JP2004218934A - Expansion muffler, refrigerating cycle circuit using the muffler, and a method of manufacturing the muffler - Google Patents

Expansion muffler, refrigerating cycle circuit using the muffler, and a method of manufacturing the muffler Download PDF

Info

Publication number
JP2004218934A
JP2004218934A JP2003006783A JP2003006783A JP2004218934A JP 2004218934 A JP2004218934 A JP 2004218934A JP 2003006783 A JP2003006783 A JP 2003006783A JP 2003006783 A JP2003006783 A JP 2003006783A JP 2004218934 A JP2004218934 A JP 2004218934A
Authority
JP
Japan
Prior art keywords
muffler
fluid
inflatable
communication hole
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003006783A
Other languages
Japanese (ja)
Inventor
Hironori Nagai
宏典 永井
Hidetomo Nakagawa
英知 中川
Hisashi Ueno
寿 植野
Eiichi Ishida
栄一 石田
Koichi Ishida
浩一 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003006783A priority Critical patent/JP2004218934A/en
Priority to IT000024A priority patent/ITMI20040024A1/en
Priority to CNB2004100018270A priority patent/CN1312425C/en
Priority to ES200400070A priority patent/ES2258886B2/en
Publication of JP2004218934A publication Critical patent/JP2004218934A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/04Devices damping pulsations or vibrations in fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise

Abstract

<P>PROBLEM TO BE SOLVED: To provide an economical and highly reliable expansion muffler reducing the number of pulsating waveforms of fluid to reduce vibration and noise. <P>SOLUTION: This expansion muffler comprises an inlet port for flowing the fluid therein, a muffler body expanding the fluid allowed to flow therein through the inlet port, and an outlet port flowing out the fluid from the body after reducing the pressure thereof. The muffler body comprises muffler chambers formed integrally with each other through a pressure-reducing communication hole for reducing the pressure of the fluid and having different lengths. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、冷凍回路の圧縮機等から吐出される流体の圧力変動・脈動に起因して発生する音や振動を緩和する膨張形マフラー、及びそれを用いた冷凍サイクル回路、並びにその製造方法に関するものである。
【0002】
【従来の技術】
従来の冷凍サイクル回路等に用いられる膨張形マフラーにおいては、圧縮機等から吐出される流体(冷媒)の圧力脈動変動に起因して発生する振動や音、或いは、これらの発生した振動や音の周波数と回路を構成するさまざま部品の固有振動数が一致すると、共振や共鳴が起き、大きな振動や音が発生し、種々の問題を起すため、種々の膨張形マフラーを開発して、問題が発生するのを防いでいる。
【0003】
なお、その代表的な従来の膨張形マフラーとしては、両端に主部より小径の接続口を有する筒形の外管と、この外管の両端接続口に気密に内嵌められた状態で当該外管内を通るように設けた内管に開放孔を設け、この開放孔によって外管の接続口から内管へ吸い込んだ流体を外管へ減圧・膨張して、エアコンの冷凍回路に発生する振動、とりわけ、共振等によって生じる大きな振動に対象を絞って減衰させる構造のものが開示されている(例えば、特許文献1参照。)。
【0004】
【特許文献1】
特開2001−4250号公報(第2−4頁、第1図)
【0005】
【発明が解決しようとする課題】
以上説明したように、従来の膨張形マフラーにおいては、一つのマフラー室である特定の振動によって生じる共振を防止するという考え方のため、ある特定の振動共振防止できるものの、このマフラーを通過する流体脈動の周波数が変化した場合、この変化した周波数に追従でなくなるという問題があった。
【0006】
また、ある特定周波数の流体脈動波形の振幅を減衰するものの、周波数が変化した時、これらの変化した周波数の振幅をバランス良く減衰するという考え方がないため、バランス良く、振動、騒音を抑制できないという問題があった。
【0007】
また、部品点数が多く、加工が複雑になるため、コストが高くなるという問題があった。
【0008】
この発明は係る問題点を解消するためになされたものであり、比較的簡単な構造で、回路内流体の脈動周波数が変動しても、脈動波形の振幅が変化しても、これらの変化に対応しながら振動や音を小さくする経済的で、信頼性の高い膨張形マフラー及びそれを用いた冷凍サイクル回路並びにその製造方法を得ることを目的とする。
【0009】
【課題を解決するための手段】
この発明に係わる膨張形マフラーおいては、流体が流入する流入口と、この流入口から流入した前記流体を膨張させるマフラー本体と、この本体からの前記流体を減圧して流出する流出口と、を具備した膨張形マフラーにおいて、
前記マフラー本体が、前記流体を減圧する減圧連通穴を介して一体成形された夫々長さの異なるマフラー室を有するものである。
【0010】
また、前記マフラー室の各長さが整数からなり、それら整数の最大公約数の商が素数からなるものである。
【0011】
また、前記減圧連通穴の面積が、前記流入口又は前記流出口の面積よりも大きいものである。
【0012】
また、前記流入口と前記流出口の中心が互いにずれているものである。
【0013】
また、請求項1から4までのいずれかの前記膨張形マフラーが、冷凍サイクル回路等の脈動流体を吐出する圧縮機の吐出側配管に配置されたものである。
【0014】
また、前記圧縮機が、その回転数を変えるインバータ装置を有するものである。
【0015】
また、マフラー本体を回転させるステップと、
この回転させたマフラー本体の予め設定された開始位置と終了位置との間に垂直方向に一定の送り込み量で水平方向に一定の速度で往復移動する所定の外力を付与するステップと、
前記開始位置と終了位置との間の往路又は復路を1回の絞込加工工程と捕らえ、当該加工工程回数毎に前記一定の送り込み量を増加させるステップと、
この増加させた送り込み量が目標絞り込み量になった時に前記絞込加工をストップするステップとを備え、前記マフラー本体に減圧連通穴を挟んで夫々のマフラー室を設けるようにしたものである。
【0016】
【発明の実施の形態】
実施の形態1.
この発明の実施の形態1について図1を用いながら説明する。なお、図1は膨張形マフラーの概略構成断面図であり、この図に示すように、この発明の筒状の膨張形マフラー1は、圧力脈動流体が流入する流入口1aと、この流入口1aから流入した脈動流体を膨張させながらマフラー壁面に乱反射させて圧力変動や脈動のエネルギーを吸収する第1のマフラー室1bと、この第1のマフラー室1bと減圧連通穴1dを介して連続成形され、第1のマフラー室1bで共振、共鳴した周波数の圧力脈動を減衰する第2のマフラー室1cと、この第2のマフラー室1cに設けられ、流体を流出する流出口1eとで構成され、これらのものは一体成形されている。
【0017】
次に、このように構成された膨張形マフラーの動作について詳述する。まず、空調機の圧縮機等から吐出された脈動流体の冷媒が、膨張形マフラー1の流入口1aを介して第1のマフラー室1bに流入すると、この流入した脈動流体は第1のマフラー室1b内で膨張してエネルギーを開放しながら、マフラー壁面との乱反射を繰返し、この乱反射の繰返とエネルギーの開放により流体の脈動波形が減衰されることになる。
【0018】
即ち、脈動波形の振幅は流入口1aの開口断面積と第1のマフラー室1bの筒開口断面積との比に応じて減衰され、脈動波形の周波数は第1のマフラー室1bの長さと一致しない周波数が減衰されて、脈動流体の振動と音が抑制されることとなる。
【0019】
なお、この時、第1マフラー室1bの流体方向の長さ(La)と一致する周波数の脈動波形は、脈動波形の長さとマフラー長さとが一致するため、共振、共鳴を起こし、エネルギーが増幅されるものの、しかし、この増幅された脈動波形の流体は減圧連通穴1dで減圧され、次ぎの長さ(Lb)の異なる第2のマフラー室1cへ流れ、この第2のマフラー室1cで、前述と同様に、膨張してエネルギーが開放され、マフラー壁面に乱反射を繰返しながら、エネルギーが吸収されて減衰されるので、その結果、流体の振動と音が抑制されて流出口1eから流出されることになる。
【0020】
しかも、この時、この流出口1eから流出される脈動流体は、流入口1aから第1マフラー室1b、減圧連通穴1d、第2のマフラー室1cへと流れ、減圧・膨張が複数回、連続的して繰返されるので、減圧連通穴1dがある程度大きい時には、第1マフラー室1bと第2のマフラー室1cが減圧連通穴1dを介して一つのマフラーとして機能するようになるため、第1マフラー室1bの長さ(La)と第2のマフラー室1cの長さ(Lb)とを加算した長さ(Lc)に相当する波形の周波数も減衰されて流出されることになる。
即ち、図2の実線で示すような各周波数帯が減衰されることとなる。
【0021】
言い換えれば、周波数を減衰する各マフラーの長さ(La)と(Lb)と(Lc)が互いに同じ数(整数以外の数も含む)の倍数関係にあると、減衰する周波数が同じ周波数となり、減衰周波数の領域が減ることとなるので、各マフラーの互いの長さが同じ長さ、或いは、各マフラーの長さが他方の長さの整数倍数とならないようにする。
【0022】
特に、この時、マフラー室の各長さを整数とし、それら整数の最大公約数の商が素数からなるようにすると、各マフラーとこれら各マフラーの長さを合算した長さのそれぞれがバランス良く異なるようになり、多くの異なった周波数をバランス良く確実に減衰するようになるため、バランス良く各異なった周波数を減衰する膨張形マフラーが得られることになる。
【0023】
なお、以上説明したような本発明の効果を得ようとして、単に、図3に示すような第1マフラー室1bと第2のマフラー室1cとを配管を介して接続した構造にしても、その接続配管によって減圧・膨張の連続性が損なわれるため、第1マフラー室1bの長さ(La)と第2のマフラー室1cの長さ(Lb)をたした長さ(Lc)に相当する周波数が配管により減衰されなくなるので、減衰効果がえられず、しかも、配管スペースが拡大したり、配管設計の自由度が損なわれたりすることになる。
【0024】
また、図4に示すように、マフラー内に仕切板を設け、この仕切板に減圧連通穴をあけ、連続して減圧・膨張を繰返す構造にしても良いが、このようにすると、別に仕切板が必要となるだけでなく、この仕切板をマフラー内に固定する加工が難しく、しかも、この仕切板に流体がほぼ直角当たってから減圧連通穴を介して次ぎのマフラーヘ流れることになるので、流音が大きくなり、得策ではない。
【0025】
以上説明したように、この発明においては、流体が流入する流入口と、この流入口から流入した前記流体を膨張させる第1のマフラー室と、この第1のマフラー室からの流体を減圧する減圧連通穴を介して一体成形された前記流体流方向長さの異なる第2のマフラー室と、この第2のマフラー室に設けられた前記流体を減圧して流出する流出口と、を具備したので、簡単な構成で、流体の減圧・膨張が連続してスムースに繰返され、この繰返により多くの異なった周波数を減衰するようになるため、減衰効率が良く、経済的な膨張形マフラーが得られる。
【0026】
また、以上説明した本発明の膨張形マフラーにおいては、第1マフラー室1bと第2のマフラー室とを有する構造のものを代表例として説明したが、この発明においては、このような構造のみに限るものではなく、更に第3、第4のマフラーを、減圧連通穴を介して順次一体成形して、更に流体の減圧・膨張を行うような構造にしても良い。
【0027】
実施の形態2.
この実施の形態2について図5を用いながら説明する。この実施の形態2においては、実施の形態1における膨張形マフラー1の減圧連通穴1dの断面積を流入口1a又は流出口1eの断面積よりも大きくしたものである。
【0028】
なお、このように減圧連通穴1dの断面積を大きくすると、第1マフラー室1bと第2のマフラー室1cとの区分が緩和され、各周波数の減衰量が図2の実線から点線へと変化する。つまり、第1及び第2マフラー室1b、1cの長さ(La)、(Lb)に一致する周波数(例えば、図2のF11、F12、F13)の共鳴によるエネルギーの増幅を小さくすると共に、第1及び第2のマフラー室の長さを加算した長さ(Lc)で決まる減衰周波数により、F11、F12、F13を大幅に減衰することになる。
従って、各減衰周波数が既知であれば、それらの減衰周波数に対応させてマフラー室長さと減圧連通穴の大きさを決めてやれば、各周波数をバランス良く減衰するようになるので、特に、夜間、圧縮機の回転数を落として静に運転するインバ−タ付エアコン等の場合には、有効なものとなる。
【0029】
実施の形態3.
この実施の形態3について図6を用いながら説明する。この実施の形態3においては、図6に示すように、円筒状の膨張形マフラー1の流入口1aの中心と流出口eの中心とが互いにずれるようにしたものである。
【0030】
なお、このようにすると、膨張形マフラー1に接続される配管の設計自由度が向上するため、配管のやり易い使い勝っ手の良い膨張形マフラーを得ることができる。
【0031】
実施の形態4.
この実施の形態4について図7を用いながら説明する。この実施の形態4においては、図7に示したように、前述した実施の形態1から3までのいずれかの膨張形マフラー1を空気機調和機等の冷凍回路、特に、この冷凍回路の圧縮機の吐出側配管に配置したものである。
【0032】
なお、このようにすると、脈動の発生源である圧縮機から吐出される流体(冷媒)が冷凍回路の部品へ流れる前に減衰ができるため、脈動減衰を効果的に行うことができる。
即ち、冷凍サイクル回路は複雑な回路であり、この複雑な回路を構成する様々な固有振動数を有する多数の部品が存在するため、これらの部品へ流体が流れると、その流体の脈動によって、共振、共鳴が起る可能性があるので、このようなことが起らないように圧縮機の吐出側配管に膨張形マフラー1を配置して、流体脈動による共振、共鳴を防止するようにしたものである。
【0033】
また、空気調和機等の冷凍回路の圧縮機2において、圧縮機2の回転数が一定で運転される場合は、その回転数(周波数)に対応した長さのマフラーを一つ取り付ければほぼ解決できるものの、回転数が可変するインバーター付圧縮機のような場合は、特に、回転数の変化によって流体(冷媒)の脈動周波数が変わり、殆どの周波数領域に対応する必要がでてくるため、実施の形態1から3までのいずれかの膨張形マフラー、即ち、多くの異なった周波数を減衰するマフラーを取り付けるようにすると、流体脈動による共振、共鳴を効果的に防止できる冷凍サイクル回路が得られるようになる。
【0034】
実施の形態5.
この実施の形態5について図8から10を用いながら説明する。この実施の形態5においては、図8に示すように、流体が流入する流入口1aと、この流入口1aから流入した前記流体を膨張させる銅管等からなるマフラー本体1と、この本体からの前記流体を減圧して流出する流出口1eと、を具備した膨張形マフラーにおいて、銅管等からなるマフラー本体1が、流体を減圧する減圧連通穴1dを介して一体成形された夫々の体流方向長さの異なるマフラー室を有するように構成された膨張形マフラーの製造方法に関するものである。
【0035】
次に、この膨張形マフラーの製造方法について説明する。まず、銅管等からなるマフラー本体1の一端を固定し、その他端を回転自在に押す絞り加工装置10の取付治具10aに取付け、この取付治具10aを回転させて銅管を回転させる。
次に、この回転銅管1の絞り初めの開始位置から絞り加工の終了位置まで、加工装置10の絞りローラ部10bが一定の初期垂直送り量(例えば2mm)で所定の外力を付与しながら、一定の速度で水平方向に移動するので、図10の(a)段階までの加工がなされる。
なお、この時、絞りローラ部10bは回転銅管へ押し付けられているので、回転することになる。
【0036】
次に、この加工終了後、絞りローラ部10bの初期垂直送り量を例えば約2倍(例えば4mm)に変え、絞り加工終了位置から開始位置に向かって、所定の外力を銅管に付与しながら、絞りローラ部10bは水平方向に移動するので、図9の(b)段階までの加工が行われる。
【0037】
次に、これ以降の絞り加工も同様に、開始位置から加工終了位置、或いは、加工終了位置から開始位置までの絞り加工を1回の加工工程と捕らえ、この加工工程の回数に初期垂直送り量を掛けた値又は前回の垂直送り量も多くしたものを絞りローラ部10bの垂直送り量とし、この垂直送り量で銅管に所定の外力を付与しながら絞り込みを繰返し、この繰返しにより、絞りローラ部10bの垂直送り量が目標垂直送り量になると、即ち、目標の減圧連通穴サイズになると、絞り加工工程を終了する。
なお、この絞り加工終了時には、絞りローラ部10bは次ぎの開始位置又は加工終了位置で止まることになる。
【0038】
次に、以上のマフラー本体1の絞り加工が終了し、このマフラー本体1に、この本体径よりも小さい、流体が流入する流入口1a及び流体が流出する流出口1eが無いときは、図9に示すように、マフラー本体1の流入口1a又は流出口1eの加工しない側の口に絞り加工時の芯ズレを抑制する芯金を入れ、この芯金を入れない側の流入口1a又は流出口1eの絞り加工を前述したと同様に、絞りローラ部10bは絞り初めの開始位置から銅管の端(終了位置)に向かって所定の外力を与えながら、その絞り加工回数分だけ初期垂直送り量を徐々にふやしながら絞り込み、この絞り込み量が目標絞り込み量、即ち、目標の流入口1a又は流出口1eの寸法になった時に、絞り込み加工を終了する。
【0039】
以上説明したような絞り込み加工をして膨張形マフラーを製造すると、絞り込み部の肉厚がほぼ均一な肉厚状態になると共に、流体が目標の減圧連通穴に向かって徐々に減圧された後、徐々に膨張されるようになるため、強度が強く、流れ音の小さい膨張形マフラーの製造方法が得られる。
【0040】
なお、以上の説明では、絞り込み加工によって膨張形マフラーを製造したが、マフラー本体を型に入れ、この型に入れたマフラー本体に油圧を加けて本願発明の膨張形マフラーを製造するようにしてもよい。
【0041】
【発明の効果】
この発明は、以上説明したように、流体が流入する流入口と、この流入口から流入した前記流体を膨張させるマフラー本体と、この本体からの前記流体を減圧して流出する流出口と、を具備した膨張形マフラーにおいて、
前記マフラー本体が、前記流体を減圧する減圧連通穴を介して一体成形された夫々長さの異なるマフラー室を有するので、簡単な構成で、流体の減圧・膨張が連続してスムースに繰返されながら多くの異なった周波数帯を減衰するようになるため、減衰効率が良く、経済的な膨張形マフラーが得られる。
【0042】
また、前記マフラー室の各長さが整数からなり、それら整数の最大公約数の商が素数からなるので、マフラー室数以上の多くの異なった周波数をバランス良く確実に減衰するようになるため、バランス良く効果的に減衰する膨張形マフラーが得られる。
【0043】
また、前記減圧連通穴の面積が、前記流入口又は前記流出口の面積よりも大きいので、各マフラー室の長さで決まる減衰周波数をバランス良く、効果的に減衰する膨張形マフラーが得られる。
【0044】
また、前記流入口と前記流出口の中心が互いにずれているので、配管のやり易い使い勝っ手の良い膨張形マフラーが得られる。
【0045】
また、請求項1から4までのいずれかの前記膨張形マフラーが、冷凍サイクル回路等の脈動流体を吐出する圧縮機の吐出側配管に配置されたので、冷凍回路の様々な固有振動数を有する多数の部品へ流れる前に流体の脈動波形を減衰するようになるため、振動や音を抑制した冷凍サイクル回路が得られる。
【0046】
また、前記圧縮機が、その回転数を変えるインバータ装置を有するので、特に、夜間、圧縮機の回転数を落としても静に運転するようになるため、振動や音の小さい冷凍サイクル回路が得られる。
【0047】
また、マフラー本体を回転させるステップと、この回転させたマフラー本体の予め設定された開始位置と終了位置との間に垂直方向に一定の送り込み量で水平方向に一定の速度で往復移動する所定の外力を付与するステップと、
前記開始位置と終了位置との間の往路又は復路を1回の絞込加工工程と捕らえ、当該加工工程回数毎に前記一定の送り込み量を増加させるステップと、
この増加させた送り込み量が目標絞り込み量になった時に前記絞込加工をストップするステップと、を備え、前記マフラー本体に減圧連通穴を挟んで夫々のマフラー室を設けるようにしたので、マフラー本体への複数回の往復絞り込み加工によって、肉厚がほぼ均一で、かつ、流体が減圧連通穴に向かって徐々に減圧された後、徐々に膨張するようになるため、強度が強く、流れ音が小さい膨張形マフラーの製造方法が得られる。
【図面の簡単な説明】
【図1】この発明の実施の形態1における膨張形マフラーの概略断面図である。
【図2】この発明の実施の形態1における膨張形マフラーの減衰周波数の特性図である。
【図3】この発明の実施の形態1に対応した従来の膨張形マフラーの概略断面図である。
【図4】この発明の実施の形態1に対応したその他の従来膨張形マフラーの概略断面図である。
【図5】この発明の実施の形態2における膨張形マフラーの概略断面図である。
【図6】この発明の実施の形態3における膨張形マフラーの概略断面図である。
【図7】この発明の実施の形態4における冷凍サイクル回路の概略構成図である。
【図8】この発明の実施の形態5における絞り加工装置の概略構成図である。
【図9】この発明の実施の形態5における流入口を絞り加工する時の概略構成図である。
【図10】この発明の実施の形態5における絞り加工の詳細加工図である。
【符号の説明】
1 膨張形マフラー、1a 流入口、1b 第1のマフラー室、1c 第2のマフラー室、1d 減圧連通穴、1e 流出口、2 圧縮機、10 絞り加工装置,10a 取付治具、10b 絞りローラ部。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an expansion type muffler for reducing noise and vibration generated due to pressure fluctuation and pulsation of a fluid discharged from a compressor or the like of a refrigeration circuit, a refrigeration cycle circuit using the same, and a method for manufacturing the same. Things.
[0002]
[Prior art]
In an expansion type muffler used in a conventional refrigeration cycle circuit or the like, vibration or sound generated due to pressure pulsation fluctuation of a fluid (refrigerant) discharged from a compressor or the like, or vibration or sound generated by the vibration or sound. When the frequency and the natural frequency of the various components that make up the circuit match, resonance and resonance occur, generating large vibrations and sounds, and causing various problems. To prevent
[0003]
As a typical conventional inflatable muffler, a cylindrical outer pipe having a connection port having a smaller diameter than the main part at both ends and the outer pipe in a state where the outer pipe is airtightly fitted into the connection ports at both ends of the outer pipe. An opening is provided in the inner pipe provided so as to pass through the inside of the pipe, and the fluid sucked into the inner pipe from the connection port of the outer pipe is depressurized and expanded to the outer pipe by this opening, thereby generating vibration generated in the refrigeration circuit of the air conditioner. In particular, there has been disclosed a structure in which a target is attenuated to a large vibration caused by resonance or the like (for example, see Patent Document 1).
[0004]
[Patent Document 1]
JP-A-2001-4250 (pages 2-4, FIG. 1)
[0005]
[Problems to be solved by the invention]
As described above, in the conventional inflatable muffler, although it is possible to prevent a specific vibration resonance due to the concept of preventing resonance caused by a specific vibration which is one muffler chamber, fluid pulsation passing through this muffler is prevented. When the frequency changes, it is impossible to follow the changed frequency.
[0006]
In addition, although the amplitude of the fluid pulsation waveform of a specific frequency is attenuated, when the frequency changes, there is no idea that the amplitude of the changed frequency is attenuated in a well-balanced manner, so that vibration and noise cannot be suppressed in a well-balanced manner. There was a problem.
[0007]
Further, there is a problem that the number of parts is large and the processing is complicated, so that the cost is increased.
[0008]
The present invention has been made in order to solve such a problem, and has a relatively simple structure. Even if the pulsation frequency of the fluid in the circuit fluctuates or the amplitude of the pulsation waveform changes, these changes are prevented. It is an object of the present invention to provide an economical and highly reliable expansion type muffler which reduces vibration and noise while responding, a refrigeration cycle circuit using the same, and a method of manufacturing the same.
[0009]
[Means for Solving the Problems]
In the inflatable muffler according to the present invention, an inflow port into which a fluid flows, a muffler body that expands the fluid flowing from the inflow port, and an outflow port that decompresses the fluid from the main body and flows out, In the inflatable muffler provided with
The muffler body has muffler chambers having different lengths, each of which is integrally formed through a decompression communication hole for decompressing the fluid.
[0010]
Further, each length of the muffler chamber is composed of an integer, and the quotient of the greatest common divisor of those integers is composed of a prime number.
[0011]
Further, the area of the pressure reduction communication hole is larger than the area of the inflow port or the outflow port.
[0012]
Further, the centers of the inflow port and the outflow port are shifted from each other.
[0013]
Further, the expansion type muffler according to any one of claims 1 to 4 is arranged on a discharge side pipe of a compressor for discharging a pulsating fluid such as a refrigeration cycle circuit.
[0014]
Further, the compressor has an inverter device for changing the rotation speed.
[0015]
A step of rotating the muffler body;
Applying a predetermined external force that reciprocates at a constant speed in the horizontal direction at a constant feed amount in the vertical direction between a preset start position and end position of the rotated muffler body,
Catching the outward path or the return path between the start position and the end position as one narrowing process, and increasing the constant feed amount for each number of the processing steps;
Stopping the narrowing-down processing when the increased feed amount reaches the target narrowing amount, and each muffler chamber is provided in the muffler body with a reduced-pressure communication hole interposed therebetween.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described with reference to FIG. FIG. 1 is a schematic sectional view of an inflatable muffler. As shown in FIG. 1, a tubular inflatable muffler 1 according to the present invention has an inlet 1a into which a pressure pulsating fluid flows, and an inlet 1a. The first muffler chamber 1b absorbs the energy of pressure fluctuations and pulsation by irregularly reflecting on the muffler wall surface while expanding the pulsating fluid flowing from the first muffler chamber. A second muffler chamber 1c that attenuates a pressure pulsation at a frequency that resonates and resonates in the first muffler chamber 1b, and an outlet 1e provided in the second muffler chamber 1c and allowing fluid to flow out. These are integrally formed.
[0017]
Next, the operation of the inflatable muffler thus configured will be described in detail. First, when the pulsating fluid refrigerant discharged from the compressor of the air conditioner or the like flows into the first muffler chamber 1b through the inflow port 1a of the expansion type muffler 1, the pulsating fluid that has flowed in flows into the first muffler chamber. While expanding and releasing the energy within 1b, irregular reflection with the muffler wall surface is repeated, and the pulsation waveform of the fluid is attenuated by the repetition of the irregular reflection and release of the energy.
[0018]
That is, the amplitude of the pulsation waveform is attenuated in accordance with the ratio of the cross-sectional area of the opening of the inlet 1a to the cross-sectional area of the cylinder opening of the first muffler chamber 1b, and the frequency of the pulsation waveform matches the length of the first muffler chamber 1b. The frequency that is not used is attenuated, and the vibration and sound of the pulsating fluid are suppressed.
[0019]
At this time, a pulsation waveform having a frequency that matches the length (La) of the first muffler chamber 1b in the fluid direction causes resonance and resonance because the length of the pulsation waveform matches the muffler length. However, the fluid having the amplified pulsation waveform is decompressed in the decompression communication hole 1d and flows to the second muffler chamber 1c having the next different length (Lb). As described above, the energy is expanded and released, and the energy is absorbed and attenuated while repeating irregular reflection on the muffler wall surface. As a result, the vibration and sound of the fluid are suppressed and the fluid flows out of the outlet 1e. Will be.
[0020]
In addition, at this time, the pulsating fluid flowing out of the outlet 1e flows from the inlet 1a to the first muffler chamber 1b, the pressure reduction communication hole 1d, and the second muffler chamber 1c, and the pressure reduction / expansion is performed plural times continuously. When the pressure reduction communication hole 1d is large to some extent, the first muffler chamber 1b and the second muffler chamber 1c function as one muffler via the pressure reduction communication hole 1d. The frequency of the waveform corresponding to the length (Lc) obtained by adding the length (La) of the chamber 1b and the length (Lb) of the second muffler chamber 1c is also attenuated and flows out.
That is, each frequency band as shown by the solid line in FIG. 2 is attenuated.
[0021]
In other words, if the lengths (La), (Lb), and (Lc) of the mufflers that attenuate the frequency are in a multiple relationship of the same number (including a number other than an integer), the attenuating frequency becomes the same frequency, Since the area of the attenuation frequency is reduced, the length of each muffler is not the same length, or the length of each muffler is not an integral multiple of the other length.
[0022]
In particular, at this time, if each length of the muffler chamber is an integer and the quotient of the greatest common divisor of the integers is a prime number, each muffler and each length obtained by adding the lengths of these mufflers are well-balanced. Since they are different from each other and many different frequencies are reliably attenuated in a well-balanced manner, an inflatable muffler that attenuates each different frequency in a well-balanced manner can be obtained.
[0023]
In order to obtain the effects of the present invention as described above, a structure in which the first muffler chamber 1b and the second muffler chamber 1c are simply connected via piping as shown in FIG. Since the continuity of decompression / expansion is impaired by the connection pipe, the frequency corresponding to the length (Lc) obtained by adding the length (La) of the first muffler chamber 1b (Lb) to the length (Lb) of the second muffler chamber 1c. Is not attenuated by the piping, so that the attenuation effect cannot be obtained, and further, the piping space is expanded and the degree of freedom in piping design is impaired.
[0024]
Further, as shown in FIG. 4, a partition plate may be provided in the muffler, and a pressure reducing communication hole may be formed in the partition plate to continuously reduce and expand the pressure. In addition to this, it is difficult to fix this partition plate in the muffler, and since the fluid strikes the partition plate at a substantially right angle, it flows to the next muffler through the decompression communication hole. The sound is louder and not a good idea.
[0025]
As described above, in the present invention, the inflow port into which the fluid flows, the first muffler chamber for expanding the fluid flowing from the inflow port, and the decompression for reducing the pressure of the fluid from the first muffler chamber. A second muffler chamber integrally formed via a communication hole and having a different length in the fluid flow direction; and an outlet provided in the second muffler chamber for reducing the pressure of the fluid and flowing out. With a simple configuration, the decompression / expansion of the fluid is continuously and smoothly repeated, and by repeating this, many different frequencies are attenuated. Can be
[0026]
Further, in the inflatable muffler of the present invention described above, a structure having the first muffler chamber 1b and the second muffler chamber has been described as a typical example. However, in the present invention, only such a structure is used. The present invention is not limited to this, and the third and fourth mufflers may be formed integrally with each other through the pressure reducing communication holes in order to further reduce and expand the fluid.
[0027]
Embodiment 2 FIG.
Embodiment 2 will be described with reference to FIG. In the second embodiment, the cross-sectional area of the pressure reducing communication hole 1d of the inflatable muffler 1 in the first embodiment is larger than the cross-sectional area of the inflow port 1a or the outflow port 1e.
[0028]
When the cross-sectional area of the pressure reducing communication hole 1d is increased in this way, the division between the first muffler chamber 1b and the second muffler chamber 1c is reduced, and the attenuation of each frequency changes from the solid line in FIG. 2 to the dotted line. I do. That is, while reducing the energy amplification due to the resonance at the frequencies (for example, F11, F12, and F13 in FIG. 2) that match the lengths (La) and (Lb) of the first and second muffler chambers 1b and 1c, The attenuation frequency determined by the length (Lc) obtained by adding the lengths of the first and second muffler chambers greatly attenuates F11, F12, and F13.
Therefore, if each attenuation frequency is known, if the length of the muffler chamber and the size of the pressure reduction communication hole are determined in accordance with those attenuation frequencies, each frequency will be attenuated in a well-balanced manner. This is effective in the case of an air conditioner with an inverter that operates quietly with a reduced rotation speed of the compressor.
[0029]
Embodiment 3 FIG.
Embodiment 3 will be described with reference to FIG. In the third embodiment, as shown in FIG. 6, the center of the inlet 1a and the center of the outlet e of the cylindrical inflatable muffler 1 are shifted from each other.
[0030]
In this case, since the degree of freedom in designing a pipe connected to the inflatable muffler 1 is improved, an inflatable muffler which is easy to use and easy to use can be obtained.
[0031]
Embodiment 4 FIG.
Embodiment 4 will be described with reference to FIG. In the fourth embodiment, as shown in FIG. 7, any one of the expansion-type mufflers 1 according to the first to third embodiments described above is connected to a refrigeration circuit such as an air conditioner, particularly, a compression circuit of the refrigeration circuit. It is arranged on the discharge side piping of the machine.
[0032]
In this case, since the fluid (refrigerant) discharged from the compressor, which is the source of the pulsation, can be attenuated before flowing to the components of the refrigeration circuit, the pulsation can be effectively attenuated.
That is, the refrigeration cycle circuit is a complicated circuit, and since there are many components having various natural frequencies constituting the complicated circuit, when a fluid flows through these components, resonance occurs due to pulsation of the fluid. Since the resonance may occur, the expansion type muffler 1 is arranged on the discharge side pipe of the compressor so as to prevent such a case from occurring, so that resonance and resonance due to fluid pulsation are prevented. It is.
[0033]
Also, in the compressor 2 of a refrigeration circuit such as an air conditioner, when the compressor 2 is operated at a constant rotation speed, it can be almost solved by attaching one muffler having a length corresponding to the rotation speed (frequency). Although it is possible, especially in the case of a compressor with an inverter in which the number of revolutions is variable, the pulsation frequency of the fluid (refrigerant) changes due to the change in the number of revolutions, and it is necessary to cope with most frequency ranges. By mounting an expansion type muffler according to any one of the first to third aspects, that is, a muffler that attenuates many different frequencies, a refrigeration cycle circuit capable of effectively preventing resonance due to fluid pulsation can be obtained. become.
[0034]
Embodiment 5 FIG.
The fifth embodiment will be described with reference to FIGS. In the fifth embodiment, as shown in FIG. 8, an inflow port 1a into which a fluid flows, a muffler body 1 made of a copper tube or the like for expanding the fluid flowing from the inflow port 1a, In the inflatable muffler provided with an outlet 1e for discharging the fluid under reduced pressure, the muffler main body 1 made of a copper pipe or the like is integrally formed via a reduced-pressure communication hole 1d for reducing the fluid. The present invention relates to a method for manufacturing an inflatable muffler having muffler chambers having different lengths in the direction.
[0035]
Next, a method for manufacturing the inflatable muffler will be described. First, one end of the muffler main body 1 made of a copper tube or the like is fixed, and the other end is attached to a mounting jig 10a of a drawing apparatus 10 that rotatably presses the other end, and the mounting jig 10a is rotated to rotate the copper tube.
Next, from the start position of the drawing start of the rotary copper tube 1 to the end position of the drawing process, the drawing roller portion 10b of the processing device 10 applies a predetermined external force at a constant initial vertical feed amount (for example, 2 mm), Since it moves in the horizontal direction at a constant speed, the processing up to the stage (a) in FIG. 10 is performed.
At this time, since the squeezing roller portion 10b is pressed against the rotating copper tube, it rotates.
[0036]
Next, after the completion of the working, the initial vertical feed amount of the drawing roller unit 10b is changed to, for example, about twice (for example, 4 mm), and a predetermined external force is applied to the copper pipe from the drawing processing end position to the start position. Since the squeezing roller unit 10b moves in the horizontal direction, the processing up to the stage (b) in FIG. 9 is performed.
[0037]
Next, in the subsequent drawing, similarly, the drawing from the start position to the processing end position, or the drawing from the processing end position to the start position is regarded as one processing step, and the number of times of this processing step corresponds to the initial vertical feed amount. Is multiplied by the previous vertical feed amount, and the vertical feed amount of the previous time is set as the vertical feed amount of the drawing roller portion 10b. The drawing is repeated while applying a predetermined external force to the copper pipe with the vertical feed amount. When the vertical feed amount of the section 10b reaches the target vertical feed amount, that is, when the target pressure reduction communication hole size is reached, the drawing process is terminated.
At the end of the drawing process, the drawing roller unit 10b stops at the next start position or the processing end position.
[0038]
Next, when the above-described drawing of the muffler main body 1 is completed, and the muffler main body 1 does not have the inlet 1a into which the fluid flows and the outlet 1e through which the fluid flows out, which is smaller than the main body diameter, FIG. As shown in the figure, a core metal for suppressing misalignment at the time of drawing is inserted into the inlet of the inflow port 1a or the outflow port 1e of the muffler body 1, and the inflow port 1a or the flow port on the side where the core metal is not inserted. In the same manner as described above for the drawing process of the outlet 1e, the drawing roller unit 10b applies a predetermined external force from the starting position at the beginning of drawing toward the end (end position) of the copper tube, and performs the initial vertical feed by the drawing process times. The drawing is finished while gradually increasing the amount. When the drawing amount reaches the target drawing amount, that is, the target size of the inlet 1a or the outlet 1e, the drawing is completed.
[0039]
When the expansion type muffler is manufactured by performing the narrowing process described above, the thickness of the narrowed portion becomes substantially uniform, and after the fluid is gradually reduced in pressure toward the target reduced pressure communication hole, Since the expansion muffler is gradually expanded, a method of manufacturing an expansion muffler having high strength and low flow noise can be obtained.
[0040]
In the above description, the inflatable muffler was manufactured by drawing, but the muffler main body was put into a mold, and hydraulic pressure was applied to the muffler body put in this mold to manufacture the inflatable muffler of the present invention. Is also good.
[0041]
【The invention's effect】
As described above, the present invention includes an inflow port into which a fluid flows, a muffler main body that expands the fluid flowing from the inflow port, and an outflow port that decompresses the fluid from the main body and flows out. In the inflatable muffler provided,
Since the muffler main body has muffler chambers having different lengths formed integrally through decompression communication holes for decompressing the fluid, the decompression / expansion of the fluid is continuously and smoothly repeated with a simple configuration. Since many different frequency bands are attenuated, the attenuation efficiency is good and an economical inflatable muffler can be obtained.
[0042]
Further, since each length of the muffler chamber is an integer, and the quotient of the greatest common divisor of those integers is a prime number, many different frequencies equal to or greater than the number of muffler chambers are reliably attenuated in a well-balanced manner. An inflatable muffler that effectively attenuates in good balance is obtained.
[0043]
Further, since the area of the pressure reducing communication hole is larger than the area of the inflow port or the outflow port, an inflatable muffler that effectively attenuates the attenuation frequency determined by the length of each muffler chamber with good balance can be obtained.
[0044]
Further, since the centers of the inflow port and the outflow port are shifted from each other, an inflatable muffler which is easy to use and easy to use can be obtained.
[0045]
Further, since the expansion type muffler according to any one of claims 1 to 4 is arranged on a discharge side pipe of a compressor that discharges a pulsating fluid such as a refrigeration cycle circuit, it has various natural frequencies of the refrigeration circuit. Since the pulsation waveform of the fluid is attenuated before flowing to many components, a refrigeration cycle circuit in which vibration and noise are suppressed can be obtained.
[0046]
In addition, since the compressor has an inverter device for changing the number of revolutions, the compressor operates quietly even at night, even when the number of revolutions of the compressor is reduced, so that a refrigeration cycle circuit with low vibration and noise can be obtained. Can be
[0047]
Further, a step of rotating the muffler body, and a predetermined reciprocating movement at a constant speed in the horizontal direction at a constant feed amount in the vertical direction between a preset start position and end position of the rotated muffler body. Applying external force;
Catching the outward path or the return path between the start position and the end position as one narrowing process, and increasing the constant feed amount for each number of the processing steps;
Stopping the narrowing process when the increased feeding amount reaches the target narrowing amount.Since the muffler body is provided with respective muffler chambers with a decompression communication hole interposed therebetween, the muffler body Since the thickness of the fluid is almost uniform and the fluid gradually decompresses toward the decompression communication hole and then expands gradually, the strength is strong and the flow noise is reduced. A method for producing a small inflatable muffler is obtained.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of an inflatable muffler according to Embodiment 1 of the present invention.
FIG. 2 is a characteristic diagram of a damping frequency of an expansion type muffler according to the first embodiment of the present invention.
FIG. 3 is a schematic sectional view of a conventional inflatable muffler corresponding to the first embodiment of the present invention.
FIG. 4 is a schematic sectional view of another conventional inflatable muffler corresponding to the first embodiment of the present invention.
FIG. 5 is a schematic sectional view of an inflatable muffler according to a second embodiment of the present invention.
FIG. 6 is a schematic sectional view of an inflatable muffler according to Embodiment 3 of the present invention.
FIG. 7 is a schematic configuration diagram of a refrigeration cycle circuit according to Embodiment 4 of the present invention.
FIG. 8 is a schematic configuration diagram of a drawing apparatus according to Embodiment 5 of the present invention.
FIG. 9 is a schematic configuration diagram when drawing an inflow port according to Embodiment 5 of the present invention.
FIG. 10 is a detailed processing diagram of drawing in Embodiment 5 of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Inflatable muffler, 1a Inflow port, 1b First muffler chamber, 1c Second muffler chamber, 1d Pressure reduction communication hole, 1e Outflow port, 2 Compressor, 10 Drawing device, 10a Mounting jig, 10b Drawing roller .

Claims (7)

流体が流入する流入口と、この流入口から流入した前記流体を膨張させるマフラー本体と、この本体からの前記流体を減圧して流出する流出口と、を具備した膨張形マフラーにおいて、
前記マフラー本体が、前記流体を減圧する減圧連通穴を介して一体成形された夫々長さの異なるマフラー室を有することを特徴とする膨張形マフラー。
In an inflatable muffler comprising an inflow port into which a fluid flows, a muffler body for expanding the fluid flowing from the inflow port, and an outflow port for reducing the pressure of the fluid from the main body and flowing out.
An inflatable muffler, wherein the muffler body has muffler chambers having different lengths, each formed integrally through a decompression communication hole for decompressing the fluid.
前記マフラー室の各長さが整数からなり、それら整数の最大公約数の商が素数からなることを特徴とする請求項1に記載の膨張形マフラー。The inflatable muffler according to claim 1, wherein each length of the muffler chamber is an integer, and the quotient of the greatest common divisor of the integers is a prime number. 前記減圧連通穴の面積が、前記流入口又は前記流出口の面積よりも大きいことを特徴とする請求項1に記載の膨張形マフラー。The expansion type muffler according to claim 1, wherein the area of the pressure reduction communication hole is larger than the area of the inflow port or the outflow port. 前記流入口と前記流出口の中心が互いにずれていることを特徴とする請求項1に記載の膨張形マフラー。The inflatable muffler according to claim 1, wherein centers of the inlet and the outlet are offset from each other. 請求項1から4までのいずれかの前記膨張形マフラーが、冷凍サイクル回路等の脈動流体を吐出する圧縮機の吐出側配管に配置されたことを特徴とする冷凍サイクル回路。5. The refrigeration cycle circuit according to claim 1, wherein the expansion type muffler according to any one of claims 1 to 4 is disposed in a discharge pipe of a compressor for discharging a pulsating fluid, such as a refrigeration cycle circuit. 前記圧縮機が、その回転数を変えるインバータ装置を有することを特徴とする冷凍サイクル回路。A refrigeration cycle circuit, wherein the compressor has an inverter device that changes the rotation speed. マフラー本体を回転させるステップと、
この回転させたマフラー本体の予め設定された開始位置と終了位置との間に垂直方向に一定の送り込み量で水平方向に一定の速度で往復移動する所定の外力を付与するステップと、
前記開始位置と終了位置との間の往路又は復路を1回の絞込加工工程と捕らえ、当該加工工程回数毎に前記一定の送り込み量を増加させるステップと、
この増加させた送り込み量が目標絞り込み量になった時に前記絞込加工をストップするステップとを備え、
前記マフラー本体に減圧連通穴を挟んで夫々のマフラー室を設けるようにしたことを特徴とする膨張形マフラーの製造方法。
Rotating the muffler body,
Applying a predetermined external force to reciprocate at a constant speed in the horizontal direction at a constant feed amount in the vertical direction between a preset start position and end position of the rotated muffler body,
Catching the outward path or the return path between the start position and the end position as one narrowing processing step, and increasing the constant feeding amount for each processing step number;
Stopping the narrowing-down processing when the increased feed amount reaches the target narrowing amount,
A method for manufacturing an inflatable muffler, wherein each muffler chamber is provided in the muffler body with a decompression communication hole interposed therebetween.
JP2003006783A 2003-01-15 2003-01-15 Expansion muffler, refrigerating cycle circuit using the muffler, and a method of manufacturing the muffler Pending JP2004218934A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003006783A JP2004218934A (en) 2003-01-15 2003-01-15 Expansion muffler, refrigerating cycle circuit using the muffler, and a method of manufacturing the muffler
IT000024A ITMI20040024A1 (en) 2003-01-15 2004-01-13 EXPANSION TYPE SILENCER CIRCUIT0 OF A REFRIGERATION CYCLE THAT USES IT AND METHOD FOR ITS MANUFACTURE
CNB2004100018270A CN1312425C (en) 2003-01-15 2004-01-14 Expansion silencer and freezing circulating loop using the expansion silencer and its manufacturing method
ES200400070A ES2258886B2 (en) 2003-01-15 2004-01-14 MUFFLER OF EXPANSION TYPE, COOLING CYCLE CIRCUIT USING SUCH SILENCER, AND METHOD FOR MANUFACTURING.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003006783A JP2004218934A (en) 2003-01-15 2003-01-15 Expansion muffler, refrigerating cycle circuit using the muffler, and a method of manufacturing the muffler

Publications (1)

Publication Number Publication Date
JP2004218934A true JP2004218934A (en) 2004-08-05

Family

ID=32897059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003006783A Pending JP2004218934A (en) 2003-01-15 2003-01-15 Expansion muffler, refrigerating cycle circuit using the muffler, and a method of manufacturing the muffler

Country Status (4)

Country Link
JP (1) JP2004218934A (en)
CN (1) CN1312425C (en)
ES (1) ES2258886B2 (en)
IT (1) ITMI20040024A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138756A (en) * 2005-11-16 2007-06-07 Sanyo Electric Co Ltd Muffler
EP1862750A1 (en) * 2005-03-25 2007-12-05 Daikin Industries, Ltd. Refrigerating apparatus
JP2008039199A (en) * 2006-08-01 2008-02-21 Daikin Ind Ltd Refrigerating device
WO2008026568A1 (en) 2006-08-30 2008-03-06 Daikin Industries, Ltd. Refrigeration system
WO2008026569A1 (en) 2006-08-30 2008-03-06 Daikin Industries, Ltd. Refrigeration system
CN103925689A (en) * 2014-03-20 2014-07-16 成都丽元电器有限公司 Silencing filter

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102494396A (en) * 2011-12-30 2012-06-13 胡德林 Air-conditioning muffler and manufacturing method thereof
CN103542650B (en) * 2013-11-07 2016-01-20 芜湖汉峰科技有限公司 A kind of reservoir and production method thereof
US20160355071A1 (en) * 2015-06-04 2016-12-08 Ford Global Technologies, Llc Air extraction system and method for a motor vehicle
CN105782143A (en) * 2016-03-24 2016-07-20 中国北方发动机研究所(天津) Anti-vibration device of rapid hydraulic adjusting system
US20180310977A1 (en) * 2017-04-28 2018-11-01 Kyphon SÀRL Introducer and cryoprobe
CN107314470A (en) * 2017-08-22 2017-11-03 广东美的制冷设备有限公司 Air-conditioner outdoor unit and air conditioner
CN107975986A (en) * 2017-11-06 2018-05-01 珠海凌达压缩机有限公司 Dispenser and compressor
CN111197881B (en) * 2018-11-19 2022-09-16 青岛经济技术开发区海尔热水器有限公司 Noise reduction method for equipment with heat pump system
EP3828413B1 (en) * 2019-11-28 2023-03-22 Daikin Europe N.V. Heat pump comprising a muffler
DE102020106017B3 (en) * 2020-03-05 2021-07-29 Umfotec Gmbh Fluid flow conduit silencer and method of making the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4061444A (en) * 1976-07-30 1977-12-06 Lennox Industries, Inc. Compressor muffling arrangement
JPS61155648A (en) * 1984-12-27 1986-07-15 Yanmar Diesel Engine Co Ltd Exhaust silencer of engine for heat exchanger
JPH0610076B2 (en) * 1986-05-06 1994-02-09 三菱電機株式会社 Hydraulic muffler
US5214937A (en) * 1991-10-28 1993-06-01 Carrier Corporation Integral oil separator and muffler
CN2104302U (en) * 1991-11-02 1992-05-13 机械电子工业部第八设计研究院 Air compressor exhaust pipe silencer
US5475189A (en) * 1992-11-16 1995-12-12 Carrier Corporation Condition responsive muffler for refrigerant compressors
IT1278601B1 (en) * 1994-07-05 1997-11-24 Necchi Compressori SILENCER FOR MOTOR-COMPRESSOR, FOR REFRIGERATING SYSTEMS
CN1083962C (en) * 1997-06-16 2002-05-01 广东美的集团股份有限公司 Silencer for fluid pipeline
CN2350617Y (en) * 1998-07-13 1999-11-24 中国科学技术大学 Low-flow buffer shock damper
JP2000356438A (en) * 1999-06-15 2000-12-26 Kobo Koki:Kk Fluid circuit pipe
CN2468788Y (en) * 2001-02-27 2002-01-02 上海易初通用机器有限公司 Noise siliencer for refrigeration medicium pipeline for automobile air-conditioning system
JP2008014250A (en) * 2006-07-06 2008-01-24 Toyota Motor Corp Exhaust gas recirculation system of internal combustion engine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1862750A1 (en) * 2005-03-25 2007-12-05 Daikin Industries, Ltd. Refrigerating apparatus
EP1862750A4 (en) * 2005-03-25 2011-10-12 Daikin Ind Ltd Refrigerating apparatus
JP2007138756A (en) * 2005-11-16 2007-06-07 Sanyo Electric Co Ltd Muffler
JP2008039199A (en) * 2006-08-01 2008-02-21 Daikin Ind Ltd Refrigerating device
WO2008026568A1 (en) 2006-08-30 2008-03-06 Daikin Industries, Ltd. Refrigeration system
WO2008026569A1 (en) 2006-08-30 2008-03-06 Daikin Industries, Ltd. Refrigeration system
EP2060861A1 (en) * 2006-08-30 2009-05-20 Daikin Industries, Ltd. Refrigeration system
EP2060861A4 (en) * 2006-08-30 2012-06-06 Daikin Ind Ltd Refrigeration system
CN103925689A (en) * 2014-03-20 2014-07-16 成都丽元电器有限公司 Silencing filter

Also Published As

Publication number Publication date
ES2258886A1 (en) 2006-09-01
CN1517585A (en) 2004-08-04
ITMI20040024A1 (en) 2004-04-13
CN1312425C (en) 2007-04-25
ES2258886B2 (en) 2007-10-01

Similar Documents

Publication Publication Date Title
JP2004218934A (en) Expansion muffler, refrigerating cycle circuit using the muffler, and a method of manufacturing the muffler
JP4976046B2 (en) A silencer configured and intended for compressors
US7770694B2 (en) Resonator arrangement in an acoustic muffler for a refrigeration compressor
US5183974A (en) Gas pulsation attenuator for automotive air conditioning compressor
US9151292B2 (en) Screw compressor with a shunt pulsation trap
JP2002021527A (en) Muffler
US8016071B1 (en) Multi-stage low pressure drop muffler
US8496446B2 (en) Compressor muffler
US9140261B2 (en) Shunt pulsation trap for cyclic positive displacement (PD) compressors
JP2011508141A (en) A system to dampen vibrations in cooling compressor gas emissions.
US7052248B2 (en) Closed compressor
CN209855995U (en) Compressor amortization structure and have its compressor
CN107850071B (en) Screw compressor economizer plenum for pulsation reduction
JPS601396A (en) Low-discharge-pulsation compressor
US10890188B2 (en) Compressor noise reduction
JP2005515352A (en) Compressor having vibration reducing structure
KR100835709B1 (en) Exhaust silencer for engine exhaust system
CN209414112U (en) Cylinder holder structure and compressor with it
EP3599378B1 (en) Fluid-conducting pipe
KR100425720B1 (en) Muffler of compressor
RU2065979C1 (en) Exhaust muffler
Huang et al. Gas Pulsation Control by a Shunt Pulsation Trap with Perforated Tubes and an Optional Absorptive Silencer
JPH0610875A (en) Silencer for compressor
JP2011132831A (en) Screw compressor
KR20010054596A (en) Suction muffer

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040709

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080205