JP2008037823A - Ion conductor, compound or its salt, twin continuous cubic liquid crystal and electrochemical device - Google Patents

Ion conductor, compound or its salt, twin continuous cubic liquid crystal and electrochemical device Download PDF

Info

Publication number
JP2008037823A
JP2008037823A JP2006216306A JP2006216306A JP2008037823A JP 2008037823 A JP2008037823 A JP 2008037823A JP 2006216306 A JP2006216306 A JP 2006216306A JP 2006216306 A JP2006216306 A JP 2006216306A JP 2008037823 A JP2008037823 A JP 2008037823A
Authority
JP
Japan
Prior art keywords
compound
liquid crystal
salt
ion conductor
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006216306A
Other languages
Japanese (ja)
Other versions
JP5245041B2 (en
Inventor
Takashi Kato
隆史 加藤
Masashi Yoshio
正史 吉尾
Naohiro Ichikawa
尚広 一川
Hiroyuki Ono
弘幸 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2006216306A priority Critical patent/JP5245041B2/en
Publication of JP2008037823A publication Critical patent/JP2008037823A/en
Application granted granted Critical
Publication of JP5245041B2 publication Critical patent/JP5245041B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an ion conductor, a compound or its salt, an electrochemical device and an ion conductor having high practicality, etc. <P>SOLUTION: The ion conductor has a bicontinuous cubic liquid crystal structure. The practical ion conductor is obtained without performing an alignment control by virtue of a three-dimensional isotropy caused by a bicontinuous cubic liquid crystal structure. A one-dimensional ion channel is spontaneously formed even without performing a specific molecular alignment control and ions are moved in the direction between electrodes. The ammonium salt structure of the compound has excellent compatibility with a lithium salt, an ionic liquid, etc., mixing with the lithium salt, etc., exhibits higher ionic conductivity. The actualization of the ionic conductivity does not require a high-vacuum process. Consequently, the compound has a wide application range as an electrolyte for various energy devices such as a lithium ion battery, solar battery, fuel battery, capacitor, etc., and an ion conductor for an ionics device. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、イオン伝導体、化合物又はその塩、電気化学デバイスに関し、特に、双連続キュービック液晶構造に関する。 The present invention relates to an ionic conductor, a compound or a salt thereof, and an electrochemical device, and more particularly to a bicontinuous cubic liquid crystal structure.

液晶は、固体と液体のちょうど中間的な物質・状態のことを指しており、様々な構造秩序を自己組織的に形成する機能材料であることが知られている。液晶はその異方性や動的特性により、様々な性質を発現する。これらの性質を利用して、一般には、光学的特性・外場応答性を利用したディスプレイ材料や、配向性・流動性を利用した高強度繊維の作製などに応用されている。また、より多様な機能の発現を目的として他の繊維性複合材料に液晶性を導入している例も多く見られる。さらに、液晶の取りうる様々な構造が提唱されている。 Liquid crystals refer to substances / states that are just between solids and liquids, and are known to be functional materials that form various structural orders in a self-organizing manner. Liquid crystals exhibit various properties due to their anisotropy and dynamic characteristics. Utilizing these properties, they are generally applied to display materials using optical properties and external field responsiveness, and production of high-strength fibers using orientation and fluidity. There are also many examples in which liquid crystalline properties are introduced into other fibrous composite materials for the purpose of expressing more diverse functions. Furthermore, various structures that can be taken by liquid crystals have been proposed.

Nat Mater. 2005 Jul;4(7):562-7. Epub 2005 Jun 5.Nat Mater. 2005 Jul; 4 (7): 562-7. Epub 2005 Jun 5.

一方、電解質に液晶性を付与した場合、その配向秩序に基づく異方的なイオン伝導性をもつ材料ができることが期待される。 On the other hand, when liquid crystallinity is imparted to the electrolyte, it is expected that a material having anisotropic ionic conductivity based on the orientation order can be produced.

実際、このような異方的なイオン伝導性を持つ材料として、発明者らは、分子構造において重合可能部位とともにイオンの複合化部位並びに液晶相を発現させるメソゲン部位とを有する有機モノマー化合物と、有機もしくは無機の塩との複合体を重合させて異方的イオン伝導性材料を得ている(特許文献1)ほか、各種の材料がいくつか報告されている(たとえば特許文献2〜6)。 In fact, as a material having such anisotropic ion conductivity, the inventors have an organic monomer compound having a polymerizable portion and a mesogenic portion that develops a liquid crystal phase together with a polymerizable portion in the molecular structure; An anisotropic ion conductive material is obtained by polymerizing a complex with an organic or inorganic salt (Patent Document 1), and some other various materials have been reported (for example, Patent Documents 2 to 6).

特願2002−013546号出願Application for Japanese Patent Application No. 2002-013546 特開平11−86629号公報Japanese Patent Laid-Open No. 11-86629 特開2002−105033号公報JP 2002-105033 A 特開2003−20479号公報JP 2003-20479 A 特開2002−170426号公報JP 2002-170426 A 特開2001−202995号公報JP 2001-202995 A 特開2002−358821号公報JP 2002-358821 A

これまで、液晶材料の持つ配向性を利用したイオン伝導体が提案されてきた。しかしながら、実用に供されるには、電極間に配置される場合に、液晶性イオン伝導体が、広い温度範囲で電極間の方向に高いイオン伝導性を有することが必要とされるが、そのような性質を有する液晶性イオン伝導体を電極間で均一に配向させることは困難であった。 Until now, ion conductors utilizing the orientation of liquid crystal materials have been proposed. However, in order to be put into practical use, when placed between electrodes, the liquid crystalline ionic conductor is required to have high ionic conductivity in the direction between the electrodes over a wide temperature range. It has been difficult to uniformly align the liquid crystalline ion conductor having such properties between the electrodes.

本発明は、上述の背景技術に鑑みてなされたものであり、実用性の高いイオン伝導体などを提供することを目的とする。 This invention is made | formed in view of the above-mentioned background art, and aims at providing an ion conductor etc. with high practicality.

この発明によれば、上述の目的を達成するために、特許請求の範囲に記載のとおりの構成を採用している。以下、この発明を詳細に説明する。 According to this invention, in order to achieve the above-mentioned object, the configuration as described in the claims is adopted. Hereinafter, the present invention will be described in detail.

本発明の第1の側面は、
双連続キュービック液晶構造を有することを特徴とするイオン伝導体
にある。
The first aspect of the present invention is:
An ionic conductor characterized by having a bicontinuous cubic liquid crystal structure.

本構成によれば、双連続キュービック液晶構造に起因する三次元的な等方性のため、配向制御を行わなくとも実用的なイオン伝導体が得られる。 According to this configuration, a practical ionic conductor can be obtained without performing alignment control because of the three-dimensional isotropic property resulting from the bicontinuous cubic liquid crystal structure.

本発明の第2の側面は、

[式中、
X-は、Cl-、Br-、I-、F-、BF4 -、PF6 -、CF3SO3 -、(CF3SO2)2N-のいずれかであり、
1R、2R、3Rは、同一でも異なっていてもよく、(CH2k-1CH3、(CF2k-1CF3、(CH2(CF2k-l-1CF3、又は(CH2CH2O)CH3であり、
kは1から18までの数、lは0から4までの数、mは1から5までの数、nは6から22までの数、k-lは1以上
である。]
で表される化合物又はその塩、

[式中、
X-は、Cl-、Br-、I-、F-、BF4 -、PF6 -、CF3SO3 -、(CF3SO2)2N-のいずれかであり、
1R、2R、3Rは、同一でも異なっていてもよく、(CH2k-1CH3、(CF2k-1CF3、(CH2(CF2k-l-1CF3、又は(CH2CH2O)CH3であり、
kは1から18までの数、lは0から4までの数、mは1から5までの数、nは6から22までの数
である。]
で表される化合物又はその塩
又は

[式中、
X-は、Cl-、Br-、I-、F-、BF4 -、PF6 -、CF3SO3 -、(CF3SO2)2N-のいずれかであり、
1R、2R、3Rは、同一でも異なっていてもよく、(CH2k-1CH3、(CF2k-1CF3、(CH2(CF2k-l-1CF3、又は(CH2CH2O)CH3であり、
4R、5R、6Rは、同一でも異なっていてもよく、CH2=CH−COO、CH2=CCH3−COO、Hのいずれかであり、
kは1から18までの数、lは0から4までの数、mは1から5までの数、nは6から22までの数、k-lは1以上
である。]
で表される化合物又はその塩
にある。
The second aspect of the present invention is
formula
[Where:
X is any one of Cl , Br , I , F , BF 4 , PF 6 , CF 3 SO 3 , (CF 3 SO 2 ) 2 N ,
1 R, 2 R, and 3 R may be the same or different, and (CH 2 ) k-1 CH 3 , (CF 2 ) k-1 CF 3 , (CH 2 ) l (CF 2 ) k-l -1 CF 3 or (CH 2 CH 2 O) l CH 3
k is a number from 1 to 18, l is a number from 0 to 4, m is a number from 1 to 5, n is a number from 6 to 22, and kl is 1 or more. ]
Or a salt thereof,
formula
[Where:
X is any one of Cl , Br , I , F , BF 4 , PF 6 , CF 3 SO 3 , (CF 3 SO 2 ) 2 N ,
1 R, 2 R, and 3 R may be the same or different, and (CH 2 ) k-1 CH 3 , (CF 2 ) k-1 CF 3 , (CH 2 ) l (CF 2 ) k-l -1 CF 3 or (CH 2 CH 2 O) l CH 3
k is a number from 1 to 18, l is a number from 0 to 4, m is a number from 1 to 5, and n is a number from 6 to 22. ]
Or a salt or formula thereof
[Where:
X is any one of Cl , Br , I , F , BF 4 , PF 6 , CF 3 SO 3 , (CF 3 SO 2 ) 2 N ,
1 R, 2 R, and 3 R may be the same or different, and (CH 2 ) k-1 CH 3 , (CF 2 ) k-1 CF 3 , (CH 2 ) l (CF 2 ) k-l -1 CF 3 or (CH 2 CH 2 O) l CH 3
4 R, 5 R, and 6 R may be the same or different and are CH 2 ═CH—COO, CH 2 ═CCH 3 —COO, or H,
k is a number from 1 to 18, l is a number from 0 to 4, m is a number from 1 to 5, n is a number from 6 to 22, and kl is 1 or more. ]
Or a salt thereof.

本構成によれば、広い温度範囲で高いイオン電導を示す化合物又はその塩が得られる。 According to this structure, the compound or its salt which shows high ionic conductivity in a wide temperature range is obtained.

本発明によれば、実用性の高いイオン伝導体などが得られる。 According to the present invention, a highly practical ion conductor or the like can be obtained.

本発明のさらに他の目的、特徴又は利点は、後述する本発明の実施の形態や添付する図面に基づく詳細な説明によって明らかになるであろう。 Other objects, features, or advantages of the present invention will become apparent from the detailed description based on the embodiments of the present invention described later and the accompanying drawings.

以下、本発明の実施の形態について図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

[双連続キュービック液晶構造] [Bicontinuous cubic liquid crystal structure]

図1は、本実施形態によって実現された双連続キュービック液晶構造を示す図である。図に示すように、一次元的なイオンチャンネル構造を有し、これが三次元に等方的に配置している。この構造は、イオン伝導性の液晶材料を電極間で均一配向させるプロセスを使用しなくとも得ることができ、高効率のイオン伝導体として利用できるという利点がある。双連続キュービック液晶構造は、リチウムイオンなどを輸送するイオンチャンネルなどとして機能することが期待される。 FIG. 1 is a diagram showing a bicontinuous cubic liquid crystal structure realized by this embodiment. As shown in the figure, it has a one-dimensional ion channel structure, which is isotropically arranged in three dimensions. This structure can be obtained without using a process of uniformly aligning an ion conductive liquid crystal material between electrodes, and has an advantage that it can be used as a highly efficient ion conductor. The bicontinuous cubic liquid crystal structure is expected to function as an ion channel for transporting lithium ions and the like.

双連続キュービック液晶構造は、例えば、アンモニウム塩構造を有する扇形分子、重合性部位を有する誘導体、それらの混合物、リチウム塩(LiBF4、LiPF6、LiOSO2CF3、LiN(SO2CF3)2)などの固体電解質、イオン液体(例えば、テトラブチルアンモニウムテトラフルオロボレート、1-エチル-3-メチルイミダゾリウムテトラフルオロボレート)などの液体電解質を含むイオン伝導体によって構成される。さらに具体的には、下記の化合物又はその塩などで構成することが考えられる。 The bicontinuous cubic liquid crystal structure includes, for example, a sector molecule having an ammonium salt structure, a derivative having a polymerizable site, a mixture thereof, a lithium salt (LiBF 4, LiPF 6, LiOSO 2 CF 3, LiN (SO 2 CF 3 ) 2 ) And the like, and an ionic liquid containing a liquid electrolyte such as an ionic liquid (for example, tetrabutylammonium tetrafluoroborate, 1-ethyl-3-methylimidazolium tetrafluoroborate). More specifically, it may be composed of the following compounds or salts thereof.

ここで、例えば、X-は、Cl-、Br-、I-、F-、BF4 -、PF6 -、CF3SO3 -、(CF3SO2)2N-のいずれかであり、1R、2R、3Rは、同一でも異なっていてもよく、(CH2k-1CH3、(CF2k-1CF3、(CH2(CF2k-l-1CF3、又は(CH2CH2O)CH3であり、kは1から18までの数、lは0から4までの数、mは1から5までの数、nは6から22までの数、k-lは1以上である。 Here, for example, X is any one of Cl , Br , I , F , BF 4 , PF 6 , CF 3 SO 3 , (CF 3 SO 2 ) 2 N , 1 R, 2 R, and 3 R may be the same or different, and (CH 2 ) k-1 CH 3 , (CF 2 ) k-1 CF 3 , (CH 2 ) l (CF 2 ) k-l −1 CF 3 or (CH 2 CH 2 O) 1 CH 3 , k is a number from 1 to 18, l is a number from 0 to 4, m is a number from 1 to 5, and n is from 6 Number up to 22, kl is 1 or more.

ここで、例えば、X-は、Cl-、Br-、I-、F-、BF4 -、PF6 -、CF3SO3 -、(CF3SO2)2N-のいずれかであり、1R、2R、3Rは、同一でも異なっていてもよく、(CH2k-1CH3、(CF2k-1CF3、(CH2(CF2k-l-1CF3、又は(CH2CH2O)CH3であり、kは1から18までの数、lは0から4までの数、mは1から5までの数、nは6から22までの数、k-lは1以上である。 Here, for example, X is any one of Cl , Br , I , F , BF 4 , PF 6 , CF 3 SO 3 , (CF 3 SO 2 ) 2 N , 1 R, 2 R, and 3 R may be the same or different, and (CH 2 ) k-1 CH 3 , (CF 2 ) k-1 CF 3 , (CH 2 ) l (CF 2 ) k-l −1 CF 3 or (CH 2 CH 2 O) 1 CH 3 , k is a number from 1 to 18, l is a number from 0 to 4, m is a number from 1 to 5, and n is from 6 Number up to 22, kl is 1 or more.

ここで、例えば、X-は、Cl-、Br-、I-、F-、BF4 -、PF6 -、CF3SO3 -、(CF3SO2)2N-のいずれかであり、1R、2R、3Rは、同一でも異なっていてもよく、(CH2k-1CH3、(CF2k-1CF3、(CH2(CF2k-l-1CF3、又は(CH2CH2O)CH3であり、4R、5R、6Rは、同一でも異なっていてもよく、CH2=CH−COO、CH2=CCH3−COO、Hのいずれかであり、kは1から18までの数、lは0から4までの数、mは1から5までの数、nは6から22までの数、k-lは1以上である。 Here, for example, X is any one of Cl , Br , I , F , BF 4 , PF 6 , CF 3 SO 3 , (CF 3 SO 2 ) 2 N , 1 R, 2 R, and 3 R may be the same or different, and (CH 2 ) k-1 CH 3 , (CF 2 ) k-1 CF 3 , (CH 2 ) l (CF 2 ) k-l −1 CF 3 or (CH 2 CH 2 O) 1 CH 3 , 4 R, 5 R, and 6 R may be the same or different, and CH 2 ═CH—COO, CH 2 ═CCH 3 — COO or H, k is a number from 1 to 18, l is a number from 0 to 4, m is a number from 1 to 5, n is a number from 6 to 22, kl is 1 or more is there.

これらの化合物の構造から明らかなように、これらの化合物は、極性の高い部分と極性の低い部分とを分子内に併せ持っている。双連続キュービック液晶構造内では、極性の高い部分が連続的に分子間で連結されることによってイオンチャンネルを形成し、極性の低い部分が連続的に分子間で連結されることによって、イオンチャンネル以外の部分を形成している。 As is clear from the structures of these compounds, these compounds have both a highly polar portion and a less polar portion in the molecule. In the bicontinuous cubic liquid crystal structure, ion channels are formed by continuously connecting high polarity parts between molecules, and parts other than ion channels are formed by continuously connecting low polarity parts between molecules. The part of is formed.

ここで、図2は、双連続キュービック液晶構造を示す図である。 Here, FIG. 2 is a diagram showing a bicontinuous cubic liquid crystal structure.

双連続キュービック(Bicontinuous Cubic)液晶構造は、立方晶の対称性を有する液晶構造であり、3つの空間群(Ia3d, Pn3m, Im3n)に分類される。 The bicontinuous cubic liquid crystal structure is a liquid crystal structure having cubic symmetry, and is classified into three space groups (Ia3d, Pn3m, Im3n).

図2(a)に示すように、Ia3d型の双連続キュービック液晶相は、3本で連結したシリンダーの連続的な格子(分岐点から3本)が2つ組み合わさって立方晶を形成している。別名でジャイロイド構造とも呼ばれる。 As shown in Fig. 2 (a), the bicontinuous cubic liquid crystal phase of the Ia3d type forms a cubic crystal by combining two continuous lattices (three from the branch point) of cylinders connected by three. Yes. Also called gyroid structure.

図2(b)に示すように、Pn3m型の双連続キュービック液晶相は、4本で連結したシリンダーの連続的な格子(分岐点から4本)が2つ組み合わさって立方晶を形成している。ダイヤモンド構造に類似している。 As shown in Fig. 2 (b), the Pn3m type bicontinuous cubic liquid crystal phase forms a cubic crystal by combining two continuous lattices (four from the branch point) of cylinders connected by four. Yes. Similar to diamond structure.

図2(c)に示すように、Im3n型の双連続キュービック液晶相は、6本で連結したシリンダーの連続的な格子(分岐点から6本)が2つ組み合わさって立方晶を形成している。 As shown in Fig. 2 (c), an Im3n type bicontinuous cubic liquid crystal phase is formed by combining two continuous lattices of 6 connected cylinders (6 from the branch point) to form a cubic crystal. Yes.

双連続キュービック構造に関する記載がある文献として、以下のものがあげられる。 The following is cited as a document that describes the bicontinuous cubic structure.

A. D. Benedicto and D. F. O'Brien, Macromolecules, 30, 3395-3402 (1997).A. D. Benedicto and D. F. O'Brien, Macromolecules, 30, 3395-3402 (1997). C. Tschierske, J. Mater. Chem., 8, 1485-1508 (1998).C. Tschierske, J. Mater. Chem., 8, 1485-1508 (1998).

[液晶性] [Liquid crystal]

下記の化合物[化4]を合成し、偏光顕微鏡観察、示差走査熱量測定、X線散乱測定によってこの化合物の液晶性を調べた。 The following compound [Chemical Formula 4] was synthesized, and the liquid crystallinity of this compound was examined by polarizing microscope observation, differential scanning calorimetry, and X-ray scattering measurement.

図3は低温での偏光顕微鏡写真、図4は高温での偏光顕微鏡写真である。その結果、図3に示すように、34〜50℃で光学的に等方性の双連続キュービック液晶相を示し、図4に示すように、50〜126℃でヘキサゴナルカラムナー液晶相を示すことが判明した。なお、図3に示すように、偏光顕微鏡写真において模様が鮮明に現れないことが双連続キュービック液晶相の特徴である。 FIG. 3 is a polarizing microscope photograph at low temperature, and FIG. 4 is a polarizing microscope photograph at high temperature. As a result, as shown in FIG. 3, it shows an optically isotropic bicontinuous cubic liquid crystal phase at 34-50 ° C., and as shown in FIG. 4, it shows a hexagonal columnar liquid crystal phase at 50-126 ° C. found. As shown in FIG. 3, the characteristic of the bicontinuous cubic liquid crystal phase is that the pattern does not appear clearly in the polarization micrograph.

図5は、化合物[化4]のX線散乱パターンである。また、表1は、測定は、X線回折の測定結果から得られた構造に関する各種の値である。測定は46℃で行われた。これらのデータからも、化合物[化4]は46℃で双連続キュービック液晶相を形成することが示唆される。 FIG. 5 is an X-ray scattering pattern of the compound [Chemical Formula 4]. Table 1 shows various values relating to the structure obtained from the measurement results of X-ray diffraction. The measurement was performed at 46 ° C. These data also indicate that the compound [Chemical Formula 4] forms a bicontinuous cubic liquid crystal phase at 46 ° C.

また、化合物[化5]を合成し、構造を観察したところ、この化合物は、66〜77℃で双連続キュービック液晶相となることが判明した。 Further, when compound [Chemical Formula 5] was synthesized and the structure was observed, it was found that this compound became a bicontinuous cubic liquid crystal phase at 66 to 77 ° C.

[イオン伝導度] [Ionic conductivity]

化合物[化4]のイオン伝導度を、くし型金電極を用いて測定した。イオン伝導度の測定法として交流インピーダンス法(周波数の異なる交流電場を印加することにより、イオンの動きを抵抗値として検出する方法)を採用した。この方法は、測定試料内部でのイオン伝導挙動を定量的に評価することができ、電極界面近傍で起こる特異なイオン伝導挙動を除去することができる。 The ionic conductivity of the compound [Chemical Formula 4] was measured using a comb-shaped gold electrode. An AC impedance method (a method of detecting the movement of ions as a resistance value by applying an AC electric field having a different frequency) was adopted as a method for measuring ion conductivity. This method can quantitatively evaluate the ion conduction behavior inside the measurement sample, and can eliminate the unique ion conduction behavior that occurs in the vicinity of the electrode interface.

その結果、48℃の双連続キュービック液晶相では1.0×10-5Scm-1を示し、52℃のヘキサゴナルカラムナー液晶相では2.2×10-6Scm-1を示した。この結果は、双連続キュービック液晶相が、ヘキサゴナルカラムナー液晶相よりも高い伝導性を有することを示していた。これは、世界で初めて明らかとなったものである。 As a result, the bicontinuous cubic liquid crystal phase at 48 ° C. showed 1.0 × 10 −5 Scm −1, and the hexagonal columnar liquid crystal phase at 52 ° C. showed 2.2 × 10 −6 Scm −1 . This result indicated that the bicontinuous cubic liquid crystal phase has higher conductivity than the hexagonal columnar liquid crystal phase. This is the first time in the world to be revealed.

また、以上の結果から、室温若しくは高温を含む広い温度範囲で双連続キュービック液晶構造を有するイオン伝導体が実現していることがわかる。 In addition, the above results show that an ionic conductor having a bicontinuous cubic liquid crystal structure is realized in a wide temperature range including room temperature or high temperature.

なお、イオン伝導度は、好ましくは10-6Scm-1以上、さらに好ましくは10-5Scm-1、さらに好ましくは実用上の観点から10-3Scm-1以上であるのがよい。 The ionic conductivity is preferably 10 −6 Scm −1 or more, more preferably 10 −5 Scm −1 , and even more preferably 10 −3 Scm −1 or more from a practical viewpoint.

[合成方法] [Synthesis method]

まず、一例として[化4]に示す化合物の合成方法を説明する。本実施形態の他の化合物も、同様の手法又は他の方法によって合成することができる。一連のスキームを[化6]に示す。 First, a method for synthesizing the compound represented by [Chemical Formula 4] will be described as an example. Other compounds of this embodiment can also be synthesized by the same method or other methods. A series of schemes is shown in [Chemical 6].

まず、化Aに示す化合物をK2CO3の存在下で溶媒としてDMFを用いて80℃で6時間CH3(CH211Brと反応させることによって化Bに示す化合物を得た。収率は94%であった。 First, a compound represented by Chemical Formula B was obtained by reacting the compound represented by Chemical Formula A with CH 3 (CH 2 ) 11 Br at 80 ° C. for 6 hours using DMF as a solvent in the presence of K 2 CO 3 . The yield was 94%.

次に、化Bに示す化合物をLiAlH4によって還元し、化Cに示す化合物を得た。この際には、溶媒としてTHFを使用し、室温で3時間反応を行った。収率は90%であった。 Next, the compound shown in Chemical Formula B was reduced with LiAlH 4 to obtain the compound shown in Chemical Formula C. At this time, THF was used as a solvent, and the reaction was performed at room temperature for 3 hours. The yield was 90%.

次に、化Cに示す化合物をSOCl2によって塩素化し、化Dに示す化合物を得た。この際には、溶媒としてCH2Cl2を使用し、室温で3時間反応を行った。収率は95%であった。 Next, the compound shown in Chemical Formula C was chlorinated with SOCl 2 to obtain the compound shown in Chemical Formula D. At this time, CH 2 Cl 2 was used as a solvent, and the reaction was performed at room temperature for 3 hours. The yield was 95%.

次に、化Dに示す化合物をN(CH2CH33と90℃で6時間反応させ、化Eに示す化合物を得た。収率は68%であった。 Next, the compound represented by Chemical Formula D was reacted with N (CH 2 CH 3 ) 3 at 90 ° C. for 6 hours to obtain the compound represented by Chemical Formula E. The yield was 68%.

次に、化Eに示す化合物をAgBF4によってアニオン変換を行い、[化4]に示す化合物を得た。この際には、溶媒としてEtOHを使用し、室温で6時間反応を行った。収率は70%であった。 Next, the compound shown in Chemical Formula E was subjected to anion conversion with AgBF 4 to obtain the compound shown in Chemical Formula 4 . At this time, EtOH was used as a solvent, and the reaction was performed at room temperature for 6 hours. The yield was 70%.

なお、溶液の溶媒を蒸発除去し、塗布するだけで、双連続キュービック液晶構造が得られた。溶媒の除去には、適温に加熱するなどしてもよい。真空乾燥することなども効果的である。 A bicontinuous cubic liquid crystal structure was obtained simply by evaporating and removing the solvent from the solution. The solvent may be removed by heating to an appropriate temperature. Vacuum drying is also effective.

化合物の同定はプロトンNMR測定により行なった。1H NMR (400MHz): δ = 6.61 (s, 2H), 4.34 (s, 2H), 3.97 (m, 6H), 3.28 (q, J = 7.3 Hz, 6H), 1.82-1.70 (m, 6H), 1.57-1.26 (m, 63H), 0.88 (t, J = 6.8 Hz, 9H) The compound was identified by proton NMR measurement. 1 H NMR (400MHz): δ = 6.61 (s, 2H), 4.34 (s, 2H), 3.97 (m, 6H), 3.28 (q, J = 7.3 Hz, 6H), 1.82-1.70 (m, 6H) , 1.57-1.26 (m, 63H), 0.88 (t, J = 6.8 Hz, 9H)

次に、[化5]に示す化合物の合成方法を説明する。 Next, a method for synthesizing the compound represented by [Chemical Formula 5] will be described.

化合物[化5]の合成は、上述の化Eに示す化合物をKPF6によってアニオン変換を行い、[化5]に示す化合物を得た。この際には、溶媒としてEtOHを使用し、室温で24時間反応を行った。収率は81%であった。 In the synthesis of the compound [Chemical Formula 5], the compound represented by Chemical Formula E was subjected to anion conversion with KPF 6 to obtain the compound represented by [Chemical Formula 5]. At this time, EtOH was used as a solvent, and the reaction was performed at room temperature for 24 hours. The yield was 81%.

化合物の同定はプロトンNMR測定により行なった。1H NMR (400MHz): δ = 6.57 (s, 2H), 4.21 (s, 2H), 3.95 (m, 6H), 3.22 (q, J = 6.8 Hz, 6H), 1.81-1.70 (m, 6H), 1.54-1.26 (m, 63H), 0.88 (t, J = 6.6 Hz, 9H) The compound was identified by proton NMR measurement. 1 H NMR (400MHz): δ = 6.57 (s, 2H), 4.21 (s, 2H), 3.95 (m, 6H), 3.22 (q, J = 6.8 Hz, 6H), 1.81-1.70 (m, 6H) , 1.54-1.26 (m, 63H), 0.88 (t, J = 6.6 Hz, 9H)

[応用について] [Application]

一般の液晶性イオン伝導体は、液晶構造を均一に配向制御することによって高イオン伝導性が発揮される。しかしながら、本実施形態の双連続キュービック液晶性の電解質は、三次元的な等方性を有するため、配向制御なしでも高いイオン伝導性を実現させることが可能である。また、その実現には、高真空プロセスも必要としない。したがって、リチウムイオン電池、太陽電池、燃料電池、キャパシタなどの各種エネルギーデバイスの電解質、イオニクスデバイスのイオン伝導体として応用範囲は広い。以下、具体的に用途を説明する。 A general liquid crystalline ionic conductor exhibits high ionic conductivity by uniformly controlling the liquid crystal structure. However, since the bicontinuous cubic liquid crystalline electrolyte of this embodiment has a three-dimensional isotropic property, it is possible to realize high ion conductivity without alignment control. Moreover, a high vacuum process is not required for the realization. Therefore, the application range is wide as an electrolyte of various energy devices such as a lithium ion battery, a solar cell, a fuel cell, and a capacitor, and an ion conductor of an ionics device. Hereinafter, the use will be specifically described.

まず、プロトン伝導体、DNA又はRNAなどの電荷を持つ分子の溶媒、バイオチップ、各種センサなどに本実施形態を応用することが考えられる。さらに、電池用の電解質、エンジンオイルなどの潤滑材料、帯電防止膜、におい分子の吸着、分子ふるい、分子選択、分子認識、触媒、バイオモデル化合物への応用も考えられる。 First, it is conceivable to apply this embodiment to a proton conductor, a solvent for molecules having a charge such as DNA or RNA, a biochip, various sensors, and the like. Furthermore, it can also be applied to battery electrolytes, lubricating materials such as engine oil, antistatic films, odor molecule adsorption, molecular sieves, molecular selection, molecular recognition, catalysts, and biomodel compounds.

また、電子デバイスや電池材料、ナノテクノロジー、パターニング材料、特殊な電気的性質を有する被覆材料、イオンチャンネルなどの生体被覆材料、特殊な電気的性質を有する被覆材料、イオンチャンネルなどの生体被覆材料、異方的なイオン伝導機能を利用した物質・エネルギー・情報輸送材料、反応場(化学反応場)、アクチュエーターなどへの適用も期待できる。 In addition, electronic devices and battery materials, nanotechnology, patterning materials, coating materials with special electrical properties, biological coating materials such as ion channels, coating materials with special electrical properties, biological coating materials such as ion channels, Applications to materials, energy, information transport materials, reaction fields (chemical reaction fields), actuators, etc. using anisotropic ion conduction functions can also be expected.

自動車のエンジンに供給する燃料/空気混合ガスの比率などを検知する「酸素濃度センサ」などの酸素センサを含むガスセンサ、高効率次世代発電システムとして期待されている「固体電解質燃料電池」の発電素子などの応用も考えられる。 Gas sensor including oxygen sensor such as “oxygen concentration sensor” that detects the ratio of fuel / air mixed gas supplied to automobile engine, etc., “Solid electrolyte fuel cell” power generation element expected as a highly efficient next generation power generation system Applications such as are also possible.

さらには、相転移に基づく物質の選択的透過/遮断材料、液晶層構造に由来する生体模倣材料などとして、化学工業、電気化学工業、電子工学、さらには生物工学等に関連する分野において極めて有用な機能性材料を提供するものである。 Furthermore, it is extremely useful in fields related to the chemical industry, electrochemical industry, electronics, and biotechnology as a selective permeation / blocking material for substances based on phase transitions and biomimetic materials derived from liquid crystal layer structures. Functional materials are provided.

特に、電極-膜接合体(Membrane-Electrolyte-Assembly, MEA)にも応用できる点で注目される。 In particular, it is noted that it can also be applied to an electrode-membrane assembly (Membrane-Electrolyte-Assembly, MEA).

固体電池、バイオ燃料電池、固体高分子型(PEFC)などの燃料電池向けの電解質膜の材料としても有望である。 It is also promising as a material for electrolyte membranes for fuel cells such as solid batteries, biofuel cells, and polymer electrolyte (PEFC).

[その他] [Others]

上述のとおり、イオン伝導性を示す双連続キュービック液晶材料の開発に成功した。 As described above, we have succeeded in developing a bicontinuous cubic liquid crystal material exhibiting ionic conductivity.

本実施形態の化合物は、特別な分子配向の制御を行わなくても一次元のイオンチャンネルが自発的に形成され、電極間方向に沿ってイオンの移動が行われる。本実施形態の化合物のアンモニウム塩構造は、リチウム塩、イオン液体などとの相溶性に優れており、これらを混合することによってさらに高いイオン伝導性を発揮することが可能となる。 In the compound of the present embodiment, a one-dimensional ion channel is spontaneously formed without special molecular orientation control, and ions are moved along the inter-electrode direction. The ammonium salt structure of the compound of the present embodiment is excellent in compatibility with a lithium salt, an ionic liquid, and the like, and by mixing these, higher ionic conductivity can be exhibited.

本実施形態の化合物は重合等によって高分子となってもよい。分子量が1万以上の高分子であってもよいし、分子量が数百程度以下の低分子であってもよい。 The compound of this embodiment may be a polymer by polymerization or the like. The polymer may be a polymer having a molecular weight of 10,000 or more, or a low molecule having a molecular weight of about several hundreds or less.

本実施形態の化合物は、多様なイオンを使用することができる。例えば、X-を様々なものに変えるなどして上述の化合物の構造を変化させると、イオン伝導度や温度特性などを変化させることができると考えられる。また、複数の種類の化合物を混合することによってもイオン伝導度や温度特性などを変化させることができると考えられる。多様なイオンからX-を選べば、合成の苦労を比較的ともなわずに、用途に応じたデバイスを得ることができるという点でも本実施形態の化合物は優れている。 The compound of this embodiment can use various ions. For example, if the structure of the above-mentioned compound is changed by changing X to various things, it is considered that the ionic conductivity, temperature characteristics, etc. can be changed. It is also considered that the ionic conductivity, temperature characteristics, etc. can be changed by mixing a plurality of types of compounds. The compound of the present embodiment is also excellent in that if X - is selected from a variety of ions, a device suitable for the application can be obtained without relatively difficult synthesis.

[権利解釈について] [About right interpretation]

以上、特定の実施形態を参照しながら、本発明について説明してきた。しかしながら、本発明の要旨を逸脱しない範囲で当業者が実施形態の修正又は代用を成し得ることは自明である。すなわち、例示という形態で本発明を開示してきたのであり、本明細書の記載内容を限定的に解釈するべきではない。本発明の要旨を判断するためには、冒頭に記載した特許請求の範囲の欄を参酌すべきである。 The present invention has been described above with reference to specific embodiments. However, it is obvious that those skilled in the art can make modifications or substitutions of the embodiments without departing from the gist of the present invention. That is, the present invention has been disclosed in the form of exemplification, and the contents described in the present specification should not be interpreted in a limited manner. In order to determine the gist of the present invention, the claims section described at the beginning should be considered.

また、この発明の説明用の実施形態が上述の目的を達成することは明らかであるが、多くの変更や他の実施例を当業者が行うことができることも理解されるところである。特許請求の範囲、明細書、図面及び説明用の各実施形態のエレメント又はコンポーネントを他の1つまたは組み合わせとともに採用してもよい。特許請求の範囲は、かかる変更や他の実施形態をも範囲に含むことを意図されており、これらは、この発明の技術思想および技術的範囲に含まれる。 It will also be appreciated that illustrative embodiments of the invention achieve the above objects, but that many modifications and other examples can be made by those skilled in the art. The elements or components of each embodiment described in the claims, specification, drawings, and description may be employed in combination with one or more other elements. The claims are intended to cover such modifications and other embodiments, which are within the spirit and scope of the present invention.

本実施形態によって実現された双連続キュービック液晶構造を示す図である。It is a figure which shows the bicontinuous cubic liquid crystal structure implement | achieved by this embodiment. 双連続キュービック液晶構造を示す図である。It is a figure which shows a bicontinuous cubic liquid crystal structure. 低温での偏光顕微鏡写真である。It is a polarizing microscope photograph at low temperature. 高温での偏光顕微鏡写真である。It is a polarizing microscope photograph at high temperature. 化合物[化4]のX線散乱パターンである。2 is an X-ray scattering pattern of the compound [Chemical Formula 4].

Claims (9)

双連続キュービック液晶構造を有することを特徴とするイオン伝導体。 An ionic conductor having a bicontinuous cubic liquid crystal structure.
[式中、
X-は、Cl-、Br-、I-、F-、BF4 -、PF6 -、CF3SO3 -、(CF3SO2)2N-のいずれかであり、
1R、2R、3Rは、同一でも異なっていてもよく、(CH2k-1CH3、(CF2k-1CF3、(CH2(CF2k-l-1CF3、又は(CH2CH2O)CH3であり、
kは1から18までの数、lは0から4までの数、mは1から5までの数、nは6から22までの数、k-lは1以上
である。]
で表される化合物又はその塩。
formula
[Where:
X is any one of Cl , Br , I , F , BF 4 , PF 6 , CF 3 SO 3 , (CF 3 SO 2 ) 2 N ,
1 R, 2 R, and 3 R may be the same or different, and (CH 2 ) k-1 CH 3 , (CF 2 ) k-1 CF 3 , (CH 2 ) l (CF 2 ) k-l -1 CF 3 or (CH 2 CH 2 O) l CH 3
k is a number from 1 to 18, l is a number from 0 to 4, m is a number from 1 to 5, n is a number from 6 to 22, and kl is 1 or more. ]
Or a salt thereof.

[式中、
X-は、Cl-、Br-、I-、F-、BF4 -、PF6 -、CF3SO3 -、(CF3SO2)2N-のいずれかであり、
1R、2R、3Rは、同一でも異なっていてもよく、(CH2k-1CH3、(CF2k-1CF3、(CH2(CF2k-l-1CF3、又は(CH2CH2O)CH3であり、
kは1から18までの数、lは0から4までの数、mは1から5までの数、nは6から22までの数、k-lは1以上
である。]
で表される化合物又はその塩。
formula
[Where:
X is any one of Cl , Br , I , F , BF 4 , PF 6 , CF 3 SO 3 , (CF 3 SO 2 ) 2 N ,
1 R, 2 R, and 3 R may be the same or different, and (CH 2 ) k-1 CH 3 , (CF 2 ) k-1 CF 3 , (CH 2 ) l (CF 2 ) k-l -1 CF 3 or (CH 2 CH 2 O) l CH 3
k is a number from 1 to 18, l is a number from 0 to 4, m is a number from 1 to 5, n is a number from 6 to 22, and kl is 1 or more. ]
Or a salt thereof.

[式中、
X-は、Cl-、Br-、I-、F-、BF4 -、PF6 -、CF3SO3 -、(CF3SO2)2N-のいずれかであり、
1R、2R、3Rは、同一でも異なっていてもよく、(CH2k-1CH3、(CF2k-1CF3、(CH2(CF2k-l-1CF3、又は(CH2CH2O)CH3であり、
4R、5R、6Rは、同一でも異なっていてもよく、CH2=CH−COO、CH2=CCH3−COO、Hのいずれかであり、
kは1から18までの数、lは0から4までの数、mは1から5までの数、nは6から22までの数、k-lは1以上
である。]
で表される化合物又はその塩。
formula
[Where:
X is any one of Cl , Br , I , F , BF 4 , PF 6 , CF 3 SO 3 , (CF 3 SO 2 ) 2 N ,
1 R, 2 R, and 3 R may be the same or different, and (CH 2 ) k-1 CH 3 , (CF 2 ) k-1 CF 3 , (CH 2 ) l (CF 2 ) k-l -1 CF 3 or (CH 2 CH 2 O) l CH 3
4 R, 5 R, and 6 R may be the same or different and are CH 2 ═CH—COO, CH 2 ═CCH 3 —COO, or H,
k is a number from 1 to 18, l is a number from 0 to 4, m is a number from 1 to 5, n is a number from 6 to 22, and kl is 1 or more. ]
Or a salt thereof.

で表される化合物又はその塩。
formula
Or a salt thereof.

で表される化合物又はその塩。
formula
Or a salt thereof.
請求項2、3又は4に記載の化合物又はその塩を含むことを特徴とする双連続キュービック液晶。 A bicontinuous cubic liquid crystal comprising the compound or a salt thereof according to claim 2, 3 or 4. 請求項2、3又は4に記載の化合物又はその塩を含むことを特徴とするイオン伝導体。 An ionic conductor comprising the compound or a salt thereof according to claim 2, 3 or 4. 請求項1又は8に記載のイオン伝導体を電解質として含むことを特徴とする電気化学デバイス。
9. An electrochemical device comprising the ionic conductor according to claim 1 or 8 as an electrolyte.
JP2006216306A 2006-08-09 2006-08-09 Bicontinuous cubic liquid crystal and electrochemical device Expired - Fee Related JP5245041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006216306A JP5245041B2 (en) 2006-08-09 2006-08-09 Bicontinuous cubic liquid crystal and electrochemical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006216306A JP5245041B2 (en) 2006-08-09 2006-08-09 Bicontinuous cubic liquid crystal and electrochemical device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012246800A Division JP5648929B2 (en) 2012-11-08 2012-11-08 Bicontinuous cubic liquid crystal and electrochemical device

Publications (2)

Publication Number Publication Date
JP2008037823A true JP2008037823A (en) 2008-02-21
JP5245041B2 JP5245041B2 (en) 2013-07-24

Family

ID=39173258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006216306A Expired - Fee Related JP5245041B2 (en) 2006-08-09 2006-08-09 Bicontinuous cubic liquid crystal and electrochemical device

Country Status (1)

Country Link
JP (1) JP5245041B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010132610A (en) * 2008-12-05 2010-06-17 Univ Of Tokyo Compound having polymerizability forming bicontinuous cubic liquid crystal structure, and ion conductive polymer having bicontinuous cubic liquid crystal structure
JP2011222278A (en) * 2010-04-08 2011-11-04 Toyota Motor Corp Metal-air battery
JP2011255255A (en) * 2010-06-04 2011-12-22 Univ Of Tokyo Composite semipermeable membrane
WO2013089174A1 (en) * 2011-12-16 2013-06-20 国立大学法人東京大学 Liquid crystalline compound and electrolyte material
WO2014185425A1 (en) * 2013-05-13 2014-11-20 独立行政法人科学技術振興機構 Liquid crystal compound, liquid-crystalline ion conductor, liquid crystal electrolyte, and dye-sensitized solar cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010132610A (en) * 2008-12-05 2010-06-17 Univ Of Tokyo Compound having polymerizability forming bicontinuous cubic liquid crystal structure, and ion conductive polymer having bicontinuous cubic liquid crystal structure
JP2011222278A (en) * 2010-04-08 2011-11-04 Toyota Motor Corp Metal-air battery
JP2011255255A (en) * 2010-06-04 2011-12-22 Univ Of Tokyo Composite semipermeable membrane
WO2013089174A1 (en) * 2011-12-16 2013-06-20 国立大学法人東京大学 Liquid crystalline compound and electrolyte material
JP2013126955A (en) * 2011-12-16 2013-06-27 Univ Of Tokyo Liquid crystalline compound, and electrolyte material
US8946480B2 (en) 2011-12-16 2015-02-03 Japan Science And Technology Agency Liquid crystalline compound and electrolyte material
WO2014185425A1 (en) * 2013-05-13 2014-11-20 独立行政法人科学技術振興機構 Liquid crystal compound, liquid-crystalline ion conductor, liquid crystal electrolyte, and dye-sensitized solar cell

Also Published As

Publication number Publication date
JP5245041B2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
Zhang et al. Synergistic coupling between Li6. 75La3Zr1. 75Ta0. 25O12 and poly (vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes
Yuan et al. Poly (ionic liquid) s: An update
Mishra et al. Synthesis of PVDF/CNT and their functionalized composites for studying their electrical properties to analyze their applicability in actuation & sensing
KR100579650B1 (en) Liquid crystalline ion conductor and method for preparation thereof
Rajendran et al. Investigations on the effect of various plasticizers in PVA–PMMA solid polymer blend electrolytes
CN111854595B (en) Ion sensor based on MXene electrode and preparation method thereof
Li et al. Chemically crosslinked liquid crystalline poly (ionic liquid) s/halloysite nanotubes nanocomposite ionogels with superior ionic conductivity, high anisotropic conductivity and a high modulus
Fu et al. A novel room temperature POSS ionic liquid-based solid polymer electrolyte
JP5245041B2 (en) Bicontinuous cubic liquid crystal and electrochemical device
Bostwick et al. Ion transport and mechanical properties of non-crystallizable molecular ionic composite electrolytes
JP4134306B2 (en) Carbon nanotube / polymer composite and production method thereof
Nagarkar et al. Modular self-assembly and dynamics in coordination star polymer glasses: New media for ion transport
Das et al. Polymer-grafted graphene oxide/polybenzimidazole nanocomposites for efficient proton-conducting membranes
Zhuang et al. A novel polymer-salt complex based on LiCl doped SPEEK/poly (ether ether ketone)-co-poly (ethylene glycol) for humidity sensors
Park et al. Combining SWNT and graphene in polymer nanofibers: a route to unique carbon precursors for electrochemical capacitor electrodes
Chen et al. Bioinspired ultrastable MXene/PEDOT: PSS layered membrane for effective salinity gradient energy harvesting from organic solvents
Rajendran et al. A study on the effect of various plasticizers in poly (vinyl acetate)-poly (methyl methacrylate) based gel electrolytes
Röchow et al. In situ preparation of crosslinked polymer electrolytes for lithium ion batteries: A comparison of monomer systems
JP5648929B2 (en) Bicontinuous cubic liquid crystal and electrochemical device
Barbosa et al. High Performance Ternary Solid Polymer Electrolytes Based on High Dielectric Poly (vinylidene fluoride) Copolymers for Solid State Lithium-Ion Batteries
JP5552667B2 (en) Compound having polymerizable property capable of taking bicontinuous cubic liquid crystal structure and ion conductive polymer having bicontinuous cubic liquid crystal structure
Li et al. Preparation and Characterization of Composite Microporous Gel Polymer Electrolytes Containing SiO 2 (Li+)
Lu et al. Kinetic process of an alkaline earth metal ion transmembrane through ZIF-8
Song et al. Self‐Assembly and Adjustable Ion Conducting Behavior of Graphene Oxide Liquid Crystalline Network Membranes
Serra et al. Humidity sensors based on magnetic ionic liquids blended in poly (vinylidene fluoride-co-hexafluoropropylene)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130319

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees