WO2014185425A1 - Liquid crystal compound, liquid-crystalline ion conductor, liquid crystal electrolyte, and dye-sensitized solar cell - Google Patents

Liquid crystal compound, liquid-crystalline ion conductor, liquid crystal electrolyte, and dye-sensitized solar cell Download PDF

Info

Publication number
WO2014185425A1
WO2014185425A1 PCT/JP2014/062746 JP2014062746W WO2014185425A1 WO 2014185425 A1 WO2014185425 A1 WO 2014185425A1 JP 2014062746 W JP2014062746 W JP 2014062746W WO 2014185425 A1 WO2014185425 A1 WO 2014185425A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal compound
liquid
electrolyte
dye
Prior art date
Application number
PCT/JP2014/062746
Other languages
French (fr)
Japanese (ja)
Inventor
隆史 加藤
正史 吉尾
淳司 佐久田
健一郎 新井
バルトロメ ソベラツ
ダニエル ホグバーグ
大野 弘幸
浩司 瀬川
聡 内田
Original Assignee
独立行政法人科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013101202A external-priority patent/JP2016135743A/en
Priority claimed from JP2013237785A external-priority patent/JP2016136548A/en
Application filed by 独立行政法人科学技術振興機構 filed Critical 独立行政法人科学技術振興機構
Publication of WO2014185425A1 publication Critical patent/WO2014185425A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/32Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D317/34Oxygen atoms
    • C07D317/36Alkylene carbonates; Substituted alkylene carbonates
    • C07D317/38Ethylene carbonate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3402Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
    • C09K19/3405Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom the heterocyclic ring being a five-membered ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0425Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a specific unit that results in a functional effect
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/122Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/123Ph-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3009Cy-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/301Cy-Cy-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3016Cy-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/32Non-steroidal liquid crystal compounds containing condensed ring systems, i.e. fused, bridged or spiro ring systems
    • C09K2019/328Non-steroidal liquid crystal compounds containing condensed ring systems, i.e. fused, bridged or spiro ring systems containing a triphenylene ring system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0045Room temperature molten salts comprising at least one organic ion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a liquid crystal compound, a liquid crystalline ion conductor, a liquid crystal electrolyte, and a dye-sensitized solar cell.
  • This application claims priority based on Japanese Patent Application No. 2013-101202 filed in Japan on May 13, 2013 and Japanese Patent Application No. 2013-237785 filed on November 18, 2013 in Japan. , The contents of which are incorporated herein.
  • Carbonate-based organic electrolytes are used as electrolytes of conventional lithium ion batteries.
  • the organic electrolyte has high volatility, and there is a concern that there is a risk of liquid leakage or ignition when used in a high temperature environment. For this reason, development of a non-volatile electrolyte is required.
  • the electrolyte is also required to have good ionic conductivity.
  • the present inventors have developed a liquid crystalline ionic conductor that forms a nanoscale ionic conduction path composed of an ionic liquid portion or an oligoether portion.
  • an ionic conductor having a bicontinuous cubic liquid crystal structure is disclosed (for example, Patent Document 1).
  • a dye-sensitized solar cell includes a transparent substrate, a transparent electrode, a first electrode having an oxide semiconductor layer on which a dye is supported, an electrolyte, and a second electrode in order from the light incident side. It has a stacked cell structure.
  • an electrolyte of a dye-sensitized solar cell a liquid electrolyte in which a lithium salt and iodine are dissolved in a polar organic solvent such as acetonitrile, a non-volatile liquid electrolyte using an ionic liquid, or the like is used (for example, Patent Document 2). ).
  • a dye-sensitized solar cell using such a liquid electrolyte has a high photoelectric conversion efficiency of about 10%.
  • the photoelectric conversion efficiency is obtained as a value expressed as a percentage by multiplying 100 by the value obtained by dividing the maximum output (W) by the light intensity (W) per 1 cm 2 .
  • the liquid crystalline ionic conductor described in Patent Document 1 has a problem that it is difficult to maintain a liquid crystal phase without crystallization at room temperature or lower. Further, the liquid crystalline ionic conductor has a problem that the ionic conductivity of the liquid crystal phase near room temperature is as low as about 10 ⁇ 7 Scm ⁇ 1 .
  • the liquid electrolyte according to Patent Document 2 may leak or volatilize from the dye-sensitized solar cell.
  • the photoelectric conversion efficiency is lowered as the temperature rises.
  • the cause of the decrease in conversion efficiency accompanying the increase in temperature is the decrease in the conduction band level of the titanium oxide fine particles and the electron transfer reaction (recombination) from titanium oxide to the liquid electrolyte (triiodide ion I 3 ⁇ ). It is thought to be caused.
  • an object of the present invention is to provide a liquid crystal compound that can form a nonvolatile ion conductor and can be used in a more practical liquid crystal electrolyte instead of a liquid electrolyte.
  • the present invention also provides a liquid crystalline ion conductor using the liquid crystal compound, a liquid crystal electrolyte containing the liquid crystal compound, a dye-sensitized solar cell provided with the liquid crystal electrolyte, a method for producing the liquid crystal compound, and the liquid crystal properties. It aims at providing the manufacturing method of an ion conductor.
  • a liquid crystal compound wherein a carbonate ester moiety and a mesogen moiety are bonded by an alkyl chain.
  • R 1 and R 3 are each independently an alkyl group
  • A is a cyclic hydrocarbon group
  • X is a divalent linking group or a single bond
  • R 2 is an alkylene group.
  • a method for producing a liquid crystalline ionic conductor comprising mixing the liquid crystal compound produced by the production method of (6) and a lithium salt.
  • a liquid crystal electrolyte comprising a liquid crystal compound according to any one of (1) to (5) and a composite containing a redox species.
  • a dye-sensitized solar cell comprising the liquid crystal electrolyte according to (10) or (11).
  • a first electrode having a transparent conductive film formed on a substrate, an oxide semiconductor layer formed on the transparent conductive film and carrying a dye, and so as to face the oxide semiconductor layer
  • a dye-sensitized solar cell comprising a second electrode provided, and the liquid crystal electrolyte of (10) or (11) provided between the first electrode and the second electrode.
  • a liquid crystal compound capable of forming a nonvolatile ionic conductor and a liquid crystalline ionic conductor are obtained by combining a carbonate ester site and a mesogen site with an alkyl chain. Further, when the liquid crystal electrolyte includes the liquid crystal compound arranged with the carbonate ester portions facing each other, electrons can be reliably supplied to the dye. Since the liquid crystal electrolyte is not a liquid, leakage and volatilization can be prevented, and a more practical dye-sensitized solar cell can be formed.
  • the liquid crystal compound of the present invention is characterized in that the carbonic acid ester moiety and the mesogenic moiety are bonded by an alkyl chain. That is, the liquid crystal compound of the present invention has at least a carbonate ester site, an alkyl chain, and a mesogen site in this structure, and preferably has a linear arrangement.
  • the carbonic acid ester moiety is a structure (part) containing a carbonic acid ester (—O—C ( ⁇ O) —O—), and may be composed only of a carbonic acid ester.
  • the structure may be included.
  • the carbonic acid ester moiety is preferably a structure consisting only of a chain carbonic acid ester (—O—C ( ⁇ O) —O—) or a cyclic carbonic acid ester structure having a carbonic acid ester in the ring structure.
  • the cyclic carbonate may have a substituent. Examples of the cyclic carbonate include a structure represented by the following formula (B-0).
  • p1 is an integer of 2 to 4;
  • R ′′ is an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 2 to 10 carbon atoms.
  • p2 is an integer of 0 to 3, and p2 ⁇ p1.
  • the mesogen moiety means a rigid structure, and a structure generally used as a mesogen moiety for exhibiting liquid crystallinity in a liquid crystal compound can be used.
  • a structure generally used as a mesogen moiety for exhibiting liquid crystallinity in a liquid crystal compound can be used.
  • Specific examples of the mesogen moiety include a structure containing one or more (preferably two or more) hydrocarbon rings which may have a substituent.
  • hydrocarbon ring examples include aromatic hydrocarbon rings such as benzene, naphthalene, anthracene, biphenyl, phenanthrene, pyrene, triphenylene, perylene, chrysene, benzopyrene, coronene, hexabenzocoronene, and coranulene; aliphatic such as cyclohexane, cyclohexene, and dioxane.
  • aromatic hydrocarbon rings such as benzene, naphthalene, anthracene, biphenyl, phenanthrene, pyrene, triphenylene, perylene, chrysene, benzopyrene, coronene, hexabenzocoronene, and coranulene
  • aliphatic such as cyclohexane, cyclohexene, and dioxane.
  • the hydrocarbon rings may be directly bonded or may be bonded via any linking group.
  • part in this invention has 2 or more in the structure of the benzene which may have a substituent, and / or the cyclohexane which may have a substituent.
  • the number of carbon atoms of the alkyl chain (alkylene group) that bonds and links the carbonate ester moiety and the mesogen moiety is preferably 2 to 10, more preferably 3 to 8, still more preferably 3 to 6, and preferably 3 to 4 Particularly preferred.
  • the alkylene group By setting the alkylene group within the above range, a liquid crystal compound exhibiting liquid crystallinity at a temperature relatively close to normal temperature and exhibiting liquid crystallinity in a wide temperature range can be obtained.
  • the number of carbon atoms of the alkylene group is 2 or more, the mobility of the carbonic acid ester moiety bonded to the alkyl group is increased.
  • the ionic conductivity of the ion conductor using the liquid crystal compound, the liquid crystal compound The photoelectric conversion efficiency of the used dye-sensitized solar cell can be improved.
  • the number of carbon atoms of the alkylene group By setting the number of carbon atoms of the alkylene group to 10 or less, crystallinity can be reduced, liquid crystallinity can be exhibited, and ion conductivity and photoelectric conversion efficiency can be improved.
  • the liquid crystal compound of the present invention is preferably a liquid crystal compound 10 having an alkyl chain 3, 4, a mesogen site 6, and a carbonate ester site 8, for example, as shown in the schematic diagram of FIG. 1.
  • a smectic A liquid crystal phase having a bilayer structure hereinafter sometimes referred to as “SmA”
  • the carbonate ester sites 8 of the liquid crystal compound 1 are arranged facing each other, and ions move between the cyclic carbonate ester sites 8.
  • the liquid crystalline ionic conductor or the liquid crystal electrolyte 28 can obtain a higher ionic conductivity than the conventional one.
  • the liquid crystal compound of the present invention is preferably a liquid crystal compound represented by the following formula (0).
  • R 1 and R 3 are each independently an alkyl group, A is a cyclic hydrocarbon group, X is a divalent linking group or a single bond, and R 2 is an alkylene group. And B is a group containing a carbonic ester, m1 is an integer of 1 to 4, and m2 is 0 or 1.
  • R 1 and R 3 are each independently an alkyl group.
  • the number of carbon atoms of the alkyl group represented by R 1 is preferably 0 to 12, more preferably 3 to 8, and further preferably 3 to 5.
  • the number of carbon atoms of the alkyl group represented by R 3 is preferably 1 to 5, more preferably 1 to 4, and still more preferably 2 to 3.
  • A is a cyclic hydrocarbon group, and examples thereof include a group obtained by removing two hydrogen atoms from the above-described hydrocarbon ring, and among them, a phenylene group or a cyclohexylene group is preferable.
  • X is a divalent linking group or a single bond.
  • Examples of the divalent linking group include —O—, —S—, — (CH 2 ) q —O— (q is an integer of 2 to 6), —C ( ⁇ O) —O—, —O—. C ( ⁇ O) —, —C ( ⁇ O) —NR 4 — (R 4 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms). Of these, —O— is preferable.
  • m1 is an integer of 1 to 4, preferably 2 to 4, and more preferably 2 to 3. When m1 is 2 or more, the plurality of A and X may be the same or different.
  • R 2 is an alkylene group, which is the same as the above-described “alkyl chain (alkylene group) for bonding and linking a carbonate ester moiety and a mesogen moiety”.
  • B is a group containing a carbonate ester, and is the same as the carbonate ester moiety described above.
  • m2 is 0 or 1. When B is a cyclic carbonate, m2 is preferably 0. When B is a chain carbonate, m2 is 1.
  • liquid crystal compound 1 A preferred example of the liquid crystal compound of the present invention when the carbonate ester is cyclic is a liquid crystal compound represented by formula (1) (hereinafter, referred to as liquid crystal compound 1 or liquid crystal compound 1 (n). n represents the number of n in the formula.).
  • liquid crystal compound 3 a liquid crystal compound represented by the formula (3) (hereinafter sometimes referred to as “liquid crystal compound 3”).
  • the method for producing a liquid crystal compound of the present invention is characterized in that a carbonate ester moiety is generated (added) to an intermediate product having an alkyl and mesogenic moiety.
  • the liquid crystal compound described above is manufactured by the manufacturing method.
  • liquid crystal compound 1 represented by the above formula (1) as an example, a method for producing a liquid crystal compound will be described.
  • the liquid crystal compound was synthesized in the literature (Stephen G. Davies et al., Journal of Organic Chemistry, 2010, 75, 7745-7756) on the cyclic esterification of olefin compounds after synthesizing intermediate product 1-1 (n). According to the disclosed method, it is synthesized by generating a cyclic carbonate moiety in the intermediate product 1-1 (n).
  • the second reaction solution obtained by adding the intermediate product 1-1 (n) and metachloroperbenzoic acid (m-CPBA) to the methylene chloride solution is stirred at room temperature. Further, tribromoacetic acid is added to the second reaction solution and stirred at room temperature. After stirring, the reaction solution is cooled, diazabicycloundecene (DBU) is added, and the reaction solution is returned to room temperature and stirred. All synthesis is performed under an argon atmosphere.
  • DBU diazabicycloundecene
  • liquid crystal compound 3 synthesizes intermediate product 3-1, then synthesizes intermediate product 3-2 by a reduction reaction using lithium aluminum hydride, and finally converts the hydroxyl group of 3-2 into a linear carbonate group. Synthesize by converting.
  • THF tetrahydrofuran
  • the liquid crystalline ionic conductor of the present invention includes the liquid crystal compound of the present invention having a smectic structure.
  • the liquid crystalline ionic conductor may be a composite of a liquid crystal compound and a lithium salt.
  • lithium ions dissociated from the lithium salt interact with the carbonate site.
  • the lithium salt for example, bis (trifluoromethylsulfonyl) imide lithium (LiN (SO 2 CF 3 ) 2 ), lithium trifluoromethanesulfonate (LiOSO 2 CF 3 ), lithium tetrafluoroborate (LiBF 4 ), or the like is applied. can do.
  • the liquid crystal compound contained in the liquid crystalline ionic conductor of the present invention can form a nonvolatile ionic conductor by combining a carbonate ester site and a mesogenic site with an alkyl chain.
  • the liquid crystal compound in the liquid crystalline ion conductor is the same as the liquid crystal compound described above, and may be used alone or in combination of two or more. Among them, it is preferable to use a combination of two or more of the liquid crystal compounds described above; a liquid crystal compound having a cyclic ester moiety as a carbonate ester moiety and a liquid crystal compound having a chain carbonate ester moiety as a carbonate ester moiety are used in combination. It is more preferable that the liquid crystal compound 1 and the liquid crystal compound 3 are used in combination.
  • the good characteristics (large dipole moment, good ion conduction path mobility, etc.) of each liquid crystal compound are expressed as a synergistic effect, and the ionic conductivity is further improved. Can be expected.
  • a liquid crystal compound having a cyclic carbonate such as the liquid crystal compound 1 and a liquid crystal compound having a chain carbonate such as the liquid crystal compound 3 are used in combination, the mixing ratio thereof is a chain carbonate liquid crystal compound: cyclic carbonate.
  • the molar ratio of the ester liquid crystal compound is preferably 5: 1 to 1: 5, more preferably 3: 1 to 1: 3, and even more preferably 1: 1 to 1: 3.
  • the liquid crystalline ionic conductor having a liquid crystal compound is a smectic A liquid crystal phase having a bilayer structure formed by nanophase separation of a liquid crystal compound having a carbonate portion.
  • the liquid crystal compound is arranged in a state where the carbonate ester portions are opposed to each other, and ions are moved in the portion.
  • the liquid crystalline ionic conductor can obtain higher ionic conductivity than the conventional one. Therefore, the liquid crystalline ion conductor can be used as an electrolyte material for various electrochemical devices (lithium primary battery, lithium secondary battery, lithium ion battery, lithium ion capacitor, fuel cell, solar battery, etc.).
  • the liquid crystalline ion conductor can maintain the smectic A liquid crystal phase in a wider temperature range by combining the liquid crystal compound 1 and the lithium salt. This is considered to be because the liquid crystal structure was stabilized by the ion-dipole interaction acting between the lithium ion and the carbonate ester site.
  • the carbonic acid ester portion is cyclic, the dipole moment is increased and the ionic conductivity of lithium ions can be increased.
  • the carbonic acid ester portion is a chain, the interaction is slightly weakened, but the mobility of the ion conduction path due to the mobility of the liquid crystal compound itself is increased, and the ionic conductivity is increased. Therefore, as described above, it is preferable to use a liquid crystal compound having a cyclic carbonate moiety and a liquid crystal compound having a chain carbonate moiety, since both the dissociation property of lithium salt and the ion mobility can be achieved.
  • the liquid crystalline ionic conductor of the present invention is obtained by mixing the liquid crystal compound obtained as described above and a lithium salt, and the method of mixing the liquid crystal compound and the lithium salt is not particularly limited. And can be carried out by a known and commonly used method.
  • the liquid crystal electrolyte of the present invention is a composite of the liquid crystal compound of the present invention and a complex containing a redox species and an ionic liquid.
  • Compounding means that three components, a liquid crystal compound, an ionic liquid, and a redox species such as iodine, are dissolved and mixed in a solvent, and the solvent is evaporated to make each component macroscopically like water and oil. It is an electrolyte that forms a thermodynamically stable liquid crystal phase in which the three components are integrated at the molecular level without being separated.
  • the liquid crystal compound in the liquid crystalline ion conductor is the same as the liquid crystal compound described above, and one kind may be used alone, or two or more kinds may be used in combination. Especially, it is preferable to use combining the liquid crystal compound which has a cyclic carbonate ester site
  • the mixing ratio is the same as above.
  • the complex includes an ionic liquid and a redox species.
  • a known iodine salt such as an imidazolium salt, a pyridinium salt, or a triazolium salt, and a room temperature molten salt that is in a molten state near room temperature is used.
  • an ionic liquid having an imidazolium cation and an iodide anion is preferable, and 1-methyl-3-propylimidazolium iodide is more preferable.
  • the redox species include those capable of forming a redox pair together with iodide ions that are anions of the ionic liquid when mixed with the ionic liquid. For example, when an ionic liquid having an imidazolium cation and an iodide anion and iodine as a redox species are used, I ⁇ and I 3 ⁇ are in an equilibrium state, and this becomes a redox pair.
  • iodide ion source examples include inorganic iodide salts (alkali metal salts) such as lithium iodide, potassium iodide, and sodium iodide, and imidazolium salts (for example, methylpropylimidazolium, dimethylpropylimidazolium, etc.), alkyls Organic iodide salts such as ammonium salts (for example, tetraalkylammonium salts), pyrrolidinium salts, piperidinium salts and the like can be mentioned.
  • inorganic iodide salts alkali metal salts
  • imidazolium salts for example, methylpropylimidazolium, dimethylpropylimidazolium, etc.
  • alkyls Organic iodide salts such as ammonium salts (for example, tetraalkylammonium salts), pyrrolidinium salts, piperidinium salt
  • bromide ion sources include bromine compounds such as LiBr, NaBr, KBr, and CsBr.
  • the composite is preferably formed by mixing 10 mol% to 50 mol% of redox species with respect to the entire composite. More preferably, about 20 mol% of redox species is mixed with the whole complex.
  • the solvent used for the complexation is not particularly limited, and a known and common organic solvent such as acetonitrile can be used.
  • liquid crystal electrolyte of the present invention can be used as an electrolyte for a dye-sensitized solar cell described later, the use of the liquid crystal electrolyte of the present invention is not limited thereto.
  • a known and commonly used solute or non-aqueous solvent may be added to the liquid crystal electrolyte of the present invention as necessary to use it as an electrolyte for a lithium ion secondary battery or an organic thin film solar battery.
  • the dye-sensitized solar cell of the present invention comprises the liquid crystal electrolyte of the present invention.
  • a dye-sensitized solar cell 10 ⁇ / b> A illustrated in FIG. 2 includes a first electrode 12, a second electrode 14, and a liquid crystal electrolyte 28.
  • the liquid crystal electrolyte 28 is the liquid crystal electrolyte described above, and is provided between the oxide semiconductor layer 20 of the first electrode 12 and the catalyst layer 26 of the second electrode 14.
  • the liquid crystal electrolyte 28 is constituted by combining the above liquid crystal compound as a basic molecule and a composite (not shown).
  • the first electrode 12 and the second electrode 14 are connected to the external circuit 32 via the wiring 30.
  • the dye-sensitized solar cell 10 ⁇ / b> A converts light incident on the first electrode 12 into electricity and supplies energy to the external circuit 32.
  • the first electrode 12 and the second electrode 14 are formed by known materials and methods.
  • the first electrode 12 includes a substrate 16, a transparent conductive film 18 formed on the substrate 16, and an oxide semiconductor layer 20 provided on the transparent conductive film 18.
  • the substrate 16 is formed of a transparent member, such as glass, resin, or ceramic.
  • the transparent conductive film 18 can be formed of a conductive metal oxide such as indium-tin composite oxide (ITO) or fluorine-doped SnO 2 (FTO).
  • the oxide semiconductor layer 20 is formed of one or more of titanium oxide (TiO 2 ), tin oxide (SnO 2 ), tungsten oxide (WO 3 ), and the like.
  • the oxide semiconductor layer 20 is preferably porous.
  • the porous oxide semiconductor layer 20 is formed by firing nanoparticles of an oxide semiconductor.
  • the oxide semiconductor layer 20 carries a dye.
  • a dye a ruthenium complex or iron complex having a ligand containing a bipyridine structure, a terpyridine structure, or the like, a porphyrin-based or phthalocyanine-based metal complex, a derivative such as eosin, rhodamine, coumarin, or merocyanine can be used.
  • the second electrode 14 includes a substrate 22 and a catalyst layer 26 formed on the substrate 22.
  • the substrate 22 is formed of metal, glass or the like.
  • the catalyst layer 26 can be formed of platinum, carbon, a conductive polymer, or the like.
  • a conductive film 24 may be formed between the substrate 22 and the catalyst layer 26 as shown in the figure.
  • the dye-sensitized solar cell of the present invention can be manufactured, for example, as follows.
  • a transparent conductive film 18 is formed on the substrate 16 by sputtering, vapor deposition, CVD, or the like.
  • the oxide semiconductor layer 20 is formed over the transparent conductive film 18.
  • the oxide semiconductor layer 20 is formed in a porous shape by applying a dispersion liquid in which oxide semiconductor fine particles are dispersed in a dispersion medium onto the transparent conductive film 18 by a known coating method such as a spin coating method and baking it. Can do.
  • the dye is supported on the oxide semiconductor layer 20 by a method such as immersing the substrate 16 on which the oxide semiconductor layer 20 is formed in a solution containing the dye to form the first electrode 12.
  • a conductive film 24 is formed on the substrate 22 by vapor deposition or the like, and a catalyst layer 26 is further formed by spin coating or the like to form the second electrode 14.
  • the dye-sensitized solar cell 10A is manufactured by facing the first electrode 12 and the second electrode 14 and surrounding the periphery with a resin or the like, and disposing the liquid crystal electrolyte 28 between the first electrode 12 and the second electrode 14. Can do. At this time, the liquid crystal electrolyte 28 is heated once and is allowed to flow between the first electrode 12 and the second electrode 14 in a state where the liquid phase phase is changed to the liquid phase, so that the dye-sensitized solar cell 10A can be easily obtained. Can be formed.
  • the dye supported on the oxide semiconductor layer 20 absorbs the energy of light and is in an excited state. Become. This causes the dye to emit electrons in an attempt to return to its original state. Electrons emitted from the dye are injected into the oxide semiconductor layer 20 and move to the transparent conductive film 18.
  • triiodide ions as redox species in the liquid crystal electrolyte 28 receive electrons through the catalyst layer 26 and become iodide ions.
  • the iodide ions in the liquid crystal electrolyte 28 transfer electrons to the dye supported on the oxide semiconductor layer 20 by moving in the liquid crystal electrolyte 28 or transferring electrons between the iodide ions.
  • the iodide ion that has transferred electrons to the dye becomes triiodide ion.
  • the dye will continue to emit electrons as long as it receives light.
  • the electrons continue to be supplied from iodide ions. In this way, the dye-sensitized solar cell 10A continues to generate power.
  • the liquid crystal compounds are arranged in a state where the cyclic carbonate portions are opposed to each other.
  • iodide ions move and exchange electrons between iodide ions.
  • the liquid crystal electrolyte 28 can supply an electron to a pigment
  • the present invention is not limited to the above-described embodiment, and can be appropriately changed within the scope of the gist of the present invention.
  • liquid crystal compound 1 (3) 4- (trans-4-pentylcyclohexyl) phenol (Kanto Chemical) 3.00 g (12.2 mmol), 2-bromo-1-pentene 2.18 g (14.6 mmol), potassium carbonate 3.37 g (24. 4 mmol) was added to an N, N-dimethylformamide solution (30 mL), and the first reaction solution was stirred at 80 ° C. for 8 hours under an argon atmosphere.
  • intermediate product 1-1 (3) 3 intermediate product (hereinafter referred to as “intermediate product 1-1 (3)”) (1.49 g, 4.74 mmol) was collected. Obtained at a rate of 39%.
  • the liquid crystal compound 1 (3) thus obtained exhibits a smectic A liquid crystal phase having a bilayer structure.
  • the structure of the liquid crystal compound 1 (3) was analyzed by proton nuclear magnetic resonance spectroscopy ( 1 H-NMR). The resonance frequency was 400 MHz, and deuterated chloroform (CDCl 3 ) was used as a solvent.
  • the measured chemical shift ⁇ peaks are as follows.
  • the liquid crystal compound 1 (3) exhibits an isotropic liquid phase (Iso) at a temperature higher than 105 ° C., a smectic A liquid crystal phase (SmA) at a temperature of 105 to 35 ° C., and a crystal phase (Cr )
  • Liquid crystal compound 1 (4) and liquid crystal compound 1 (6) form an unidentified liquid crystal phase (M) on the lower temperature side than the temperature at which the smectic A liquid crystal phase (SmA) is developed.
  • Liquid crystal compound 1 (4) does not crystallize even when cooled to ⁇ 50 ° C.
  • Example 2 Liquid crystalline ion conductor A
  • Lithium salt was compounded by using lithium bis (trifluoromethylsulfonyl) imide (LiN (SO 2 CF 3 ) 2 ) and changing the mixing ratio with liquid crystal compound 1 (4). The results are shown in Table 2.
  • liquid crystalline ionic conductor obtained by combining the liquid crystal compound 1 (4) and the lithium salt has a wider temperature range for forming the smectic A liquid crystal phase (SmA) than the liquid crystal compound 1 (4) alone.
  • liquid crystalline ionic conductors having a mixing ratio of liquid crystal compound 1 (4) and lithium salt of 8: 2, 7: 3, 6: 4 express only smectic A liquid crystal phase (SmA), up to ⁇ 50 ° C. It was confirmed that it did not crystallize even when cooled.
  • the thermal phase transition behavior of the liquid crystalline ionic conductor obtained by combining the liquid crystal compound 1 (n) and the lithium salt was confirmed.
  • the lithium salt lithium bis (trifluoromethylsulfonyl) imide (LiN (SO2CF3) 2) was used.
  • the mixing ratio of the liquid crystal compound 1 (n) and the lithium salt was 9: 1.
  • Table 3 The results are shown in Table 3.
  • the liquid crystalline ionic conductor obtained by combining the liquid crystal compound 1 (n) and the lithium salt at a ratio of 9: 1 has a wider temperature range for forming the smectic A liquid crystal phase (SmA) than the liquid crystal compound 1 (n) alone. I was able to confirm.
  • the mixing ratio (molar ratio) between the liquid crystal compound 1 (4) and the lithium salt is 9: 1: ⁇ , 8: 2: ⁇ , 7: 3: ⁇ , 6: 4: ⁇ . .
  • the liquid crystal compound 1 (4) and the 9: 1 ( ⁇ ) and 6: 4 ( ⁇ ) liquid crystalline ionic conductors of the lithium salt showed similar conductivity.
  • the liquid crystalline ionic conductors of 8: 2 ( ⁇ ) and 7: 3 ( ⁇ ) had a slightly lower ionic conductivity than the liquid crystalline ionic conductors of 9: 1 ( ⁇ ) and 6: 4 ( ⁇ ). . From this figure, it was confirmed that the liquid crystalline ionic conductor according to this example has an ionic conductivity of about 10 ⁇ 5 (Scm ⁇ 1 ) even at room temperature.
  • the temperature dependency of the liquid crystalline ion conductor obtained by combining the liquid crystal compound 1 (n) and the lithium salt at a molar ratio of 9: 1 was measured by the same method as described above.
  • the result is shown in FIG.
  • the horizontal axis indicates temperature ° C.
  • the horizontal axis indicates 1000 / T (K ⁇ 1 )
  • the vertical axis indicates ionic conductivity ⁇ (Scm ⁇ 1 ).
  • liquid crystal compound 1 (3) is indicated by ⁇
  • liquid crystal compound 1 (4) is indicated by ⁇
  • liquid crystal compound 1 (6) is indicated by ⁇
  • liquid crystal compound 1 (8) is indicated by ⁇ .
  • the ionic conductivity is in the order of liquid crystal compound 1 (6) ( ⁇ )> liquid crystal compound 1 (3) ( ⁇ )> liquid crystal compound 1 (4) ( ⁇ )> liquid crystal compound 1 (8) ( ⁇ ). Declined. From this figure, it was confirmed that the ionic conductivity of the liquid crystalline ionic conductor 20 according to this example can be about 10 ⁇ 5 (Scm ⁇ 1 ) even at room temperature.
  • Example 3 Liquid crystal compound 3
  • part was synthesize
  • a method for synthesizing the liquid crystal compound 3 will be described. First, 7.57 g (30.7 mmol) of 4- (trans-4-pentylcyclohexyl) phenol, 5.41 g (27.7 mmol) of ethyl 4-bromobutyrate, and 7.68 g (55.6 mmol) of potassium carbonate were added to N, N -The reaction solution obtained by adding 50 mL to the dimethylformamide solution was stirred at 80 ° C for 2 hours under an argon atmosphere.
  • a THF solution of the intermediate product 3-1 (4.06 g, 11.3 mmol) was added to a reaction solution obtained by adding 20 mL of tetrahydrofuran (THF) to 0.86 g of lithium aluminum hydride, and the mixture was stirred at room temperature for 30 minutes. Stir for minutes. After stirring, water and an aqueous sodium hydroxide solution were added to the reaction solution, followed by filtration using celite. Further, the reaction product was extracted using chloroform, and the organic layer was dried over anhydrous magnesium sulfate and then filtered, and the solvent was distilled off under reduced pressure.
  • THF tetrahydrofuran
  • the structure of the liquid crystal compound 3 was analyzed by proton nuclear magnetic resonance spectroscopy ( 1 H-NMR).
  • the resonance frequency was 400 MHz, and deuterated chloroform (CDCl 3 ) was used as a solvent.
  • the measured chemical shift ⁇ peaks are as follows.
  • the measured value almost coincides with the calculated value of the mass ratio of C 24 H 38 O 4 , C: 73.81%, H: 9.81%, and the composition of the obtained compound is C 24 H 38 O 4 I was able to confirm that. From the above results, it was confirmed that the obtained liquid crystal compound 3 was a compound represented by the structural formula shown in the formula (3).
  • Example 4 Liquid crystalline ion conductor B] (Phase transition behavior) The thermal phase transition behavior of the liquid crystalline ionic conductor obtained by combining the liquid crystal compound 3 and the lithium salt was confirmed. Lithium salt was compounded by using lithium bis (trifluoromethylsulfonyl) imide (LiN (SO 2 CF 3 ) 2 ) and changing the mixing ratio with the liquid crystal compound 3. The results are shown in Table 4.
  • the liquid crystalline ionic conductor obtained by combining the liquid crystal compound 3 and the lithium salt has a wider temperature range showing a liquid crystal phase than the liquid crystal compound 3 alone. Due to the compounding with the lithium salt, the nematic liquid crystal phase (N) that was expressed in the liquid crystal compound 3 alone disappeared, and the smectic A liquid crystal phase (SmA) was stably expressed.
  • the liquid crystalline ion conductor having a mixing ratio of the liquid crystal compound 3 and the lithium salt of 7: 3, 6: 4 exhibits two types of smectic A liquid crystal phases having different interlayer distances, and is crystallized even when cooled to ⁇ 50 ° C. It was confirmed that it was not converted.
  • the temperature dependence of the ionic conductivity of the liquid crystalline ionic conductor obtained by combining the liquid crystal compound 3 and the lithium salt was measured.
  • the lithium salt lithium bis (trifluoromethylsulfonyl) imide (LiN (SO 2 CF 3 ) 2 ) was used.
  • the liquid crystalline ionic conductor was spontaneously aligned vertically on the glass substrate.
  • a comb-shaped gold electrode cell was used, and the current flowing between the electrodes was measured by changing the frequency under a constant voltage by the AC impedance method. The result is shown in FIG. In FIG.
  • the temperature on the horizontal axis is ° C.
  • the horizontal axis is 1000 / T (K ⁇ 1 )
  • the vertical axis is the ionic conductivity ⁇ (Scm ⁇ 1 ).
  • the mixing ratio (molar ratio) of the liquid crystal compound 3 and the lithium salt is indicated by ⁇ for 9: 1, ⁇ for 8: 2, and ⁇ for 7: 3. It was found that the higher the proportion of lithium salt in the liquid crystalline ionic conductor, the higher the ionic conductivity. From this figure, it was confirmed that the liquid crystalline ionic conductor according to this example has an ionic conductivity of about 10 ⁇ 5 (Scm ⁇ 1 ) even at room temperature.
  • Example 5 Liquid crystalline ion conductor C (Phase transition behavior)
  • the lithium salt lithium bis (trifluoromethylsulfonyl) imide (LiN (SO 2 CF 3 ) 2 ) was used, and the molar ratio of the liquid crystal to the lithium salt was 8: 2.
  • Table 5 shows the results of comparison with 1 (4) simple substance and 3 simple substance.
  • Example 6 Production of dye-sensitized solar cell
  • a dye-sensitized solar cell 10B composed of a single cell shown in FIG. 3 was produced and evaluated.
  • the substrates 16 and 22 were glass plates.
  • the transparent conductive film 18 and the conductive film 24 were formed by FTO.
  • the first electrode 12 and the second electrode 14 were held at a distance of 27 ⁇ m, and a spacer 34 forming a 7 mm square closed space was provided between the first electrode 12 and the second electrode 14.
  • the oxide semiconductor layer 20 and the liquid crystal electrolyte 28 were disposed in the closed space.
  • the spacer 34 was made of resin.
  • the oxide semiconductor layer 20 was made of TiO 2 and had a thickness of 5 ⁇ m.
  • the dye was provided by D35 (Prof. Anders Hagfeldt. Reference: X. Jiang, KM Karlsson, E. Gabrielson, EM J. Johansson, M. Quintana, M. Karlsson, L. Sun. G. Boschloo, A. Hagfeldt, Advanced Functional Materials, 2011, 1, 2944-2952).
  • the liquid crystal electrolyte 28 was prepared by combining the liquid crystal compound 1 (4) prepared according to the above procedure and a complex of an imidazolium salt and iodine.
  • the catalyst layer 26 was formed of platinum.
  • the concentration of iodine with respect to 1-methyl-3-propylimidazolium iodide, which is an imidazolium salt, was 20 mol% (imidazolium salt: iodine 4: 1 (molar ratio)).
  • a liquid crystal electrolyte 28 was produced in which the concentration of the composite with respect to the liquid crystal compound 1 (4) was changed. Table 6 shows the composition and liquid crystallinity of the liquid crystal electrolyte 28 produced.
  • sample 1 shows only the liquid crystal compound 1 (4) not containing the composite
  • samples 2 to 9 show the results when the concentration of the composite with respect to the liquid crystal compound 1 (4) was changed in the range of 10 to 80 mol%.
  • M represents an intermediate phase
  • SmA represents a smectic A phase
  • Iso represents an isotropic liquid. Therefore, the “M-SmA” column is the temperature at which the intermediate phase transitions to the smectic A phase, and the “SmA-Iso” column is the temperature at which the smectic A phase transitions to the isotropic liquid.
  • each sample exhibits liquid crystallinity in the temperature described in the “M-SmA” column and the temperature range described in the “SmA-Iso” column. From this table, it was confirmed that the liquid crystal electrolyte 28 exhibited liquid crystallinity in a wide range of the concentration of the composite with respect to the liquid crystal compound 1 (4) of 10 to 80%.
  • Table 8 shows the results when the concentration of the complex with respect to liquid crystal compound 1 (4) was 70 mol%.
  • represents a liquid crystal electrolyte 28 having a complex concentration of 60 mol% with respect to the liquid crystal compound 1 (4)
  • represents a liquid crystal electrolyte 28 having a concentration of 70 mol% of the complex with respect to the liquid crystal compound 1 (4)
  • represents a complex. It is a result when only using as an electrolyte (liquid electrolyte).
  • Liquid crystal compound 3 4 Alkyl chain 6 Mesogenic moiety 10 Liquid crystal compound 8 Carbonate ester moiety 10A, 10B Dye-sensitized solar cell 12 First electrode 14 Second electrode 16, 22 Substrate 18 Transparent conductive film 20 Oxide semiconductor layer 24 Conductive film 26 Catalyst 28 Liquid crystal electrolyte 30 Wiring 32 External circuit 34 Spacer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Provided are: a liquid crystal compound characterized in that carbonate ester moieties and mesogen moieties are bonded by alkyl chains; a liquid-crystal-compound production method characterized in that the carbonate ester moieties are formed in an intermediate product provided with the alkyl chains and the mesogen moieties; a liquid-crystalline ion conductor characterized in that the liquid crystal compound forms a smectic structure therein; and a production method for the liquid-crystalline ion conductor, said production method being characterized in that the liquid crystal compound produced using the aforementioned liquid-crystal-compound production method is mixed with a lithium salt. Also provided are: a liquid crystal electrolyte characterized by being obtained by combining the liquid crystal compound and a complex including a redox species; and a dye-sensitized solar cell characterized by being provided with the liquid crystal electrolyte.

Description

液晶化合物、液晶性イオン伝導体、液晶電解質及び色素増感太陽電池Liquid crystal compound, liquid crystalline ion conductor, liquid crystal electrolyte, and dye-sensitized solar cell
 本発明は、液晶化合物、液晶性イオン伝導体、液晶電解質及び色素増感太陽電池に関する。
 本願は、2013年5月13日に、日本に出願された特願2013-101202号、及び2013年11月18日に、日本に出願された特願2013-237785号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a liquid crystal compound, a liquid crystalline ion conductor, a liquid crystal electrolyte, and a dye-sensitized solar cell.
This application claims priority based on Japanese Patent Application No. 2013-101202 filed in Japan on May 13, 2013 and Japanese Patent Application No. 2013-237785 filed on November 18, 2013 in Japan. , The contents of which are incorporated herein.
 従来のリチウムイオン電池の電解質には、炭酸エステル系有機電解液が用いられている。上記有機電解液は、揮発性が高く、液漏れや、高温環境で使用した場合に発火の恐れがあるなどの懸念があった。このため、不揮発性の電解質の開発が求められている。
 電解質には良好なイオン伝導度も求められる。本発明者らは、不揮発性電解質のイオン伝導度を高めるアプローチとして、イオン液体部位やオリゴエーテル部位からなるナノスケールのイオン伝導パスを形成する液晶性イオン伝導体を開発している。例えば、双連続キュービック液晶構造を有するイオン伝導体が開示されている(例えば、特許文献1)。
Carbonate-based organic electrolytes are used as electrolytes of conventional lithium ion batteries. The organic electrolyte has high volatility, and there is a concern that there is a risk of liquid leakage or ignition when used in a high temperature environment. For this reason, development of a non-volatile electrolyte is required.
The electrolyte is also required to have good ionic conductivity. As an approach for increasing the ionic conductivity of a nonvolatile electrolyte, the present inventors have developed a liquid crystalline ionic conductor that forms a nanoscale ionic conduction path composed of an ionic liquid portion or an oligoether portion. For example, an ionic conductor having a bicontinuous cubic liquid crystal structure is disclosed (for example, Patent Document 1).
 また、色素増感太陽電池は一般的に、光の入射する側から、透明基板、透明電極、色素が担持された酸化物半導体層を有する第1電極と、電解質と、第2電極とが順に積層されたセル構造を有する。
 色素増感太陽電池の電解質としては、アセトニトリルなどの極性有機溶媒にリチウム塩とヨウ素を溶解した液体電解質や、イオン液体を用いた不揮発性の液体電解質などが用いられている(例えば、特許文献2)。このような液体電解質を用いた色素増感太陽電池は10%程度の高い光電変換効率が得られる。ここで光電変換効率は、最大出力(W)を1cmあたりの光強度(W)で割った値に100を乗じてパーセント表示した値として求められる。
In general, a dye-sensitized solar cell includes a transparent substrate, a transparent electrode, a first electrode having an oxide semiconductor layer on which a dye is supported, an electrolyte, and a second electrode in order from the light incident side. It has a stacked cell structure.
As an electrolyte of a dye-sensitized solar cell, a liquid electrolyte in which a lithium salt and iodine are dissolved in a polar organic solvent such as acetonitrile, a non-volatile liquid electrolyte using an ionic liquid, or the like is used (for example, Patent Document 2). ). A dye-sensitized solar cell using such a liquid electrolyte has a high photoelectric conversion efficiency of about 10%. Here, the photoelectric conversion efficiency is obtained as a value expressed as a percentage by multiplying 100 by the value obtained by dividing the maximum output (W) by the light intensity (W) per 1 cm 2 .
特開2008-37823号公報JP 2008-37823 A 特開2009-238571号公報JP 2009-238571 A
 しかしながら、上記特許文献1に記載の液晶性イオン伝導体は、室温以下で結晶化せずに液晶相を維持することが困難であるという問題があった。また、上記液晶性イオン伝導体は、室温付近における液晶相のイオン伝導度が、10-7Scm-1程度と低いという問題があった。 However, the liquid crystalline ionic conductor described in Patent Document 1 has a problem that it is difficult to maintain a liquid crystal phase without crystallization at room temperature or lower. Further, the liquid crystalline ionic conductor has a problem that the ionic conductivity of the liquid crystal phase near room temperature is as low as about 10 −7 Scm −1 .
 また、上記特許文献2に係る液体電解質は、色素増感太陽電池からリークや揮発する可能性があった。加えて、温度上昇に伴って光電変換効率が低下するという問題があった。温度上昇に伴う変換効率の低下の原因は、一般的に、酸化チタン微粒子の伝導帯レベルの低下および酸化チタンから液体電解質(三ヨウ化物イオンI )への電子移動反応(再結合)が引き起こされるためであると考えられている。 Further, the liquid electrolyte according to Patent Document 2 may leak or volatilize from the dye-sensitized solar cell. In addition, there has been a problem that the photoelectric conversion efficiency is lowered as the temperature rises. In general, the cause of the decrease in conversion efficiency accompanying the increase in temperature is the decrease in the conduction band level of the titanium oxide fine particles and the electron transfer reaction (recombination) from titanium oxide to the liquid electrolyte (triiodide ion I 3 ). It is thought to be caused.
 そこで本発明は、不揮発性のイオン伝導体を形成することができ、液体電解質に代わるより実用的な液晶電解質に使用可能な液晶化合物を提供することを目的とする。
また、本発明は、該液晶化合物を用いた液晶性イオン伝導体、該液晶化合物を含む液晶電解質及び該液晶電解質を備えた色素増感太陽電池、並びに、該液晶化合物の製造方法及び該液晶性イオン伝導体の製造方法を提供することを目的とする。
Accordingly, an object of the present invention is to provide a liquid crystal compound that can form a nonvolatile ion conductor and can be used in a more practical liquid crystal electrolyte instead of a liquid electrolyte.
The present invention also provides a liquid crystalline ion conductor using the liquid crystal compound, a liquid crystal electrolyte containing the liquid crystal compound, a dye-sensitized solar cell provided with the liquid crystal electrolyte, a method for producing the liquid crystal compound, and the liquid crystal properties. It aims at providing the manufacturing method of an ion conductor.
(1)炭酸エステル部位とメソゲン部位とがアルキル鎖で結合されていることを特徴とする液晶化合物。
(2)環状炭酸エステル部位とメソゲン部位とがアルキル鎖で結合されている(1)の液晶化合物。
(3)鎖状炭酸エステル部位とメソゲン部位とがアルキル鎖で結合されている(1)の液晶化合物。
(4)式(0)で表される(2)又は(3)の液晶化合物。
Figure JPOXMLDOC01-appb-C000003
(式(0)中、R、Rはそれぞれ独立にアルキル基であり、Aは環状の炭化水素基であり、Xは2価の連結基又は単結合であり、Rはアルキレン基であり、Bは炭酸エステルを含む基であり、m1は2~5の整数であり、m2は0又は1である。)
(5)式(1)で表され、
Figure JPOXMLDOC01-appb-C000004
n=3,4,5,6,7,8である(4)の液晶化合物。
(6)アルキル鎖とメソゲン部位を有する中間生成物に炭酸エステル部位を生成することを特徴とする液晶化合物の製造方法。
(7)(1)~(5)のいずれか一つの液晶化合物がスメクチック構造を形成していることを特徴とする液晶性イオン伝導体。
(8)前記液晶化合物とリチウム塩とが複合化されている(7)の液晶性イオン伝導体。
(9)(6)の製造方法で製造された液晶化合物とリチウム塩とを混合することを特徴とする液晶性イオン伝導体の製造方法。
(10)(1)~(5)のいずれか一つの液晶化合物と、酸化還元種を含む複合体とを複合化したことを特徴とする液晶電解質。
(11)前記液晶化合物は、スメクチック構造を形成している(10)の液晶電解質。
(12)(10)又は(11)の液晶電解質を備えることを特徴とする色素増感太陽電池。
(13)基板上に形成された透明導電膜と、前記透明導電膜上に形成され、色素が担持された酸化物半導体層とを有する第1電極、及び前記酸化物半導体層と対向するように設けられた第2電極を備え、前記第1電極と前記第2電極の間に、(10)又は(11)の液晶電解質を設けたことを特徴とする色素増感太陽電池。
(14)前記液晶電解質は、液体相になるまで加熱した状態で前記第1電極と前記第2電極の間に配置されたことを特徴とする(13)の色素増感太陽電池。
(1) A liquid crystal compound, wherein a carbonate ester moiety and a mesogen moiety are bonded by an alkyl chain.
(2) The liquid crystal compound according to (1), wherein the cyclic carbonate moiety and the mesogen moiety are bonded by an alkyl chain.
(3) The liquid crystal compound according to (1), wherein the chain carbonic acid ester moiety and the mesogen moiety are bonded by an alkyl chain.
(4) The liquid crystal compound of (2) or (3) represented by formula (0).
Figure JPOXMLDOC01-appb-C000003
(In Formula (0), R 1 and R 3 are each independently an alkyl group, A is a cyclic hydrocarbon group, X is a divalent linking group or a single bond, and R 2 is an alkylene group. And B is a group containing a carbonate, m1 is an integer of 2 to 5, and m2 is 0 or 1.)
(5) Expressed by equation (1),
Figure JPOXMLDOC01-appb-C000004
(4) Liquid crystal compound wherein n = 3,4,5,6,7,8.
(6) A method for producing a liquid crystal compound, wherein a carbonate ester site is generated in an intermediate product having an alkyl chain and a mesogen site.
(7) A liquid crystalline ion conductor, wherein the liquid crystal compound according to any one of (1) to (5) forms a smectic structure.
(8) The liquid crystalline ionic conductor according to (7), wherein the liquid crystal compound and a lithium salt are combined.
(9) A method for producing a liquid crystalline ionic conductor, comprising mixing the liquid crystal compound produced by the production method of (6) and a lithium salt.
(10) A liquid crystal electrolyte comprising a liquid crystal compound according to any one of (1) to (5) and a composite containing a redox species.
(11) The liquid crystal electrolyte according to (10), wherein the liquid crystal compound forms a smectic structure.
(12) A dye-sensitized solar cell comprising the liquid crystal electrolyte according to (10) or (11).
(13) A first electrode having a transparent conductive film formed on a substrate, an oxide semiconductor layer formed on the transparent conductive film and carrying a dye, and so as to face the oxide semiconductor layer A dye-sensitized solar cell comprising a second electrode provided, and the liquid crystal electrolyte of (10) or (11) provided between the first electrode and the second electrode.
(14) The dye-sensitized solar cell according to (13), wherein the liquid crystal electrolyte is disposed between the first electrode and the second electrode while being heated to a liquid phase.
 本発明によれば、炭酸エステル部位とメソゲン部位をアルキル鎖で結合することにより、不揮発性のイオン伝導体を形成することができる液晶化合物、及び液晶性イオン伝導体が得られる。
 また、液晶電解質が、炭酸エステル部位が互いに対向した状態で配列した上記液晶化合物を含むことにより、電子を確実に色素に供給することができる。当該液晶電解質は液体ではないため、リークや揮発を防ぐことができ、より実用的な色素増感太陽電池を形成することができる。
According to the present invention, a liquid crystal compound capable of forming a nonvolatile ionic conductor and a liquid crystalline ionic conductor are obtained by combining a carbonate ester site and a mesogen site with an alkyl chain.
Further, when the liquid crystal electrolyte includes the liquid crystal compound arranged with the carbonate ester portions facing each other, electrons can be reliably supplied to the dye. Since the liquid crystal electrolyte is not a liquid, leakage and volatilization can be prevented, and a more practical dye-sensitized solar cell can be formed.
本実施形態に係る液晶性イオン伝導体又は液晶電解質のモデルを示す模式図であるIt is a schematic diagram which shows the model of the liquid crystalline ion conductor or liquid crystal electrolyte which concerns on this embodiment. 本実施形態に係る色素増感太陽電池の全体構成を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the whole structure of the dye-sensitized solar cell which concerns on this embodiment. 実施例に係る色素増感太陽電池の全体構成を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the whole structure of the dye-sensitized solar cell which concerns on an Example. 実施例に係る色素増感太陽電池の全体構成を模式的に示す平面図である。It is a top view which shows typically the whole structure of the dye-sensitized solar cell which concerns on an Example. 液晶化合物1(4)とリチウム塩を複合化した液晶性イオン伝導体のイオン伝導度を示すグラフである。It is a graph which shows the ionic conductivity of the liquid crystalline ionic conductor which compounded liquid crystal compound 1 (4) and lithium salt. 液晶化合物1(n)とリチウム塩とを複合化した液晶性イオン伝導体のイオン伝導度を示すグラフである。It is a graph which shows the ionic conductivity of the liquid crystalline ionic conductor which compounded liquid crystal compound 1 (n) and lithium salt. 液晶化合物(液晶化合物1(4)及び/又は液晶化合物3)とリチウム塩とを複合化した液晶性イオン伝導体のイオン伝導度を示すグラフである。It is a graph which shows the ionic conductivity of the liquid crystalline ionic conductor which compounded the liquid crystal compound (the liquid crystal compound 1 (4) and / or the liquid crystal compound 3), and lithium salt. 液晶化合物3とリチウム塩とを複合化した液晶性イオン伝導体のイオン伝導度を示すグラフである。It is a graph which shows the ionic conductivity of the liquid crystalline ionic conductor which compounded the liquid crystal compound 3 and lithium salt. 実施例及び比較例に係る色素増感太陽電池の光電変換効率と測定温度との関係を示すグラフである。It is a graph which shows the relationship between the photoelectric conversion efficiency of the dye-sensitized solar cell which concerns on an Example, and a comparative example, and measurement temperature.
[1.液晶化合物]
 本発明の液晶化合物は、炭酸エステル部位とメソゲン部位とがアルキル鎖で結合されていることを特徴とする。すなわち、本発明の液晶化合物はその構造内に、少なくとも炭酸エステル部位と、アルキル鎖と、メソゲン部位とをこの順に有するもので、直鎖状配列であることが好ましい。
[1. Liquid crystal compound]
The liquid crystal compound of the present invention is characterized in that the carbonic acid ester moiety and the mesogenic moiety are bonded by an alkyl chain. That is, the liquid crystal compound of the present invention has at least a carbonate ester site, an alkyl chain, and a mesogen site in this structure, and preferably has a linear arrangement.
 本発明において炭酸エステル部位とは、炭酸エステル(-O-C(=O)-O-)を含む構造(部位)であって、炭酸エステルのみからなるものであってもよく、炭酸エステルと他の構造とを含むものであってもよい。炭酸エステル部位としては、鎖状炭酸エステル(-O-C(=O)-O-)のみからなる構造、又は、環構造中に炭酸エステルを有する環状炭酸エステル構造が好ましい。環状炭酸エステルは、置換基を有していてもよい。環状炭酸エステルとしては、下記式(B-0)で表される構造が挙げられる。 In the present invention, the carbonic acid ester moiety is a structure (part) containing a carbonic acid ester (—O—C (═O) —O—), and may be composed only of a carbonic acid ester. The structure may be included. The carbonic acid ester moiety is preferably a structure consisting only of a chain carbonic acid ester (—O—C (═O) —O—) or a cyclic carbonic acid ester structure having a carbonic acid ester in the ring structure. The cyclic carbonate may have a substituent. Examples of the cyclic carbonate include a structure represented by the following formula (B-0).
Figure JPOXMLDOC01-appb-C000005
(式(B-0)中、p1は2~4の整数であり;R”は炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数2~10のアルコキシ基、ハロゲン原子であり;p2は0~3の整数であり、p2<p1である。)
Figure JPOXMLDOC01-appb-C000005
(In the formula (B-0), p1 is an integer of 2 to 4; R ″ is an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 2 to 10 carbon atoms. A halogen atom; p2 is an integer of 0 to 3, and p2 <p1.)
 本発明におけるメソゲン部位としては、剛直な構造を意味し、液晶化合物において液晶性を呈するためのメソゲン部位として一般的に用いられる構造を使用することができる。
メソゲン部位として具体的には、置換基を有していてもよい炭化水素環を1以上(好ましくは2以上)含む構造が挙げられる。炭化水素環としては、ベンゼン、ナフタレン、アントラセン、ビフェニル、フェナントレン、ピレン、トリフェニレン、ペリレン、クリセン、ベンゾピレン、コロネン、ヘキサベンゾコロネン、コラニュレン等の芳香族炭化水素環;シクロヘキサン、シクロヘキセン、ジオキサン等の脂肪族炭化水素環;これら芳香族炭化水素環や脂肪族炭化水素環を構成する水素原子又は炭素原子が置換基で置換された環が挙げられる。2以上の炭化水素環を有する場合、それら炭化水素環は直接結合していてもよく、任意の連結基を介して結合していてもよい。
 なかでも、本発明におけるメソゲン部位は、置換基を有していてもよいベンゼン及び/又は置換基を有していてもよいシクロヘキサンを構造内に2以上有することが好ましい。
In the present invention, the mesogen moiety means a rigid structure, and a structure generally used as a mesogen moiety for exhibiting liquid crystallinity in a liquid crystal compound can be used.
Specific examples of the mesogen moiety include a structure containing one or more (preferably two or more) hydrocarbon rings which may have a substituent. Examples of the hydrocarbon ring include aromatic hydrocarbon rings such as benzene, naphthalene, anthracene, biphenyl, phenanthrene, pyrene, triphenylene, perylene, chrysene, benzopyrene, coronene, hexabenzocoronene, and coranulene; aliphatic such as cyclohexane, cyclohexene, and dioxane. A hydrocarbon ring; a ring in which a hydrogen atom or a carbon atom constituting the aromatic hydrocarbon ring or the aliphatic hydrocarbon ring is substituted with a substituent. In the case of having two or more hydrocarbon rings, the hydrocarbon rings may be directly bonded or may be bonded via any linking group.
Especially, it is preferable that the mesogen site | part in this invention has 2 or more in the structure of the benzene which may have a substituent, and / or the cyclohexane which may have a substituent.
 本発明において炭酸エステル部位とメソゲン部位とを結合及び連結するアルキル鎖(アルキレン基)の炭素数は、2~10が好ましく、3~8がより好ましく、3~6がさらに好ましく、3~4が特に好ましい。アルキレン基を上記範囲内とすることにより、比較的常温に近しい温度にて液晶性を呈し、且つ広い温度範囲において液晶性を呈する液晶化合物とすることができる。また、アルキレン基の炭素数を2以上とすることにより、該アルキル基に結合した炭酸エステル部位の運動性が高まるため、該液晶化合物を用いたイオン伝導体のイオン伝導性や、該液晶化合物を用いた色素増感太陽電池の光電変換効率を向上させることができる。アルキレン基の炭素数を10以下とすることにより、結晶性を低下させ、液晶性を発現させることができ、イオン伝導性や光電変換効率を向上させることができる。 In the present invention, the number of carbon atoms of the alkyl chain (alkylene group) that bonds and links the carbonate ester moiety and the mesogen moiety is preferably 2 to 10, more preferably 3 to 8, still more preferably 3 to 6, and preferably 3 to 4 Particularly preferred. By setting the alkylene group within the above range, a liquid crystal compound exhibiting liquid crystallinity at a temperature relatively close to normal temperature and exhibiting liquid crystallinity in a wide temperature range can be obtained. In addition, when the number of carbon atoms of the alkylene group is 2 or more, the mobility of the carbonic acid ester moiety bonded to the alkyl group is increased. Therefore, the ionic conductivity of the ion conductor using the liquid crystal compound, the liquid crystal compound The photoelectric conversion efficiency of the used dye-sensitized solar cell can be improved. By setting the number of carbon atoms of the alkylene group to 10 or less, crystallinity can be reduced, liquid crystallinity can be exhibited, and ion conductivity and photoelectric conversion efficiency can be improved.
 本発明の液晶化合物は、例えば図1の模式図に示すように、アルキル鎖3,4と、メソゲン部位6と、炭酸エステル部位8とを有する液晶化合物10であることが好ましい。
図1に示す構造を有する液晶化合物10ではナノ相分離が起こり、バイレイヤー構造を有するスメクチックA液晶相(以下、「SmA」と表す場合もある)を発現する。後述する液晶性イオン伝導体又は液晶電解質28中において、液晶化合物1の炭酸エステル部位8は、互いに対向した状態で配列しており、環状炭酸エステル部位8の間でイオンの移動が行われる。これにより液晶性イオン伝導体又は液晶電解質28は、従来に比べ高いイオン伝導度を得ることができる。
The liquid crystal compound of the present invention is preferably a liquid crystal compound 10 having an alkyl chain 3, 4, a mesogen site 6, and a carbonate ester site 8, for example, as shown in the schematic diagram of FIG. 1.
In the liquid crystal compound 10 having the structure shown in FIG. 1, nanophase separation occurs, and a smectic A liquid crystal phase having a bilayer structure (hereinafter sometimes referred to as “SmA”) is developed. In the liquid crystalline ion conductor or liquid crystal electrolyte 28 described later, the carbonate ester sites 8 of the liquid crystal compound 1 are arranged facing each other, and ions move between the cyclic carbonate ester sites 8. Thereby, the liquid crystalline ionic conductor or the liquid crystal electrolyte 28 can obtain a higher ionic conductivity than the conventional one.
 また、本発明の液晶化合物は、下記式(0)で表される液晶化合物であることが好ましい。 The liquid crystal compound of the present invention is preferably a liquid crystal compound represented by the following formula (0).
Figure JPOXMLDOC01-appb-C000006
(式(0)中、R、Rはそれぞれ独立にアルキル基であり、Aは環状の炭化水素基であり、Xは2価の連結基又は単結合であり、Rはアルキレン基であり、Bは炭酸エステルを含む基であり、m1は1~4の整数であり、m2は0又は1である。)
Figure JPOXMLDOC01-appb-C000006
(In Formula (0), R 1 and R 3 are each independently an alkyl group, A is a cyclic hydrocarbon group, X is a divalent linking group or a single bond, and R 2 is an alkylene group. And B is a group containing a carbonic ester, m1 is an integer of 1 to 4, and m2 is 0 or 1.)
 式(0)中、R、Rはそれぞれ独立にアルキル基である。Rのアルキル基の炭素数は、0~12が好ましく、3~8がより好ましく、3~5がさらに好ましい。Rのアルキル基の炭素数は、1~5が好ましく、1~4がより好ましく、2~3がさらに好ましい。
 式(0)中、Aは環状の炭化水素基であって、上述した炭化水素環から水素原子を2つ除いた基が挙げられ、なかでもフェニレン基またはシクロヘキシレン基が好ましい。
 式(0)中、Xは2価の連結基又は単結合である。2価の連結基としては、-O-、-S-、-(CH-O-(qは2~6の整数である)、-C(=O)-O-、-O-C(=O)-、-C(=O)-NR-(Rは水素原子又は炭素数1~5のアルキル基である)が挙げられる。なかでも-O-が好ましい。
 式(0)中、m1は1~4の整数であって、2~4が好ましく、2~3がより好ましい。m1が2以上であるとき、複数のA、Xはそれぞれ同一であっても異なっていてもよい。
 式(0)中、Rはアルキレン基であって、上述した「炭酸エステル部位とメソゲン部位とを結合及び連結するアルキル鎖(アルキレン基)」と同様である。
 式(0)中、Bは炭酸エステルを含む基であって、上述した炭酸エステル部位と同様である。
 式(0)中、m2は0又は1である。Bが環状炭酸エステルである場合、m2は0であることが好ましい。Bが鎖状炭酸エステルである場合、m2は1となる。
In formula (0), R 1 and R 3 are each independently an alkyl group. The number of carbon atoms of the alkyl group represented by R 1 is preferably 0 to 12, more preferably 3 to 8, and further preferably 3 to 5. The number of carbon atoms of the alkyl group represented by R 3 is preferably 1 to 5, more preferably 1 to 4, and still more preferably 2 to 3.
In the formula (0), A is a cyclic hydrocarbon group, and examples thereof include a group obtained by removing two hydrogen atoms from the above-described hydrocarbon ring, and among them, a phenylene group or a cyclohexylene group is preferable.
In formula (0), X is a divalent linking group or a single bond. Examples of the divalent linking group include —O—, —S—, — (CH 2 ) q —O— (q is an integer of 2 to 6), —C (═O) —O—, —O—. C (═O) —, —C (═O) —NR 4 — (R 4 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms). Of these, —O— is preferable.
In the formula (0), m1 is an integer of 1 to 4, preferably 2 to 4, and more preferably 2 to 3. When m1 is 2 or more, the plurality of A and X may be the same or different.
In the formula (0), R 2 is an alkylene group, which is the same as the above-described “alkyl chain (alkylene group) for bonding and linking a carbonate ester moiety and a mesogen moiety”.
In formula (0), B is a group containing a carbonate ester, and is the same as the carbonate ester moiety described above.
In formula (0), m2 is 0 or 1. When B is a cyclic carbonate, m2 is preferably 0. When B is a chain carbonate, m2 is 1.
 炭酸エステルが環状である場合の本発明の液晶化合物の好ましい例として、式(1)で表される液晶化合物(以下、液晶化合物1又は液晶化合物1(n)ということがある。( )内のnは式中のnの数を表す。)が挙げられる。 A preferred example of the liquid crystal compound of the present invention when the carbonate ester is cyclic is a liquid crystal compound represented by formula (1) (hereinafter, referred to as liquid crystal compound 1 or liquid crystal compound 1 (n). n represents the number of n in the formula.).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 また、炭酸エステルが鎖状である場合の本発明の液晶化合物の好ましい例として、式(3)で表される液晶化合物(以下、液晶化合物3ということがある。)が挙げられる。 In addition, a preferred example of the liquid crystal compound of the present invention when the carbonic acid ester is a chain is a liquid crystal compound represented by the formula (3) (hereinafter sometimes referred to as “liquid crystal compound 3”).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 以下、本発明の液晶化合物の具体例を示す。各式中、R~R、q、Rはいずれも前記同様である。 Specific examples of the liquid crystal compound of the present invention are shown below. In each formula, R 1 to R 3 , q, and R 4 are all the same as described above.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
[2.液晶化合物の製造方法]
 本発明の液晶化合物の製造方法は、アルキルとメソゲン部位とを有する中間生成物に炭酸エステル部位を生成(付加)することを特徴とする。当該製造方法により、上述した液晶化合物が製造される。
[2. Method for producing liquid crystal compound]
The method for producing a liquid crystal compound of the present invention is characterized in that a carbonate ester moiety is generated (added) to an intermediate product having an alkyl and mesogenic moiety. The liquid crystal compound described above is manufactured by the manufacturing method.
 上記式(1)で表される液晶化合物1を例に挙げて、液晶化合物の製造方法について説明する。液晶化合物は、中間生成物1-1(n)を合成した後、オレフィン化合物の環状炭酸エステル化に関する文献(Stephen G. Davies et al.,Journal of Organic Chemistry,2010,75,7745-7756)に開示されている方法に従い、中間生成物1-1(n)に環状炭酸エステル部位を生成することにより合成される。 Taking a liquid crystal compound 1 represented by the above formula (1) as an example, a method for producing a liquid crystal compound will be described. The liquid crystal compound was synthesized in the literature (Stephen G. Davies et al., Journal of Organic Chemistry, 2010, 75, 7745-7756) on the cyclic esterification of olefin compounds after synthesizing intermediate product 1-1 (n). According to the disclosed method, it is synthesized by generating a cyclic carbonate moiety in the intermediate product 1-1 (n).
 まず中間生成物1-1(n)を合成する方法について説明する。アルゴン雰囲気下で、4-(トランス-4-ペンチルシクロヘキシル)フェノール、ω-ブロモ-1-アルケン(5≦ω≦10)(Br-(CH)n-CH=CH(3≦n≦8))及び炭酸カリウムをN,N-ジメチルホルムアミド溶液に加えた第1反応溶液を所定温度で撹拌する(式(1-0))。 First, a method for synthesizing the intermediate product 1-1 (n) will be described. Under an argon atmosphere, 4- (trans-4-pentylcyclohexyl) phenol, ω-bromo-1-alkene (5 ≦ ω ≦ 10) (Br— (CH 2 ) n—CH═CH 2 (3 ≦ n ≦ 8) )) And potassium carbonate in N, N-dimethylformamide solution is stirred at a predetermined temperature (formula (1-0)).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 次いで、第1反応溶液に飽和塩化アンモニウム水溶液を加え、酢酸エチルで反応物を抽出する。有機層を無水硫酸マグネシウムで乾燥した後、ろ過し、溶媒を減圧留去する。残渣をシリカゲルクロマトグラフィー(展開溶媒:ヘキサン)で精製し、式(1-1(n))に示す中間生成物1-1(n)を得る。 Next, a saturated aqueous ammonium chloride solution is added to the first reaction solution, and the reaction product is extracted with ethyl acetate. The organic layer is dried over anhydrous magnesium sulfate and then filtered, and the solvent is distilled off under reduced pressure. The residue is purified by silica gel chromatography (developing solvent: hexane) to obtain an intermediate product 1-1 (n) represented by the formula (1-1 (n)).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 次に中間生成物1-1(n)とメタクロロ過安息香酸(m-CPBA)を塩化メチレン溶液に添加した第2反応溶液を室温で撹拌する。さらに、第2反応溶液にトリブロモ酢酸を添加し、室温で撹拌する。撹拌後、当該反応溶液を冷却してジアザビシクロウンデセン(DBU)を添加し、当該反応溶液を室温に戻して撹拌する。なお、すべての合成はアルゴン雰囲気下で行われる。 Next, the second reaction solution obtained by adding the intermediate product 1-1 (n) and metachloroperbenzoic acid (m-CPBA) to the methylene chloride solution is stirred at room temperature. Further, tribromoacetic acid is added to the second reaction solution and stirred at room temperature. After stirring, the reaction solution is cooled, diazabicycloundecene (DBU) is added, and the reaction solution is returned to room temperature and stirred. All synthesis is performed under an argon atmosphere.
 その後、当該反応溶液に飽和炭酸水素ナトリウム水溶液を加え、塩化メチレンで反応物を抽出する。当該反応溶液の有機層を無水硫酸マグネシウムで乾燥した後、ろ過し、ろ過された反応物に残る溶媒を減圧留去する。減圧留去された反応物をシリカゲルクロマトグラフィー(展開溶媒:クロロホルム)で精製することにより、前述した式(1)に示す液晶化合物1(n)を製造することができる。 Then, a saturated aqueous sodium hydrogen carbonate solution is added to the reaction solution, and the reaction product is extracted with methylene chloride. The organic layer of the reaction solution is dried over anhydrous magnesium sulfate and then filtered, and the solvent remaining in the filtered reaction product is distilled off under reduced pressure. By purifying the reaction product distilled under reduced pressure by silica gel chromatography (developing solvent: chloroform), the liquid crystal compound 1 (n) represented by the formula (1) described above can be produced.
 また、上記式(3)で表される液晶化合物3を例に挙げて、液晶化合物の製造方法について説明する。液晶化合物3は、中間生成物3-1を合成した後、水素化リチウムアルミニウムを用いた還元反応により中間生成物3-2を合成し、最後に3-2の水酸基を直鎖状カーボネート基に変換することにより合成する。 Further, a method for producing a liquid crystal compound will be described by taking the liquid crystal compound 3 represented by the above formula (3) as an example. Liquid crystal compound 3 synthesizes intermediate product 3-1, then synthesizes intermediate product 3-2 by a reduction reaction using lithium aluminum hydride, and finally converts the hydroxyl group of 3-2 into a linear carbonate group. Synthesize by converting.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 まず中間生成物3-1を合成する方法について説明する。アルゴン雰囲気下で、4-(トランス-4-ペンチルシクロヘキシル)フェノール、4-ブロモ酪酸エチル及び炭酸カリウムをN,N-ジメチルホルムアミド溶液に加えた反応溶液を所定温度で撹拌する。次いで、反応溶液に飽和塩化アンモニウム水溶液を加え、酢酸エチルで反応物を抽出する。有機層を無水硫酸マグネシウムで乾燥した後、ろ過し、溶媒を減圧留去する。残渣をシリカゲルクロマトグラフィー(展開溶媒:ヘキサン/クロロホルム=5/1)で精製し、中間生成物3-1を得る。 First, a method for synthesizing the intermediate product 3-1 will be described. Under an argon atmosphere, a reaction solution obtained by adding 4- (trans-4-pentylcyclohexyl) phenol, ethyl 4-bromobutyrate and potassium carbonate to an N, N-dimethylformamide solution is stirred at a predetermined temperature. Next, a saturated aqueous ammonium chloride solution is added to the reaction solution, and the reaction product is extracted with ethyl acetate. The organic layer is dried over anhydrous magnesium sulfate and then filtered, and the solvent is distilled off under reduced pressure. The residue is purified by silica gel chromatography (developing solvent: hexane / chloroform = 5/1) to obtain intermediate product 3-1.
 次に水素化リチウムアルミニウムにテトラヒドロフラン(THF)を添加した反応液に、中間生成物3-1のTHF溶液を添加し、室温で撹拌する。撹拌後、反応液に水と水酸化ナトリウム水溶液を添加し、セライトを用いて濾過を行う。さらにクロロホルムを用いて反応物を抽出し、有機層を無水硫酸マグネシウムで乾燥した後、ろ過し、溶媒を減圧留去する。残渣をシリカゲルクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=3/1→2/1)で精製し、中間生成物3-2を得る。 Next, a THF solution of the intermediate product 3-1 is added to a reaction solution obtained by adding tetrahydrofuran (THF) to lithium aluminum hydride, and stirred at room temperature. After stirring, water and an aqueous sodium hydroxide solution are added to the reaction solution, and filtration is performed using Celite. Further, the reaction product is extracted using chloroform, and the organic layer is dried over anhydrous magnesium sulfate, followed by filtration, and the solvent is distilled off under reduced pressure. The residue is purified by silica gel chromatography (developing solvent: hexane / ethyl acetate = 3/1 → 2/1) to obtain intermediate product 3-2.
中間生成物3-2に炭酸ジエチル、フッ化カリウム-アルミナを添加し、加熱還流下で撹拌する。反応液にクロロホルムを加えた後、濾過を行い、溶媒を減圧留去する。得られた残渣をシリカゲルクロマトグラフィー(展開溶媒:ヘキサン→ヘキサン/酢酸エチル=10/1)で精製し、最後にメタノールと酢酸エチルの混合溶媒を用いて再結晶を行い、液晶化合物3を得る。 To the intermediate product 3-2 are added diethyl carbonate and potassium fluoride-alumina, and the mixture is stirred with heating under reflux. After adding chloroform to the reaction solution, filtration is performed and the solvent is distilled off under reduced pressure. The obtained residue is purified by silica gel chromatography (developing solvent: hexane → hexane / ethyl acetate = 10/1), and finally recrystallized using a mixed solvent of methanol and ethyl acetate to obtain liquid crystal compound 3.
[3.液晶性イオン伝導体]
 本発明の液晶性イオン伝導体は、スメチック構造を形成した本発明の液晶化合物を含むものである。
 液晶性イオン伝導体は、液晶化合物とリチウム塩とを複合化してもよい。この場合、リチウム塩から解離したリチウムイオンは炭酸エステル部位と相互作用する。リチウム塩は、例えば、ビス(トリフルオロメチルスルホニル)イミドリチウム(LiN(SOCF)、トリフルオロメタンスルホン酸リチウム(LiOSOCF)、テトラフルオロホウ酸リチウム(LiBF)などを適用することができる。
[3. Liquid crystalline ion conductor]
The liquid crystalline ionic conductor of the present invention includes the liquid crystal compound of the present invention having a smectic structure.
The liquid crystalline ionic conductor may be a composite of a liquid crystal compound and a lithium salt. In this case, lithium ions dissociated from the lithium salt interact with the carbonate site. As the lithium salt, for example, bis (trifluoromethylsulfonyl) imide lithium (LiN (SO 2 CF 3 ) 2 ), lithium trifluoromethanesulfonate (LiOSO 2 CF 3 ), lithium tetrafluoroborate (LiBF 4 ), or the like is applied. can do.
 本発明の液晶性イオン伝導体が含む液晶化合物は炭酸エステル部位とメソゲン部位がアルキル鎖で結合されていることにより、不揮発性のイオン伝導体を形成することができる。 The liquid crystal compound contained in the liquid crystalline ionic conductor of the present invention can form a nonvolatile ionic conductor by combining a carbonate ester site and a mesogenic site with an alkyl chain.
 液晶性イオン伝導体中の液晶化合物は、上述した液晶化合物と同様であって、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、上述した液晶化合物の2種以上を組み合わせて用いることが好ましく;炭酸エステル部位として環状エステル部位を有する液晶化合物と、炭酸エステル部位として鎖状炭酸エステル部位を有する液晶化合物とを組み合わせて用いることがより好ましく;前記液晶化合物1と前記液晶化合物3とを組み合わせて用いることがさらに好ましい。異なる2種以上の液晶化合物を組み合わせて用いることにより、各液晶化合物の有する良好な特性(大きな双極子モーメント、良好なイオン伝導パス運動性等)が相乗効果として発現し、イオン伝導度のさらなる向上が期待できる。
液晶化合物1のような環状炭酸エステルを有する液晶化合物と、液晶化合物3のような鎖状炭酸エステルを有する液晶化合物とを組み合わせて用いる場合、その混合割合は、鎖状炭酸エステル液晶化合物:環状炭酸エステル液晶化合物のモル比が5:1~1:5であることが好ましく、3:1~1:3であることがより好ましく、1:1~1:3であることがさらに好ましい。
The liquid crystal compound in the liquid crystalline ion conductor is the same as the liquid crystal compound described above, and may be used alone or in combination of two or more. Among them, it is preferable to use a combination of two or more of the liquid crystal compounds described above; a liquid crystal compound having a cyclic ester moiety as a carbonate ester moiety and a liquid crystal compound having a chain carbonate ester moiety as a carbonate ester moiety are used in combination. It is more preferable that the liquid crystal compound 1 and the liquid crystal compound 3 are used in combination. By using two or more different liquid crystal compounds in combination, the good characteristics (large dipole moment, good ion conduction path mobility, etc.) of each liquid crystal compound are expressed as a synergistic effect, and the ionic conductivity is further improved. Can be expected.
When a liquid crystal compound having a cyclic carbonate such as the liquid crystal compound 1 and a liquid crystal compound having a chain carbonate such as the liquid crystal compound 3 are used in combination, the mixing ratio thereof is a chain carbonate liquid crystal compound: cyclic carbonate. The molar ratio of the ester liquid crystal compound is preferably 5: 1 to 1: 5, more preferably 3: 1 to 1: 3, and even more preferably 1: 1 to 1: 3.
 また液晶化合物を備える液晶性イオン伝導体は、炭酸エステル部位を有する液晶化合物がナノ相分離して形成された、バイレイヤー構造を有するスメクチックA液晶相である。液晶化合物は、炭酸エステル部位が互いに対向した状態で配列しており、当該部分においてイオンの移動が行われる。これにより液晶性イオン伝導体は、従来に比べ高いイオン伝導度を得ることができる。したがって液晶性イオン伝導体は、種々の電気化学デバイス(リチウム一次電池、リチウム二次電池、リチウムイオン電池、リチウムイオンキャパシタ、燃料電池、太陽電池等)の電解質材料として用いることができる。 Further, the liquid crystalline ionic conductor having a liquid crystal compound is a smectic A liquid crystal phase having a bilayer structure formed by nanophase separation of a liquid crystal compound having a carbonate portion. The liquid crystal compound is arranged in a state where the carbonate ester portions are opposed to each other, and ions are moved in the portion. Thereby, the liquid crystalline ionic conductor can obtain higher ionic conductivity than the conventional one. Therefore, the liquid crystalline ion conductor can be used as an electrolyte material for various electrochemical devices (lithium primary battery, lithium secondary battery, lithium ion battery, lithium ion capacitor, fuel cell, solar battery, etc.).
 また液晶性イオン伝導体は、液晶化合物1とリチウム塩とを複合化することにより、より広い温度範囲でスメクチックA液晶相を保持することができる。これは、リチウムイオンと炭酸エステル部位との間にイオン-双極子相互作用が働くことにより、液晶構造が安定化したためであると考えられる。
炭酸エステル部位が環状である場合、双極子モーメントが増大し、リチウムイオンのイオン伝導度を高めることができる。一方、炭酸エステル部位が鎖状である場合、相互作用は若干弱まるが、液晶化合物自体の運動性に起因したイオン伝導パスの運動性が高まり、イオン伝導度が高まる。そのため、上述したように環状炭酸エステル部位を有する液晶化合物と、鎖状炭酸エステル部位を有する液晶化合物とを併用することで、リチウム塩の解離性とイオン運動性とを両立できるため好ましい。
Further, the liquid crystalline ion conductor can maintain the smectic A liquid crystal phase in a wider temperature range by combining the liquid crystal compound 1 and the lithium salt. This is considered to be because the liquid crystal structure was stabilized by the ion-dipole interaction acting between the lithium ion and the carbonate ester site.
When the carbonic acid ester portion is cyclic, the dipole moment is increased and the ionic conductivity of lithium ions can be increased. On the other hand, when the carbonic acid ester portion is a chain, the interaction is slightly weakened, but the mobility of the ion conduction path due to the mobility of the liquid crystal compound itself is increased, and the ionic conductivity is increased. Therefore, as described above, it is preferable to use a liquid crystal compound having a cyclic carbonate moiety and a liquid crystal compound having a chain carbonate moiety, since both the dissociation property of lithium salt and the ion mobility can be achieved.
 本発明の液晶性イオン伝導体は、前述のようにして得られた液晶化合物と、リチウム塩とを混合することにより得られる、液晶化合物とリチウム塩とを混合する方法は特に限定されるものではなく、公知慣用の方法により行うことができる。 The liquid crystalline ionic conductor of the present invention is obtained by mixing the liquid crystal compound obtained as described above and a lithium salt, and the method of mixing the liquid crystal compound and the lithium salt is not particularly limited. And can be carried out by a known and commonly used method.
[4.液晶電解質]
 本発明の液晶電解質は、前記本発明の液晶化合物と、酸化還元種とイオン液体とを含む複合体とを複合化したものである。複合化とは、液晶化合物と、イオン液体と、ヨウ素等の酸化還元種との3成分を、溶媒に溶解混合し、溶媒を蒸発することで、各成分が水と油のように巨視的に分離することなく、3成分が分子レベルで一体となった熱力学的に安定な液晶相を形成した電解質とすることである。
[4. Liquid crystal electrolyte]
The liquid crystal electrolyte of the present invention is a composite of the liquid crystal compound of the present invention and a complex containing a redox species and an ionic liquid. Compounding means that three components, a liquid crystal compound, an ionic liquid, and a redox species such as iodine, are dissolved and mixed in a solvent, and the solvent is evaporated to make each component macroscopically like water and oil. It is an electrolyte that forms a thermodynamically stable liquid crystal phase in which the three components are integrated at the molecular level without being separated.
 液晶性イオン伝導体中の液晶化合物は、上述した液晶化合物と同様であって、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、上述した液晶性イオン伝導体と同様に、環状炭酸エステル部位を有する液晶化合物と、鎖状炭酸エステル部位を有する液晶化合物とを組み合わせて用いることが好ましい。混合比率等は上記同様である。 The liquid crystal compound in the liquid crystalline ion conductor is the same as the liquid crystal compound described above, and one kind may be used alone, or two or more kinds may be used in combination. Especially, it is preferable to use combining the liquid crystal compound which has a cyclic carbonate ester site | part, and the liquid crystal compound which has a chain carbonate ester site | part similarly to the liquid crystalline ion conductor mentioned above. The mixing ratio is the same as above.
 前記複合体は、イオン液体と酸化還元種とを含むものである。
前記イオン液体としては、例えばイミダゾリウム塩、ピリジニウム塩、トリアゾリウム塩等の既知のヨウ素塩等であって、室温付近で溶融状態にある常温溶融塩が用いられる。具体的には、1-メチル-3-プロピルイミダゾリウムヨージド、1-ヘキシル-3-メチルイミダゾリウムヨージド、1-メチル-3-ブチルイミダゾリウムヨージド、1-メチル-3-ブチルイミダゾリウムテトラフルオロボレート、1-メチル-3-エチルイミダゾリウムトリフレート、1-メチル-3-エチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-メチル-3-エチルイミダゾリウムテトラシアノボレート、1-メチル-3-エチルイミダゾリウムジシアナミド、チオシアン酸-1-メチル-3-エチルイミダゾリウム、等が挙げられる。なかでもイミダゾリウムカチオンと、ヨウ化物アニオンとを有するイオン液体が好ましく、1-メチル-3-プロピルイミダゾリウムヨージドがより好ましい。
酸化還元種としては、上記イオン液体と混合された際に、イオン液体のアニオンであるヨウ化物イオンと共に酸化還元対を形成しうるものが挙げられる。例えば、イミダゾリウムカチオンとヨウ化物アニオンとを有するイオン液体、及び酸化還元種としてヨウ素を用いた場合であれば、IとI とが平衡状態となり、これが酸化還元対となる。
また、酸化還元種としては、ヨウ素/ヨウ化物イオン、臭素/臭化物イオンなどのペアを1種または複数種添加して得ることもできる。ヨウ化物イオン源としては、ヨウ化リチウム、ヨウ化カリウム、及びヨウ化ナトリウムなどの無機ヨウ化物塩(アルカリ金属塩)、並びにイミダゾリウム塩(たとえばメチルプロピルイミダゾリウム、ジメチルプロピルイミダゾリウム等)、アルキルアンモニウム塩(たとえばテトラアルキルアンモニウム塩など)、ピロリジニウム塩、ピペリジニウム塩などの有機ヨウ化物塩が挙げられる。臭化物イオン源としては、LiBr、NaBr、KBr、CsBr等の臭素化合物が挙げられる。
前記複合体は、複合体全体に対し酸化還元種を10mol%~50mol%混合して形成するのが、液晶電解質の液晶性を保持する上で好ましい。複合体全体に対し酸化還元種を20mol%程度混合して形成するのがより好ましい。
複合化の際に用いる溶媒は特に限定されるものではなく、例えばアセトニトリル等の公知慣用の有機溶媒を用いることができる。
The complex includes an ionic liquid and a redox species.
As the ionic liquid, for example, a known iodine salt such as an imidazolium salt, a pyridinium salt, or a triazolium salt, and a room temperature molten salt that is in a molten state near room temperature is used. Specifically, 1-methyl-3-propylimidazolium iodide, 1-hexyl-3-methylimidazolium iodide, 1-methyl-3-butylimidazolium iodide, 1-methyl-3-butylimidazolium Tetrafluoroborate, 1-methyl-3-ethylimidazolium triflate, 1-methyl-3-ethylimidazolium bis (trifluoromethanesulfonyl) imide, 1-methyl-3-ethylimidazolium tetracyanoborate, 1-methyl- Examples include 3-ethylimidazolium dicyanamide, 1-methyl-3-ethylimidazolium thiocyanate, and the like. Among them, an ionic liquid having an imidazolium cation and an iodide anion is preferable, and 1-methyl-3-propylimidazolium iodide is more preferable.
Examples of the redox species include those capable of forming a redox pair together with iodide ions that are anions of the ionic liquid when mixed with the ionic liquid. For example, when an ionic liquid having an imidazolium cation and an iodide anion and iodine as a redox species are used, I and I 3 are in an equilibrium state, and this becomes a redox pair.
In addition, as the redox species, one or more pairs of iodine / iodide ions, bromine / bromide ions and the like can be added. Examples of the iodide ion source include inorganic iodide salts (alkali metal salts) such as lithium iodide, potassium iodide, and sodium iodide, and imidazolium salts (for example, methylpropylimidazolium, dimethylpropylimidazolium, etc.), alkyls Organic iodide salts such as ammonium salts (for example, tetraalkylammonium salts), pyrrolidinium salts, piperidinium salts and the like can be mentioned. Examples of bromide ion sources include bromine compounds such as LiBr, NaBr, KBr, and CsBr.
In order to maintain the liquid crystal properties of the liquid crystal electrolyte, the composite is preferably formed by mixing 10 mol% to 50 mol% of redox species with respect to the entire composite. More preferably, about 20 mol% of redox species is mixed with the whole complex.
The solvent used for the complexation is not particularly limited, and a known and common organic solvent such as acetonitrile can be used.
本発明の液晶電解質は後述する色素増感太陽電池の電解質として使用することができるが、本発明の液晶電解質の用途はこれに限定されるものではない。例えば、本発明の液晶電解質に、必要に応じて公知慣用の溶質や非水溶媒を加えて、リチウムイオン2次電池や有機薄膜太陽電池の電解質として用いることもできる。 Although the liquid crystal electrolyte of the present invention can be used as an electrolyte for a dye-sensitized solar cell described later, the use of the liquid crystal electrolyte of the present invention is not limited thereto. For example, a known and commonly used solute or non-aqueous solvent may be added to the liquid crystal electrolyte of the present invention as necessary to use it as an electrolyte for a lithium ion secondary battery or an organic thin film solar battery.
[5.色素増感太陽電池]
本発明の色素増感太陽電池は、前記本発明の液晶電解質を備えるものである。
 以下、図に基づいて説明する。図2に示す色素増感太陽電池10Aは、第1電極12と、第2電極14と、液晶電解質28とを備える。液晶電解質28は、前段で説明した液晶電解質であって、第1電極12の酸化物半導体層20と、第2電極14の触媒層26の間に設けられる。液晶電解質28は、上述した液晶化合物を基本分子としてこれと複合体(図示しない)とを複合化することで構成されている。第1電極12と第2電極14は、配線30を介して外部回路32に接続されている。色素増感太陽電池10Aは、第1電極12へ入射した光を電気に変換し、エネルギーを外部回路32に供給する。第1電極12と第2電極14は、公知の材料、及び方法で形成される。
[5. Dye-sensitized solar cell]
The dye-sensitized solar cell of the present invention comprises the liquid crystal electrolyte of the present invention.
Hereinafter, a description will be given based on the drawings. A dye-sensitized solar cell 10 </ b> A illustrated in FIG. 2 includes a first electrode 12, a second electrode 14, and a liquid crystal electrolyte 28. The liquid crystal electrolyte 28 is the liquid crystal electrolyte described above, and is provided between the oxide semiconductor layer 20 of the first electrode 12 and the catalyst layer 26 of the second electrode 14. The liquid crystal electrolyte 28 is constituted by combining the above liquid crystal compound as a basic molecule and a composite (not shown). The first electrode 12 and the second electrode 14 are connected to the external circuit 32 via the wiring 30. The dye-sensitized solar cell 10 </ b> A converts light incident on the first electrode 12 into electricity and supplies energy to the external circuit 32. The first electrode 12 and the second electrode 14 are formed by known materials and methods.
 第1電極12は、基板16と、当該基板16上に形成された透明導電膜18と、当該透明導電膜18上に設けられた酸化物半導体層20とを有する。基板16は、透明な部材、例えばガラス、樹脂、セラミックなどで形成される。透明導電膜18は、インジウム-スズ複合酸化物(ITO)、フッ素ドープSnO(FTO)などの導電性金属酸化物で形成することができる。 The first electrode 12 includes a substrate 16, a transparent conductive film 18 formed on the substrate 16, and an oxide semiconductor layer 20 provided on the transparent conductive film 18. The substrate 16 is formed of a transparent member, such as glass, resin, or ceramic. The transparent conductive film 18 can be formed of a conductive metal oxide such as indium-tin composite oxide (ITO) or fluorine-doped SnO 2 (FTO).
 酸化物半導体層20は、酸化チタン(TiO)、酸化スズ(SnO)、酸化タングステン(WO)などの1種または2種以上で形成される。酸化物半導体層20は、多孔質状であることが好ましい。多孔質状の酸化物半導体層20は、酸化物半導体のナノ粒子を焼成することにより形成される。 The oxide semiconductor layer 20 is formed of one or more of titanium oxide (TiO 2 ), tin oxide (SnO 2 ), tungsten oxide (WO 3 ), and the like. The oxide semiconductor layer 20 is preferably porous. The porous oxide semiconductor layer 20 is formed by firing nanoparticles of an oxide semiconductor.
 酸化物半導体層20には、色素が担持されている。色素は、ビピリジン構造、ターピリジン構造などを含む配位子を有するルテニウム錯体や鉄錯体、ポルフィリン系やフタロシアニン系の金属錯体、エオシン、ローダミン、クマリン、メロシアニンなどの誘導体などを用いることができる。 The oxide semiconductor layer 20 carries a dye. As the dye, a ruthenium complex or iron complex having a ligand containing a bipyridine structure, a terpyridine structure, or the like, a porphyrin-based or phthalocyanine-based metal complex, a derivative such as eosin, rhodamine, coumarin, or merocyanine can be used.
 第2電極14は、基板22と、当該基板22上に形成された触媒層26とを有する。基板22は、金属、ガラスなどで形成される。触媒層26は、白金、カーボン、導電性高分子などで形成することができる。基板22と触媒層26の間には、本図に示すように導電膜24を形成してもよい。 The second electrode 14 includes a substrate 22 and a catalyst layer 26 formed on the substrate 22. The substrate 22 is formed of metal, glass or the like. The catalyst layer 26 can be formed of platinum, carbon, a conductive polymer, or the like. A conductive film 24 may be formed between the substrate 22 and the catalyst layer 26 as shown in the figure.
[6.色素増感太陽電池の製造方法]
 本発明の色素増感太陽電池は例えば以下のようにして製造することができる。
基板16上に透明導電膜18を、スパッタ法、蒸着法、CVD法などにより形成する。次いで、透明導電膜18上に酸化物半導体層20を形成する。酸化物半導体層20は、酸化物半導体微粒子を分散媒に分散させた分散液をスピンコート法など公知の塗布法により透明導電膜18上に塗布し、焼成することにより多孔質状に形成することができる。次いで、酸化物半導体層20を形成した基板16を、色素を含む溶液に浸漬するなどの方法により酸化物半導体層20に色素を担持させ、第1電極12を形成する。また基板22上に、蒸着法などにより導電膜24を形成し、さらにスピンコート法などにより触媒層26を設け、第2電極14を形成する。
[6. Method for producing dye-sensitized solar cell]
The dye-sensitized solar cell of the present invention can be manufactured, for example, as follows.
A transparent conductive film 18 is formed on the substrate 16 by sputtering, vapor deposition, CVD, or the like. Next, the oxide semiconductor layer 20 is formed over the transparent conductive film 18. The oxide semiconductor layer 20 is formed in a porous shape by applying a dispersion liquid in which oxide semiconductor fine particles are dispersed in a dispersion medium onto the transparent conductive film 18 by a known coating method such as a spin coating method and baking it. Can do. Next, the dye is supported on the oxide semiconductor layer 20 by a method such as immersing the substrate 16 on which the oxide semiconductor layer 20 is formed in a solution containing the dye to form the first electrode 12. A conductive film 24 is formed on the substrate 22 by vapor deposition or the like, and a catalyst layer 26 is further formed by spin coating or the like to form the second electrode 14.
 第1電極12と第2電極14を向い合せ周囲を樹脂などにより囲み、第1電極12と第2電極14の間に液晶電解質28を配置することにより、色素増感太陽電池10Aを製造することができる。この際、液晶電解質28は、一旦加熱し、液体相に相転移させた状態で、第1電極12及び第2電極14の間に流し込むようにすることで、容易に色素増感太陽電池10Aを形成することができる。 The dye-sensitized solar cell 10A is manufactured by facing the first electrode 12 and the second electrode 14 and surrounding the periphery with a resin or the like, and disposing the liquid crystal electrolyte 28 between the first electrode 12 and the second electrode 14. Can do. At this time, the liquid crystal electrolyte 28 is heated once and is allowed to flow between the first electrode 12 and the second electrode 14 in a state where the liquid phase phase is changed to the liquid phase, so that the dye-sensitized solar cell 10A can be easily obtained. Can be formed.
 上記のように構成された色素増感太陽電池10Aにおいて、外部から光が第1電極12に照射されると、酸化物半導体層20に担持された色素は、光のエネルギーを吸収し励起状態となる。これにより色素は、元の状態に戻ろうとして、電子を放出する。色素から放出された電子は、酸化物半導体層20に注入され、透明導電膜18へ移動する。 In the dye-sensitized solar cell 10A configured as described above, when light is applied to the first electrode 12 from the outside, the dye supported on the oxide semiconductor layer 20 absorbs the energy of light and is in an excited state. Become. This causes the dye to emit electrons in an attempt to return to its original state. Electrons emitted from the dye are injected into the oxide semiconductor layer 20 and move to the transparent conductive film 18.
 電子は透明導電膜18から配線30を通り外部回路32を経由して第2電極14へ移動する。第2電極14において触媒層26を介して液晶電解質28中の酸化還元種としての三ヨウ化物イオンが電子を受け取り、ヨウ化物イオンになる。 Electrons move from the transparent conductive film 18 to the second electrode 14 through the wiring 30 and the external circuit 32. In the second electrode 14, triiodide ions as redox species in the liquid crystal electrolyte 28 receive electrons through the catalyst layer 26 and become iodide ions.
 液晶電解質28中のヨウ化物イオンは、液晶電解質28中を移動または、ヨウ化物イオン同士で電子を授受することにより、酸化物半導体層20に担持された色素に電子を渡す。色素に電子を渡したヨウ化物イオンは、三ヨウ化物イオンになる。色素は、光を受けている限り、電子を放出し続ける。当該電子は、ヨウ化物イオンから供給され続ける。このようにして色素増感太陽電池10Aは、発電し続ける。 The iodide ions in the liquid crystal electrolyte 28 transfer electrons to the dye supported on the oxide semiconductor layer 20 by moving in the liquid crystal electrolyte 28 or transferring electrons between the iodide ions. The iodide ion that has transferred electrons to the dye becomes triiodide ion. The dye will continue to emit electrons as long as it receives light. The electrons continue to be supplied from iodide ions. In this way, the dye-sensitized solar cell 10A continues to generate power.
 本実施形態の場合、液晶化合物は、環状炭酸エステル部位が互いに対向した状態で配列している。当該部分においてヨウ化物イオンは、移動、及びヨウ化物イオン同士で電子を授受する。これにより液晶電解質28は、電子を確実に色素に供給することができるので、色素増感太陽電池10Aに用いることができる。したがって液晶電解質28は、液体ではないからリークや揮発を防ぐことができるので、より実用的な色素増感太陽電池10Aを形成することができる。 In the case of the present embodiment, the liquid crystal compounds are arranged in a state where the cyclic carbonate portions are opposed to each other. In this portion, iodide ions move and exchange electrons between iodide ions. Thereby, since the liquid crystal electrolyte 28 can supply an electron to a pigment | dye reliably, it can be used for 10 A of dye-sensitized solar cells. Therefore, since the liquid crystal electrolyte 28 is not a liquid, it can prevent leakage and volatilization, so that a more practical dye-sensitized solar cell 10A can be formed.
 本発明は上記実施形態に限定されるものではなく、本発明の趣旨の範囲内で適宜変更することが可能である。 The present invention is not limited to the above-described embodiment, and can be appropriately changed within the scope of the gist of the present invention.
[実施例1:液晶化合物1]
(試料の合成)
 上記の製造方法に基づき、環状炭酸エステル部位を有するn=3~8の液晶化合物1を合成し、液晶性イオン伝導体を得た。具体例としてn=3の液晶化合物(以下、「液晶化合物1(3)」と表す)についてのみ合成方法を説明する。まず、4-(トランス-4-ペンチルシクロヘキシル)フェノール(関東化学)3.00g(12.2mmol)、5-ブロモ-1-ペンテン2.18g(14.6mmol)、炭酸カリウム3.37g(24.4mmol)をN,N-ジメチルホルムアミド溶液に30mL加えた第1反応溶液をアルゴン雰囲気下80℃で8時間撹拌した。
[Example 1: Liquid crystal compound 1]
(Sample synthesis)
Based on the above production method, n = 3 to 8 liquid crystal compound 1 having a cyclic carbonate portion was synthesized to obtain a liquid crystalline ion conductor. As a specific example, a synthesis method will be described only for a liquid crystal compound of n = 3 (hereinafter referred to as “liquid crystal compound 1 (3)”). First, 4- (trans-4-pentylcyclohexyl) phenol (Kanto Chemical) 3.00 g (12.2 mmol), 2-bromo-1-pentene 2.18 g (14.6 mmol), potassium carbonate 3.37 g (24. 4 mmol) was added to an N, N-dimethylformamide solution (30 mL), and the first reaction solution was stirred at 80 ° C. for 8 hours under an argon atmosphere.
 次いで、第1反応溶液に飽和塩化アンモニウム水溶液を加え、酢酸エチルで反応物を抽出した。有機層を無水硫酸マグネシウムで乾燥した後、ろ過し、溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィー(展開溶媒:ヘキサン)で精製し、n=3の中間生成物(以下、「中間生成物1-1(3)」と表す)(1.49g,4.74mmol)を収率39%で得た。 Next, a saturated aqueous ammonium chloride solution was added to the first reaction solution, and the reaction product was extracted with ethyl acetate. The organic layer was dried over anhydrous magnesium sulfate and then filtered, and the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (developing solvent: hexane), and n = 3 intermediate product (hereinafter referred to as “intermediate product 1-1 (3)”) (1.49 g, 4.74 mmol) was collected. Obtained at a rate of 39%.
 次に、中間生成物1-1(3)を1.49g(4.74mmol)、塩化メチレン溶液を50mL、メタクロロ過安息香酸(m-CPBA)1.23g(7.13mmol)を加えた第2反応溶液をアルゴン雰囲気下室温で10分間撹拌した。第2反応溶液にトリブロモ酢酸7.03g(23.7mmol)を加えて、室温で18時間撹拌した。次に、反応溶液を0℃に冷却し、ジアザビシクロウンデセン(DBU)8.04g(52.8mmol)を加えた後、室温に戻して2時間撹拌した。飽和炭酸水素ナトリウム水溶液を加え、反応物を塩化メチレンで抽出した。有機層を無水硫酸マグネシウムで乾燥した後、ろ過し、溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィー(展開溶媒:クロロホルム)で精製し、液晶化合物1(3)(0.836g,2.23mmol)を収率47%で得た。 Next, 1.49 g (4.74 mmol) of the intermediate product 1-1 (3), 50 mL of the methylene chloride solution, and 1.23 g (7.13 mmol) of metachloroperbenzoic acid (m-CPBA) were added. The reaction solution was stirred at room temperature for 10 minutes under an argon atmosphere. 7.03 g (23.7 mmol) of tribromoacetic acid was added to the second reaction solution, and the mixture was stirred at room temperature for 18 hours. Next, the reaction solution was cooled to 0 ° C., diazabicycloundecene (DBU) 8.04 g (52.8 mmol) was added, and the mixture was returned to room temperature and stirred for 2 hours. Saturated aqueous sodium bicarbonate was added and the reaction was extracted with methylene chloride. The organic layer was dried over anhydrous magnesium sulfate and then filtered, and the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (developing solvent: chloroform) to obtain liquid crystal compound 1 (3) (0.836 g, 2.23 mmol) in a yield of 47%.
 このようにして得られた液晶化合物1(3)は、バイレイヤー構造を有するスメクチックA液晶相を発現する。液晶化合物1(3)の構造をプロトン核磁気共鳴分光法(H-NMR)により解析した。共鳴周波数は400MHz、溶媒として重クロロホルム(CDCl)を用いた。測定された化学シフトδのピークは以下の通りである。 The liquid crystal compound 1 (3) thus obtained exhibits a smectic A liquid crystal phase having a bilayer structure. The structure of the liquid crystal compound 1 (3) was analyzed by proton nuclear magnetic resonance spectroscopy ( 1 H-NMR). The resonance frequency was 400 MHz, and deuterated chloroform (CDCl 3 ) was used as a solvent. The measured chemical shift δ peaks are as follows.
 δ=7.11(d,J=8.4Hz,2H),6.82(d,J=8.4Hz,2H),4.71-4.68(m,1H),4.52(t,J=8.4Hz,1H),4.06(t,J=8.4,1H),3.92(t,J=6.4,1H),2.40(t,J=12Hz,1H),1.86-1.01(m,21H),0.89(t,J=6.8Hz,3H)。カッコ内はシグナルの多重度、結合定数J、積分強度比を表している。 δ = 7.11 (d, J = 8.4Hz, 2H), 6.82 (d, J = 8.4Hz, 2H), 4.71-4.68 (m, 1H), 4.52 (t, J = 8.4Hz, 1H), 4.06 (t , J = 8.4,1H), 3.92 (t, J = 6.4,1H), 2.40 (t, J = 12Hz, 1H), 1.86-1.01 (m, 21H), 0.89 (t, J = 6.8Hz, 3H) . In parentheses, signal multiplicity, coupling constant J, and integral intensity ratio are shown.
 さらに得られた液晶化合物1(3)に対して、元素分析を行った。測定された質量比はC:73.90%、H:9.25%であった。測定値が、C2334の質量比の計算値、C:73.76%、H:9.15%とほぼ一致し、得られた化合物の組成がC2334であることを確認できた。 Further, elemental analysis was performed on the obtained liquid crystal compound 1 (3). The measured mass ratio was C: 73.90% and H: 9.25%. The measured value almost coincides with the calculated value of the mass ratio of C 23 H 34 O 4 , C: 73.76%, H: 9.15%, and the composition of the obtained compound is C 23 H 34 O 4 . I was able to confirm that.
 以上の結果から、得られた液晶化合物1(3)は、(1)式に示す構造式で表されるn=3の液晶化合物であることを確認できた。 From the above results, it was confirmed that the obtained liquid crystal compound 1 (3) was a liquid crystal compound of n = 3 represented by the structural formula shown in formula (1).
(相転移挙動)
 上記で得られたn=3の液晶化合物1、及び上記同様にして得られたn=4~8の液晶化合物1の熱相転移挙動を確認した。その結果を表1に示す。
(Phase transition behavior)
The thermal phase transition behavior of the n = 3 liquid crystal compound 1 obtained above and the n = 4 to 8 liquid crystal compound 1 obtained in the same manner as described above was confirmed. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 例えば、液晶化合物1(3)は、105℃より高温側では等方性液体相(Iso)、105~35℃でスメクチックA液晶相(SmA)を示し、35度より低温側では結晶相(Cr)となる。液晶化合物1(4)および液晶化合物1(6)はスメクチックA液晶相(SmA)を発現する温度より低温側に未同定の液晶相(M)を形成する。液晶化合物1(4)においては、-50℃まで冷却しても結晶化しない。 For example, the liquid crystal compound 1 (3) exhibits an isotropic liquid phase (Iso) at a temperature higher than 105 ° C., a smectic A liquid crystal phase (SmA) at a temperature of 105 to 35 ° C., and a crystal phase (Cr ) Liquid crystal compound 1 (4) and liquid crystal compound 1 (6) form an unidentified liquid crystal phase (M) on the lower temperature side than the temperature at which the smectic A liquid crystal phase (SmA) is developed. Liquid crystal compound 1 (4) does not crystallize even when cooled to −50 ° C.
[実施例2:液晶性イオン伝導体A]
(相転移挙動)
 次に液晶化合物1(4)とリチウム塩とを複合化した液晶性イオン伝導体20について熱相転移挙動を確認した。リチウム塩は、リチウムビス(トリフルオロメチルスルホニル)イミド(LiN(SOCF)を用い、液晶化合物1(4)との混合比率を変えて複合化した。その結果を表2に示す。
[Example 2: Liquid crystalline ion conductor A]
(Phase transition behavior)
Next, the thermal phase transition behavior of the liquid crystalline ionic conductor 20 in which the liquid crystal compound 1 (4) and the lithium salt were combined was confirmed. Lithium salt was compounded by using lithium bis (trifluoromethylsulfonyl) imide (LiN (SO 2 CF 3 ) 2 ) and changing the mixing ratio with liquid crystal compound 1 (4). The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 液晶化合物1(4)とリチウム塩とを複合化した液晶性イオン伝導体は、液晶化合物1(4)単体よりもスメクチックA液晶相(SmA)を形成する温度範囲が広いことが確認できた。また、液晶化合物1(4)とリチウム塩の混合比率が8:2、7:3、6:4の液晶性イオン伝導体は、スメクチックA液晶相(SmA)のみを発現し、-50℃まで冷却しても結晶化しないことが確認できた。 It was confirmed that the liquid crystalline ionic conductor obtained by combining the liquid crystal compound 1 (4) and the lithium salt has a wider temperature range for forming the smectic A liquid crystal phase (SmA) than the liquid crystal compound 1 (4) alone. In addition, liquid crystalline ionic conductors having a mixing ratio of liquid crystal compound 1 (4) and lithium salt of 8: 2, 7: 3, 6: 4 express only smectic A liquid crystal phase (SmA), up to −50 ° C. It was confirmed that it did not crystallize even when cooled.
 次に液晶化合物1(n)とリチウム塩とを複合化した液晶性イオン伝導体について熱相転移挙動を確認した。リチウム塩は、リチウムビス(トリフルオロメチルスルホニル)イミド(LiN(SO2CF3)2)を用いた。液晶化合物1(n)とリチウム塩の混合比率は9:1とした。その結果を表3に示す。 Next, the thermal phase transition behavior of the liquid crystalline ionic conductor obtained by combining the liquid crystal compound 1 (n) and the lithium salt was confirmed. As the lithium salt, lithium bis (trifluoromethylsulfonyl) imide (LiN (SO2CF3) 2) was used. The mixing ratio of the liquid crystal compound 1 (n) and the lithium salt was 9: 1. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 液晶化合物1(n)とリチウム塩とを9:1の割合で複合化した液晶性イオン伝導体は、液晶化合物1(n)単体よりもスメクチックA液晶相(SmA)を形成する温度範囲が広いことが確認できた。 The liquid crystalline ionic conductor obtained by combining the liquid crystal compound 1 (n) and the lithium salt at a ratio of 9: 1 has a wider temperature range for forming the smectic A liquid crystal phase (SmA) than the liquid crystal compound 1 (n) alone. I was able to confirm.
(イオン伝導性)
 液晶化合物1(4)とリチウム塩とを複合化した液晶性イオン伝導体についてイオン伝導度の温度依存性を測定した。液晶性イオン伝導体は、ガラス基板上で自発的に垂直に配向した。イオン伝導度は、くし形金電極セルを用い、交流インピーダンス法により一定の電圧下で周波数を変化させて電極間に流れる電流を測定した。その結果を図5に示す。図5は、横軸上が温度℃、横軸下が1000/T(K-1)を示し、縦軸がイオン伝導度σ(Scm-1)を示している。各プロットは、液晶化合物1(4)とリチウム塩の混合比率(モル比)が、9:1を●、8:2を○、7:3を□、6:4を△で表示している。30℃においては、液晶化合物1(4)とリチウム塩の9:1 (●)、6:4 (△)の液晶性イオン伝導体は同程度の伝導度を示した。8:2 (○)および7:3 (□)の液晶性イオン伝導体は、9:1 (●)、6:4 (△)の液晶性イオン伝導体よりもわずかにイオン伝導度が低下した。本図より、本実施例に係る液晶性イオン伝導体は、室温でも10-5(Scm-1)程度のイオン伝導度が得られることが確認できた。
(Ion conductivity)
The temperature dependence of ionic conductivity was measured for a liquid crystalline ionic conductor in which liquid crystal compound 1 (4) and a lithium salt were combined. The liquid crystalline ionic conductor was spontaneously aligned vertically on the glass substrate. For the ionic conductivity, a comb-shaped gold electrode cell was used, and the current flowing between the electrodes was measured by changing the frequency under a constant voltage by the AC impedance method. The result is shown in FIG. In FIG. 5, the temperature on the horizontal axis is ° C., the horizontal axis is 1000 / T (K −1 ), and the vertical axis is the ionic conductivity σ (Scm −1 ). In each plot, the mixing ratio (molar ratio) between the liquid crystal compound 1 (4) and the lithium salt is 9: 1: ◯, 8: 2: ◯, 7: 3: □, 6: 4: △. . At 30 ° C., the liquid crystal compound 1 (4) and the 9: 1 (●) and 6: 4 (Δ) liquid crystalline ionic conductors of the lithium salt showed similar conductivity. The liquid crystalline ionic conductors of 8: 2 (◯) and 7: 3 (□) had a slightly lower ionic conductivity than the liquid crystalline ionic conductors of 9: 1 (●) and 6: 4 (Δ). . From this figure, it was confirmed that the liquid crystalline ionic conductor according to this example has an ionic conductivity of about 10 −5 (Scm −1 ) even at room temperature.
 次に液晶化合物1(n)とリチウム塩とをモル比9:1の割合で複合化した液晶性イオン伝導体の温度依存性を上記と同様の方法により測定した。その結果を図6に示す。図6は、横軸上が温度℃、横軸下が1000/T(K-1)を示し、縦軸がイオン伝導度σ(Scm-1)を示している。各プロットは、液晶化合物1(3)を▽、液晶化合物1(4)を●、液晶化合物1(6)を□、液晶化合物1(8)を○で表示している。30℃においては、液晶化合物1(6)(□)>液晶化合物1(3)(▽)>液晶化合物1(4)(●)>液晶化合物1(8)(○)の順にイオン伝導度が低下した。本図より、本実施例に係る液晶性イオン伝導体20は、室温でも10-5(Scm-1)程度のイオン伝導度が得られることが確認できた。 Next, the temperature dependency of the liquid crystalline ion conductor obtained by combining the liquid crystal compound 1 (n) and the lithium salt at a molar ratio of 9: 1 was measured by the same method as described above. The result is shown in FIG. In FIG. 6, the horizontal axis indicates temperature ° C., the horizontal axis indicates 1000 / T (K −1 ), and the vertical axis indicates ionic conductivity σ (Scm −1 ). In each plot, liquid crystal compound 1 (3) is indicated by ▽, liquid crystal compound 1 (4) is indicated by ●, liquid crystal compound 1 (6) is indicated by □, and liquid crystal compound 1 (8) is indicated by ◯. At 30 ° C., the ionic conductivity is in the order of liquid crystal compound 1 (6) (□)> liquid crystal compound 1 (3) (▽)> liquid crystal compound 1 (4) (●)> liquid crystal compound 1 (8) (◯). Declined. From this figure, it was confirmed that the ionic conductivity of the liquid crystalline ionic conductor 20 according to this example can be about 10 −5 (Scm −1 ) even at room temperature.
[実施例3:液晶化合物3]
 上記の製造方法に基づき、直鎖状炭酸エステル部位を有する液晶化合物3を合成し、液晶性イオン伝導体を得た。液晶化合物3の合成方法を説明する。まず、4-(トランス-4-ペンチルシクロヘキシル)フェノール7.57g(30.7mmol)、4-ブロモ酪酸エチル5.41g(27.7mmol)、炭酸カリウム7.68g(55.6mmol)をN,N-ジメチルホルムアミド溶液に50mL加えた反応溶液をアルゴン雰囲気下80℃で2時間撹拌した。次いで、反応溶液に飽和塩化アンモニウム水溶液を加え、酢酸エチルで反応物を抽出した。有機層を無水硫酸マグネシウムで乾燥した後、ろ過し、溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィー(展開溶媒:ヘキサン/クロロホルム=5/1)で精製し、中間生成物3-1(6.67g,18.5mmol)を収率67%で得た。
[Example 3: Liquid crystal compound 3]
Based on said manufacturing method, the liquid crystal compound 3 which has a linear carbonate ester site | part was synthesize | combined, and the liquid crystalline ion conductor was obtained. A method for synthesizing the liquid crystal compound 3 will be described. First, 7.57 g (30.7 mmol) of 4- (trans-4-pentylcyclohexyl) phenol, 5.41 g (27.7 mmol) of ethyl 4-bromobutyrate, and 7.68 g (55.6 mmol) of potassium carbonate were added to N, N -The reaction solution obtained by adding 50 mL to the dimethylformamide solution was stirred at 80 ° C for 2 hours under an argon atmosphere. Next, a saturated aqueous ammonium chloride solution was added to the reaction solution, and the reaction product was extracted with ethyl acetate. The organic layer was dried over anhydrous magnesium sulfate and then filtered, and the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (developing solvent: hexane / chloroform = 5/1) to obtain the intermediate product 3-1 (6.67 g, 18.5 mmol) in a yield of 67%.
 次に、次に水素化リチウムアルミニウム0.86gにテトラヒドロフラン(THF)を20mL添加した反応液に、中間生成物3-1(4.06g,11.3mmol)のTHF溶液を添加し、室温で30分撹拌した。撹拌後、反応液に水と水酸化ナトリウム水溶液を添加し、セライトを用いて濾過を行った。さらにクロロホルムを用いて反応物を抽出し、有機層を無水硫酸マグネシウムで乾燥した後、ろ過し、溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=3/1→2/1)で精製し、中間生成物3-2(2.76g,8.67mmol)を収率77%で得た。 Next, a THF solution of the intermediate product 3-1 (4.06 g, 11.3 mmol) was added to a reaction solution obtained by adding 20 mL of tetrahydrofuran (THF) to 0.86 g of lithium aluminum hydride, and the mixture was stirred at room temperature for 30 minutes. Stir for minutes. After stirring, water and an aqueous sodium hydroxide solution were added to the reaction solution, followed by filtration using celite. Further, the reaction product was extracted using chloroform, and the organic layer was dried over anhydrous magnesium sulfate and then filtered, and the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (developing solvent: hexane / ethyl acetate = 3/1 → 2/1) to obtain intermediate product 3-2 (2.76 g, 8.67 mmol) in a yield of 77%.
 中間生成物3-2(1.46g,4.58mmol)に炭酸ジエチル20mL、フッ化カリウム-アルミナ0.81gを添加し、加熱還流下で8時間撹拌した。反応液にクロロホルムを加えた後、濾過を行い、溶媒を減圧留去した。得られた残渣をシリカゲルクロマトグラフィー(展開溶媒:ヘキサン→ヘキサン/酢酸エチル=10/1)で精製し、最後にメタノールと酢酸エチルの混合溶媒を用いて再結晶を行い、液晶化合物3(1.02g,2.61mmol)を収率57%で得た。 To intermediate product 3-2 (1.46 g, 4.58 mmol) were added 20 mL of diethyl carbonate and 0.81 g of potassium fluoride-alumina, and the mixture was stirred for 8 hours while heating under reflux. Chloroform was added to the reaction solution, followed by filtration, and the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel chromatography (developing solvent: hexane → hexane / ethyl acetate = 10/1), and finally recrystallized using a mixed solvent of methanol and ethyl acetate to obtain liquid crystal compound 3 (1. 02 g, 2.61 mmol) was obtained with a yield of 57%.
液晶化合物3の構造をプロトン核磁気共鳴分光法(H-NMR)により解析した。共鳴周波数は400MHz、溶媒として重クロロホルム(CDCl)を用いた。測定された化学シフトδのピークは以下の通りである。
 δ = 7.10 (d, J = 8.4 Hz, 2H), 6.80 (d, J = 8.8 Hz, 2H), 4.21-4.16 (m, 4H), 3.97-3.94 (m, 2H), 2.39 (tt, J = 3.0 Hz, 12 Hz, 1H), 1.89-1.80 (m, 8H), 1.45-1.37 (m, 2H), 1.35-1.17 (m, 12H), 1.09-0.96 (m, 2H), 0.89 (t, J = 7.4 Hz, 3H)。カッコ内はシグナルの多重度、結合定数J、積分強度比を表している。
 さらに得られた液晶化合物3に対して、元素分析を行った。測定された質量比はC:73.78%、H:10.06%であった。測定値が、C2438の質量比の計算値、C:73.81%、H:9.81%とほぼ一致し、得られた化合物の組成がC2438であることを確認できた。
 以上の結果から、得られた液晶化合物3は、前記式(3)に示す構造式で表される化合物であることを確認できた。
The structure of the liquid crystal compound 3 was analyzed by proton nuclear magnetic resonance spectroscopy ( 1 H-NMR). The resonance frequency was 400 MHz, and deuterated chloroform (CDCl 3 ) was used as a solvent. The measured chemical shift δ peaks are as follows.
δ = 7.10 (d, J = 8.4 Hz, 2H), 6.80 (d, J = 8.8 Hz, 2H), 4.21-4.16 (m, 4H), 3.97-3.94 (m, 2H), 2.39 (tt, J = 3.0 Hz, 12 Hz, 1H), 1.89-1.80 (m, 8H), 1.45-1.37 (m, 2H), 1.35-1.17 (m, 12H), 1.09-0.96 (m, 2H), 0.89 (t, J = 7.4 Hz, 3H). In parentheses, signal multiplicity, coupling constant J, and integral intensity ratio are shown.
Further, elemental analysis was performed on the obtained liquid crystal compound 3. The measured mass ratio was C: 73.78% and H: 10.06%. The measured value almost coincides with the calculated value of the mass ratio of C 24 H 38 O 4 , C: 73.81%, H: 9.81%, and the composition of the obtained compound is C 24 H 38 O 4 I was able to confirm that.
From the above results, it was confirmed that the obtained liquid crystal compound 3 was a compound represented by the structural formula shown in the formula (3).
[実施例4:液晶性イオン伝導体B]
(相転移挙動)
 液晶化合物3とリチウム塩とを複合化した液晶性イオン伝導体について熱相転移挙動を確認した。リチウム塩は、リチウムビス(トリフルオロメチルスルホニル)イミド(LiN(SOCF)を用い、液晶化合物3との混合比率を変えて複合化した。その結果を表4に示す。
[Example 4: Liquid crystalline ion conductor B]
(Phase transition behavior)
The thermal phase transition behavior of the liquid crystalline ionic conductor obtained by combining the liquid crystal compound 3 and the lithium salt was confirmed. Lithium salt was compounded by using lithium bis (trifluoromethylsulfonyl) imide (LiN (SO 2 CF 3 ) 2 ) and changing the mixing ratio with the liquid crystal compound 3. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 液晶化合物3とリチウム塩とを複合化した液晶性イオン伝導体は、液晶化合物3単体よりも液晶相を示す温度範囲が広いことが確認できた。リチウム塩との複合化により、液晶化合物3単体では発現していたネマチック液晶相(N)が消失し、スメクチックA液晶相(SmA)を安定に発現するようになった。また、液晶化合物3とリチウム塩の混合比率が7:3、6:4の液晶性イオン伝導体は、層間距離の異なる2種類のスメクチックA液晶相を示し、-50℃まで冷却しても結晶化しないことが確認できた。 It was confirmed that the liquid crystalline ionic conductor obtained by combining the liquid crystal compound 3 and the lithium salt has a wider temperature range showing a liquid crystal phase than the liquid crystal compound 3 alone. Due to the compounding with the lithium salt, the nematic liquid crystal phase (N) that was expressed in the liquid crystal compound 3 alone disappeared, and the smectic A liquid crystal phase (SmA) was stably expressed. In addition, the liquid crystalline ion conductor having a mixing ratio of the liquid crystal compound 3 and the lithium salt of 7: 3, 6: 4 exhibits two types of smectic A liquid crystal phases having different interlayer distances, and is crystallized even when cooled to −50 ° C. It was confirmed that it was not converted.
(イオン伝導性)
 液晶化合物3とリチウム塩とを複合化した液晶性イオン伝導体についてイオン伝導度の温度依存性を測定した。リチウム塩は、リチウムビス(トリフルオロメチルスルホニル)イミド(LiN(SOCF)を用いた。液晶性イオン伝導体は、ガラス基板上で自発的に垂直に配向した。イオン伝導度は、くし形金電極セルを用い、交流インピーダンス法により一定の電圧下で周波数を変化させて電極間に流れる電流を測定した。その結果を図8に示す。図8は、横軸上が温度℃、横軸下が1000/T(K-1)を示し、縦軸がイオン伝導度σ(Scm-1)を示している。各プロットは、液晶化合物3とリチウム塩の混合比率(モル比)が、9:1を●、8:2を○、7:3を□で表示している。
液晶性イオン伝導体中のリチウム塩の割合が高くなるほど、イオン伝導度が高くなることが分かった。本図より、本実施例に係る液晶性イオン伝導体は、室温でも10-5(Scm-1)程度のイオン伝導度が得られることが確認できた。
(Ion conductivity)
The temperature dependence of the ionic conductivity of the liquid crystalline ionic conductor obtained by combining the liquid crystal compound 3 and the lithium salt was measured. As the lithium salt, lithium bis (trifluoromethylsulfonyl) imide (LiN (SO 2 CF 3 ) 2 ) was used. The liquid crystalline ionic conductor was spontaneously aligned vertically on the glass substrate. For the ionic conductivity, a comb-shaped gold electrode cell was used, and the current flowing between the electrodes was measured by changing the frequency under a constant voltage by the AC impedance method. The result is shown in FIG. In FIG. 8, the temperature on the horizontal axis is ° C., the horizontal axis is 1000 / T (K −1 ), and the vertical axis is the ionic conductivity σ (Scm −1 ). In each plot, the mixing ratio (molar ratio) of the liquid crystal compound 3 and the lithium salt is indicated by ● for 9: 1, ◯ for 8: 2, and □ for 7: 3.
It was found that the higher the proportion of lithium salt in the liquid crystalline ionic conductor, the higher the ionic conductivity. From this figure, it was confirmed that the liquid crystalline ionic conductor according to this example has an ionic conductivity of about 10 −5 (Scm −1 ) even at room temperature.
[実施例5:液晶性イオン伝導体C]
(相転移挙動)
 液晶化合物1(4)および3をモル比1:2で複合化した混合液晶を作製し、リチウム塩と複合化した液晶性イオン伝導体について熱相転移挙動を確認した。リチウム塩は、リチウムビス(トリフルオロメチルスルホニル)イミド(LiN(SOCF)を用い、液晶とリチウム塩のモル比は8:2とした。1(4)単体および3単体と比較した結果を表5に示す。
[Example 5: Liquid crystalline ion conductor C]
(Phase transition behavior)
A mixed liquid crystal in which liquid crystal compounds 1 (4) and 3 were compounded at a molar ratio of 1: 2 was prepared, and the thermal phase transition behavior of the liquid crystalline ion conductor complexed with a lithium salt was confirmed. As the lithium salt, lithium bis (trifluoromethylsulfonyl) imide (LiN (SO 2 CF 3 ) 2 ) was used, and the molar ratio of the liquid crystal to the lithium salt was 8: 2. Table 5 shows the results of comparison with 1 (4) simple substance and 3 simple substance.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
混合液晶を用いた場合においてもスメクチックA液晶相(SmA)を示すことが分かった。液晶相-等方相転移温度は、液晶化合物1(4)単体および液晶化合物3単体の間に位置することが分かった。 It was found that smectic A liquid crystal phase (SmA) was exhibited even when mixed liquid crystal was used. It was found that the liquid crystal phase-isotropic phase transition temperature is located between the liquid crystal compound 1 (4) alone and the liquid crystal compound 3 alone.
(イオン伝導性)
次に液晶化合物1(4)および液晶化合物3をモル比1:2で複合化した混合液晶とリチウム塩をモル比8:2で複合化した液晶性イオン伝導体についてイオン伝導度の温度依存性を上記同様に測定した。リチウム塩は、リチウムビス(トリフルオロメチルスルホニル)イミド(LiN(SOCF)を用いた。液晶化合物1(4)単体および液晶化合物3単体と比較した結果を図7に示す。液晶化合物1(4)単体を●、液晶化合物3単体を○、混合液晶を□で表示している。
(Ion conductivity)
Next, the temperature dependence of the ionic conductivity of the liquid crystalline ionic conductor obtained by combining the liquid crystal compound 1 (4) and the liquid crystal compound 3 in a molar ratio of 1: 2 and the lithium salt in a molar ratio of 8: 2. Was measured as described above. As the lithium salt, lithium bis (trifluoromethylsulfonyl) imide (LiN (SO 2 CF 3 ) 2 ) was used. The result compared with the liquid crystal compound 1 (4) simple substance and the liquid crystal compound 3 simple substance is shown in FIG. Liquid crystal compound 1 (4) alone is indicated by ●, liquid crystal compound 3 alone is indicated by ○, and mixed liquid crystal is indicated by □.
 混合液晶を用いた液晶性イオン伝導体において、液晶化合物1(4)単体および液晶化合物3単体よりも高いイオン伝導度が得られた。リチウム塩を解離させるための大きな双極子モーメントを有する環状炭酸エステル部位を有する1(4)とイオン伝導パスの運動性を高める直鎖状炭酸エステル部位を有する3とが共存することでリチウム塩の解離性とイオンの運動性が両立できているためと考えられる。液晶化合物1(4)単体および液晶化合物3単体では、温度が低下するに連れてイオン伝導度が低下するが、混合液晶では上記表5に示す相転移温度付近で等方液体相からスメクチック液晶相に転移し、イオン伝導パスが形成されることでイオン伝導度が向上した。混合液晶においては、化合物1(4)単体が形成するイオン伝導パスよりも分子運動性の高いイオン伝導パスが形成されているために、イオン伝導度が向上したと考えられる。 In the liquid crystalline ionic conductor using the mixed liquid crystal, higher ionic conductivity was obtained than the liquid crystal compound 1 (4) alone and the liquid crystal compound 3 alone. The coexistence of 1 (4) having a cyclic carbonate portion having a large dipole moment for dissociating the lithium salt and 3 having a linear carbonate portion that enhances the mobility of the ion conduction path allows the lithium salt to coexist. This is probably because the dissociation property and ion mobility are compatible. In the liquid crystal compound 1 (4) alone and the liquid crystal compound 3 alone, the ionic conductivity decreases as the temperature decreases. However, in the mixed liquid crystal, the isotropic liquid phase is changed from the isotropic liquid phase around the phase transition temperature shown in Table 5 above. The ion conductivity was improved by forming an ion conduction path. In the mixed liquid crystal, the ion conductivity is considered to be improved because an ion conduction path having higher molecular mobility than that formed by the compound 1 (4) alone is formed.
[実施例6:色素増感太陽電池の製造]
 図3に示す単一セルからなる色素増感太陽電池10Bを製造し、評価を行った。基板16,22はガラス板を用いた。透明導電膜18及び導電膜24は、FTOで形成した。第1電極12と第2電極14を27μmの間隔に保持すると共に、7mm四方の閉空間を形成するスペーサ34を、第1電極12と第2電極14の間に設けた。閉空間内に酸化物半導体層20と液晶電解質28とを配置した。スペーサ34は、樹脂で形成した。
[Example 6: Production of dye-sensitized solar cell]
A dye-sensitized solar cell 10B composed of a single cell shown in FIG. 3 was produced and evaluated. The substrates 16 and 22 were glass plates. The transparent conductive film 18 and the conductive film 24 were formed by FTO. The first electrode 12 and the second electrode 14 were held at a distance of 27 μm, and a spacer 34 forming a 7 mm square closed space was provided between the first electrode 12 and the second electrode 14. The oxide semiconductor layer 20 and the liquid crystal electrolyte 28 were disposed in the closed space. The spacer 34 was made of resin.
 酸化物半導体層20は、TiOで形成し厚さを5μmとした。色素はD35(Prof.Anders Hagfeldtより提供を受けた。参考文献:X.Jiang,K.M.Karlsson,E.Gabrielsson,E.M.J.Johansson,M.Quintana,M.Karlsson,L.Sun,G.Boschloo,A.Hagfeldt,Advanced Functional Materials,2011,21,2944-2952)を用いた。液晶電解質28は、上記手順に従い作製した液晶化合物1(4)及び、イミダゾリウム塩とヨウ素の複合体を複合化させて作製した。触媒層26は白金で形成した。イミダゾリウム塩である1-メチル-3-プロピルイミダゾリウムヨージドに対するヨウ素の濃度は20mol%(イミダゾリウム塩:ヨウ素=4:1(モル比))とした。液晶化合物1(4)に対する複合体の濃度を変えた液晶電解質28を作製した。表6に作製した液晶電解質28の組成と、液晶性とを示す。 The oxide semiconductor layer 20 was made of TiO 2 and had a thickness of 5 μm. The dye was provided by D35 (Prof. Anders Hagfeldt. Reference: X. Jiang, KM Karlsson, E. Gabrielson, EM J. Johansson, M. Quintana, M. Karlsson, L. Sun. G. Boschloo, A. Hagfeldt, Advanced Functional Materials, 2011, 1, 2944-2952). The liquid crystal electrolyte 28 was prepared by combining the liquid crystal compound 1 (4) prepared according to the above procedure and a complex of an imidazolium salt and iodine. The catalyst layer 26 was formed of platinum. The concentration of iodine with respect to 1-methyl-3-propylimidazolium iodide, which is an imidazolium salt, was 20 mol% (imidazolium salt: iodine = 4: 1 (molar ratio)). A liquid crystal electrolyte 28 was produced in which the concentration of the composite with respect to the liquid crystal compound 1 (4) was changed. Table 6 shows the composition and liquid crystallinity of the liquid crystal electrolyte 28 produced.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 本表において、試料1は複合体を含まない液晶化合物1(4)のみ、試料2~9は液晶化合物1(4)に対する複合体の濃度を10~80mol%の範囲で変えた場合の結果を示す。また、「M」は中間相、「SmA」はスメチックA相、「Iso」は等方性液体を示す。したがって「M-SmA」欄は、中間相からスメチックA相に相転移する温度、「SmA-Iso」欄は、スメチックA相から等方性液体に相転移する温度である。すなわち、各試料は、「M-SmA」欄に記載の温度と「SmA-Iso」欄に記載の温度範囲において、液晶性を示す。本表から、液晶電解質28は、液晶化合物1(4)に対する複合体の濃度が10~80%の広い範囲で液晶性を示すことが確認できた。 In this table, sample 1 shows only the liquid crystal compound 1 (4) not containing the composite, and samples 2 to 9 show the results when the concentration of the composite with respect to the liquid crystal compound 1 (4) was changed in the range of 10 to 80 mol%. Show. “M” represents an intermediate phase, “SmA” represents a smectic A phase, and “Iso” represents an isotropic liquid. Therefore, the “M-SmA” column is the temperature at which the intermediate phase transitions to the smectic A phase, and the “SmA-Iso” column is the temperature at which the smectic A phase transitions to the isotropic liquid. That is, each sample exhibits liquid crystallinity in the temperature described in the “M-SmA” column and the temperature range described in the “SmA-Iso” column. From this table, it was confirmed that the liquid crystal electrolyte 28 exhibited liquid crystallinity in a wide range of the concentration of the composite with respect to the liquid crystal compound 1 (4) of 10 to 80%.
 液晶化合物1(4)に対する複合体の濃度が60mol%の液晶電解質28で作製した色素増感太陽電池10Bについて、疑似太陽光AM1.5(1000Wm-2)を照射しながら電流電圧測定を行い、光電変換効率の温度依存性を調べた。その結果を表7に示す。 With respect to the dye-sensitized solar cell 10B produced with the liquid crystal electrolyte 28 having a complex concentration of 60 mol% with respect to the liquid crystal compound 1 (4), current voltage measurement is performed while irradiating pseudo sunlight AM1.5 (1000 Wm−2). The temperature dependence of photoelectric conversion efficiency was investigated. The results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 同様に液晶化合物1(4)に対する複合体の濃度が70mol%の結果を表8に示す。 Similarly, Table 8 shows the results when the concentration of the complex with respect to liquid crystal compound 1 (4) was 70 mol%.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 表7及び表8から、液晶電解質28を用いて作製した色素増感太陽電池10Bは、30℃から90℃の範囲で発電できることが分かった。 From Tables 7 and 8, it was found that the dye-sensitized solar cell 10B produced using the liquid crystal electrolyte 28 can generate power in the range of 30 ° C to 90 ° C.
 表7及び表8に基づき、測定温度と、光電変換効率ηの関係を図9に示す。本図は、縦軸が光電変換効率を示し、横軸が測定温度を示す。本図中、●は液晶化合物1(4)に対する複合体の濃度が60mol%の液晶電解質28、△は液晶化合物1(4)に対する複合体の濃度が70mol%の液晶電解質28、□は複合体のみを電解質として用いた場合(液体電解質)の結果である。本図から、複合体のみ(液体電解質)の場合には測定温度の上昇に伴って光電変換効率は低下するのに対し、液晶電解質28は測定温度の上昇に伴って光電変換効率が上昇することが分かった。以上より、液晶電解質28を用いた色素増感太陽電池10Bは、測定温度の上昇に伴い、光電変換効率が上昇するという、従来にない特有の効果が得られることが確認できた。 Based on Tables 7 and 8, the relationship between the measured temperature and the photoelectric conversion efficiency η is shown in FIG. In this figure, the vertical axis indicates the photoelectric conversion efficiency, and the horizontal axis indicates the measured temperature. In the figure, ● represents a liquid crystal electrolyte 28 having a complex concentration of 60 mol% with respect to the liquid crystal compound 1 (4), Δ represents a liquid crystal electrolyte 28 having a concentration of 70 mol% of the complex with respect to the liquid crystal compound 1 (4), and □ represents a complex. It is a result when only using as an electrolyte (liquid electrolyte). From this figure, in the case of only the composite (liquid electrolyte), the photoelectric conversion efficiency decreases as the measurement temperature increases, whereas the liquid crystal electrolyte 28 increases in photoelectric conversion efficiency as the measurement temperature increases. I understood. From the above, it was confirmed that the dye-sensitized solar cell 10B using the liquid crystal electrolyte 28 can obtain an unprecedented unique effect that the photoelectric conversion efficiency increases as the measurement temperature increases.
1 液晶化合物
3、4 アルキル鎖 
6 メソゲン部位
10 液晶化合物
8 炭酸エステル部位
10A、10B 色素増感太陽電池
12 第1電極
14 第2電極
16、22 基板
18 透明導電膜
20 酸化物半導体層
24 導電膜
26 触媒
28 液晶電解質
30 配線
32 外部回路
34 スペーサ
1 Liquid crystal compound 3, 4 Alkyl chain
6 Mesogenic moiety 10 Liquid crystal compound 8 Carbonate ester moiety 10A, 10B Dye-sensitized solar cell 12 First electrode 14 Second electrode 16, 22 Substrate 18 Transparent conductive film 20 Oxide semiconductor layer 24 Conductive film 26 Catalyst 28 Liquid crystal electrolyte 30 Wiring 32 External circuit 34 Spacer

Claims (14)

  1.  炭酸エステル部位とメソゲン部位とがアルキル鎖で結合されていることを特徴とする液晶化合物。 A liquid crystal compound in which a carbonate ester moiety and a mesogen moiety are bonded by an alkyl chain.
  2. 環状炭酸エステル部位とメソゲン部位とがアルキル鎖で結合されている請求項1記載の液晶化合物。 The liquid crystal compound according to claim 1, wherein the cyclic carbonate moiety and the mesogen moiety are bonded by an alkyl chain.
  3.  鎖状炭酸エステル部位とメソゲン部位とがアルキル鎖で結合されている請求項1記載の液晶化合物。 The liquid crystal compound according to claim 1, wherein the chain carbonic acid ester moiety and the mesogenic moiety are bonded by an alkyl chain.
  4.  式(0)で表される請求項2又は3記載の液晶化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R、Rはそれぞれ独立にアルキル基であり、Aは環状の炭化水素基であり、Xは2価の連結基又は単結合であり、Rはアルキレン基であり、Bは炭酸エステルを含む基であり、m1は2~5の整数であり、m2は0又は1である。)
    The liquid crystal compound of Claim 2 or 3 represented by Formula (0).
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 1 and R 3 are each independently an alkyl group, A is a cyclic hydrocarbon group, X is a divalent linking group or a single bond, R 2 is an alkylene group, B Is a group containing a carbonate ester, m1 is an integer of 2 to 5, and m2 is 0 or 1.)
  5.  式(1)で表され、
    Figure JPOXMLDOC01-appb-C000002
    n=3,4,5,6,7,8である請求項4記載の液晶化合物。
    Represented by the formula (1),
    Figure JPOXMLDOC01-appb-C000002
    5. The liquid crystal compound according to claim 4, wherein n = 3,4,5,6,7,8.
  6. アルキル鎖とメソゲン部位を有する中間生成物に炭酸エステル部位を生成することを特徴とする液晶化合物の製造方法。 A method for producing a liquid crystal compound, wherein a carbonate ester site is generated in an intermediate product having an alkyl chain and a mesogen site.
  7. 請求項1~5のいずれか一項記載の液晶化合物がスメクチック構造を形成していることを特徴とする液晶性イオン伝導体。 6. A liquid crystalline ionic conductor, wherein the liquid crystal compound according to claim 1 forms a smectic structure.
  8. 前記液晶化合物とリチウム塩とが複合化されている請求項7記載の液晶性イオン伝導体。 The liquid crystalline ionic conductor according to claim 7, wherein the liquid crystal compound and a lithium salt are combined.
  9. 請求項6記載の製造方法で製造された液晶化合物とリチウム塩とを混合することを特徴とする液晶性イオン伝導体の製造方法。 A method for producing a liquid crystalline ionic conductor, comprising mixing a liquid crystal compound produced by the production method according to claim 6 and a lithium salt.
  10. 請求項1~5のいずれか一項記載の液晶化合物と、酸化還元種を含む複合体とを複合化したことを特徴とする液晶電解質。 6. A liquid crystal electrolyte comprising the liquid crystal compound according to claim 1 and a complex containing a redox species.
  11. 前記液晶化合物は、スメクチック構造を形成している請求項10記載の液晶電解質。 The liquid crystal electrolyte according to claim 10, wherein the liquid crystal compound forms a smectic structure.
  12. 請求項10又は11記載の液晶電解質を備えることを特徴とする色素増感太陽電池。 A dye-sensitized solar cell comprising the liquid crystal electrolyte according to claim 10 or 11.
  13. 基板上に形成された透明導電膜と、前記透明導電膜上に形成され、色素が担持された酸化物半導体層とを有する第1電極、及び
    前記酸化物半導体層と対向するように設けられた第2電極を備え、
    前記第1電極と前記第2電極の間に、請求項10又は11記載の液晶電解質を設けたことを特徴とする色素増感太陽電池。
    A first electrode having a transparent conductive film formed on a substrate, an oxide semiconductor layer formed on the transparent conductive film and carrying a dye, and provided to face the oxide semiconductor layer A second electrode,
    A dye-sensitized solar cell, wherein the liquid crystal electrolyte according to claim 10 or 11 is provided between the first electrode and the second electrode.
  14. 前記液晶電解質は、液体相になるまで加熱した状態で前記第1電極と前記第2電極の間に配置されたことを特徴とする請求項13記載の色素増感太陽電池。 14. The dye-sensitized solar cell according to claim 13, wherein the liquid crystal electrolyte is disposed between the first electrode and the second electrode while being heated to a liquid phase.
PCT/JP2014/062746 2013-05-13 2014-05-13 Liquid crystal compound, liquid-crystalline ion conductor, liquid crystal electrolyte, and dye-sensitized solar cell WO2014185425A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-101202 2013-05-13
JP2013101202A JP2016135743A (en) 2013-05-13 2013-05-13 Liquid crystal compound and liquid crystalline ion conductor
JP2013237785A JP2016136548A (en) 2013-11-18 2013-11-18 Liquid crystal electrolyte and dye-sensitized solar cell
JP2013-237785 2013-11-18

Publications (1)

Publication Number Publication Date
WO2014185425A1 true WO2014185425A1 (en) 2014-11-20

Family

ID=51898402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062746 WO2014185425A1 (en) 2013-05-13 2014-05-13 Liquid crystal compound, liquid-crystalline ion conductor, liquid crystal electrolyte, and dye-sensitized solar cell

Country Status (1)

Country Link
WO (1) WO2014185425A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114853717A (en) * 2022-06-16 2022-08-05 西北工业大学 Liquid crystal electrolyte for light-operated ion transmission and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288573A (en) * 1988-07-22 1990-03-28 Hoechst Ag Optically active 1, 3-dioxorane derivative having liquid-crystalline residue at 4-position, its production and use thereof as dopant in liquid crystal mixture
JP2006290759A (en) * 2005-04-07 2006-10-26 Chisso Corp Liquid crystalline compound having carbonate linkage group, liquid crystal composition containing the compound, and liquid crystal display device containing the composition
JP2008037823A (en) * 2006-08-09 2008-02-21 Univ Of Tokyo Ion conductor, compound or its salt, twin continuous cubic liquid crystal and electrochemical device
WO2011155577A1 (en) * 2010-06-10 2011-12-15 日産化学工業株式会社 Liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288573A (en) * 1988-07-22 1990-03-28 Hoechst Ag Optically active 1, 3-dioxorane derivative having liquid-crystalline residue at 4-position, its production and use thereof as dopant in liquid crystal mixture
JP2006290759A (en) * 2005-04-07 2006-10-26 Chisso Corp Liquid crystalline compound having carbonate linkage group, liquid crystal composition containing the compound, and liquid crystal display device containing the composition
JP2008037823A (en) * 2006-08-09 2008-02-21 Univ Of Tokyo Ion conductor, compound or its salt, twin continuous cubic liquid crystal and electrochemical device
WO2011155577A1 (en) * 2010-06-10 2011-12-15 日産化学工業株式会社 Liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114853717A (en) * 2022-06-16 2022-08-05 西北工业大学 Liquid crystal electrolyte for light-operated ion transmission and preparation method thereof

Similar Documents

Publication Publication Date Title
Abate et al. Anisotropic ionic conductivity in fluorinated ionic liquid crystals suitable for optoelectronic applications
KR20140016298A (en) Improved redox couple for electrochemical and optoelectronic devices
JPH11513522A (en) Photocell
WO2014082704A1 (en) Cobaltcomplex salts
EP2925767A1 (en) Cobalt complexes with tricyanoborate or dicyanoborate counter-anions for electrochemical or optoelectronic devices
JP5261068B2 (en) Electrolyte composition for photoelectric conversion element and photoelectric conversion element using the same
JP2013194105A (en) Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye adsorption liquid composition for dye-sensitized solar cell, semiconductor electrode for dye-sensitized solar cell, and method for producing the dye-sensitized solar cell
WO2006120939A1 (en) Novel amino group-containing heterocyclic derivatives and sensitizing dyes for photoelectric conversion containing the heterocyclic derivatives
WO2011085964A1 (en) Electrolyte formulations
Tomkeviciene et al. Diphenylamino-substituted derivatives of 9-phenylcarbazole as glass-forming hole-transporting materials for solid state dye sensitized solar cells
Zhang et al. Phenyl and thienyl functionalized imidazolium iodides for highly efficient quasi-solid-state dye-sensitized solar cells
WO2014185425A1 (en) Liquid crystal compound, liquid-crystalline ion conductor, liquid crystal electrolyte, and dye-sensitized solar cell
JP2008274082A (en) Dye containing silicon-containing substituents and dye-sensitized solar cell using the dye
EP4181225A1 (en) Photovoltaic devices containing cyclobutane-based hole transporting materials
JP4443906B2 (en) Metal complex and dye-sensitized solar cell using the same
Yoneda et al. Cyclometalated ruthenium dyes for DSSC
Mori et al. Design, Synthesis, and Photophysical Characterization of Multifunctional Far‐Red Squaraine Dyes for Dye‐Sensitized Solar Cells
US20170323732A1 (en) Use of halogen derivatives of histidine as electrolytic salt in a photovoltaic dye cell
JP5875511B2 (en) SQUARYLIUM DYE, PHOTOELECTRIC CONVERSION ELEMENT AND DYE SENSITIZED SOLAR CELL
JP2011195745A (en) Dye and dye-sensitized solar cell using the same
Seo et al. Synthesis and characterization of novel heteroleptic Ru (II) bipyridine complexes for dye-sensitized solar cell applications
Pei et al. Application of triphenylamine-based sensitizers with two carboxylic acid groups to dye-sensitized solar cells
JP5151192B2 (en) Perylene derivative and photoelectric conversion element using the same
JP2008222605A (en) Novel perylene derivative and photoelectric converter using the same
CN105440729B (en) A kind of organic dyestuff and preparation method thereof and the sensitization solar cell comprising the organic dyestuff

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14797402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14797402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP