JP2008037956A - Resin composition for foamed sheet and foamed sheet - Google Patents

Resin composition for foamed sheet and foamed sheet Download PDF

Info

Publication number
JP2008037956A
JP2008037956A JP2006212178A JP2006212178A JP2008037956A JP 2008037956 A JP2008037956 A JP 2008037956A JP 2006212178 A JP2006212178 A JP 2006212178A JP 2006212178 A JP2006212178 A JP 2006212178A JP 2008037956 A JP2008037956 A JP 2008037956A
Authority
JP
Japan
Prior art keywords
weight
parts
hollow sphere
resin composition
foaming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006212178A
Other languages
Japanese (ja)
Other versions
JP4937669B2 (en
Inventor
Mitsuru Nakakawara
満 中河原
Masayuki Kurihara
正幸 栗原
Ikumasa Nishimura
生眞 西村
Masafumi Kumano
晶文 熊野
Kenichi Kitano
健一 北野
Ikuo Yorishima
郁雄 寄嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsumoto Yushi Seiyaku Co Ltd
Sumitomo Chemical Co Ltd
Toppan Inc
Original Assignee
Matsumoto Yushi Seiyaku Co Ltd
Sumitomo Chemical Co Ltd
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsumoto Yushi Seiyaku Co Ltd, Sumitomo Chemical Co Ltd, Toppan Printing Co Ltd filed Critical Matsumoto Yushi Seiyaku Co Ltd
Priority to JP2006212178A priority Critical patent/JP4937669B2/en
Publication of JP2008037956A publication Critical patent/JP2008037956A/en
Application granted granted Critical
Publication of JP4937669B2 publication Critical patent/JP4937669B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition for a foamed sheet affording the foamed sheet having excellent compression recovery properties. <P>SOLUTION: The resin composition for the foamed sheet is characterized by comprising an aqueous emulsion (A), heat expandable hollow spheres (B) and an inorganic filler (C). The aqueous emulsion (A) comprises an ethylene-vinyl ester-based copolymer containing 5-35 pts.wt. of a structural unit (a1) derived from ethylene and 95-65 pts.wt. of a structural unit (a2) derived from a vinyl ester and has 90-160°C flow middle point and <30 wt.% content of a toluene-insoluble portion. The heat expandable hollow spheres (B) have 15-30 μm average particle diameter, ≤30% C<SB>v</SB>coefficient of variation of particle size distribution and 10-30% amount of an entrapped gas. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、発泡シート用樹脂組成物、およびこの組成物を発泡してなる発泡シートに関する。   The present invention relates to a resin composition for a foam sheet and a foam sheet formed by foaming the composition.

従来、流動中点が110〜170℃、トルエン不溶分が30重量%未満であるエチレン・ビニルエステル系共重合体含有水性エマルジョンと、熱膨張性中空球体と、無機フィラーとを含む発泡シート用樹脂組成物が知られている(特許文献1)。   Conventionally, a resin for a foamed sheet comprising an ethylene / vinyl ester copolymer-containing aqueous emulsion having a flow midpoint of 110 to 170 ° C. and a toluene insoluble content of less than 30% by weight, a thermally expandable hollow sphere, and an inorganic filler A composition is known (Patent Document 1).

この組成物を発泡してなる発泡シートは、難燃性、発泡性、耐ひび割れ性、および機械的強度などの特性に優れるとともに、さらに耐ブロッキング性に優れることが開示されている。
特開2003−13396号公報
It is disclosed that a foamed sheet obtained by foaming this composition is excellent in properties such as flame retardancy, foamability, crack resistance, and mechanical strength, and further excellent in blocking resistance.
JP 2003-13396 A

しかし、本発明者らが上記特許文献1に記載の技術を使用して作製した6.5〜8.5倍の高発泡倍率の発泡シートについて検討したところ、圧縮回復性が十分でないという問題が明らかになった。ここで、圧縮回復性とは、保存時の発泡シート自体の自重や、施工時のローラー押さえによって発生したへこみやエンボス凹凸の潰れの回復性のことをいう。   However, when the present inventors examined a foamed sheet having a high foaming ratio of 6.5 to 8.5 times produced by using the technique described in Patent Document 1, there was a problem that the compression recovery property was not sufficient. It was revealed. Here, the compression recoverability refers to the recoverability of the weight of the foam sheet itself during storage and the crushing of dents and embossed irregularities caused by roller pressing during construction.

本発明の目的は、発泡倍率、圧縮回復性、エンボス性の全てを兼ね備え、優れた発泡シートを与える発泡シート用樹脂組成物を提供することにある。   An object of the present invention is to provide a resin composition for a foam sheet that has all of the expansion ratio, compression recovery property, and embossability and gives an excellent foam sheet.

本発明に係る発泡シート用樹脂組成物は、エチレンに由来する構造単位(a1)5〜35重量部、およびビニルエステルに由来する構造単位(a2)95〜65重量部を含み、流動中点が90〜160℃であり、トルエン不溶分が30重量%未満である、エチレン・ビニルエステル系共重合体を含有する水性エマルジョン(A)と、平均粒子径が15〜30μmであり、下記式で表される粒度分布の変動係数CVが30%以下であり、内包ガス量が10〜30%である熱膨張性中空球体(B)と、無機フィラー(C)を含有することを特徴とする。

Figure 2008037956
The resin composition for a foam sheet according to the present invention includes 5 to 35 parts by weight of a structural unit (a1) derived from ethylene and 95 to 65 parts by weight of a structural unit (a2) derived from a vinyl ester, and has a flow midpoint. An aqueous emulsion (A) containing an ethylene / vinyl ester copolymer having a toluene insoluble content of less than 30% by weight at 90 to 160 ° C., an average particle diameter of 15 to 30 μm, and represented by the following formula: The thermal expansion hollow sphere (B) whose particle size distribution variation coefficient C V is 30% or less and the amount of encapsulated gas is 10 to 30%, and the inorganic filler (C) are contained.
Figure 2008037956

上記式において、nは粒子径を測定した熱膨張性中空球体の個数であり、iは1〜nである。粒度分布の変動係数Cvは、数値が小さいほど粒度が均一に近いことを意味する。 In the above formula, n is the number of thermally expandable hollow spheres whose particle diameter is measured, and i is 1 to n. Variation coefficient C v of the particle size distribution value is the particle size the smaller means that nearly uniform.

本発明の発泡シート用樹脂組成物において、前記(A)成分は、分散剤として界面活性剤および保護コロイドを含み、(界面活性剤/保護コロイド)の重量比が25/75〜90/10であることが好ましい。   In the resin composition for a foam sheet of the present invention, the component (A) includes a surfactant and a protective colloid as a dispersant, and the weight ratio of (surfactant / protective colloid) is 25/75 to 90/10. Preferably there is.

本発明の発泡シート用樹脂組成物においては、前記(A)成分の固形分100重量部に対して、熱膨張性中空球体(B)2〜30重量部と、無機フィラー(C)20〜350重量部とを含有することが好ましい。   In the resin composition for a foam sheet of the present invention, 2 to 30 parts by weight of the heat-expandable hollow sphere (B) and 20 to 350 inorganic fillers (C) with respect to 100 parts by weight of the solid content of the component (A). It is preferable to contain a weight part.

本発明に係る発泡シートは、上記の組成物を発泡せしめて得られることを特徴とする。   The foam sheet according to the present invention is obtained by foaming the above composition.

本発明によれば、発泡倍率、圧縮回復性、エンボス性の全てを兼ね備え、優れた発泡シートを与える発泡シート用樹脂組成物を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the resin composition for foamed sheets which has all of foaming magnification, compression recovery property, and embossing property and can provide the outstanding foamed sheet can be provided.

以下、本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明において、(A)成分は、エチレンに由来する構造単位(a1)5〜35重量部、およびビニルエステルに由来する構造単位(a2)95〜65重量部を含有し、流動中点が90〜160℃、好ましくは110〜150℃程度であり、トルエン不溶分が30重量%未満、好ましくは0.1〜20%程度である、エチレン・ビニルエステル系共重合体を含有する水性エマルジョンである。流動中点が90℃未満だと圧縮回復性が悪くなる傾向があり、流動中点が160℃を超えると発泡性が劣る傾向がある。   In the present invention, the component (A) contains 5 to 35 parts by weight of the structural unit (a1) derived from ethylene and 95 to 65 parts by weight of the structural unit (a2) derived from the vinyl ester, and has a flow midpoint of 90. It is an aqueous emulsion containing an ethylene / vinyl ester copolymer having a temperature of about -160 ° C, preferably about 110-150 ° C, and a toluene insoluble content of less than 30% by weight, preferably about 0.1-20%. . If the midpoint of flow is less than 90 ° C, the compression recovery tends to be poor, and if the midpoint of flow exceeds 160 ° C, the foamability tends to be poor.

(A)成分の流動中点の測定方法を説明する。まず、(A)成分をJIS K6828の4.9の条件に準じて乾燥する。次に、内径1mm×長さ1mmのダイを有する内径10mmのシリンダを80℃に加熱した後、得られた乾燥樹脂約1.7gをシリンダに充填して360秒間予熱する。続いて、ピストン圧2.9MPaで加重しながら、6℃/minの速度で昇温し、ダイから樹脂が流れ出ることによってピストンが7.5mm押し下げられたときのシリンダの加熱温度を流動中点とする。流動中点の測定装置としては、たとえばフローテスターCFT−500(島津製作所製)が用いられる。   (A) The measuring method of the flow middle point of a component is demonstrated. First, the component (A) is dried according to the conditions of 4.9 of JIS K6828. Next, after heating a cylinder having an inner diameter of 1 mm × a length of 1 mm to an inner diameter of 10 mm to 80 ° C., about 1.7 g of the obtained dry resin is filled in the cylinder and preheated for 360 seconds. Subsequently, while heating at a rate of 6 ° C./min while applying a piston pressure of 2.9 MPa, the heating temperature of the cylinder when the piston is pushed down by 7.5 mm due to the resin flowing out of the die is defined as the flow middle point. To do. For example, a flow tester CFT-500 (manufactured by Shimadzu Corporation) is used as the measuring device for the midpoint of flow.

(A)成分のトルエン不溶分の測定方法を説明する。(A)成分をJIS K6828の4.9の条件に準じて、室温にて乾燥した後、得られた乾燥樹脂を細かく裁断し、0.5gの乾燥樹脂を100mlのトルエンを用いて95℃で3時間抽出した後、300メッシュの金網でろ過し、回収される不溶分の重量を測定してトルエン不溶分とする。   (A) The measuring method of the toluene insoluble part of a component is demonstrated. The component (A) was dried at room temperature according to the conditions of 4.9 of JIS K6828, and then the resulting dried resin was cut into small pieces, and 0.5 g of the dried resin was used at 95 ° C. with 100 ml of toluene. After extraction for 3 hours, the mixture is filtered through a 300-mesh wire mesh, and the weight of the recovered insoluble matter is measured to obtain a toluene insoluble matter.

(A)成分を構成するエチレン・ビニルエステル系共重合体は、エチレンに由来する構造単位(a1)、ビニルエステルに由来する構造単位(a2)を含有する。また、必要に応じて、エチレンおよびビニルエチレンと共重合可能で、エチレンおよびビニルエステルとは異なるモノマー(以下、共重合可能なモノマーという)に由来する構造単位(a3)を含有していてもよい。   The ethylene / vinyl ester copolymer constituting the component (A) contains a structural unit (a1) derived from ethylene and a structural unit (a2) derived from vinyl ester. Further, if necessary, it may contain a structural unit (a3) derived from a monomer that is copolymerizable with ethylene and vinylethylene and is different from ethylene and vinyl ester (hereinafter referred to as a copolymerizable monomer). .

(A)成分における、エチレンに由来する構造単位(a1)の含有量は、(A)成分の固形分100重量部に対して、5〜35重量部、好ましくは8〜30重量部程度である。   In the component (A), the content of the structural unit (a1) derived from ethylene is 5 to 35 parts by weight, preferably about 8 to 30 parts by weight with respect to 100 parts by weight of the solid content of the component (A). .

構造単位(a2)を構成するビニルエステルとしては、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ピバリン酸ビニル、ラウリン酸ビニル、バーサチック酸ビニルなどが挙げられる。ビニルエステルのなかでも、酢酸ビニル、および酢酸ビニルとその他のビニルエステルとの併用が好適である。   Examples of the vinyl ester constituting the structural unit (a2) include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl pivalate, vinyl laurate, and vinyl versatate. Among vinyl esters, vinyl acetate and a combination of vinyl acetate and other vinyl esters are preferable.

(A)成分における、ビニルエステルに由来する構造単位(a2)の含有量は、(A)成分の固形分100重量部に対して、95〜65重量部である。   The content of the structural unit (a2) derived from the vinyl ester in the component (A) is 95 to 65 parts by weight with respect to 100 parts by weight of the solid content of the component (A).

構造単位(a3)を構成する共重合可能なモノマーとしては、たとえば、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸アミル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸−2−エチルヘキシル、(メタ)アクリル酸デシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、γ−(メタ)アクリロキシプロピルメチルジメトキシシランなどの(メタ)アクリル酸類;クロトン酸、イタコン酸(半エステルを含む)、マレイン酸(半エステルを含む)などのカルボキシル基含有モノマーおよびその無水物;N−メチロールアクリルアミド、N−ブトキシメチルアクリルアミドなどのN−メチロール誘導体モノマー;2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、多価アルコールのモノ(メタ)アクリレートや多価アルコールのモノアリルエーテルなどのヒドロキシ基含有モノマー;ジメチルアミノエチルメタクリレート、ジメチルアミノプロピルアクリルアミドなどのアミノ基含有モノマー;グリシジル(メタ)アクリレートなどのエポキシ基含有モノマー;アクリルアミド、メタアクリルアミド、マレインアミドなどのアミド基含有モノマー;ビニルスルホン酸ソーダ、メタリルスルホン酸ソーダ、2−アクリルアミド−2−メチルプロパンスルホン酸ソーダなどのスルホン基含有モノマー;トリアリルイソシアヌレート;ビニルトリクロロシラン、ビニルメトシキシランなどのビニルシラン;塩化ビニル、臭化ビニルなどのハロゲン化ビニル;スチレン;ブタジエンなどのオレフィン類などが挙げられる。共重合可能なモノマーのうちでも、(メタ)アクリル酸類、N−メチロール誘導体モノマーおよびトリアリルイソシアヌレートが好ましく、とりわけ、アクリル酸、アクリル酸−2−エチルヘキシル、N−メチロールアクリルアミド、トリアリルイソシアヌレートが好適である。異なる2種以上の共重合可能なモノマーを使用してもよい。   Examples of the copolymerizable monomer constituting the structural unit (a3) include (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and (meth) acrylic acid. Butyl, amyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, decyl (meth) acrylate, (meth) (Meth) acrylic acids such as lauryl acrylate, stearyl (meth) acrylate, γ- (meth) acryloxypropylmethyldimethoxysilane; crotonic acid, itaconic acid (including half ester), maleic acid (including half ester) Carboxyl group-containing monomers such as and their anhydrides; N-methylolacrylamide, N- N-methylol derivative monomers such as toximethylacrylamide; hydroxy groups such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, mono (meth) acrylate of polyhydric alcohol and monoallyl ether of polyhydric alcohol Containing monomers; amino group-containing monomers such as dimethylaminoethyl methacrylate and dimethylaminopropyl acrylamide; epoxy group-containing monomers such as glycidyl (meth) acrylate; amide group-containing monomers such as acrylamide, methacrylamide and maleamide; sodium vinyl sulfonate; Sulfone group-containing monomers such as sodium methallyl sulfonate and sodium 2-acrylamido-2-methylpropane sulfonate; triallyl isocyanurate; vinyl tri Examples thereof include vinyl silanes such as chlorosilane and vinyl methoxysilane; vinyl halides such as vinyl chloride and vinyl bromide; styrene; olefins such as butadiene. Among the copolymerizable monomers, (meth) acrylic acids, N-methylol derivative monomers and triallyl isocyanurate are preferable, and acrylic acid, 2-ethylhexyl acrylate, N-methylol acrylamide and triallyl isocyanurate are particularly preferable. Is preferred. Two or more different copolymerizable monomers may be used.

(A)成分における、共重合可能なモノマーに由来する構造単位(a3)の含有量は、(A)成分の固形分100重量部に対して、30重量部以下、好ましくは10重量部以下である。   In the component (A), the content of the structural unit (a3) derived from the copolymerizable monomer is 30 parts by weight or less, preferably 10 parts by weight or less with respect to 100 parts by weight of the solid content of the component (A). is there.

(A)成分を構成するエチレン・ビニルエステル系共重合体のガラス転移温度は、通常−25〜15℃程度であり、好ましくは−10〜5℃程度である。ガラス転移温度が−25℃より低いと、得られる発泡シートの耐ブロッキング性が低下する傾向にあるので好ましくない。また、ガラス転移温度が15℃よりも高いと、得られる発泡シートの耐寒性が低下する傾向にあるので好ましくない。   The glass transition temperature of the ethylene / vinyl ester copolymer constituting the component (A) is usually about −25 to 15 ° C., preferably about −10 to 5 ° C. If the glass transition temperature is lower than −25 ° C., the blocking resistance of the resulting foamed sheet tends to decrease, such being undesirable. On the other hand, if the glass transition temperature is higher than 15 ° C., the cold resistance of the resulting foamed sheet tends to decrease, which is not preferable.

(A)成分は、通常、水性エマルジョンの形態にあるが、たとえば特開平6−24820号公報に記載のように再乳化性粉末樹脂の形態であってもよい。   The component (A) is usually in the form of an aqueous emulsion, but may be in the form of a re-emulsifiable powder resin as described in JP-A-6-24820, for example.

(A)成分の製造方法としては、たとえば、エチレン、ビニルエステルおよび必要に応じて共重合可能なモノマーを、界面活性剤および保護コロイドを分散剤として乳化させ、加圧下に乳化重合することにより、共重合体を含有する水性エマルジョンとして得る方法が挙げられる。   As a method for producing the component (A), for example, ethylene, vinyl ester and, if necessary, a copolymerizable monomer are emulsified using a surfactant and a protective colloid as a dispersant, and emulsion polymerization is performed under pressure. The method of obtaining as an aqueous emulsion containing a copolymer is mentioned.

(A)成分の製造に使用される界面活性剤としては、たとえば、アルキル硫酸スルホン酸塩、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキルジフェニルエーテルジスルホン酸塩、ポリオキシエチレンアルカリ硫酸塩、ポリオキシエチレンアルキルリン酸エステルなどのアニオン系界面活性剤;ポリオキシエチレン・ポリオキシプロピレンブロック共重合体、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノールエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、グリセリン脂肪酸エステルなどのノニオン系界面活性剤;アルキルアミン塩、第4級アンモニウム塩などのカチオン性界面活性剤が挙げられる。なかでも、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、ポリオキシエチレン・ポリオキシプロピレンブロック共重合体が好適である。   Examples of the surfactant used for the production of the component (A) include alkyl sulfate sulfonate, alkyl benzene sulfonate, alkyl sulfosuccinate, alkyl diphenyl ether disulfonate, polyoxyethylene alkali sulfate, and polyoxyethylene. Anionic surfactant such as alkyl phosphate ester; polyoxyethylene / polyoxypropylene block copolymer, polyoxyethylene alkyl ether, polyoxyethylene alkylphenol ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan Nonionic surfactants such as fatty acid esters, polyoxyethylene alkylamines and glycerin fatty acid esters; cations such as alkylamine salts and quaternary ammonium salts Surfactants. Of these, alkyl sulfate ester salts, alkylbenzene sulfonates, alkylsulfosuccinates, and polyoxyethylene / polyoxypropylene block copolymers are preferred.

(A)成分の製造に使用される保護コロイドとしては、たとえば、部分ケン化ポリビニルアルコール、完全ケン化ポリビニルアルコール、スルホン酸変性ポリビニルアルコール、カルボキシル変性ポリビニルアルコール、シラノール基変性ポリビニルアルコールなどのポリビニルアルコール類;ヒドロキシエチルセルロース、メチルセルロース、カルボキシメチルセルロースなどのセルロース誘導体があげられる。なかでも、部分ケン化ポリビニルアルコールおよび完全ケン化ポリビニルアルコールが好ましく、とりわけ80〜100%ケン化したポリビニルアルコールが好適である。ポリビニルアルコールとしては、通常、重合度が300〜3000程度であるものが用いられる。   Examples of the protective colloid used in the production of the component (A) include polyvinyl alcohols such as partially saponified polyvinyl alcohol, fully saponified polyvinyl alcohol, sulfonic acid-modified polyvinyl alcohol, carboxyl-modified polyvinyl alcohol, and silanol group-modified polyvinyl alcohol. Cellulose derivatives such as hydroxyethylcellulose, methylcellulose, carboxymethylcellulose; Of these, partially saponified polyvinyl alcohol and fully saponified polyvinyl alcohol are preferable, and 80-100% saponified polyvinyl alcohol is particularly preferable. As the polyvinyl alcohol, those having a polymerization degree of about 300 to 3000 are usually used.

界面活性剤と保護コロイドの重量比(固形分)は、通常、(界面活性剤/保護コロイド)=25/75〜90/10であり、好ましくは25/75〜85/15である。界面活性剤の重量比が25以上であればトルエン不溶分が30重量%未満になる傾向があるため好ましい。
本発明においては、2種以上の(A)成分を混合して用いてもよい。
The weight ratio (solid content) of the surfactant and the protective colloid is usually (surfactant / protective colloid) = 25/75 to 90/10, preferably 25/75 to 85/15. If the weight ratio of the surfactant is 25 or more, the toluene insoluble matter tends to be less than 30% by weight, which is preferable.
In the present invention, two or more types of component (A) may be mixed and used.

本発明において、(B)成分である熱膨張性中空球体は、重合性モノマーを重合させたポリマーからなるシェルの中空部に、内包ガスとなる低沸点液体(揮発性膨張剤)を内包させたマイクロカプセルである。このような熱膨張性中空球体は、分散安定剤を含有する水相分散媒体中に、重合性モノマー、低沸点液体、重合開始剤などを含む重合性混合物を添加し、攪拌混合して微細な液滴を分散させた状態で、昇温して液滴状の重合性混合物を懸濁重合させることにより製造される。(B)成分である熱膨張性中空球体の平均粒子径、粒度分布の変動係数は、たとえば上記の攪拌混合による分散工程を制御することによって調整することができ、内包ガス量は添加する低沸点液体の量で調整できる。   In the present invention, the thermally expansible hollow sphere as component (B) encapsulates a low boiling point liquid (volatile expansive agent) serving as an encapsulated gas in the hollow portion of a shell made of a polymer obtained by polymerizing a polymerizable monomer. It is a microcapsule. Such a heat-expandable hollow sphere is obtained by adding a polymerizable mixture containing a polymerizable monomer, a low-boiling-point liquid, a polymerization initiator, etc. to an aqueous phase dispersion medium containing a dispersion stabilizer, and stirring and mixing the fine particles. In a state where the droplets are dispersed, the temperature is raised to cause suspension polymerization of the droplet-like polymerizable mixture. The coefficient of variation of the average particle size and particle size distribution of the thermally expandable hollow sphere (B) can be adjusted, for example, by controlling the dispersion step by stirring and mixing, and the amount of inclusion gas is the low boiling point to be added. It can be adjusted by the amount of liquid.

(B)成分である熱膨張性中空球体のシェルに使用される重合性モノマーとしては、アクリロニトリル、メタクリロニトリル、α−クロルアクリロニトリル、α−エトキシアクリロニトリル、フマルニトリル、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸、シトラコン酸、塩化ビニリデン、酢酸ビニル、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、β−カルボキシ(メタ)アクリレートなどの(メタ)アクリル酸エステル、スチレン、α−メチルスチレン、クロロスチレンなどのスチレン系モノマー、アクリルアミド、置換アクリルアミド、メタクリルアミド、置換メタクリルアミド、ブタジエンなどが挙げられる。これらの重合性モノマーは、単独でまたは2種以上を組み合わせて使用することができる。重合性モノマーの組み合わせは、用途に応じて、ポリマーの軟化温度、耐熱性、耐薬品性などを考慮して選択することができる。たとえば、塩化ビニリデンを含む共重合体およびニトリル系モノマーを含む共重合体はガスバリヤー性に優れている。また、特許第2131557号にも示されているように、ニトリル系モノマーを80重量%以上含む共重合体は、耐熱性、耐薬品性に優れている。   Examples of the polymerizable monomer used for the shell of the thermally expandable hollow sphere (B) include acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, α-ethoxyacrylonitrile, fumaronitrile, acrylic acid, methacrylic acid, itaconic acid. , Maleic acid, fumaric acid, citraconic acid, vinylidene chloride, vinyl acetate, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, (Meth) acrylic esters such as isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, β-carboxy (meth) acrylate, styrene such as styrene, α-methylstyrene, chlorostyrene Monomers, acrylamide, substituted acrylamides, methacrylamides, substituted methacrylamides, such as butadiene and the like. These polymerizable monomers can be used alone or in combination of two or more. The combination of the polymerizable monomers can be selected in consideration of the softening temperature, heat resistance, chemical resistance, etc. of the polymer depending on the application. For example, a copolymer containing vinylidene chloride and a copolymer containing a nitrile monomer are excellent in gas barrier properties. Further, as shown in Japanese Patent No. 2131557, a copolymer containing 80% by weight or more of a nitrile monomer is excellent in heat resistance and chemical resistance.

(B)成分である熱膨張性中空球体のシェルは、必要に応じて、架橋剤を含んでいてもよい。架橋剤としては、たとえば、ジビニルベンゼン、ジメタクリル酸エチレングリコール、ジメタクリル酸トリエチレングリコール、トリアクリルホルマール、トリメタクリル酸トリメチロールプロパン、メタクリル酸アリル、ジメタクリル酸1,3−ブチルグリコール、トリアリルイソシアネートなどが挙げられるが、これらに限定されない。   The shell of the thermally expandable hollow sphere as the component (B) may contain a crosslinking agent as necessary. Examples of the crosslinking agent include divinylbenzene, ethylene glycol dimethacrylate, triethylene glycol dimethacrylate, triacryl formal, trimethylolpropane trimethacrylate, allyl methacrylate, 1,3-butyl glycol dimethacrylate, triallyl. Although isocyanate etc. are mentioned, it is not limited to these.

(B)成分である熱膨張性中空球体のシェルを重合によって調製する際に用いられる重合開始剤には、過酸化物やアゾ化合物など公知のものを用いることができる。重合開始剤としては、たとえば、アゾビスイソブチロニトリル、ベンゾイルパーオキサイド、ラウリルパーオキサイド、ジイソプロピルパーオキシジカーボネート、t−ブチルパーオキサイド、2,2’−アゾビス(2,4−ジメチルバレロニトリル)などが挙げられるが、これらに限定されない。好適には、重合性モノマーに可溶な油溶性の重合開始剤が使用される。   As the polymerization initiator used for preparing the shell of the thermally expandable hollow sphere as the component (B) by polymerization, known substances such as peroxides and azo compounds can be used. Examples of the polymerization initiator include azobisisobutyronitrile, benzoyl peroxide, lauryl peroxide, diisopropyl peroxydicarbonate, t-butyl peroxide, and 2,2′-azobis (2,4-dimethylvaleronitrile). However, it is not limited to these. Preferably, an oil-soluble polymerization initiator soluble in the polymerizable monomer is used.

(B)成分である熱膨張性中空球体に含まれる内包ガスとなる低沸点液体としては、熱膨張時にシェルの軟化点以下でガスになるものが用いられる。内包ガスとしては、プロパン、プロピレン、ブテン、ノルマルブタン、イソブタン、イソペンタン、ネオペンタン、ノルマルペンタン、シクロペンタン、ヘキサン、ヘプタン、石油エーテル、オクタン、イソオクタン、デカンなどが挙げられる。好適には、イソブタン、ノルマルブタン、イソペンタン、ネオペンタン、シクロペンタン、石油エーテルなどを単独でまたは2種以上混合して用いる。   As the low boiling point liquid that becomes the inclusion gas contained in the thermally expandable hollow sphere as the component (B), a gas that becomes a gas below the softening point of the shell during thermal expansion is used. Examples of the inclusion gas include propane, propylene, butene, normal butane, isobutane, isopentane, neopentane, normal pentane, cyclopentane, hexane, heptane, petroleum ether, octane, isooctane, and decane. Preferably, isobutane, normal butane, isopentane, neopentane, cyclopentane, petroleum ether and the like are used alone or in admixture of two or more.

(B)成分である熱膨張性中空球体は、平均粒子径が15〜30μm、粒度分布の変動係数CVが30%以下、内包ガス量が10〜30%のものである。粒度分布の変動係数CVが30%を超えると、熱膨張性中空球体の破壊により発泡シートの表面がでこぼこに粗くなってしまう。上記のような熱膨張性中空球体を発泡させると、発泡時のシェル厚が0.07〜0.18μmとなり、得られる発泡シートの圧縮回復性を改善できる。 The thermally expandable hollow sphere as component (B) has an average particle diameter of 15 to 30 μm, a particle size distribution variation coefficient C V of 30% or less, and an inclusion gas amount of 10 to 30%. When the variation coefficient C V of the particle size distribution exceeds 30%, the surface of the foamed sheet becomes rough due to the destruction of the thermally expandable hollow sphere. When the thermally expandable hollow sphere as described above is foamed, the shell thickness at the time of foaming becomes 0.07 to 0.18 μm, and the compression recovery property of the obtained foamed sheet can be improved.

熱膨張性中空球体の平均粒子径は、マイクロトラック粒度分析計(たとえば日機装製)によって測定できる。平均粒子径は体積平均で求めている。   The average particle diameter of the thermally expandable hollow sphere can be measured with a Microtrac particle size analyzer (for example, manufactured by Nikkiso). The average particle diameter is obtained by volume average.

熱膨張性中空球体の内包ガス量は、以下のようにして算出する。乾燥した熱膨張性中空球体に有機溶剤を添加して球体外壁を膨潤させた後、高温で破壊し、揮発分を測定する。一方、水分測定装置によって乾燥した熱膨張性中空球体の水分を測定しておく。揮発分から水分を差し引いたものを内包ガス量(%)とする。   The amount of gas included in the thermally expandable hollow sphere is calculated as follows. An organic solvent is added to the dried thermally expandable hollow sphere to swell the outer wall of the sphere, and then the sphere is broken at a high temperature and the volatile content is measured. On the other hand, the moisture of the thermally expandable hollow sphere dried by a moisture measuring device is measured. The amount obtained by subtracting moisture from the volatile matter is taken as the amount of gas contained (%).

発泡時の熱膨張性中空球体のシェル厚は、以下のようにして測定する。予め発泡前の熱膨張性中空球体の断面をレーザー顕微鏡で観察してシェル厚を測定しておく。(A)成分であるエチレン・ビニルエステル系共重合体含有水性エマルジョンとして、たとえば流動中点が130〜150℃、トルエン不溶分が15重量%以下、エチレン含有量が15〜20重量%のエチレン酢酸ビニル共重合体を含む水性エマルジョン(A’)を用意し、水性エマルジョン(A’)と炭酸カルシウム(無機フィラー)と熱膨張性中空球体とをドライ比で、水性エマルジョン(A’):炭酸カルシウム:熱膨張性中空球体=100:60:10となるように配合し、180℃×30秒の条件で発泡させて発泡倍率を求める。このときの条件は最大発泡条件であり、得られる発泡倍率は最大発泡倍率である。そして、発泡前の熱膨張性中空球体のシェル厚と最大発泡倍率に基づいて、発泡時の熱膨張性中空球体のシェル厚を計算によって算出する。   The shell thickness of the thermally expandable hollow sphere at the time of foaming is measured as follows. The shell thickness is measured in advance by observing the cross section of the thermally expandable hollow sphere before foaming with a laser microscope. As the ethylene / vinyl ester copolymer-containing aqueous emulsion as component (A), for example, ethylene acetate having a flow midpoint of 130 to 150 ° C., a toluene insoluble content of 15% by weight or less, and an ethylene content of 15 to 20% by weight. An aqueous emulsion (A ′) containing a vinyl copolymer is prepared, and the aqueous emulsion (A ′): calcium carbonate (inorganic filler) and the thermally expandable hollow sphere are dried in a dry ratio. : Heat-expandable hollow sphere = 100: 60: 10 is blended and foamed under the conditions of 180 ° C. × 30 seconds to obtain the expansion ratio. The condition at this time is the maximum foaming condition, and the foaming ratio obtained is the maximum foaming ratio. Then, based on the shell thickness of the thermally expandable hollow sphere before foaming and the maximum expansion ratio, the shell thickness of the thermally expandable hollow sphere at the time of foaming is calculated.

発泡時のシェル厚が0.07μm未満であると、発泡シートの圧縮回復率が低下する傾向があるため好ましくない。発泡時のシェル厚が0.18μmを超えると、発泡シートのエンボス性が劣り、ローラーを押し付けたときに良好にエンボスを形成することが困難になる。これは、発泡シートのシェル厚の厚い中空球体が存在すると、中空球体の反発がつよくなるためである。   If the shell thickness during foaming is less than 0.07 μm, the compression recovery rate of the foam sheet tends to decrease, such being undesirable. When the shell thickness at the time of foaming exceeds 0.18 μm, the embossability of the foamed sheet is inferior, and it becomes difficult to form the embossing well when the roller is pressed. This is because the repulsion of the hollow sphere is enhanced when the hollow sphere having a thick shell of the foam sheet is present.

発泡前の熱膨張性中空球体の平均粒子径が15μm未満であると、発泡後のシェル厚が薄くなり、発泡シートの圧縮回復性が劣る傾向があるため好ましくない。発泡前の熱膨張性中空球体の平均粒子径が30μmを超えると、発泡シートにエンボスを形成することが困難になり表面性が劣るため好ましくない。   If the average particle diameter of the thermally expandable hollow sphere before foaming is less than 15 μm, the shell thickness after foaming becomes thin and the compression recovery property of the foamed sheet tends to be inferior. When the average particle diameter of the thermally expandable hollow sphere before foaming exceeds 30 μm, it is difficult to form emboss on the foamed sheet and the surface property is inferior.

熱膨張性中空球体の内包ガス量が10%未満であると、中空球体の発泡倍率が小さくなり、発泡シートに形成したエンボスが潰れる傾向があるため好ましくない。熱膨張性中空球体の内包ガス量が30%を超えると、中空球体が膨張しすぎて発泡後のシェル厚が薄くなり、発泡シートの圧縮回復性が劣る傾向があるため好ましくない。   When the encapsulated gas amount of the thermally expandable hollow sphere is less than 10%, the expansion ratio of the hollow sphere is reduced, and the emboss formed on the foamed sheet tends to be crushed, which is not preferable. If the amount of encapsulated gas in the thermally expandable hollow sphere exceeds 30%, the hollow sphere expands too much, the shell thickness after foaming becomes thin, and the compression recovery property of the foamed sheet tends to be inferior.

本発明においては、(B)成分として2種以上の熱膨張性中空球体を用いてもよい。本発明の組成物において、(B)成分である熱膨張性中空球体の含有量は、(A)成分の固形分100重量部あたり2〜30重量部、好ましくは5〜15重量部である。熱膨張性中空球体が2重量部未満であると、発泡性が不足する傾向があるので好ましくない。熱膨張性中空球体が30重量部を超えると発泡シートの機械的強度が低下する傾向があるので好ましくない。   In the present invention, two or more kinds of thermally expandable hollow spheres may be used as the component (B). In the composition of the present invention, the content of the thermally expandable hollow sphere as the component (B) is 2 to 30 parts by weight, preferably 5 to 15 parts by weight per 100 parts by weight of the solid content of the component (A). If the heat-expandable hollow sphere is less than 2 parts by weight, the foamability tends to be insufficient. If the thermally expandable hollow sphere exceeds 30 parts by weight, the mechanical strength of the foamed sheet tends to decrease, such being undesirable.

本発明において、(C)成分である無機フィラーとしては、たとえば、水酸化アルミニウム、水酸化マグネシウム、水酸化バリウム、炭酸カルシウム、炭酸マグネシウム、硫酸カルシウム、硫酸バリウム、珪砂、クレー、タルク、シリカ類、二酸化チタン、ケイ酸マグネシウムなどが挙げられる。なかでも、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、二酸化チタンが好適である。   In the present invention, as the inorganic filler as the component (C), for example, aluminum hydroxide, magnesium hydroxide, barium hydroxide, calcium carbonate, magnesium carbonate, calcium sulfate, barium sulfate, silica sand, clay, talc, silicas, Examples thereof include titanium dioxide and magnesium silicate. Of these, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, and titanium dioxide are preferable.

本発明の組成物において、(C)成分である無機フィラーの含有量は、(A)成分の固形分100重量部あたり20〜350重量部、好ましくは50〜150重量部である。無機フィラーが20重量部未満であると、難燃性が低下する傾向があるため好ましくない。無機フィラーが350重量部を超えると、発泡性、発泡シートの機械的強度および耐ひび割れ性が劣る傾向があるため好ましくない。   In the composition of the present invention, the content of the inorganic filler as the component (C) is 20 to 350 parts by weight, preferably 50 to 150 parts by weight per 100 parts by weight of the solid content of the component (A). If the inorganic filler is less than 20 parts by weight, the flame retardancy tends to decrease, such being undesirable. When the inorganic filler exceeds 350 parts by weight, the foamability, the mechanical strength of the foamed sheet, and the crack resistance tend to be inferior, which is not preferable.

本発明の発泡シート用樹脂組成物には、たとえば、染料、顔料、増粘剤、分散剤、臭素化エポキシ樹脂などの無機フィラー以外の難燃剤、光沢剤、チキソ性付与剤、密着付与剤、界面活性剤などの表面調整剤、紫外線吸収剤、老化防止剤、酸化防止剤および帯電防止剤などの添加剤を含有させてもよい。また、発泡シートの圧縮回復性に悪影響を与えない範囲で、本発明以外のEVAエマルジョン、水性ポリウレタン、SBR、アクリルエマルジョンなど他のエマルジョン、または水溶性樹脂を配合してもよい。   Examples of the resin composition for a foam sheet of the present invention include flame retardants other than inorganic fillers such as dyes, pigments, thickeners, dispersants, brominated epoxy resins, brighteners, thixotropic agents, adhesion promoters, You may contain additives, such as surface modifiers, such as surfactant, a ultraviolet absorber, anti-aging agent, antioxidant, and an antistatic agent. Moreover, you may mix | blend other emulsions other than this invention, such as EVA emulsion, water-based polyurethane, SBR, an acrylic emulsion, or water-soluble resin in the range which does not have a bad influence on the compression recovery property of a foam sheet.

本発明に係る発泡シート用樹脂組成物から発泡シートを製造するには、たとえばダイコーター、リップコーター、コンマコーター、ナイフコーター、リバースロールコーターなどのコーティングで、シート基材に樹脂組成物を塗布し、乾燥、印刷、発泡処理、エンボス加工を施す方法などが用いられる。   In order to produce a foam sheet from the resin composition for a foam sheet according to the present invention, the resin composition is applied to a sheet base material with a coating such as a die coater, a lip coater, a comma coater, a knife coater, and a reverse roll coater. , Drying, printing, foaming, embossing and the like.

組成物が塗布されるシート基材としては、たとえば、普通紙、新聞紙、リサイクル紙、難燃紙、剥離紙、塗工紙などの紙、布、プラスチックシート、金属薄膜など、発泡処理、エンボス加工などを施工し得るものが挙げられる。   Examples of the sheet base material to which the composition is applied include plain paper, newspaper, recycled paper, flame retardant paper, release paper, coated paper, cloth, plastic sheet, metal thin film, foaming treatment, embossing, etc. The thing which can construct etc. is mentioned.

[EVAエマルジョンの製造]
本実施例においては、酢酸ビニルの全使用量を100重量部とし、これを基準にして他の成分の配合量を調整した。
[Production of EVA emulsion]
In this example, the total amount of vinyl acetate used was 100 parts by weight, and the blending amounts of other components were adjusted based on this.

実施例1
初期仕込みとして、酢酸ビニル75重量部、ポリビニルアルコール(クラレ社製「ポバール203」、ケン化度88モル%、平均重合度300)0.60重量部(ポリビニルアルコールの全使用量の40%に相当する)、ポリオキシエチレンアルキルエーテル非イオン界面活性剤(花王社製「エマルゲン1135S−70」1.50重量部、ポリオキシエチレンプロピレン縮合物非イオン界面活性剤(旭電化工業社製「ブルロニックL64」)2.25重量部、および水36重量部を用いた。エマルゲン1135S−70の不揮発分は70%なので、エマルジョン重合に使う。本実施例では、界面活性剤/保護コロイド=68.4/31.6なので、請求項2の25/75〜90/10の範囲を満たしている。攪拌しながらエチレンを供給し、重合を開始した。重合を25℃から開始し、段階的に60℃まで昇温した後、重合完了まで60℃に保った。重合中は反応容器の気相部をエチレン雰囲気とし、エチレンを加圧して45kg/cm2に保持した。重合触媒としてはレドックス系のものを用いた。還元剤としてエリソリビン酸ナトリウムを酢酸ビニルの全量に対して0.30重量部、酸化剤としては過酸化水素を酢酸ビニルの全量に対して0.12重量部使用し、還元剤の8%を初期仕込み時に一括添加し、残りの還元剤および酸化剤を重合中に連続で添加した。
Example 1
As initial charge, 75 parts by weight of vinyl acetate, polyvinyl alcohol (“Poval 203” manufactured by Kuraray Co., Ltd., saponification degree 88 mol%, average polymerization degree 300) 0.60 part by weight (equivalent to 40% of the total amount of polyvinyl alcohol used) Polyoxyethylene alkyl ether nonionic surfactant ("Emulgen 1135S-70" manufactured by Kao Corporation), 1.50 parts by weight, polyoxyethylene propylene condensate nonionic surfactant ("Buluronic L64" manufactured by Asahi Denka Kogyo Co., Ltd.) 2.25 parts by weight and 36 parts by weight of water, Emulgen 1135S-70 has a non-volatile content of 70% and is used for emulsion polymerization.In this example, surfactant / protective colloid = 68.4 / 31 Therefore, the range of 25/75 to 90/10 of claim 2 is satisfied. The polymerization was started from 25 ° C., and the temperature was raised stepwise to 60 ° C. and then kept at 60 ° C. until the completion of the polymerization. pressure was maintained at 45 kg / cm 2 in. 0.30 parts by weight of sodium Erisoribin acid relative to the total amount of vinyl acetate as. the reducing agent used was a redox system as polymerization catalyst, as the oxidizing agent hydrogen peroxide Using 0.12 parts by weight with respect to the total amount of vinyl acetate, 8% of the reducing agent was added all at the time of initial charging, and the remaining reducing agent and oxidizing agent were continuously added during the polymerization.

重合開始後、後添加として、酢酸ビニル25重量部およびポリビニルアルコール(前記のものに同じ)0.90重量部を連続的に添加した。後添加を重合開始1時間後から始めて7時間後に終了した。反応系内の酢酸ビニルの残存量が1%以下になったところで重合反応を終了した。得られた水性エマルジョンは、エチレン/酢酸ビニルの重量比が18/82であり、ガラス転移温度が0℃である共重合体を含み、固形分が73.1%、粘度が4000mPa・s、pHが5.1、トルエン不溶分が10%、熱流動中点が140℃であった。これをEVAエマルジョンA1という。   After the initiation of polymerization, 25 parts by weight of vinyl acetate and 0.90 part by weight of polyvinyl alcohol (same as above) were continuously added as a post-addition. The post-addition started from 1 hour after the start of polymerization and was completed after 7 hours. The polymerization reaction was terminated when the residual amount of vinyl acetate in the reaction system became 1% or less. The obtained aqueous emulsion contains a copolymer having an ethylene / vinyl acetate weight ratio of 18/82, a glass transition temperature of 0 ° C., a solid content of 73.1%, a viscosity of 4000 mPa · s, and a pH. 5.1, toluene insoluble content was 10%, and the heat flow midpoint was 140 ° C. This is referred to as EVA emulsion A1.

[熱膨張性中空球体の製造]
本実施例では、特開2004−959号公報に記載されている方法に従って、熱膨張性中空球体を製造した。
[Production of thermally expandable hollow sphere]
In this example, a thermally expandable hollow sphere was produced according to the method described in JP-A-2004-959.

イオン交換水600gに、塩化ナトリウム150g、アジピン酸−ジエタノールアミン縮合物1.5g、コロイダルシリカ20%水溶液80gを加えた後、硫酸でpHを4に調整し、均一に混合してこれを水相とする。アクリロニトリル180g、メタクリロニトリル105g、メタクリル酸メチル15g、ジメタクリル酸トリメチロールプロパン1g、イソペンタン100g、アゾビスイソブチロニトリル1gを混合、撹拌、溶解し、これを油相とする。水相と油相を混合し、クレアミックスで10000rpm・2分間撹拌して懸濁液とする。これを1.5L加圧反応器に移し、窒素置換をした後、撹拌しつつ70℃で15時間反応した。得られた反応生成物をろ過し、平均粒径が29μm、変動係数Cvが22%、内包ガス量が23%である熱膨張性中空球体(MC1)を得た。   To 600 g of ion-exchanged water, 150 g of sodium chloride, 1.5 g of adipic acid-diethanolamine condensate and 80 g of a colloidal silica 20% aqueous solution are added, and then the pH is adjusted to 4 with sulfuric acid. To do. Acrylonitrile (180 g), methacrylonitrile (105 g), methyl methacrylate (15 g), dimethacrylic acid trimethylolpropane (1 g), isopentane (100 g), and azobisisobutyronitrile (1 g) are mixed, stirred and dissolved to obtain an oil phase. A water phase and an oil phase are mixed, and it stirs at 10000 rpm and 2 minutes by CLEARMIX, and makes it a suspension. This was transferred to a 1.5 L pressure reactor, purged with nitrogen, and reacted at 70 ° C. for 15 hours with stirring. The obtained reaction product was filtered to obtain a thermally expandable hollow sphere (MC1) having an average particle size of 29 μm, a coefficient of variation Cv of 22%, and an inclusion gas amount of 23%.

実施例2
イソペンタンを85g、クレアミックスの回転数を15000rpmとした以外は、実施例1と同様の方法で反応を行った。得られた反応生成物をろ過し、平均粒径が23μm、変動係数Cvが30%、内包ガス量が20%である熱膨張性中空球体(MC2)を得た。
Example 2
The reaction was carried out in the same manner as in Example 1 except that 85 g of isopentane and the rotation speed of CLEARMIX were changed to 15000 rpm. The obtained reaction product was filtered to obtain a thermally expandable hollow sphere (MC2) having an average particle diameter of 23 μm, a coefficient of variation Cv of 30%, and an inclusion gas amount of 20%.

比較例1
イオン交換水700gに、アジピン酸−ジエタノールアミン縮合物2g、コロイダルシリカ20%水溶液80gを加えた後、硫酸でpHを4に調整し、均一に混合してこれを水相とする。アクリロニトリル180g、メタクリル酸メチル120g、トリメタクリル酸トリメチロールプロパン1g、イソペンタン150g、アゾビスジメチルバレロニトリル1gを混合、撹拌、溶解し、これを油相とする。水相と油相を混合し、TKホモミクサーで7000rpm・3分間撹拌して懸濁液とする。これを1.5L加圧反応機に移し、窒素置換して後、撹拌しつつ60℃で12時間反応した。得られた反応生成物をろ過し、平均粒径が7μm、変動係数Cvが54%、内包ガス量が32%である熱膨張性中空球体(MC3)を得た。
Comparative Example 1
After adding 2 g of adipic acid-diethanolamine condensate and 80 g of colloidal silica 20% aqueous solution to 700 g of ion-exchanged water, the pH is adjusted to 4 with sulfuric acid and mixed uniformly to obtain an aqueous phase. Acrylonitrile (180 g), methyl methacrylate (120 g), trimethacrylic acid trimethylolpropane (1 g), isopentane (150 g), and azobisdimethylvaleronitrile (1 g) are mixed, stirred and dissolved to obtain an oil phase. The aqueous phase and the oil phase are mixed and stirred with a TK homomixer at 7000 rpm for 3 minutes to obtain a suspension. This was transferred to a 1.5 L pressure reactor, purged with nitrogen, and then reacted at 60 ° C. for 12 hours with stirring. The obtained reaction product was filtered to obtain a thermally expandable hollow sphere (MC3) having an average particle diameter of 7 μm, a coefficient of variation Cv of 54%, and an inclusion gas amount of 32%.

比較例2
コロイダルシリカを100g、イソペンタンを110g、クレアミックスの回転数を15000rpmとした以外は、実施例1と同様の方法で反応を行った。得られた反応生成物をろ過し、平均粒径が9μm、変動係数Cvが24%、内包ガス量が25%である熱膨張性中空球体(MC4)を得た。
Comparative Example 2
The reaction was performed in the same manner as in Example 1 except that 100 g of colloidal silica, 110 g of isopentane, and the rotation speed of CLEARMIX were set to 15000 rpm. The obtained reaction product was filtered to obtain a thermally expandable hollow sphere (MC4) having an average particle size of 9 μm, a coefficient of variation Cv of 24%, and an inclusion gas amount of 25%.

比較例3
コロイダルシリカを70g、イソペンタンを60gとした以外は、実施例1と同様の方法で反応を行った。得られた反応生成物をろ過し、平均粒径が31μm、変動係数Cvが21%、内包ガス量が15%である熱膨張性中空球体(MC5)を得た。
Comparative Example 3
The reaction was performed in the same manner as in Example 1 except that 70 g of colloidal silica and 60 g of isopentane were used. The obtained reaction product was filtered to obtain a thermally expandable hollow sphere (MC5) having an average particle diameter of 31 μm, a coefficient of variation Cv of 21%, and an inclusion gas amount of 15%.

[熱膨張中空球体の粒子径、シェル厚、内包ガス量、組成物の発泡倍率、および発泡時のシェル厚の測定]
熱膨張中空球体の粒子径は、日機装製マイクロトラック粒度分析計で測定した。
[Measurement of Particle Size, Shell Thickness, Encapsulated Gas Amount, Foaming Ratio of Composition, and Shell Thickness at Foaming of Thermally Expanded Hollow Sphere]
The particle size of the thermally expanded hollow sphere was measured with a Nikkiso Microtrac particle size analyzer.

発泡前の熱膨張中空球体のシェル層は、中空球体断面をオリンパス製走査型共焦点レーザー顕微鏡(型式OLS1100)で観察して測定した。   The shell layer of the thermally expanded hollow sphere before foaming was measured by observing the cross section of the hollow sphere with an Olympus scanning confocal laser microscope (model OLS1100).

内包ガス量は以下のようにして算出した。乾燥した中空球体1gに有機溶剤(アセトニトリル)を30ml加え、30分間静置し、十分に膨潤させた後、高温にして中空球体を破壊し、揮発分を測定する。これとは別に、水分測定装置で乾燥した中空球体の水分を求めておき、下記式に従って内包ガス量を算出した。
内包ガス量(%)=揮発分(%)−水分(%)。
The amount of encapsulated gas was calculated as follows. 30 ml of an organic solvent (acetonitrile) is added to 1 g of the dried hollow spheres, left to stand for 30 minutes and sufficiently swollen, and then the hollow spheres are broken at a high temperature and the volatile content is measured. Separately from this, the moisture content of the hollow spheres dried by the moisture measuring device was determined, and the amount of encapsulated gas was calculated according to the following formula.
Inclusion gas amount (%) = volatile content (%) − water content (%).

組成物の発泡倍率は以下のようにして求めた。水性エマルジョン(A’)として上記のEVAエマルジョンA1を用いた。EVAエマルジョンA1/炭酸カルシウム/熱膨張性中空球体=100/60/10(ドライ比)になるように配合した組成物を、アプリケータで上質紙の上に0.2mm塗工し、発泡剤が発泡しない温度域で乾燥させ塗料塗膜の膜厚を測定する。熱処理(180℃×30秒)を行い、発泡後の塗工厚さを測定する。下記の式に従って発泡倍率を求める。   The foaming ratio of the composition was determined as follows. The above EVA emulsion A1 was used as the aqueous emulsion (A ′). EVA emulsion A1 / calcium carbonate / thermally expansible hollow sphere = 100/60/10 (dry ratio) was applied to a fine paper with an applicator, 0.2 mm, and a foaming agent was applied. Dry in a temperature range that does not foam and measure the film thickness of the paint film. Heat treatment (180 ° C. × 30 seconds) is performed, and the coating thickness after foaming is measured. The expansion ratio is determined according to the following formula.

発泡倍率=発泡後の塗工層の厚み/発泡前の塗工層の厚み
(発泡後の塗工層の厚み=発泡後の全層の厚み−上質紙の厚み、
発泡前の塗工層の厚み=発泡前の全層の厚み−上質紙の厚み)。
Foaming ratio = Thickness of coating layer after foaming / Thickness of coating layer before foaming (Thickness of coating layer after foaming = Thickness of all layers after foaming−Thickness of fine paper,
The thickness of the coating layer before foaming = the thickness of all layers before foaming-the thickness of the fine paper).

発泡時の中空球体のシェル厚は、発泡前の熱膨張性中空球体が元のシェル厚から、上記で得られた発泡倍率まで、真球のまま膨張したと仮定して算出した。
これらの測定値を下記表1に示す。
The shell thickness of the hollow sphere at the time of foaming was calculated on the assumption that the thermally expandable hollow sphere before foaming expanded from the original shell thickness to the expansion ratio obtained above as a true sphere.
These measured values are shown in Table 1 below.

[壁紙塗料組成物および発泡壁紙の製造例]
下記表1に示すように、EVAエマルジョンの固形分100重量部、熱膨張性中空球体10重量部、分散剤1.5重量部、無機フィラー(炭酸カルシウム)80重量部、消泡剤0.9重量部、ブロッキング防止剤0.5重量部、湿潤剤1.1重量部、無機顔料15重量部を配合して発泡壁紙用塗料組成物を調製し、下記のようにして発泡壁紙を作製した。
基材:壁紙原紙、塗工量:140g/m2(ドライ)
乾燥条件:熱風乾燥機90℃×3分、発泡条件:180℃×30秒間。
[Production example of wallpaper coating composition and foamed wallpaper]
As shown in Table 1 below, the solid content of EVA emulsion is 100 parts by weight, the thermally expandable hollow sphere is 10 parts by weight, the dispersant is 1.5 parts by weight, the inorganic filler (calcium carbonate) is 80 parts by weight, and the antifoaming agent is 0.9 parts by weight. A coating composition for foamed wallpaper was prepared by blending parts by weight, 0.5 parts by weight of an antiblocking agent, 1.1 parts by weight of a wetting agent, and 15 parts by weight of an inorganic pigment, and a foamed wallpaper was prepared as follows.
Base material: wallpaper base paper, coating amount: 140 g / m 2 (dry)
Drying conditions: hot air dryer 90 ° C. × 3 minutes, foaming conditions: 180 ° C. × 30 seconds.

以下のようにして、発泡壁紙の発泡倍率、圧縮回復率、エンボス性を調べた。
(1)発泡倍率
発泡倍率=(発泡後の壁紙の発泡層厚さ)/(発泡前の壁紙組成物乾燥塗膜の厚さ)
(2)圧縮回復率
面圧250g/cm2×24時間荷重の条件で加圧した後、解圧し、24時間後の厚みを測定した。
圧縮回復率=(解圧24時間後の発泡壁紙厚み)×100/(加圧前の壁紙の厚み)
(3)エンボス性
メカニカルエンボスを実施した。図1にエンボス加工した壁紙の断面図を示す。図1に示すように、基材1上に発泡壁紙2が形成されている。発泡壁紙2は、エチレン・ビニルエステル系共重合体21中に無機フィラー(図示せず)および発泡した中空球体22が分散した構造を有する。発泡壁紙2の表面が印刷面3となっており、この面にエンボス4が加工されている。ここで、エンボス版の版柄の再現性が良好なものを○、エンボス版の再現性が不良なものを×として評価した。
これらの結果を表1に併記する。表1からわかるように、実施例1および2の発泡壁紙は、発泡倍率が高く、しかも95%以上の高い圧縮回復率および良好なエンボス性の両立を実現できる。

Figure 2008037956
The foaming ratio, compression recovery rate, and embossability of the foamed wallpaper were examined as follows.
(1) Foaming ratio Foaming ratio = (foamed layer thickness of wallpaper after foaming) / (thickness of wallpaper composition dry coating film before foaming)
(2) Compression recovery rate After pressurizing under the condition of a surface pressure of 250 g / cm 2 × 24 hours, the pressure was released and the thickness after 24 hours was measured.
Compression recovery rate = (thickness of foamed wallpaper after 24 hours of decompression) × 100 / (thickness of wallpaper before pressurization)
(3) Embossing property Mechanical embossing was performed. FIG. 1 shows a cross-sectional view of the embossed wallpaper. As shown in FIG. 1, a foam wallpaper 2 is formed on a substrate 1. The foamed wallpaper 2 has a structure in which an inorganic filler (not shown) and a foamed hollow sphere 22 are dispersed in an ethylene / vinyl ester copolymer 21. The surface of the foam wallpaper 2 is a printing surface 3, and an emboss 4 is processed on this surface. Here, the case where the reproducibility of the pattern of the embossed plate was good was evaluated as ◯, and the case where the reproducibility of the embossed plate was poor was evaluated as x.
These results are also shown in Table 1. As can be seen from Table 1, the foamed wallpaper of Examples 1 and 2 has a high foaming ratio and can achieve both a high compression recovery rate of 95% or more and good embossability.
Figure 2008037956

エンボス加工した壁紙の断面図。Cross section of embossed wallpaper.

符号の説明Explanation of symbols

1…基材、2…発泡壁紙、21…エチレン・ビニルエステル系共重合体、22…中空球体、3…印刷面、4…エンボス。   DESCRIPTION OF SYMBOLS 1 ... Base material, 2 ... Foam wallpaper, 21 ... Ethylene vinyl ester copolymer, 22 ... Hollow sphere, 3 ... Printing surface, 4 ... Embossing.

Claims (4)

エチレンに由来する構造単位(a1)5〜35重量部、およびビニルエステルに由来する構造単位(a2)95〜65重量部を含み、流動中点が90〜160℃であり、トルエン不溶分が30重量%未満である、エチレン・ビニルエステル系共重合体を含有する水性エマルジョン(A)と、
平均粒子径が15〜30μmであり、下記式で表される粒度分布の変動係数CVが30%以下であり、内包ガス量が10〜30%である熱膨張性中空球体(B)と、
Figure 2008037956
無機フィラー(C)を含有することを特徴とする発泡シート用樹脂組成物。
5 to 35 parts by weight of the structural unit (a1) derived from ethylene and 95 to 65 parts by weight of the structural unit (a2) derived from the vinyl ester, the flow midpoint is 90 to 160 ° C., and the toluene insoluble content is 30 An aqueous emulsion (A) containing an ethylene-vinyl ester copolymer that is less than% by weight;
A thermally expandable hollow sphere (B) having an average particle diameter of 15 to 30 μm, a coefficient of variation C V of a particle size distribution represented by the following formula of 30% or less, and an inclusion gas amount of 10 to 30%;
Figure 2008037956
A resin composition for a foam sheet, comprising an inorganic filler (C).
前記(A)成分は、分散剤として界面活性剤および保護コロイドを含み、(界面活性剤/保護コロイド)の重量比が25/75〜90/10であることを特徴とする請求項1に記載の発泡シート用樹脂組成物。   The component (A) contains a surfactant and a protective colloid as a dispersant, and the weight ratio of (surfactant / protective colloid) is 25/75 to 90/10. Resin composition for foam sheet. 前記(A)成分の固形分100重量部に対して、熱膨張性中空球体(B)2〜30重量部と、無機フィラー(C)20〜350重量部とを含有することを特徴とする請求項1または2に記載の発泡シート用樹脂組成物。   The heat-expandable hollow sphere (B) is contained in an amount of 2 to 30 parts by weight and the inorganic filler (C) is contained in an amount of 20 to 350 parts by weight based on 100 parts by weight of the solid content of the component (A). Item 3. The resin composition for a foam sheet according to Item 1 or 2. 請求項1ないし3のいずれか1項に記載の組成物を発泡せしめて得られることを特徴とする発泡シート。   A foam sheet obtained by foaming the composition according to any one of claims 1 to 3.
JP2006212178A 2006-08-03 2006-08-03 Resin composition for foam sheet and foam sheet Active JP4937669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006212178A JP4937669B2 (en) 2006-08-03 2006-08-03 Resin composition for foam sheet and foam sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006212178A JP4937669B2 (en) 2006-08-03 2006-08-03 Resin composition for foam sheet and foam sheet

Publications (2)

Publication Number Publication Date
JP2008037956A true JP2008037956A (en) 2008-02-21
JP4937669B2 JP4937669B2 (en) 2012-05-23

Family

ID=39173361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006212178A Active JP4937669B2 (en) 2006-08-03 2006-08-03 Resin composition for foam sheet and foam sheet

Country Status (1)

Country Link
JP (1) JP4937669B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009214315A (en) * 2008-03-07 2009-09-24 Toppan Printing Co Ltd Foamed decorative material
JP2010216054A (en) * 2009-03-19 2010-09-30 Toppan Cosmo Inc Foamed wallpaper
JP2018069714A (en) * 2016-11-04 2018-05-10 凸版印刷株式会社 Foam wall paper raw material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000191817A (en) * 1998-12-28 2000-07-11 Kureha Chem Ind Co Ltd Expandable microsphere and its production
JP2003013396A (en) * 2001-06-26 2003-01-15 Sumitomo Chem Co Ltd Aqueous emulsion for foamed wallpaper and resin composition for foamed wallpaper containing the aqueous emulsion
WO2004074396A1 (en) * 2003-02-24 2004-09-02 Matsumoto Yushi-Seiyaku Co., Ltd. Thermoexpansible microsphere, process for producing the same and method of use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000191817A (en) * 1998-12-28 2000-07-11 Kureha Chem Ind Co Ltd Expandable microsphere and its production
JP2003013396A (en) * 2001-06-26 2003-01-15 Sumitomo Chem Co Ltd Aqueous emulsion for foamed wallpaper and resin composition for foamed wallpaper containing the aqueous emulsion
WO2004074396A1 (en) * 2003-02-24 2004-09-02 Matsumoto Yushi-Seiyaku Co., Ltd. Thermoexpansible microsphere, process for producing the same and method of use thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009214315A (en) * 2008-03-07 2009-09-24 Toppan Printing Co Ltd Foamed decorative material
JP2010216054A (en) * 2009-03-19 2010-09-30 Toppan Cosmo Inc Foamed wallpaper
JP2018069714A (en) * 2016-11-04 2018-05-10 凸版印刷株式会社 Foam wall paper raw material

Also Published As

Publication number Publication date
JP4937669B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
EP2026902B1 (en) Microspheres
JP4291510B2 (en) Thermally expandable microcapsules and methods of use
EP1981631B1 (en) Microspheres
US8388809B2 (en) Microspheres
US20070287776A1 (en) Microspheres
JP5534576B2 (en) Thermally expansible microsphere and method for producing the same, additive and molded article
JPH05329360A (en) Thermally expansive microcapsule, its manufacture and expanding method therefor
KR20020091247A (en) Heat-expandable macrosphere and process for producing the same
KR20110058095A (en) Heat-expandable microparticles having good expandability and even particle diameter
JP2002363537A (en) Thermally foamed microsphere and method for manufacturing the same
JP5474469B2 (en) Composite particles
WO2020066623A1 (en) Hollow particles, production method therefor, and aqueous dispersion containing hollow particles
JP4937669B2 (en) Resin composition for foam sheet and foam sheet
TW202039666A (en) Thermally expandable microcapsules and foam molding composition
JP5092811B2 (en) Foamed cosmetics
CN111218023B (en) Conductive thermal expansion microsphere with good flame retardance and preparation method thereof
KR102165682B1 (en) Microspheres, heat-expandable resin composition containing the microspheres, structural members, and molded articles, and methods of manufacturing the structural members and molded articles
JP5727184B2 (en) Thermally expandable microcapsule, resin composition and foamed sheet
JP6957776B1 (en) Thermally expandable microcapsules
JP2005232274A (en) Thermally expandable microcapsule of high heat resistance and method for producing the same
WO2016093220A1 (en) Thermally-expandable microspheres, and composition and molded article containing same
JP2010216054A (en) Foamed wallpaper
JP2011074282A (en) Thermally expandable microcapsule
JP5358074B2 (en) Microcapsule, resin composition for coating film formation, coating film and method for producing microcapsule
JP2011168749A (en) Method of manufacturing thermally expansible microcapsule

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4937669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250