JP2008038158A - Anti-corrosive steel material for oil storage container, manufacturing method therefor and oil storage container - Google Patents

Anti-corrosive steel material for oil storage container, manufacturing method therefor and oil storage container Download PDF

Info

Publication number
JP2008038158A
JP2008038158A JP2006209715A JP2006209715A JP2008038158A JP 2008038158 A JP2008038158 A JP 2008038158A JP 2006209715 A JP2006209715 A JP 2006209715A JP 2006209715 A JP2006209715 A JP 2006209715A JP 2008038158 A JP2008038158 A JP 2008038158A
Authority
JP
Japan
Prior art keywords
mass
steel material
corrosion
oil storage
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006209715A
Other languages
Japanese (ja)
Other versions
JP4843403B2 (en
Inventor
Shinji Sakashita
真司 阪下
Hiroki Imamura
弘樹 今村
Akihiko Tatsumi
明彦 巽
Atsushi Hisamoto
淳 久本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006209715A priority Critical patent/JP4843403B2/en
Publication of JP2008038158A publication Critical patent/JP2008038158A/en
Application granted granted Critical
Publication of JP4843403B2 publication Critical patent/JP4843403B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anti-corrosive steel material which is superior in corrosion resistance and is used for an oil storage container; a manufacturing method therefor; and the oil storage container. <P>SOLUTION: The anti-corrosive steel material for the oil storage container has a surface layer formed on the surface of the steel material. The surface layer comprises 0.3 to 20 mass% Cu, 0.3 to 20 mass% Ni, 5 to 20 mass% O, 0.3 to 10 mass% S and the balance Fe with unavoidable impurities, and has a thickness of 50 to 800 μm. The method for manufacturing the anti-corrosive steel material for the oil storage container includes immersing the steel material in a mixed solution of an aqueous solution and a powder of S to form the surface layer with the thickness of 50 to 800 μm on the steel material. Furthermore, the oil storage container is made by using the anti-corrosive steel material for the oil storage container. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、原油および石油由来の油類の貯蔵、輸送、機器搭載等のための油類貯蔵容器に用いる油類貯蔵容器用耐食鋼材およびその製造方法ならびに油類貯蔵容器に関する。   The present invention relates to a corrosion-resistant steel material for oil storage containers used in oil storage containers for storage, transportation, equipment mounting, etc. of crude oil and petroleum-derived oils, a method for producing the same, and an oil storage container.

原油、重油、軽油、灯油、ガソリン、石油アスファルト、潤滑油、切削油、マシン油、グリース、石油ワックス、さび止め油、石油エーテル等の原油および石油由来の油類の貯蔵や運搬等に用いられるタンク(以下、適宜「油類タンク」という)は、鋼材で作製されるのが一般的である。しかしながら、近年、鋼材に含まれる硫黄分やタンク底に滞留する塩化物を含む水分等に起因して、油類タンクの鋼材が激しい局部腐食を受け、早期に穴あきに至ってしまうという問題が顕在化している。   Used for storage and transportation of crude oil such as crude oil, heavy oil, light oil, kerosene, gasoline, petroleum asphalt, lubricating oil, cutting oil, machine oil, grease, petroleum wax, rust prevention oil, petroleum ether, etc. A tank (hereinafter referred to as “oil tank” as appropriate) is generally made of steel. However, in recent years, there has been a problem that steel materials in oil tanks are severely corroded due to sulfur contained in steel materials and moisture containing chlorides staying at the bottom of the tank, resulting in early perforation. It has become.

このような問題に対し、通常行われている防食手段としては、(a)塗装、(b)防錆・防食シート、(c)電気防食等による鋼材の保護がよく知られており、実用化されている。このうち重塗装に代表される塗装では、塗膜欠陥が存在する可能性が高く、また、油類タンクの製造工程における衝突等によって塗膜に傷が付く場合もあるため、素地鋼材が露出してしまうことが多い。このような鋼材露出部においては、局部的にかつ集中的に鋼材が腐食してしまい、収容されている石油類の早期漏洩に繋がるという問題がある。   For such problems, the corrosion protection means usually used are (a) painting, (b) rust / corrosion protection sheet, (c) protection of steel materials by electrocorrosion protection, etc. Has been. Of these, coatings typified by heavy coatings are likely to have coating film defects, and the coating film may be scratched by collisions in the oil tank manufacturing process, which exposes the base steel material. It often happens. In such a steel exposed portion, there is a problem that the steel material corrodes locally and intensively, leading to early leakage of stored petroleum.

また、防錆・防食シートによる鋼材の保護も比較的効果は認められるものの、塗装と同様にシート傷部の鋼材露出部分での腐食は避けられないという問題がある。
さらに、電気防食は、海水等の導電率が高い電解質水溶液中に完全に浸漬された部位に対しては、非常に有効である。しかし、油類タンクでは、溶媒となる油類の電気伝導性が不十分であるため、犠牲アノードが作用する距離が小さく、電気防食は不向きである。
Further, although protection of the steel material by the rust / corrosion protection sheet is relatively effective, there is a problem that corrosion at the steel material exposed portion of the scratched portion of the sheet is unavoidable as in the case of coating.
Furthermore, the anti-corrosion is very effective for a portion completely immersed in an aqueous electrolyte solution having high conductivity such as seawater. However, in the oil tank, since the electric conductivity of the oil as a solvent is insufficient, the distance on which the sacrificial anode acts is small, and thus the anticorrosion is not suitable.

このような背景の中、基材鋼材の表面に、溶射あるいは亜鉛金属粉の塗装により、Znを主体とした金属被覆層を形成することで、金属被覆層の局部腐食を大幅に抑制し、かつ、基材鋼材の表面が露出した場合であっても、十分な犠牲防食効果を有する石油タンク用耐食鋼材が提案されている(例えば、特許文献1参照)。
その他、化学成分の調整等によって鋼材自体の耐食性を向上させたものとして、C、Si、Mn、P、S、Cu等の元素を所定量に規制することで、母材および溶接部の耐局部腐食性を向上させた原油タンク底板用鋼材が提案されている(例えば、特許文献2参照)。また、C、Si、Mn、Al、Co、Mg等の元素を所定量に規制することで、耐食性を向上させた船舶用鋼材が提案されている(例えば、特許文献3参照)。
特開2002−60921号公報 特開2005−290479号公報 特開2006−9128号公報
In such a background, by forming a metal coating layer mainly composed of Zn on the surface of the base steel material by thermal spraying or coating with zinc metal powder, the local corrosion of the metal coating layer is greatly suppressed, and Even when the surface of the base steel material is exposed, a corrosion-resistant steel material for a petroleum tank having a sufficient sacrificial anticorrosive effect has been proposed (for example, see Patent Document 1).
In addition, as an improvement in the corrosion resistance of the steel material itself by adjusting the chemical composition, etc., by restricting the elements such as C, Si, Mn, P, S, Cu, etc. to a predetermined amount, the local resistance of the base material and the welded part A steel material for a crude oil tank bottom plate with improved corrosivity has been proposed (see, for example, Patent Document 2). Moreover, the steel material for ships which improved corrosion resistance by restrict | limiting elements, such as C, Si, Mn, Al, Co, Mg, to predetermined amount is proposed (for example, refer patent document 3).
JP 2002-60921 A JP 2005-290479 A JP 2006-9128 A

しかしながら、前記した従来の耐食鋼材には、以下に示す問題があった。
前記したように、油類タンクにおいては、鋼材の耐食性の向上が図られているが、油類タンクの鋼材の腐食は、例えば原油タンカーでは、沈没事故といった重大事故を招くおそれがあるため、油類タンクの鋼材には、さらなる耐食性の向上が必要とされている。
ここで、特許文献1〜3に記載の鋼材においては、耐食性のレベルは向上しているが、非常に高い安全性が必要とされる油類タンクの鋼材においては、さらなる改善が望まれている。
However, the conventional corrosion-resistant steel materials described above have the following problems.
As described above, in the oil tank, the corrosion resistance of the steel material is improved. However, the corrosion of the steel material in the oil tank may cause a serious accident such as a sinking accident in a crude oil tanker. Further improvement in corrosion resistance is required for the steel material of a similar tank.
Here, in the steel materials described in Patent Documents 1 to 3, the level of corrosion resistance is improved, but in steel materials for oil tanks that require extremely high safety, further improvements are desired. .

本発明は、前記課題に鑑みてなされたものであり、その目的は、油類貯蔵容器に用いる耐食性に優れる油類貯蔵容器用耐食鋼材およびその製造方法ならびに油類貯蔵容器を提供することにある。   This invention is made | formed in view of the said subject, The objective is to provide the corrosion-resistant steel material for oil storage containers excellent in the corrosion resistance used for oil storage containers, its manufacturing method, and oil storage containers. .

本発明者らは鋭意研究を重ねた結果、適切な量のCu、Ni、OおよびSを含有する表面層を鋼材等の容器材料の表面に形成させることによって、油類貯蔵容器として優れた耐食性を発現し、前記課題を解決できることを見出した。   As a result of intensive research, the present inventors have formed a surface layer containing an appropriate amount of Cu, Ni, O and S on the surface of a container material such as a steel material, thereby providing excellent corrosion resistance as an oil storage container. It was found that the above problems can be solved.

すなわち、請求項1に係る油類貯蔵容器用耐食鋼材は、鋼材の表面に表面層が設けられた、油類貯蔵容器用耐食鋼材において、前記表面層がCu:0.3〜20質量%、Ni:0.3〜20質量%、O:5〜20質量%、S:0.3〜10質量%を含有し、残部がFeおよび不可避的不純物からなり、前記表面層の厚さが50〜800μmであることを特徴とする。   That is, the corrosion-resistant steel material for oil storage containers according to claim 1 is a corrosion-resistant steel material for oil storage containers in which a surface layer is provided on the surface of the steel material, and the surface layer is Cu: 0.3 to 20% by mass, Ni: 0.3 to 20% by mass, O: 5 to 20% by mass, S: 0.3 to 10% by mass, the balance is made of Fe and inevitable impurities, and the thickness of the surface layer is 50 to 50%. It is characterized by being 800 μm.

このような構成によれば、表面層がCu、Ni、O、Sを所定量含有することで、CuおよびNiが、Sと結合して硫化物を形成し、Oと結合して酸化物を形成する。この硫化物あるいは酸化物により、貯蔵容器内の滞留水分や油類自身に対して、表面層が難溶性皮膜となり、鋼材の腐食が抑制される。
また、表面層の厚さを所定範囲に規制することで、ピンホール等の欠陥が生じることが抑制され、また、耐久性が向上する。
According to such a configuration, since the surface layer contains a predetermined amount of Cu, Ni, O, and S, Cu and Ni combine with S to form a sulfide, and combine with O to form an oxide. Form. Due to the sulfides or oxides, the surface layer becomes a hardly soluble film against the moisture remaining in the storage container or the oil itself, and the corrosion of the steel material is suppressed.
Moreover, by restricting the thickness of the surface layer to a predetermined range, the occurrence of defects such as pinholes is suppressed, and the durability is improved.

請求項2に係る油類貯蔵容器用耐食鋼材は、前記表面層が、更に、Cr:0.05〜5.0質量%、Co:0.05〜5.0質量%、Ti:0.05〜5.0質量%、Mg:0.05〜1.0質量%、Ca:0.05〜1.0質量%、Zn:0.05〜1.0質量%から選ばれる1種以上を含有することを特徴とする。   In the corrosion resistant steel material for oil storage containers according to claim 2, the surface layer further includes Cr: 0.05 to 5.0 mass%, Co: 0.05 to 5.0 mass%, Ti: 0.05. Contains at least one selected from -5.0 mass%, Mg: 0.05-1.0 mass%, Ca: 0.05-1.0 mass%, Zn: 0.05-1.0 mass% It is characterized by doing.

このような構成によれば、表面層が、更に、所定の元素を所定量含有することで、非酸化性の酸、アルカリ性の酸、酸化性の酸、アルカリ等に対する表面層の安定性や、表面層の耐熱性が向上する。また、鋼材腐食によって溶解したFeイオンの加水分解によるpH低下が緩和される。   According to such a configuration, the surface layer further contains a predetermined amount of a predetermined element, so that the stability of the surface layer against non-oxidizing acid, alkaline acid, oxidizing acid, alkali, etc. The heat resistance of the surface layer is improved. Moreover, the pH fall by hydrolysis of Fe ion melt | dissolved by steel material corrosion is relieved.

請求項3に係る油類貯蔵容器用耐食鋼材は、前記鋼材がC:0.01〜0.30質量%、Si:0.01〜2.0%質量、Mn:0.01〜2.0質量%、Al:0.005〜0.10質量%、Cu:0.01〜1.0質量%、Ni:0.01〜1.0質量%を含有し、残部がFeおよび不可避的不純物からなることを特徴とする。
このような構成によれば、鋼材が所定の元素を所定量含有することで、鋼材の脱酸が促進され、また、強度や耐食性が向上する。
In the corrosion-resistant steel material for oil storage containers according to claim 3, the steel material is C: 0.01 to 0.30 mass%, Si: 0.01 to 2.0% mass, Mn: 0.01 to 2.0. Contains mass%, Al: 0.005 to 0.10 mass%, Cu: 0.01 to 1.0 mass%, Ni: 0.01 to 1.0 mass%, the balance being Fe and inevitable impurities It is characterized by becoming.
According to such a configuration, when the steel material contains a predetermined amount of a predetermined element, deoxidation of the steel material is promoted, and strength and corrosion resistance are improved.

請求項4に係る油類貯蔵容器用耐食鋼材は、前記鋼材が、更に、Cr:0.01〜1.0質量%、Co:0.005〜0.50質量%、Ti:0.005〜0.20質量%、Mg:0.0001〜0.005質量%、Ca:0.0001〜0.005質量%から選ばれる1種以上を含有することを特徴とする。
このような構成によれば、鋼材が、更に、所定の元素を所定量含有することで、鋼材の耐食性が向上し、また、塩化物腐食環境において生成する錆が緻密化する。また、鋼材腐食によって溶解したFeイオンの加水分解によるpH低下が緩和される。
In the corrosion resistant steel material for oil storage containers according to claim 4, the steel material is further Cr: 0.01 to 1.0 mass%, Co: 0.005 to 0.50 mass%, Ti: 0.005. It contains one or more selected from 0.20% by mass, Mg: 0.0001 to 0.005% by mass, and Ca: 0.0001 to 0.005% by mass.
According to such a configuration, the steel material further contains a predetermined element in a predetermined amount, whereby the corrosion resistance of the steel material is improved, and rust generated in a chloride corrosive environment is densified. Moreover, the pH fall by hydrolysis of Fe ion melt | dissolved by steel material corrosion is relieved.

請求項5に係る油類貯蔵容器用耐食鋼材は、前記鋼材が、更に、B:0.0001〜0.010質量%、V:0.01〜0.50質量%、Nb:0.003〜0.50質量%から選ばれる1種以上を含有することを特徴とする。
このような構成によれば、鋼材が、更に、所定の元素を所定量含有することで、鋼材の強度が向上する。
In the corrosion resistant steel material for oil storage containers according to claim 5, the steel material is further B: 0.0001 to 0.010 mass%, V: 0.01 to 0.50 mass%, Nb: 0.003. It contains one or more selected from 0.50% by mass.
According to such a configuration, the steel material further contains a predetermined amount of the predetermined element, whereby the strength of the steel material is improved.

請求項6に係る油類貯蔵容器用耐食鋼材の製造方法は、前記に記載の油類貯蔵容器用耐食鋼材の製造方法において、鋼材を、水溶液とS粉末とを混合した溶液に浸漬することにより、当該鋼材に厚さが50〜800μmの表面層を形成することを特徴とする。
このような構成によれば、所定の元素を所量含有した鋼材を、水溶液とS粉末とを混合した溶液に浸漬することにより、鋼材中のCuおよびNi等と水溶液中のSおよびOとが反応する。これにより、形成された表面層に所定量のCu、Ni、S、O等が含有される。
The method for producing a corrosion-resistant steel material for oil storage containers according to claim 6 is the method for producing a corrosion-resistant steel material for oil storage containers as described above, wherein the steel material is immersed in a solution in which an aqueous solution and S powder are mixed. A surface layer having a thickness of 50 to 800 μm is formed on the steel material.
According to such a configuration, by immersing a steel material containing a predetermined amount of a predetermined element in a solution in which an aqueous solution and S powder are mixed, Cu and Ni in the steel material and S and O in the aqueous solution are obtained. react. Thereby, a predetermined amount of Cu, Ni, S, O, etc. is contained in the formed surface layer.

請求項7に係る油類貯蔵容器用耐食鋼材の製造方法は、前記水溶液が、塩水、塩酸および硫酸から選ばれる1種であることを特徴とする。
このような構成によれば、S粉末を混合するための水溶液に、金属に対して腐食作用を有する塩水、塩酸または硫酸を使用することにより、鋼材中の表面層の構成成分とSおよびOとの反応が促進する。
The method for producing a corrosion-resistant steel material for oil storage containers according to claim 7 is characterized in that the aqueous solution is one selected from salt water, hydrochloric acid and sulfuric acid.
According to such a configuration, by using salt water, hydrochloric acid or sulfuric acid having a corrosive action on the metal in the aqueous solution for mixing the S powder, the components of the surface layer in the steel material, S and O, The reaction is promoted.

請求項8に係る油類貯蔵容器は、前記に記載の油類貯蔵容器用耐食鋼材を使用して作製されたことを特徴とする。
このような構成によれば、油類貯蔵容器の鋼材として、耐食性に優れる油類貯蔵容器用耐食鋼材を使用することで、油類貯蔵容器の耐食性が向上し、油類貯蔵容器が長寿命となる。
An oil storage container according to an eighth aspect is characterized by being produced using the above-described corrosion-resistant steel material for oil storage containers.
According to such a configuration, as the steel material of the oil storage container, the corrosion resistance of the oil storage container is improved by using the corrosion resistant steel material for the oil storage container having excellent corrosion resistance, and the oil storage container has a long life. Become.

本発明に係る油類貯蔵容器用耐食鋼材によれば、鋼材に、所定の元素を所定量含有し、所定厚さに規制した表面層を設けることで、油類貯蔵容器用耐食鋼材の耐食性を向上させることができ、油類貯蔵容器を長寿命とすることができる。
また、鋼材に、所定元素を所定量含有させることにより、油類貯蔵容器用耐食鋼材の強度や耐食性を向上させることができ、油類貯蔵容器をさらに長寿命とすることができる。
本発明に係る油類貯蔵容器用耐食鋼材の製造方法によれば、耐食性に優れる油類貯蔵容器用耐食鋼材を効率よく得ることができ、経済性が向上する。
本発明に係る油類貯蔵容器によれば、鋼材として、耐食性に優れる油類貯蔵容器用耐食鋼材を使用することで、油類貯蔵容器の耐食性も向上し、油類貯蔵容器を長寿命とすることができる。
According to the corrosion-resistant steel material for oil storage containers according to the present invention, the corrosion resistance of the corrosion-resistant steel material for oil storage containers is provided by providing the steel material with a surface layer containing a predetermined amount of a predetermined element and regulated to a predetermined thickness. The oil storage container can have a long life.
Further, by containing a predetermined amount of a predetermined element in the steel material, the strength and corrosion resistance of the corrosion-resistant steel material for oil storage containers can be improved, and the oil storage container can have a longer life.
According to the method for producing a corrosion-resistant steel material for oil storage containers according to the present invention, a corrosion-resistant steel material for oil storage containers having excellent corrosion resistance can be efficiently obtained, and the economic efficiency is improved.
According to the oil storage container according to the present invention, as the steel material, the corrosion resistance of the oil storage container is improved by using the corrosion resistant steel material for the oil storage container having excellent corrosion resistance, and the oil storage container has a long life. be able to.

以下、本発明を実施するための最良の形態について詳細に説明する。
本発明は、鋼材(以下、適宜「母材」という)の表面に表面層が設けられた、油類の貯蔵容器に用いられる油類貯蔵容器用耐食鋼材であり、この表面層が所定量のCu、Ni、O、Sを含有し、残部がFeおよび不可避的不純物からなり、さらに、表面層の厚さを所定範囲に規制したものである。
Hereinafter, the best mode for carrying out the present invention will be described in detail.
The present invention is a corrosion-resistant steel material for oil storage containers used for oil storage containers, in which a surface layer is provided on the surface of a steel material (hereinafter referred to as “base material” where appropriate). Cu, Ni, O, and S are contained, the balance is made of Fe and inevitable impurities, and the thickness of the surface layer is regulated within a predetermined range.

以下、表面層の成分の限定理由および厚さを規制した理由について説明する。
<Cu:0.3〜20質量%、Ni:0.3〜20質量%>
CuおよびNiは、Sと結合して硫化物を形成し、Oと結合して、酸化物を形成する。この硫化物と酸化物の混合物が表面層の難溶性に寄与している。表面層中のCuおよびNiが金属Cuおよび金属Niとして存在すると、母材との異種金属接触作用により母材の腐食を促進するため好ましくなく、酸化物あるいは硫化物であることが好ましい。表面層中のCuおよびNiの含有量が0.3質量%未満では、硫化物および酸化物が形成されにくく、表面層の難溶性が低いため、油類環境において母材の保護性が低くなる。一方、20質量%を超えると、表面層と母材との熱膨張係数の差が大きくなり、温度変動によってクラック等の損傷を受けやすくなる。したがって、表面層中のCuおよびNiの含有量は、0.3〜20質量%とし、より好ましくは、0.5〜15質量%とする。
Hereinafter, the reason for limiting the components of the surface layer and the reason for regulating the thickness will be described.
<Cu: 0.3 to 20% by mass, Ni: 0.3 to 20% by mass>
Cu and Ni combine with S to form a sulfide, and combine with O to form an oxide. This mixture of sulfide and oxide contributes to the poor solubility of the surface layer. When Cu and Ni in the surface layer are present as metal Cu and metal Ni, corrosion of the base material is promoted by the action of different metal contact with the base material, and it is preferably an oxide or sulfide. When the content of Cu and Ni in the surface layer is less than 0.3% by mass, sulfides and oxides are difficult to form, and the surface layer has low solubility, so that the protective property of the base material is low in an oil environment. . On the other hand, if it exceeds 20% by mass, the difference in thermal expansion coefficient between the surface layer and the base material becomes large, and it becomes easy to be damaged such as cracks due to temperature fluctuation. Therefore, the content of Cu and Ni in the surface layer is 0.3 to 20% by mass, more preferably 0.5 to 15% by mass.

<O:5〜20質量%>
Oは表面層の難溶性に寄与するCuおよびNiの酸化物を構成するのに必要な元素である。Oの含有量が5質量%未満では、CuおよびNiが金属Cuあるいは金属Niとして存在する傾向にあるため、上述の異種金属接触作用による腐食を生じる。一方、20質量%を超えると、表面層が脆化して剥離しやすくなる。したがって、Oの含有量は、5〜20質量%とし、より好ましくは、8〜20質量%、さらに好ましくは、10〜18質量%とする。
<O: 5 to 20% by mass>
O is an element necessary for constituting an oxide of Cu and Ni that contributes to poor solubility of the surface layer. If the content of O is less than 5% by mass, Cu and Ni tend to exist as metal Cu or metal Ni, and thus corrosion due to the above-mentioned dissimilar metal contact action occurs. On the other hand, if it exceeds 20% by mass, the surface layer becomes brittle and easily peels off. Therefore, the content of O is 5 to 20% by mass, more preferably 8 to 20% by mass, and still more preferably 10 to 18% by mass.

<S:0.3〜10質量%>
Sは表面層の難溶性に寄与するCuおよびNiの硫化物を構成するのに必要な元素である。Sは硫化物を形成して難溶性を確保するために、0.3質量%以上の含有量が必要であるが、10質量%を超えると、表面層が脆化して剥離しやすくなる。したがって、Sの含有量は、0.3〜10質量%とする。
<S: 0.3 to 10% by mass>
S is an element necessary for constituting a sulfide of Cu and Ni that contributes to poor solubility of the surface layer. S needs to contain 0.3% by mass or more in order to form a sulfide and ensure poor solubility, but if it exceeds 10% by mass, the surface layer becomes brittle and easily peels off. Therefore, the content of S is set to 0.3 to 10% by mass.

<残部がFeおよび不可避的不純物>
本発明の油類貯蔵容器用耐食鋼材の表面層の成分は前記の通りであり、残部はFeおよび不可避的不純物からなるものである。母材として鋼材を用いる場合には、残部は鋼材に由来するFe、C、Si、Mn等の鋼材元素および鋼材に由来する不可避的不純物からなるものである。なお、表面層の不可避的不純物元素としては、例えば、P、N、H、Mo、W等が挙げられるが、本発明の効果を妨げない範囲においてこれらを含有することは許容され、これらの含有量は、合計で0.1質量%以下が好ましく、0.05質量%以下がより好ましい。
<The balance is Fe and inevitable impurities>
The components of the surface layer of the corrosion resistant steel material for oil storage containers of the present invention are as described above, and the balance is composed of Fe and inevitable impurities. When a steel material is used as a base material, the balance consists of steel material elements such as Fe, C, Si, and Mn derived from the steel material and inevitable impurities derived from the steel material. In addition, examples of the inevitable impurity elements in the surface layer include P, N, H, Mo, W, etc., but these are allowed to be contained within a range not impeding the effects of the present invention, and these contents are contained. The total amount is preferably 0.1% by mass or less, and more preferably 0.05% by mass or less.

<表面層の厚さ:50〜800μm>
表面層の厚さが、50μm未満であると、ピンホール等の欠陥が生じる可能性があり、このピンホールによる母材露出部の腐食により、局部腐食が発生する。一方、800μmを超えると、表面層が母材から剥離しやすいため、耐久性の面で好ましくない。したがって、表面層の厚さは、50〜800μmとし、より好ましくは、80〜600μmとする。
<Thickness of surface layer: 50 to 800 μm>
When the thickness of the surface layer is less than 50 μm, defects such as pinholes may occur, and local corrosion occurs due to corrosion of the exposed base material due to the pinholes. On the other hand, if it exceeds 800 μm, the surface layer is easily peeled off from the base material, which is not preferable in terms of durability. Therefore, the thickness of the surface layer is 50 to 800 μm, and more preferably 80 to 600 μm.

本発明に係る油類貯蔵容器用耐食鋼材の表面層は、前記成分に加えて、更に、Cr、Co、Ti、Mg、Ca、Znから選ばれる1種以上を含有することが好ましく、含有させる成分の種類に応じて表面層の特性が更に改善されることになる。以下、これらの限定理由について説明する。   In addition to the above components, the surface layer of the corrosion resistant steel material for oil storage containers according to the present invention preferably further contains one or more selected from Cr, Co, Ti, Mg, Ca, Zn. Depending on the type of component, the properties of the surface layer will be further improved. Hereinafter, these reasons for limitation will be described.

<Cr:0.05〜5.0質量%>
Crは、非酸化性の酸に対する表面層の安定性を高める作用があるため、酸素の少ないタンク内環境における耐食効果を高めるのに有効な元素である。このような効果を発揮するためには、0.05質量%以上の含有量が必要である。一方、5.0質量%を超えると、表面層の脆化を起こして、剥離や割れ等の問題を生じやすい。したがって、Crの含有量は、0.05〜5.0質量%が好ましく、0.10〜4.0質量%がより好ましい。
<Cr: 0.05-5.0 mass%>
Cr has an effect of enhancing the stability of the surface layer against a non-oxidizing acid, and is therefore an effective element for enhancing the corrosion resistance effect in a tank environment with little oxygen. In order to exert such an effect, a content of 0.05% by mass or more is necessary. On the other hand, if it exceeds 5.0% by mass, the surface layer is brittle, and problems such as peeling and cracking tend to occur. Therefore, the content of Cr is preferably 0.05 to 5.0% by mass, and more preferably 0.10 to 4.0% by mass.

<Co:0.05〜5.0質量%>
Coは、Crと同様に非酸化性の酸に対する表面層の安定性を高める作用がある。さらに、アルカリに対する表面層の安定性を高める作用を有するため、腐食反応によるアルカリ化が生じやすいカソード領域においても耐食効果を高めて局部腐食性を向上させるのに有効な元素である。このような効果を発揮するためには、0.05質量%以上の含有量が必要である。一方、5.0質量%を超えると、表面層の脆化を起こして、剥離や割れ等の問題を生じやすい。したがって、Coの含有量は、0.05〜5.0質量%が好ましく、0.10〜4.0質量%がより好ましい。
<Co: 0.05-5.0 mass%>
Co, like Cr, has the effect of increasing the stability of the surface layer against non-oxidizing acids. Furthermore, since it has the effect | action which raises the stability of the surface layer with respect to an alkali, it is an element effective in improving a corrosion resistance effect and improving local corrosion property also in the cathode area | region which is easy to produce alkalinization by a corrosion reaction. In order to exert such an effect, a content of 0.05% by mass or more is necessary. On the other hand, if it exceeds 5.0% by mass, the surface layer is brittle, and problems such as peeling and cracking tend to occur. Therefore, the content of Co is preferably 0.05 to 5.0% by mass, and more preferably 0.10 to 4.0% by mass.

<Ti:0.05〜5.0質量%>
Tiは、酸化性の酸およびアルカリに対する表面層の安定性を高める作用を有するため、酸化剤を含む油類タンクや腐食反応によるアルカリ化が生じやすいカソード領域においても耐食効果を高めて局部腐食性を向上させるのに有効な元素である。このような効果を発揮するためには、0.05質量%以上の含有量が必要である。一方、5.0質量%を超えると、表面層の脆化を起こして、剥離や割れ等の問題を生じやすい。したがって、Tiの含有量は、0.05〜5.0質量%が好ましく、0.10〜4.0質量%がより好ましい。
<Ti: 0.05-5.0 mass%>
Ti has the effect of enhancing the stability of the surface layer against oxidizing acids and alkalis, so it enhances the corrosion resistance even in oil tanks containing oxidizers and in the cathode region where alkalinization is likely to occur due to corrosive reactions. It is an effective element for improving In order to exert such an effect, a content of 0.05% by mass or more is necessary. On the other hand, if it exceeds 5.0% by mass, the surface layer is brittle, and problems such as peeling and cracking tend to occur. Therefore, the content of Ti is preferably 0.05 to 5.0% by mass, and more preferably 0.10 to 4.0% by mass.

<Mg:0.05〜1.0質量%、Ca:0.05〜1.0質量%>
MgおよびCaは、いずれも表面層の耐熱性を高める作用を有するため、高温油類を含有した場合において耐食効果を高めるのに有効な元素である。また、母材の鋼材腐食によって溶解したFeイオンの加水分解によるpH低下に対して緩和作用を有しており、局部腐食発生部のpH低下による腐食加速を抑制して局部腐食性を高めるのに有効である。このような効果を発揮するためには、0.05質量%以上の含有量が必要である。一方、1.0質量%を超えると、表面層の脆化を起こして、剥離や割れ等の問題を生じやすい。したがって、MgおよびCaの含有量は、0.05〜1.0質量%が好ましく、0.05〜0.9質量%がより好ましい。
<Mg: 0.05 to 1.0 mass%, Ca: 0.05 to 1.0 mass%>
Since both Mg and Ca have the effect of increasing the heat resistance of the surface layer, they are effective elements for enhancing the corrosion resistance when high temperature oils are contained. In addition, it has a mitigating action against pH reduction due to hydrolysis of Fe ions dissolved by steel corrosion of the base material, and it suppresses acceleration of corrosion due to pH reduction at the local corrosion generating part and enhances local corrosion It is valid. In order to exert such an effect, a content of 0.05% by mass or more is necessary. On the other hand, when it exceeds 1.0 mass%, the surface layer is brittle, and problems such as peeling and cracking tend to occur. Therefore, the content of Mg and Ca is preferably 0.05 to 1.0% by mass, and more preferably 0.05 to 0.9% by mass.

<Zn:0.05〜1.0質量%>
Znは、MgやCaと同様に表面層の耐熱性を高める作用を有するため、高温油類を含有した場合において耐食効果を高めるのに有効な元素である。また、アルカリに対する安定性も高めるため、アルカリ化が生じやすいカソード領域において耐食効果を高めて局部腐食性を向上させるのに有効な元素である。このような効果を発揮するためには、0.05質量%以上の含有量が必要である。一方、1.0質量%を超えると、表面層の脆化を起こして、剥離や割れ等の問題を生じやすい。したがって、Znの含有量は、0.05〜1.0質量%が好ましく、0.05〜0.9質量%がより好ましい。
<Zn: 0.05 to 1.0% by mass>
Zn has the effect of increasing the heat resistance of the surface layer like Mg and Ca, and is therefore an effective element for enhancing the corrosion resistance when high temperature oils are contained. Further, since the stability against alkali is also increased, it is an element effective for enhancing the local corrosion resistance by enhancing the corrosion resistance effect in the cathode region where alkalinization is likely to occur. In order to exert such an effect, a content of 0.05% by mass or more is necessary. On the other hand, when it exceeds 1.0 mass%, the surface layer is brittle, and problems such as peeling and cracking tend to occur. Therefore, the content of Zn is preferably 0.05 to 1.0% by mass, and more preferably 0.05 to 0.9% by mass.

また、本発明の油類貯蔵容器用耐食材料の母材としては、機械特性や経済性の観点から鋼材を用いる。ただし、鋼材を用いる場合には、構造部材としての基本的特性を満足させるために、C、Si、Mn、Al等の成分を所定量含有することが好ましく、また、鋼材にCuおよびNiを所定量含有させることにより、耐食性はさらに向上する。以下に鋼材の成分範囲の限定理由について説明する。   Moreover, as a base material of the corrosion resistant material for oil storage containers of the present invention, a steel material is used from the viewpoint of mechanical characteristics and economy. However, when using a steel material, it is preferable to contain a predetermined amount of components such as C, Si, Mn, and Al in order to satisfy the basic characteristics as a structural member, and Cu and Ni should be placed in the steel material. Corrosion resistance is further improved by adding a fixed amount. The reason for limiting the component range of the steel material will be described below.

<C:0.01〜0.30質量%>
Cは、鋼材の強度確保のために必要な元素である。油類タンクの構造部材としての最低強度、即ち、使用する鋼材の肉厚にもよるが、概ね400MPa程度の強度を得るためには、0.01質量%以上の含有量が必要である。一方、0.30質量%を超えると、靱性が劣化しやすい。したがって、Cの含有量は、0.01〜0.30質量%が好ましく、より好ましくは、0.02〜0.28質量%、さらには、0.04〜0.26質量%が好ましい。
<C: 0.01-0.30 mass%>
C is an element necessary for ensuring the strength of the steel material. Although it depends on the minimum strength as a structural member of the oil tank, that is, the thickness of the steel material to be used, in order to obtain a strength of about 400 MPa, a content of 0.01% by mass or more is required. On the other hand, when it exceeds 0.30 mass%, toughness tends to deteriorate. Therefore, the content of C is preferably 0.01 to 0.30% by mass, more preferably 0.02 to 0.28% by mass, and further preferably 0.04 to 0.26% by mass.

<Si:0.01〜2.0質量%>
Siは鋼材の脱酸と強度確保のために必要な元素である。Siの含有量が0.01質量%未満では、油類タンクの構造部材としての最低強度を確保しにくい。一方、2.0質量%を超えると、溶接性が劣化しやすい。したがって、Siの含有量は、0.01〜2.0質量%が好ましく、より好ましくは、0.02〜1.80質量%、さらには、0.05〜1.60質量%が好ましい。
<Si: 0.01 to 2.0% by mass>
Si is an element necessary for deoxidizing steel and securing strength. When the Si content is less than 0.01% by mass, it is difficult to ensure the minimum strength as a structural member of the oil tank. On the other hand, when it exceeds 2.0 mass%, weldability tends to deteriorate. Therefore, the content of Si is preferably 0.01 to 2.0% by mass, more preferably 0.02 to 1.80% by mass, and further preferably 0.05 to 1.60% by mass.

<Mn:0.01〜2.0質量%>
MnもSiと同様に脱酸および強度確保のために必要な元素である。Mnの含有量が0.01質量%未満では、油類タンクの構造部材としての最低強度を確保しにくい。一方、2.0質量%を超えると、靱性が劣化しやすい。したがって、Mnの含有量は、0.01〜2.0質量%が好ましく、より好ましくは、0.05〜1.80質量%、さらには、0.10〜1.60質量%が好ましい。
<Mn: 0.01 to 2.0% by mass>
Mn is an element necessary for deoxidation and securing of strength, similarly to Si. When the Mn content is less than 0.01% by mass, it is difficult to ensure the minimum strength as a structural member of the oil tank. On the other hand, when it exceeds 2.0 mass%, toughness tends to deteriorate. Therefore, the content of Mn is preferably 0.01 to 2.0% by mass, more preferably 0.05 to 1.80% by mass, and further preferably 0.10 to 1.60% by mass.

<Al:0.005〜0.10質量%>
AlもSi、Mnと同様に脱酸および強度確保のために必要な元素である。Alの含有量が0.005質量%未満では、脱酸の効果が低くなりやすい。一方、0.10質量%を超えると、溶接性が劣化しやすい。したがって、Alの含有量は、0.005〜0.10質量%が好ましく、より好ましくは、0.010〜0.090質量%、さらには、0.015〜0.080質量%が好ましい。
<Al: 0.005 to 0.10% by mass>
Al, like Si and Mn, is an element necessary for deoxidation and securing strength. When the Al content is less than 0.005% by mass, the effect of deoxidation tends to be low. On the other hand, when it exceeds 0.10 mass%, weldability tends to deteriorate. Therefore, the content of Al is preferably 0.005 to 0.10% by mass, more preferably 0.010 to 0.090% by mass, and further preferably 0.015 to 0.080% by mass.

<Cu:0.01〜1.0質量%>
Cuは耐食性向上に有効な元素である。Cuは錆の緻密性を高める作用を有しているため、表面層に欠陥が生じて母材が露出した場合に、欠陥部に緻密な錆を形成し、環境遮断性を高めて耐食性を向上させる。これらの効果を発揮させるためには、0.01質量%以上の含有量が好ましい。一方、1.0質量%を超えると、溶接性や熱間加工性が劣化しやすい。したがって、Cuの含有量は、0.01〜1.0質量%が好ましく、0.05〜0.90質量%がより好ましい。
<Cu: 0.01 to 1.0% by mass>
Cu is an element effective for improving corrosion resistance. Since Cu has the effect of increasing the density of rust, when a defect occurs in the surface layer and the base material is exposed, dense rust is formed in the defective part, improving the environmental barrier properties and improving the corrosion resistance. Let In order to exert these effects, a content of 0.01% by mass or more is preferable. On the other hand, when it exceeds 1.0 mass%, weldability and hot workability will deteriorate easily. Therefore, the content of Cu is preferably 0.01 to 1.0% by mass, and more preferably 0.05 to 0.90% by mass.

<Ni:0.01〜1.0質量%>
Niは耐食性向上に有効である。NiはCuと同様に錆の緻密性を高める作用を有しているため、表面層に欠陥が生じて母材が露出した場合に、欠陥部に緻密な錆を形成し、環境遮断性を高めて耐食性を向上させる。また、Niは、Cu添加による赤熱脆性を防止するのに必要な元素である。こうした効果を発揮させるためには、0.01質量%以上の含有量が好ましい。一方、1.0質量%を超えると、溶接性や熱間加工性が劣化しやすい。したがって、Niの含有量は、0.01〜1.0質量%が好ましく、0.05〜0.90質量%がより好ましい。
<Ni: 0.01 to 1.0% by mass>
Ni is effective in improving corrosion resistance. Ni, like Cu, has the effect of increasing the density of rust, so when a defect occurs in the surface layer and the base material is exposed, dense rust is formed in the defective part, thereby improving environmental barrier properties. Improve corrosion resistance. Ni is an element necessary to prevent red heat brittleness due to Cu addition. In order to exert such effects, a content of 0.01% by mass or more is preferable. On the other hand, when it exceeds 1.0 mass%, weldability and hot workability will deteriorate easily. Therefore, the Ni content is preferably 0.01 to 1.0 mass%, more preferably 0.05 to 0.90 mass%.

<残部がFeおよび不可避的不純物>
本発明の油類貯蔵容器用耐食鋼材に用いる鋼材の成分は前記の通りであり、残部は鉄および不可避的不純物からなるものである。不可避的不純物元素としては、例えば、P、S、O、N、H、Mo、W、Zn等が挙げられるが、本発明の効果を妨げない範囲においてこれらを含有することは許容され、これらの含有量は、合計で0.1質量%以下が好ましく、0.05質量%以下がより好ましい。
<The balance is Fe and inevitable impurities>
The components of the steel material used for the corrosion resistant steel material for oil storage containers of the present invention are as described above, and the balance is composed of iron and inevitable impurities. Inevitable impurity elements include, for example, P, S, O, N, H, Mo, W, Zn, etc., but these are allowed to be contained within a range not impeding the effects of the present invention. The total content is preferably 0.1% by mass or less, and more preferably 0.05% by mass or less.

本発明に係る油類貯蔵容器用耐食鋼材に用いる鋼材には、前記成分に加えて、更に、(1)Cr、Co、Ti、Mg、Caから選ばれる1種以上、(2)B、V、Nbから選ばれる1種以上等を含有させることが好ましく、含有させる成分の種類に応じて鋼材の特性が更に改善されることになる。以下、これらの限定理由について説明する。   In addition to the above components, the steel material used for the corrosion resistant steel material for oil storage containers according to the present invention may further include (1) one or more selected from Cr, Co, Ti, Mg, Ca, (2) B, V It is preferable to contain one or more selected from Nb, and the characteristics of the steel material will be further improved according to the type of component to be contained. Hereinafter, these reasons for limitation will be described.

<Cr:0.01〜1.0質量%>
Crは耐食性向上に有効な元素である。Crは、NiやCuと同様に錆の緻密性を高める作用を有しているため、表面層に欠陥が生じて母材が露出した場合に、欠陥部に緻密な錆を形成し、環境遮断性を高めて耐食性を向上させる。また、適量のCrは靭性を向上させるのに有効であり、容器素材として必要な機械特性を得るためにも必要な元素である。これらの効果を発揮させるためには、0.01質量%以上の含有量が好ましい。一方、1.0質量%を超えると、溶接性や熱間加工性が劣化しやすい。したがって、Crの含有量は、0.01〜1.0質量%が好ましく、0.05〜0.90質量%がより好ましい。
<Cr: 0.01 to 1.0% by mass>
Cr is an element effective for improving corrosion resistance. Cr, like Ni and Cu, has the effect of increasing the density of rust, so when a defect occurs in the surface layer and the base material is exposed, dense rust is formed in the defective part, thereby blocking the environment. To improve the corrosion resistance. Further, an appropriate amount of Cr is effective for improving toughness, and is an element necessary for obtaining mechanical properties necessary as a container material. In order to exert these effects, a content of 0.01% by mass or more is preferable. On the other hand, when it exceeds 1.0 mass%, weldability and hot workability will deteriorate easily. Therefore, the content of Cr is preferably 0.01 to 1.0% by mass, and more preferably 0.05 to 0.90% by mass.

<Co:0.005〜0.50質量%>
Coは耐食性向上に有効な元素である。Coは、塩化物腐食環境において生成する錆を緻密化する作用を有しており、表面層の欠陥部における腐食進展を抑制する元素である。こうした効果を発揮させるためには、0.005質量%以上の含有量が好ましい。一方、0.50質量%を超えると、溶接性や熱間加工性が劣化しやすい。したがって、Coの含有量は、0.005〜0.50質量%が好ましく、0.02〜0.45質量%がより好ましい。
<Co: 0.005-0.50 mass%>
Co is an element effective for improving corrosion resistance. Co has an action of densifying rust generated in a chloride corrosive environment, and is an element that suppresses corrosion progress in a defective portion of the surface layer. In order to exert such effects, a content of 0.005% by mass or more is preferable. On the other hand, when it exceeds 0.50 mass%, weldability and hot workability are likely to deteriorate. Therefore, the content of Co is preferably 0.005 to 0.50 mass%, and more preferably 0.02 to 0.45 mass%.

<Ti:0.005〜0.20質量%>
Tiは耐食性向上に有効な元素である。Tiは、塩化物腐食環境において生成する錆を緻密化する作用を有しており、表面層の欠陥部における腐食進展を抑制する元素である。こうした効果を発揮させるためには、0.005質量%以上の含有量が好ましい。一方、0.20質量%を超えると、溶接性や熱間加工性が劣化しやすい。したがって、Tiの含有量は、0.005〜0.20質量%が好ましく、0.008〜0.15質量%がより好ましい。
<Ti: 0.005-0.20 mass%>
Ti is an element effective for improving corrosion resistance. Ti has an action of densifying rust generated in a chloride corrosive environment, and is an element that suppresses corrosion progress in a defective portion of the surface layer. In order to exert such effects, a content of 0.005% by mass or more is preferable. On the other hand, when it exceeds 0.20 mass%, weldability and hot workability are likely to deteriorate. Therefore, the content of Ti is preferably 0.005 to 0.20 mass%, and more preferably 0.008 to 0.15 mass%.

<Mg:0.0001〜0.005質量%>
Mgは耐食性向上に有効な元素である。Mgは、鋼材腐食によって溶解したFeイオンの加水分解によるpH低下に対して緩和作用を有しており、pH低下による腐食促進を抑制するのに効果的である。こうした効果を発揮させるためには、0.0001質量%以上の含有量が好ましい。一方、0.005質量%を超えると、加工性と溶接性が劣化しやすい。したがって、Mgの含有量は、0.0001〜0.005質量%が好ましく、0.0005〜0.004質量%がより好ましい。
<Mg: 0.0001 to 0.005 mass%>
Mg is an effective element for improving corrosion resistance. Mg has a mitigating action against pH reduction due to hydrolysis of Fe ions dissolved by steel corrosion, and is effective in suppressing corrosion promotion due to pH reduction. In order to exert such effects, a content of 0.0001% by mass or more is preferable. On the other hand, when it exceeds 0.005 mass%, workability and weldability tend to deteriorate. Therefore, the content of Mg is preferably 0.0001 to 0.005 mass%, more preferably 0.0005 to 0.004 mass%.

<Ca:0.0001〜0.005質量%>
Caは耐食性向上に有効な元素である。CaはMgと同様に鋼材腐食によって溶解したFeイオンの加水分解によるpH低下に対して緩和作用を有しており、pH低下による腐食促進を抑制するのに効果的である。こうした効果を発揮させるためには、0.0001質量%以上の含有量が好ましい。一方、0.005質量%を超えると、加工性と溶接性が劣化しやすい。したがって、Caの含有量は、0.0001〜0.005質量%が好ましく、0.0005〜0.004質量%がより好ましい。
<Ca: 0.0001 to 0.005 mass%>
Ca is an element effective for improving corrosion resistance. Ca, like Mg, has a mitigating action against pH decrease due to hydrolysis of Fe ions dissolved by steel corrosion, and is effective in suppressing corrosion promotion due to pH decrease. In order to exert such effects, a content of 0.0001% by mass or more is preferable. On the other hand, when it exceeds 0.005 mass%, workability and weldability tend to deteriorate. Therefore, the content of Ca is preferably 0.0001 to 0.005 mass%, and more preferably 0.0005 to 0.004 mass%.

<B:0.0001〜0.010質量%、V:0.01〜0.50質量%、Nb:0.003〜0.50質量%>
B、VおよびNbは、いずれも機械特性の向上に有効な元素である。このうちBは、0.0001質量%以上含有させることによって焼入性が向上して強度向上に有効であるが、0.010質量%を超えると、鋼材の靭性が劣化しやすい。したがって、Bの含有量は、0.0001〜0.010質量%が好ましく、0.0003〜0.0090質量%がより好ましい。
<B: 0.0001 to 0.010 mass%, V: 0.01 to 0.50 mass%, Nb: 0.003 to 0.50 mass%>
B, V and Nb are all effective elements for improving the mechanical properties. Among these, B is contained in an amount of 0.0001% by mass or more, thereby improving the hardenability and effective in improving the strength. However, if it exceeds 0.010% by mass, the toughness of the steel material tends to deteriorate. Therefore, the content of B is preferably 0.0001 to 0.010 mass%, and more preferably 0.0003 to 0.0090 mass%.

Vは、0.01質量%以上含有させることによって強度向上に有効であるが、0.50質量%を超えると、鋼材の靭性が劣化しやすい。したがって、Vの含有量は、0.01〜0.50質量%が好ましく、0.02〜0.45質量%がより好ましい。
Nbは、0.003質量%以上含有させることによって強度向上に有効であるが、0.50質量%を超えると、鋼材の靭性が劣化しやすい。したがって、Nbの含有量は、0.003〜0.50質量%が好ましく、0.005〜0.45質量%がより好ましい。
V is effective in improving the strength by containing 0.01% by mass or more, but if it exceeds 0.50% by mass, the toughness of the steel material is likely to deteriorate. Therefore, the content of V is preferably 0.01 to 0.50 mass%, and more preferably 0.02 to 0.45 mass%.
Nb is effective in improving the strength by containing 0.003% by mass or more, but if it exceeds 0.50% by mass, the toughness of the steel material is likely to deteriorate. Therefore, the content of Nb is preferably 0.003 to 0.50 mass%, and more preferably 0.005 to 0.45 mass%.

次に、油類貯蔵容器用耐食鋼材の製造方法について説明する。
前記したように、油類貯蔵容器用耐食鋼材は、鋼材の表面に、所定の元素を所定量含有した所定厚さの表面層を設けたものである。
本発明に供する鋼材を得るための方法は特に限定されるものではなく、通常用いられる方法により製造可能である。すなわち、転炉、電気炉等の通常の溶製方法により任意の原料を用いて溶鋼の化学成分を調整し、連続鋳造法、造塊法等の通常の鋳造方法で鋼塊とし、さらに熱間圧延を行って、所望の寸法形状として用いることができる。
Next, the manufacturing method of the corrosion-resistant steel material for oil storage containers is demonstrated.
As described above, the corrosion resistant steel material for oil storage containers is provided with a surface layer having a predetermined thickness containing a predetermined amount of a predetermined element on the surface of the steel material.
The method for obtaining the steel material used for this invention is not specifically limited, It can manufacture by the method used normally. That is, the chemical composition of the molten steel is adjusted by using any raw material by a normal melting method such as a converter or an electric furnace, and a steel ingot is obtained by a normal casting method such as a continuous casting method or an ingot-making method. It can be rolled and used as a desired size and shape.

表面層の形成方法としては、溶射法、物理蒸着法、化学蒸着法、あるいは塗布法等、従来の表面皮膜形成方法を用いることができる。しかし、量産性を考慮して、以下に説明するように、鋼材を、水溶液とS粉末とを混合した溶液に浸漬することにより、この鋼材に厚さが50〜800μmの表面層を形成する方法(浸漬法と記載)を用いることが好ましい。なお、処理速度の観点で推奨されるのは溶射法であり、目的の表面層の組成となるように原料の形状(線材、粉末等)や組成を選定して、溶線式や粉末式のフレーム溶射、プラズマ溶射あるいはレーザー溶射等の方式によって当該表面層を形成することが可能である。   As a method for forming the surface layer, a conventional surface film forming method such as thermal spraying, physical vapor deposition, chemical vapor deposition, or coating can be used. However, in consideration of mass productivity, a method of forming a surface layer having a thickness of 50 to 800 μm on a steel material by immersing the steel material in a mixed solution of an aqueous solution and S powder as described below. It is preferable to use (described as an immersion method). The spraying method is recommended from the viewpoint of processing speed, and the shape (wire material, powder, etc.) and composition of the raw material are selected so that the composition of the target surface layer is obtained, and the frame of the wire type or powder type is selected. The surface layer can be formed by a method such as thermal spraying, plasma spraying, or laser spraying.

浸漬法は、表面層が前記した成分組成となるように、適切な量のCu、Ni等の表面層成分を含有する鋼材を、水溶液(溶媒)に単体S(粉末S)を混合させた溶液に浸漬することにより接触させて、鋼中のCuおよびNi等と溶液中のSおよびOとを反応させる方法である。浸漬法は、溶射法等のような表面層形成装置が不要であることから、低コストで当該表面層を得ることができ、経済的には好ましい。   The dipping method is a solution in which a simple substance S (powder S) is mixed in an aqueous solution (solvent) with a steel material containing an appropriate amount of a surface layer component such as Cu or Ni so that the surface layer has the component composition described above. In this method, Cu and Ni in steel are reacted with S and O in solution. Since the dipping method does not require a surface layer forming apparatus such as a thermal spraying method, the surface layer can be obtained at low cost, which is economically preferable.

浸漬法では、鋼材が腐食することにより、鋼材中に含まれるCu等の表面層構成元素も溶出してイオンとなる。このイオン化した表面層構成元素は、水溶液に混合しているSと反応することによって硫化物となり、水分あるいは溶存酸素と反応することによって、酸化物となり、これらが表面に堆積して表面層を形成する。   In the dipping method, when the steel material corrodes, the surface layer constituent elements such as Cu contained in the steel material are also eluted and become ions. This ionized surface layer constituent element becomes sulfide by reacting with S mixed in the aqueous solution, and becomes oxide by reacting with moisture or dissolved oxygen, and these deposit on the surface to form a surface layer. To do.

浸漬法において用いるSは、均一な表面層を形成するという観点で粉末状が好ましい。粉末状のSであるS粉末としては、一般的に市販されている粉末状のS試薬を用いることができ、例えば、和光純薬工業(株)製の硫黄粉末(コードNo.195−04625)等が挙げられる。
Sを混合させる水溶液(溶媒)としては、鋼材に含有させた表面層の構成成分とSおよびOとを反応させる必要があるため、塩水、塩酸、硫酸等の金属に対して腐食作用を有するものが推奨される。
S used in the dipping method is preferably in a powder form from the viewpoint of forming a uniform surface layer. As S powder which is powdery S, generally available powdery S reagent can be used, for example, sulfur powder (code No. 195-04625) manufactured by Wako Pure Chemical Industries, Ltd. Etc.
As an aqueous solution (solvent) to be mixed with S, it is necessary to react S and O with components of the surface layer contained in the steel material, so that it has a corrosive action on metals such as salt water, hydrochloric acid and sulfuric acid. Is recommended.

塩水を用いる場合は、1〜10質量%塩水、塩酸を用いる場合は、0.1〜5質量%塩酸、硫酸を用いる場合は、1〜20質量%硫酸を用いることが好ましい。また、S粉末を混合した混合物に鋼材を浸漬する処理温度は、20〜60℃が好ましく、処理時間は、1〜100時間が好ましい。さらに、溶媒と単体Sとの混合比は、質量比で溶媒1に対して、単体Sを0.1〜1程度が好ましい。
ここで、浸漬法による表面層の膜厚は、用いる溶媒の種類、溶媒とSとの混合比、処理温度あるいは処理時間等の浸漬条件を変化させて、50〜800μmに調整することが可能である。
When using salt water, it is preferable to use 1-10 mass% sulfuric acid, when using hydrochloric acid, 0.1-5 mass% hydrochloric acid, and when using sulfuric acid, 1-20 mass% sulfuric acid is used. Moreover, 20-60 degreeC is preferable and the processing temperature which immerses steel materials in the mixture which mixed S powder, and 1-100 hours are preferable for processing time. Furthermore, the mixing ratio of the solvent and the simple substance S is preferably about 0.1 to 1 for the simple substance S with respect to the solvent 1 in terms of mass ratio.
Here, the film thickness of the surface layer by the dipping method can be adjusted to 50 to 800 μm by changing dipping conditions such as the type of solvent used, the mixing ratio of the solvent and S, the treatment temperature or the treatment time. is there.

本発明に係る油類貯蔵容器は、前記に記載した油類貯蔵容器用耐食鋼材を使用して作製されたものである。
油類貯蔵容器としては、原油、重油、軽油、灯油、ガソリン、石油アスファルト、潤滑油、切削油、マシン油、グリース、石油ワックス、さび止め油、石油エーテル等の原油および石油由来の油類の貯蔵や運搬等に用いられる容器、例えば、原油タンク等が挙げられる。
このような油類貯蔵容器においては、鋼材として、耐食性に優れる油類貯蔵容器用耐食鋼材を使用するため、油類貯蔵容器の耐食性も向上し、油類貯蔵容器を長寿命とすることができる。
The oil storage container which concerns on this invention is produced using the corrosion-resistant steel material for oil storage containers described above.
Oil storage containers include crude oil, heavy oil, light oil, kerosene, gasoline, petroleum asphalt, lubricating oil, cutting oil, machine oil, grease, petroleum wax, rust prevention oil, petroleum ether, and other crude oil and petroleum-derived oils. Containers used for storage and transportation, for example, crude oil tanks and the like can be mentioned.
In such an oil storage container, the corrosion resistance of the oil storage container is improved and the oil storage container can have a long life because the corrosion resistant steel material for the oil storage container having excellent corrosion resistance is used as the steel material. .

次に、本発明に係る油類貯蔵容器用耐食鋼材および油類貯蔵容器用耐食鋼材の製造方法について、本発明の要件を満たす実施例と本発明の要件を満たさない比較例とを比較して具体的に説明する。
[供試材の作製]
容量500kgの大気溶解炉により鋼材の原料を溶製し、表1に示すAからSの化学成分を有する鋼塊を作製した。この鋼塊を熱間圧延することにより得られた表1に示すAからSの化学成分を有する鋼板(鋼材)から、100×100×10(mm)の大きさの試験片を切り出した。切り出した試験片全面を湿式回転研磨機(研磨紙;#600)で研磨仕上げし、水洗およびアセトン洗浄を行って、表2〜4に示す方法により表面層を形成した。
Next, the production method of the corrosion resistant steel material for oil storage containers and the corrosion resistant steel material for oil storage containers according to the present invention is compared between an example that satisfies the requirements of the present invention and a comparative example that does not satisfy the requirements of the present invention. This will be specifically described.
[Production of test materials]
Steel materials were melted in an atmospheric melting furnace having a capacity of 500 kg to produce steel ingots having chemical components A to S shown in Table 1. A test piece having a size of 100 × 100 × 10 (mm) was cut out from a steel plate (steel material) having chemical components A to S shown in Table 1 obtained by hot rolling the steel ingot. The entire surface of the cut specimen was polished with a wet rotary polishing machine (abrasive paper; # 600), washed with water and washed with acetone, and a surface layer was formed by the methods shown in Tables 2 to 4.

各種溶射法(粉末式フレーム溶射、RFプラズマ溶射、レーザー溶射)では、表面層の組成が表2〜4の組成となるように、表面層の構成金属元素の硫化物および酸化物の粉末を種々の混合比で混合したものを原料として用いた。
粉末式フレーム溶射では、熱源としてアセチレン炎を用い、溶射距離は150mmとして、ノズル移動速度を調整して表面層の膜厚を調整した。RFプラズマ溶射では、プラズマガスとしてArを用い、溶射距離は130mmとして、ノズル移動速度を調整して表面層の膜厚を調整した。レーザー溶射では、炭酸ガスレーザーを用い、溶射距離は120mmとして、ノズル移動速度を調整して表面層の膜厚を調整した。
In various thermal spraying methods (powder flame spraying, RF plasma spraying, laser spraying), various surface element metal sulfide and oxide powders are used so that the composition of the surface layer is as shown in Tables 2 to 4. What was mixed with the mixing ratio was used as a raw material.
In powder-type flame spraying, an acetylene flame was used as a heat source, the spraying distance was 150 mm, and the nozzle moving speed was adjusted to adjust the film thickness of the surface layer. In RF plasma spraying, Ar was used as the plasma gas, the spraying distance was 130 mm, and the nozzle moving speed was adjusted to adjust the film thickness of the surface layer. In laser spraying, a carbon dioxide laser was used, the spraying distance was 120 mm, and the nozzle moving speed was adjusted to adjust the film thickness of the surface layer.

また、浸漬法では、10%食塩水1に対して粉末状S試薬(和光純薬工業(株)製:コードNo.195−04625)0.5の質量比で混合した溶液に前記試験片を浸漬して表面層を形成した。浸漬法の処理温度はすべて30℃として、処理時間を3〜24時間で変化させて表面層の膜厚を調整した。なお、浸漬法による表面層形成は試験面1面のみとして、試験面以外の面はテフロン(登録商標)テープでマスキングを施して浸漬処理を行った。   In addition, in the dipping method, the test piece was added to a solution in which the powder S reagent (Wako Pure Chemical Industries, Ltd .: Code No. 195-04625) was mixed at a mass ratio of 0.5 with 10% saline solution 1. A surface layer was formed by dipping. The treatment temperature of the dipping method was 30 ° C., and the treatment time was changed in 3 to 24 hours to adjust the film thickness of the surface layer. The surface layer was formed by the dipping method with only one test surface, and the surface other than the test surface was subjected to an immersion treatment by masking with a Teflon (registered trademark) tape.

前記の表面層形成の後、腐食試験において試験面以外が腐食するのを防ぐために、試験面以外にシリコンシーラントを塗布して被覆を施し、腐食試験用の試験片とした。なお、浸漬法により表面層を形成したものはマスキングのためのテフロン(登録商標)テープを剥がして、前記シリコンシーラント被覆を行った。試験片の個数は、表2〜4に示したNo.1〜47のそれぞれ5枚ずつを下記の腐食試験に供した。
形成した表面層の化学成分および厚さは表2〜4に示す通りである。表面層の化学成分は、カッターナイフで削り取った表面層の削り粉の化学分析によって求めた。表面層の厚さは、断面観察により求めた表面層厚さの任意の5カ所の平均値とした。
After the formation of the surface layer, in order to prevent corrosion other than the test surface in the corrosion test, a silicon sealant was applied to the surface other than the test surface and coated to obtain a test piece for the corrosion test. In addition, what formed the surface layer by the immersion method peeled off the Teflon (trademark) tape for masking, and performed the said silicone sealant coating. The number of test pieces is No. shown in Tables 2-4. Each of 1 to 47 was subjected to the following corrosion test.
The chemical composition and thickness of the formed surface layer are as shown in Tables 2-4. The chemical component of the surface layer was determined by chemical analysis of the surface layer shavings scraped with a cutter knife. The thickness of the surface layer was an average value at any five locations of the surface layer thickness determined by cross-sectional observation.

[腐食試験方法]
耐食性を評価するための腐食試験方法は下記の2種を用いた。腐食試験Aでは、JIS K2205において、3種2号に分類される重油に前記で作製した試験片を浸漬して腐食させた。試験容器は密閉容器を用いて、温度は60℃に保持した。このとき、重油1に対して、腐食促進のために300ppmNaCl+300ppmNaSO水溶液を質量比で0.01添加した。試験片の個数は、表2〜4に示したNo.1〜47をそれぞれ5枚ずつである。
[Corrosion test method]
The following two kinds of corrosion test methods for evaluating the corrosion resistance were used. In the corrosion test A, the test piece prepared above was immersed and corroded in heavy oil classified as Type 3 No. 2 in JIS K2205. The test container was a sealed container, and the temperature was maintained at 60 ° C. At this time, 0.01 ppm of 300 ppm NaCl + 300 ppm Na 2 SO 4 aqueous solution was added to the heavy oil 1 to promote corrosion. The number of test pieces is No. shown in Tables 2-4. 1 to 47 is 5 pieces each.

腐食試験Bでは、クエート産の原油に前記で作製した試験片を浸漬して腐食させた。試験容器は密閉容器を用いて、温度は60℃に保持した。このとき、原油1に対して、腐食促進のために人工海水を質量比で0.01添加した。試験片の個数は、表2〜4に示したNo.1〜47をそれぞれ5枚ずつである。   In the corrosion test B, the test piece prepared above was immersed in a crude oil from Kuwait to be corroded. The test container was a sealed container, and the temperature was maintained at 60 ° C. At this time, 0.01 mass of artificial seawater was added to crude oil 1 to promote corrosion. The number of test pieces is No. shown in Tables 2-4. 1 to 47 is 5 pieces each.

いずれの腐食試験も試験時間は1年間として、試験前後の試験片の質量減少量を用いて、各々試験に用いた5枚の試験片の平均値を求めて、耐食性を評価した。ここでの試験前後の質量減少量とは、表面層を含まない母材(鋼材)の質量減少量を意味するものであり、試験前の質量としては表面層形成前の試験片質量を用いた。なお、浸漬法により表面層を形成した場合には、浸漬処理時の母材溶解量と表面層厚さの関係を予め求めておいて、表面層厚さより浸漬処理時の溶解量を見積もり、試験前質量を補正した。また、試験後の質量測定では、腐食試験後にウォータージェット法により腐食生成物および表面層を除去して、母材(鋼材)のみの質量を求めた。   In each corrosion test, the test time was set to one year, and the average value of the five test pieces used for each test was calculated using the mass reduction amount of the test pieces before and after the test to evaluate the corrosion resistance. The mass reduction amount before and after the test here means the mass reduction amount of the base material (steel material) not including the surface layer, and the test piece mass before the surface layer formation was used as the mass before the test. . In addition, when the surface layer is formed by the dipping method, the relationship between the base material dissolution amount during the immersion treatment and the surface layer thickness is obtained in advance, and the dissolution amount during the immersion treatment is estimated from the surface layer thickness, and the test is performed. The previous mass was corrected. In the mass measurement after the test, the corrosion products and the surface layer were removed by the water jet method after the corrosion test, and the mass of only the base material (steel material) was obtained.

耐食性の評価としては、単位面積当たりの質量減少量の平均値が、0.1kg/m未満であった場合を◎◎、0.1kg/m以上0.5kg/m未満を◎、0.5kg/m以上1kg/m未満を○、1kg/m以上5kg/m未満を△、5kg/m以上を×とした。 For evaluation of corrosion resistance, the average value of mass reduction per unit area is less than 0.1 kg / m 2 ◎◎, 0.1 kg / m 2 or more and less than 0.5 kg / m 2 ◎, 0.5 kg / m 2 or more and less than 1 kg / m 2 was evaluated as “◯”, 1 kg / m 2 or more and less than 5 kg / m 2 as “Δ”, and 5 kg / m 2 or more as “X”.

[腐食試験結果]
腐食試験結果は表2〜4に示す通りである。
なお、表中成分を含有していないものについては、「−」で示す。また、本発明の構成を満たさないもの等については、数値に下線を引いて示す。
[Corrosion test results]
The results of the corrosion test are as shown in Tables 2-4.
In addition, about the thing which does not contain the component in a table | surface, it shows by "-". Moreover, about what does not satisfy | fill the structure of this invention, it shows by underlining a numerical value.

Figure 2008038158
Figure 2008038158

Figure 2008038158
Figure 2008038158

Figure 2008038158
Figure 2008038158

Figure 2008038158
Figure 2008038158

実施例であるNo.1〜34(本発明の成分範囲に制御したもの)はいずれも、耐食性の評価において△以上のレベルであり、耐食性に優れていることがわかる。
これに対して、比較例である通常の鋼材のNo.35は、表面層を形成していないため、また、鋼材にCu、Niを含有していないため、いずれの試験においても質量減少量が5kg/m以上と耐食性に劣った。No.36は、鋼材にCu、Niを含有しているため、腐食試験Aでの耐食性がやや改善されてはいるが、表面層を形成していないため、腐食試験Bでは、質量減少量が5kg/m以上と耐食性に劣った。No.37〜No.47は腐食試験Aでの耐食性がやや改善されてはいるが、No.37では表面層中のCu含有量が規定値に満たないため耐食性は不十分な結果となった。No.38〜No.47では表面層中の成分は規定範囲を満たすものであるが、表面層の膜厚が規定値に満たないため耐食性は不十分な結果となった。
No. as an example. 1 to 34 (those controlled within the component range of the present invention) are at a level of Δ or more in the evaluation of corrosion resistance, and it is understood that the corrosion resistance is excellent.
On the other hand, the normal steel material No. which is a comparative example. No. 35 was inferior in corrosion resistance because the surface layer was not formed, and the steel material did not contain Cu or Ni, so that the mass reduction amount was 5 kg / m 2 or more in any test. No. No. 36 contains Cu and Ni in the steel material, so the corrosion resistance in the corrosion test A is slightly improved, but since no surface layer is formed, in the corrosion test B, the mass loss is 5 kg / The corrosion resistance was inferior to m 2 or more. No. 37-No. No. 47 is slightly improved in corrosion resistance in corrosion test A. In No. 37, the Cu content in the surface layer was less than the specified value, resulting in insufficient corrosion resistance. No. 38-No. In 47, the components in the surface layer satisfy the specified range, but the film thickness of the surface layer is less than the specified value, resulting in insufficient corrosion resistance.

これらの結果から、金属元素としてCu、Ni等に加えて、さらにCr、Co等を表面層に規定量含有させることによって、耐食性向上効果は大きくなることがわかる。また、表面層に加えて鋼材の化学成分も調整することによっても耐食性向上効果は大きくなることがわかる。
なお、浸漬法により表面層を形成した場合には、他の形成方法に比べ、低コストで表面層を得ることができた。
以上のように、本発明に係る油類貯蔵容器用耐食鋼材は、重油や原油等の油類貯蔵用容器の材料として優れた耐食性を有することがわかり、腐食による穴あき防止に効果的であることがわかる。
From these results, it can be seen that the effect of improving the corrosion resistance is increased by adding a prescribed amount of Cr, Co or the like to the surface layer in addition to Cu, Ni or the like as the metal element. Moreover, it turns out that the corrosion-resistant improvement effect becomes large also by adjusting the chemical component of steel materials in addition to a surface layer.
In addition, when the surface layer was formed by the dipping method, the surface layer could be obtained at a lower cost than other forming methods.
As described above, the corrosion resistant steel material for oil storage containers according to the present invention is found to have excellent corrosion resistance as a material for oil storage containers such as heavy oil and crude oil, and is effective in preventing perforation due to corrosion. I understand that.

以上、本発明の好適な実施形態、実施例について説明してきたが、本発明は前記実施形態、実施例に限定されるものではなく、本発明の趣旨に適合し得る範囲において広く変更、改変して実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれるものである。   The preferred embodiments and examples of the present invention have been described above. However, the present invention is not limited to the above-described embodiments and examples, and various changes and modifications can be made within the scope that can meet the spirit of the present invention. These are all included in the technical scope of the present invention.

Claims (8)

鋼材の表面に表面層が設けられた、油類貯蔵容器用耐食鋼材において、
前記表面層がCu:0.3〜20質量%、Ni:0.3〜20質量%、O:5〜20質量%、S:0.3〜10質量%を含有し、残部がFeおよび不可避的不純物からなり、前記表面層の厚さが50〜800μmであることを特徴とする油類貯蔵容器用耐食鋼材。
In the corrosion-resistant steel material for oil storage containers provided with a surface layer on the surface of the steel material,
The surface layer contains Cu: 0.3 to 20% by mass, Ni: 0.3 to 20% by mass, O: 5 to 20% by mass, S: 0.3 to 10% by mass, the balance being Fe and inevitable A corrosion-resistant steel material for oil storage containers, characterized in that the surface layer has a thickness of 50 to 800 μm.
前記表面層が、更に、Cr:0.05〜5.0質量%、Co:0.05〜5.0質量%、Ti:0.05〜5.0質量%、Mg:0.05〜1.0質量%、Ca:0.05〜1.0質量%、Zn:0.05〜1.0質量%から選ばれる1種以上を含有することを特徴とする請求項1に記載の油類貯蔵容器用耐食鋼材。   The surface layer further comprises Cr: 0.05-5.0 mass%, Co: 0.05-5.0 mass%, Ti: 0.05-5.0 mass%, Mg: 0.05-1 The oil according to claim 1, comprising at least one selected from 0.0 mass%, Ca: 0.05 to 1.0 mass%, and Zn: 0.05 to 1.0 mass%. Corrosion resistant steel for storage containers. 前記鋼材がC:0.01〜0.30質量%、Si:0.01〜2.0%質量、Mn:0.01〜2.0質量%、Al:0.005〜0.10質量%、Cu:0.01〜1.0質量%、Ni:0.01〜1.0質量%を含有し、残部がFeおよび不可避的不純物からなることを特徴とする請求項1または請求項2に記載の油類貯蔵容器用耐食鋼材。   The steel materials are C: 0.01 to 0.30% by mass, Si: 0.01 to 2.0% by mass, Mn: 0.01 to 2.0% by mass, Al: 0.005 to 0.10% by mass. Cu: 0.01-1.0 mass%, Ni: 0.01-1.0 mass% is contained, The remainder consists of Fe and an unavoidable impurity, Claim 1 or Claim 2 characterized by the above-mentioned. The corrosion-resistant steel material for oil storage containers as described. 前記鋼材が、更に、Cr:0.01〜1.0質量%、Co:0.005〜0.50質量%、Ti:0.005〜0.20質量%、Mg:0.0001〜0.005質量%、Ca:0.0001〜0.005質量%から選ばれる1種以上を含有することを特徴とする請求項3に記載の油類貯蔵容器用耐食鋼材。   The steel material is further Cr: 0.01-1.0 mass%, Co: 0.005-0.50 mass%, Ti: 0.005-0.20 mass%, Mg: 0.0001-0. It contains 1 or more types chosen from 005 mass% and Ca: 0.0001-0.005 mass%, The corrosion-resistant steel material for oil storage containers of Claim 3 characterized by the above-mentioned. 前記鋼材が、更に、B:0.0001〜0.010質量%、V:0.01〜0.50質量%、Nb:0.003〜0.50質量%から選ばれる1種以上を含有することを特徴とする請求項3または請求項4に記載の油類貯蔵容器用耐食鋼材。   The steel material further contains one or more selected from B: 0.0001 to 0.010 mass%, V: 0.01 to 0.50 mass%, and Nb: 0.003 to 0.50 mass%. The corrosion-resistant steel material for oil storage containers according to claim 3 or 4, characterized by the above. 請求項1ないし請求項5のいずれか一項に記載の油類貯蔵容器用耐食鋼材の製造方法において、鋼材を、水溶液とS粉末とを混合した溶液に浸漬することにより、当該鋼材に厚さが50〜800μmの表面層を形成することを特徴とする油類貯蔵容器用耐食鋼材の製造方法。   In the manufacturing method of the corrosion-resistant steel material for oil storage containers according to any one of claims 1 to 5, the steel material is immersed in a solution in which an aqueous solution and S powder are mixed, so that the steel material has a thickness. Forming a surface layer with a thickness of 50 to 800 μm. 前記水溶液が、塩水、塩酸および硫酸から選ばれる1種であることを特徴とする請求項6に記載の油類貯蔵容器用耐食鋼材の製造方法。   The said aqueous solution is 1 type chosen from salt water, hydrochloric acid, and a sulfuric acid, The manufacturing method of the corrosion-resistant steel materials for oil storage containers of Claim 6 characterized by the above-mentioned. 請求項1ないし請求項5のいずれか一項に記載の油類貯蔵容器用耐食鋼材を使用して作製されたことを特徴とする油類貯蔵容器。   An oil storage container produced using the corrosion resistant steel material for an oil storage container according to any one of claims 1 to 5.
JP2006209715A 2006-08-01 2006-08-01 Corrosion-resistant steel for oil storage container, method for producing the same, and oil storage container Expired - Fee Related JP4843403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006209715A JP4843403B2 (en) 2006-08-01 2006-08-01 Corrosion-resistant steel for oil storage container, method for producing the same, and oil storage container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006209715A JP4843403B2 (en) 2006-08-01 2006-08-01 Corrosion-resistant steel for oil storage container, method for producing the same, and oil storage container

Publications (2)

Publication Number Publication Date
JP2008038158A true JP2008038158A (en) 2008-02-21
JP4843403B2 JP4843403B2 (en) 2011-12-21

Family

ID=39173537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006209715A Expired - Fee Related JP4843403B2 (en) 2006-08-01 2006-08-01 Corrosion-resistant steel for oil storage container, method for producing the same, and oil storage container

Country Status (1)

Country Link
JP (1) JP4843403B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011241436A (en) * 2010-05-18 2011-12-01 Nippon Parkerizing Co Ltd Chemical conversion-treated ferrous material
CN105401045A (en) * 2015-11-10 2016-03-16 太仓捷公精密金属材料有限公司 Abrasion-resistant anti-corrosion material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253393A (en) * 2002-02-27 2003-09-10 Kobe Steel Ltd Corrosion resistant steel material for storage container for crude oil and heavy oil, corrosion resistant coating for storage container for crude oil and heavy oil, and storage container superior in corrosion resistance for crude oil and heavy oil

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253393A (en) * 2002-02-27 2003-09-10 Kobe Steel Ltd Corrosion resistant steel material for storage container for crude oil and heavy oil, corrosion resistant coating for storage container for crude oil and heavy oil, and storage container superior in corrosion resistance for crude oil and heavy oil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011241436A (en) * 2010-05-18 2011-12-01 Nippon Parkerizing Co Ltd Chemical conversion-treated ferrous material
CN105401045A (en) * 2015-11-10 2016-03-16 太仓捷公精密金属材料有限公司 Abrasion-resistant anti-corrosion material

Also Published As

Publication number Publication date
JP4843403B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
JP4868916B2 (en) Marine steel with excellent corrosion resistance
JP4577158B2 (en) Corrosion resistant steel for crude oil tanks
EP2009125B1 (en) Corroson-resistant steel material for crude oil storage tank, and crude oil storage tank
JP5453840B2 (en) Marine steel with excellent corrosion resistance
JP6180956B2 (en) Painted steel with excellent corrosion resistance
JP4449691B2 (en) Steel material for cargo oil tanks
KR101792406B1 (en) Steel material for painting excellent in corrosion resistance
KR101715581B1 (en) Steel material, ship ballast tank and hold formed using said steel material, and ship equipped with said ballast tank or hold
JP2006009129A (en) Steel for vessel having excellent corrosion resistance
JP2007270196A (en) Steel material for cargo oil tank
KR20160048007A (en) Ship weld joint excellent in corrosion resistance
JP4868917B2 (en) Steel material for crude oil tank bottom plate with excellent corrosion resistance
JP2007291494A (en) Corrosion-resistant steel material for crude oil storage tank, and crude oil storage tank
JP2006037201A (en) Marine steel material superior in corrosion resistance
JP2007070677A (en) Steel material having superior various corrosion-resistance for ship, and welded structure
KR20090098774A (en) Steel for ballast tank having excellent corrosion resistance, and ship having ballast tank made therefrom
JP4616181B2 (en) Marine steel with excellent HAZ toughness and corrosion resistance during high heat input welding
JP2005290479A (en) Steel material for bottom plate of crude oil tank
JP5216199B2 (en) Marine welded joints and welded structures with excellent crevice corrosion resistance
JP4843403B2 (en) Corrosion-resistant steel for oil storage container, method for producing the same, and oil storage container
KR20160075717A (en) Steel for crude oil tank and crude oil tank
JP4119941B2 (en) Marine steel with excellent crevice corrosion resistance in humid air
JP2008133536A (en) Steel having excellent corrosion resistance for ship use
KR20140117617A (en) Welding joint and steel having exceptional galvanic corrosion resistance
JP2006118002A (en) Steel material for oil tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111007

R150 Certificate of patent or registration of utility model

Ref document number: 4843403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees