the following structures.

上記各実施形態では、膨張機(22)の流入側や流出側に膨張形消音装置(30)を設けるようにしている。しかしながら、この膨張形消音装置(30)に代わって図6に示す分岐管形消音装置(40)や図7に示す干渉形消音装置(50)を適用するようにしても良い。   In each of the above embodiments, the expansion silencer (30) is provided on the inflow side or the outflow side of the expander (22). However, instead of the expansion silencer (30), a branch pipe silencer (40) shown in FIG. 6 or an interference silencer (50) shown in FIG. 7 may be applied.

具体的には、図6に示す分岐管形消音装置(40)は、膨張機(22)の流入側や流出側の冷媒配管(12,13)から分岐すると共に先端が閉塞する分岐管(41)を有するものである。この分岐管形消音装置(40)では、冷媒配管(12,13)から分岐して分岐管(41)内に流入する冷媒と、分岐管(41)の閉塞部で反射した後の冷媒との圧力変動を互いに干渉させることで、冷媒の圧力脈動を低減することができる。   Specifically, the branch pipe-type silencer (40) shown in FIG. 6 branches from the refrigerant pipes (12, 13) on the inflow side and the outflow side of the expander (22), and the branch pipe (41) whose tip is closed. ). In this branch pipe type silencer (40), the refrigerant branched from the refrigerant pipes (12, 13) and flowing into the branch pipe (41) and the refrigerant reflected by the closed portion of the branch pipe (41) By causing the pressure fluctuations to interfere with each other, the pressure pulsation of the refrigerant can be reduced.

また、図7に示す干渉形消音装置(50)は、膨張機(22)の流入側や流出側の冷媒配管(12,13)から分岐して、再びこの冷媒配管(12,13)と繋がる干渉用配管(51)を有するものである。この干渉形消音装置(50)では、冷媒配管(12,13)を流れる冷媒と、干渉用配管(51)を流れる冷媒との圧力変動を互いに干渉させることで、冷媒の圧力脈動を低減することができる。これらの消音装置(40,50)においても、従来のアキュムレータよりも装置構造が単純となるため、消音装置の低コスト化、メンテナンスの簡便化を図ることができる。   Further, the interfering silencer (50) shown in FIG. 7 branches off from the refrigerant pipe (12, 13) on the inflow side or the outflow side of the expander (22) and is connected to the refrigerant pipe (12, 13) again. It has an interference pipe (51). In the interference silencer (50), pressure fluctuations of the refrigerant flowing through the refrigerant pipe (12, 13) and the refrigerant flowing through the interference pipe (51) are caused to interfere with each other, thereby reducing the pressure pulsation of the refrigerant. Can do. These silencers (40, 50) also have a simpler device structure than conventional accumulators, so that the silencer can be reduced in cost and simplified in maintenance.

また、上記膨張形消音装置(30)については、例えば図8に示すように、膨張通路(32)を螺旋状あるいは渦巻き状に形成するようにしても良い。このように膨張通路(32)を螺旋状とすると、膨張通路(32)の通路長さを有る程度確保しながら、膨張形消音装置(30)をコンパクトに設計することができる。   In the expansion silencer (30), for example, as shown in FIG. 8, the expansion passage (32) may be formed in a spiral shape or a spiral shape. When the expansion passage (32) is thus spiral, the expansion silencer (30) can be designed in a compact manner while securing the length of the expansion passage (32).

更に、上記各実施形態の冷媒回路(10)について、図9に示すように、四路切換弁(25)や、4つの逆止弁を有するブリッジ回路(26)を設け、空気調和装置(1)で冷房運転と暖房運転とを切り換えられるようにしても良い。このような冷媒回路(10)においても、膨張機(22)の流入側や流出側に上述した各消音装置(30,40,50)を設けることで、各運転時において、膨張機(22)の流入側や流出側での冷媒の圧力脈動を低減することができる。   Further, as shown in FIG. 9, the refrigerant circuit (10) of each of the above embodiments is provided with a four-way switching valve (25) and a bridge circuit (26) having four check valves, and the air conditioner (1 ) May be switched between cooling operation and heating operation. Also in such a refrigerant circuit (10), by providing the above-described silencer (30, 40, 50) on the inflow side or the outflow side of the expander (22), the expander (22) It is possible to reduce the pressure pulsation of the refrigerant on the inflow side and the outflow side.

また、上記各実施形態では、冷媒回路(10)の冷媒として二酸化炭素を用い、この二酸化炭素を臨界圧力以上まで圧縮する冷凍サイクルを行うようにしている。しかしながら、冷媒回路(10)には、例えばR410A等の他の冷媒を用いるようにしても良い。また、この場合には、必ずしも冷媒を臨界圧力以上まで圧縮しなくても良い。   In each of the above embodiments, carbon dioxide is used as the refrigerant in the refrigerant circuit (10), and a refrigeration cycle is performed in which the carbon dioxide is compressed to a critical pressure or higher. However, other refrigerants such as R410A may be used for the refrigerant circuit (10). In this case, the refrigerant does not necessarily have to be compressed to a critical pressure or higher.

また、上記各実施形態において、圧縮機(20)の圧縮機構と、膨張機(22)の膨張機構とを回転軸によって連結し、いわゆる一軸連結式の膨張圧縮機を構成するようにしても良い。   In each of the above embodiments, the compression mechanism of the compressor (20) and the expansion mechanism of the expander (22) may be connected by a rotating shaft to constitute a so-called uniaxially connected expansion compressor. .

なお、以上の各実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。   In addition, each above embodiment is an essentially preferable illustration, Comprising: It does not intend restrict | limiting the range of this invention, its application thing, or its use.

以上説明したように、本発明は、冷媒が循環して蒸気圧縮式の冷凍サイクルを行う冷凍装置における冷媒の圧力脈動の低減対策について有用である。   As described above, the present invention is useful for measures for reducing the pressure pulsation of the refrigerant in the refrigeration apparatus in which the refrigerant circulates and performs a vapor compression refrigeration cycle.

図1は、実施形態1に係る冷凍装置の冷媒回路の概略構成図である。FIG. 1 is a schematic configuration diagram of a refrigerant circuit of the refrigeration apparatus according to the first embodiment. 図2は、実施形態1に係る膨張形消音装置の概略構成図である。FIG. 2 is a schematic configuration diagram of the expansion silencer according to the first embodiment. 図3は、実施形態2に係る冷凍装置の冷媒回路の概略構成図である。FIG. 3 is a schematic configuration diagram of a refrigerant circuit of the refrigeration apparatus according to the second embodiment. 図4は、実施形態2に係る膨張形消音装置の概略構成図である。FIG. 4 is a schematic configuration diagram of the expansion silencer according to the second embodiment. 図5は、実施形態3に係る冷凍装置の冷媒回路の概略構成図である。FIG. 5 is a schematic configuration diagram of a refrigerant circuit of the refrigeration apparatus according to the third embodiment. 図6は、分岐管形消音装置の概略構成図である。FIG. 6 is a schematic configuration diagram of a branch pipe silencer. 図7は、干渉形消音装置の概略構成図である。FIG. 7 is a schematic configuration diagram of the interference silencer. 図8は、螺旋状に形成した膨張形消音装置の概略斜視図である。FIG. 8 is a schematic perspective view of an expansion silencer formed in a spiral shape. 図9は、冷房と暖房とを切り換え可能とした冷媒回路の概略構成図である。FIG. 9 is a schematic configuration diagram of a refrigerant circuit that can switch between cooling and heating.

符号の説明Explanation of symbols

1 空気調和装置
10 冷凍装置
20 圧縮機
22 膨張機
24 膨張弁(減圧手段)
30 膨張形消音装置(消音装置)
32 膨張通路
40 分岐管形消音装置(消音装置)
50 干渉形消音装置(消音装置)
60 仕切板
1 Air conditioner
10 Refrigeration equipment
20 Compressor
22 Expander
24 Expansion valve (pressure reduction means)
30 Inflatable silencer (silencer)
32 Expansion passage
40 Branch pipe silencer (silencer)
50 Interference silencer (silencer)
60 divider

Claims (6)

圧縮機(20)及び容積型の膨張機(22)が接続されると共に冷媒が循環して冷凍サイクルを行う冷媒回路(10)を備えた冷凍装置であって、
上記膨張機(22)の流入側又は流出側には、膨張形の消音装置(30)と分岐管形の消音装置(40)と干渉形の消音装置(50)とのいずれか1つが設けられていることを特徴とする冷凍装置。
A refrigeration apparatus comprising a refrigerant circuit (10) to which a compressor (20) and a positive displacement expander (22) are connected and a refrigerant circulates to perform a refrigeration cycle,
On the inflow side or the outflow side of the expander (22), any one of an expansion type silencer (30), a branch pipe type silencer (40), and an interference type silencer (50) is provided. A refrigeration apparatus characterized by comprising:
請求項1において、
上記冷媒回路(10)では、冷媒として二酸化炭素が用いられ、上記圧縮機(20)が冷媒を臨界圧力以上まで圧縮する冷凍サイクルが行われることを特徴とする冷凍装置。
In claim 1,
In the refrigerant circuit (10), carbon dioxide is used as a refrigerant, and a refrigeration cycle is performed in which the compressor (20) compresses the refrigerant to a critical pressure or higher.
請求項1又は2において、
上記冷媒回路(10)には、高圧冷媒を減圧して気液二相状態とする減圧手段(24)が設けられ、
上記消音装置(30,40,50)は、上記減圧手段(24)の流出側と膨張機(22)の流入側との間に設けられていることを特徴とする冷凍装置。
In claim 1 or 2,
The refrigerant circuit (10) is provided with a decompression means (24) for depressurizing the high-pressure refrigerant into a gas-liquid two-phase state,
The silencing device (30, 40, 50) is provided between the outflow side of the decompression means (24) and the inflow side of the expander (22).
請求項1又は2において、
上記膨張機(22)は、高圧冷媒を減圧して気液二相状態とするように構成され、
上記消音装置(30,40,50)は、膨張機(22)の流出側に設けられていることを特徴とする冷凍装置。
In claim 1 or 2,
The expander (22) is configured to depressurize the high-pressure refrigerant into a gas-liquid two-phase state,
The silencer (30, 40, 50) is provided on the outflow side of the expander (22).
請求項1乃至4のいずれか1つにおいて、
両端の開口部に冷媒配管が接続される共に該冷媒配管よりも大径の膨張通路(32)を有する上記膨張形の消音装置(30)が設けられ、
上記膨張通路(32)における膨張機(22)側の開口部には、上記冷媒配管の内径よりも小径の開口(61)を有する仕切板(60)が設けられていることを特徴とする冷凍装置。
In any one of Claims 1 thru | or 4,
The expansion silencer (30) having an expansion passage (32) having a larger diameter than the refrigerant pipe is connected to the refrigerant pipes at both ends,
A refrigeration plate (60) having an opening (61) having a smaller diameter than the inner diameter of the refrigerant pipe is provided in an opening on the expander (22) side in the expansion passage (32). apparatus.
請求項1乃至4のいずれか1つにおいて、
両端の開口部に冷媒配管が接続される共に該冷媒配管よりも大径の膨張通路(32)を有する上記膨張形の消音装置(30)が設けられ、
上記膨張通路(32)は、螺旋状に形成されていることを特徴とする冷凍装置。
In any one of Claims 1 thru | or 4,
The expansion silencer (30) having an expansion passage (32) having a larger diameter than the refrigerant pipe is connected to the refrigerant pipes at both ends,
The said expansion channel | path (32) is formed in the helical form, The freezing apparatus characterized by the above-mentioned.
JP2006209708A 2006-08-01 2006-08-01 Refrigeration equipment Active JP4904970B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006209708A JP4904970B2 (en) 2006-08-01 2006-08-01 Refrigeration equipment
PCT/JP2007/064737 WO2008015965A1 (en) 2006-08-01 2007-07-27 Refrigeration device
EP07791431.5A EP2048457B1 (en) 2006-08-01 2007-07-27 Refrigeration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006209708A JP4904970B2 (en) 2006-08-01 2006-08-01 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2008039199A true JP2008039199A (en) 2008-02-21
JP4904970B2 JP4904970B2 (en) 2012-03-28

Family

ID=38997145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006209708A Active JP4904970B2 (en) 2006-08-01 2006-08-01 Refrigeration equipment

Country Status (3)

Country Link
EP (1) EP2048457B1 (en)
JP (1) JP4904970B2 (en)
WO (1) WO2008015965A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048466A (en) * 2008-08-21 2010-03-04 Daikin Ind Ltd Refrigerating device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3828482A1 (en) * 2019-11-28 2021-06-02 Daikin Europe N.V. Heat pump with a muffler
DE102020100445A1 (en) * 2020-01-10 2021-07-15 Viessmann Werke Gmbh & Co Kg Thermal device
CN111829152A (en) * 2020-07-22 2020-10-27 青岛海尔空调电子有限公司 Refrigerant rectifier tube and air conditioner indoor unit
CN115435492A (en) * 2022-09-08 2022-12-06 青岛海尔空调器有限总公司 Muffler parameter determination method, device, equipment, storage medium and system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763442A (en) * 1993-08-31 1995-03-10 Hitachi Ltd Air conditioner
JPH07120105A (en) * 1993-10-29 1995-05-12 Hitachi Ltd Air conditioner
JP2003279179A (en) * 2002-03-26 2003-10-02 Mitsubishi Electric Corp Refrigerating air conditioning device
JP2004190938A (en) * 2002-12-11 2004-07-08 Daikin Ind Ltd Refrigerating plant
JP2004218934A (en) * 2003-01-15 2004-08-05 Mitsubishi Electric Corp Expansion muffler, refrigerating cycle circuit using the muffler, and a method of manufacturing the muffler

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54178220U (en) * 1978-06-07 1979-12-17
JPS5618496U (en) * 1979-07-23 1981-02-18
JPS5660061U (en) * 1979-10-15 1981-05-22
JPS5699374U (en) * 1980-12-22 1981-08-05
US4878350A (en) * 1989-03-08 1989-11-07 Air Products And Chemicals, Inc. Pulsation dampening device for super critical fluid expansion engine, hydraulic engine or pump in cryogenic service
JP2000234814A (en) 1999-02-17 2000-08-29 Aisin Seiki Co Ltd Vapor compressed refrigerating device
JP2005098663A (en) * 2003-09-02 2005-04-14 Sanyo Electric Co Ltd Transient critical refrigerant cycle device
JP4254532B2 (en) * 2003-12-26 2009-04-15 ダイキン工業株式会社 Heat pump type water heater
JP4617812B2 (en) * 2004-09-30 2011-01-26 ダイキン工業株式会社 Positive displacement expander

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763442A (en) * 1993-08-31 1995-03-10 Hitachi Ltd Air conditioner
JPH07120105A (en) * 1993-10-29 1995-05-12 Hitachi Ltd Air conditioner
JP2003279179A (en) * 2002-03-26 2003-10-02 Mitsubishi Electric Corp Refrigerating air conditioning device
JP2004190938A (en) * 2002-12-11 2004-07-08 Daikin Ind Ltd Refrigerating plant
JP2004218934A (en) * 2003-01-15 2004-08-05 Mitsubishi Electric Corp Expansion muffler, refrigerating cycle circuit using the muffler, and a method of manufacturing the muffler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048466A (en) * 2008-08-21 2010-03-04 Daikin Ind Ltd Refrigerating device

Also Published As

Publication number Publication date
EP2048457A1 (en) 2009-04-15
WO2008015965A1 (en) 2008-02-07
JP4904970B2 (en) 2012-03-28
EP2048457B1 (en) 2016-08-31
EP2048457A4 (en) 2015-03-04

Similar Documents

Publication Publication Date Title
EP1944562A1 (en) Air conditioner
JP2008051344A (en) Gas-liquid separator and refrigerating device comprising the same
JP2007085591A (en) Air conditioner
JP2006266636A (en) Freezing apparatus
JP4940832B2 (en) Refrigeration equipment
JP4049769B2 (en) Refrigerant cycle equipment
WO2016071955A1 (en) Air conditioning apparatus
JP4904970B2 (en) Refrigeration equipment
JP2007178072A (en) Air conditioner for vehicle
JPWO2007034939A1 (en) Condensation heat converter and refrigeration system using the same
ES2728955T3 (en) Refrigeration system
JP2006207980A (en) Refrigerating apparatus and refrigerator
EP2048456B1 (en) Refrigeration device
JP2007093167A (en) Liquid gas heat exchanger for air-conditioner
JP2005337577A5 (en)
JP2008128550A (en) Refrigerator
JP2005337577A (en) Refrigerating device
JP2008032344A (en) Refrigerating device
KR101565426B1 (en) Multiple muffler and air-conditioning apparatus including it
JP2005226927A (en) Refrigerant cycle device
WO2021166126A1 (en) Air-conditioning device
JP2005226913A (en) Transient critical refrigerant cycle device
JP2009270775A (en) Refrigerating cycle
JP2006064255A (en) Refrigerator
JP2006064256A (en) Refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4904970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees